
DB2 Universal Database for z/OS
Version 8

Application Programming
and SQL Guide

SC18-7415-08

���





DB2 Universal Database for z/OS
Version 8

Application Programming
and SQL Guide

SC18-7415-08

���



Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
1195.

Ninth Edition, Softcopy Only (June 2012)

This edition applies to Version 8 of IBM DB2 Universal Database for z/OS (DB2 UDB for z/OS), product number
5625-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed
version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was
published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical
significance are not noted.

This and other books in the DB2 UDB for z/OS library are periodically updated with technical changes. These
updates are made available to licensees of the product on CD-ROM and on the Web (currently at
www.ibm.com/software/data/db2/zos/library.html). Check these resources to ensure that you are using the most
current information.

© Copyright IBM Corporation 1983, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
Who should read this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
Terminology and citations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
How to read the syntax diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii
Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
How to send your comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

Summary of changes to this book . . . . . . . . . . . . . . . . . . . . . . . xxv

Part 1. Using SQL queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Retrieving data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Result tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Selecting columns: SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Selecting all columns: SELECT * . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Selecting some columns: SELECT column-name . . . . . . . . . . . . . . . . . . . . . . 6
Selecting derived columns: SELECT expression . . . . . . . . . . . . . . . . . . . . . . . 7
Eliminating duplicate rows: DISTINCT . . . . . . . . . . . . . . . . . . . . . . . . . 7
Naming result columns: AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Selecting rows using search conditions: WHERE . . . . . . . . . . . . . . . . . . . . . . . 8
Putting the rows in order: ORDER BY . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Specifying the sort key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Referencing derived columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Summarizing group values: GROUP BY . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Subjecting groups to conditions: HAVING . . . . . . . . . . . . . . . . . . . . . . . . . 11
Merging lists of values: UNION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Using UNION to eliminate duplicates . . . . . . . . . . . . . . . . . . . . . . . . . 13
Using UNION ALL to keep duplicates . . . . . . . . . . . . . . . . . . . . . . . . . 13

Creating common table expressions: WITH . . . . . . . . . . . . . . . . . . . . . . . . . 13
Using WITH instead of CREATE VIEW . . . . . . . . . . . . . . . . . . . . . . . . . 14
Using common table expressions with CREATE VIEW . . . . . . . . . . . . . . . . . . . . 14
Using common table expressions when you use INSERT . . . . . . . . . . . . . . . . . . . 15
Using recursive SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Accessing DB2 data that is not in a table . . . . . . . . . . . . . . . . . . . . . . . . . 16
Using 15-digit and 31-digit precision for decimal numbers. . . . . . . . . . . . . . . . . . . . 16
Finding information in the DB2 catalog . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Displaying a list of tables you can use . . . . . . . . . . . . . . . . . . . . . . . . . 18
Displaying a list of columns in a table . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2. Working with tables and modifying data . . . . . . . . . . . . . . . . 19
Working with tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Creating your own tables: CREATE TABLE . . . . . . . . . . . . . . . . . . . . . . . . 19
Working with temporary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Dropping tables: DROP TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Working with views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Defining a view: CREATE VIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Changing data through a view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Dropping views: DROP VIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Modifying DB2 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Inserting rows: INSERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Selecting values as you insert: SELECT FROM INSERT . . . . . . . . . . . . . . . . . . . . 31
Updating current values: UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Deleting rows: DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

© Copyright IBM Corp. 1983, 2012 iii

||
||
||
||
||

||



Chapter 3. Joining data from more than one table . . . . . . . . . . . . . . . . . 39
Inner join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Full outer join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Left outer join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Right outer join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
SQL rules for statements containing join operations . . . . . . . . . . . . . . . . . . . . . . 44
Using more than one join in an SQL statement . . . . . . . . . . . . . . . . . . . . . . . 45
Using nested table expressions and user-defined table functions in joins . . . . . . . . . . . . . . . 46
Using correlated references in table specifications in joins . . . . . . . . . . . . . . . . . . . . 47

Chapter 4. Using subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Conceptual overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Correlated and uncorrelated subqueries . . . . . . . . . . . . . . . . . . . . . . . . . 50
Subqueries and predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
The subquery result table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Tables in subqueries of UPDATE, DELETE, and INSERT statements . . . . . . . . . . . . . . . 51

How to code a subquery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Basic predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Quantified predicate : ALL, ANY, or SOME. . . . . . . . . . . . . . . . . . . . . . . . 51
IN keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
EXISTS keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Using correlated subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
An example of a correlated subquery . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Using correlation names in references . . . . . . . . . . . . . . . . . . . . . . . . . 54
Using correlated subqueries in an UPDATE statement . . . . . . . . . . . . . . . . . . . . 55
Using correlated subqueries in a DELETE statement . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5. Using SPUFI to execute SQL from your workstation . . . . . . . . . . . 59
Allocating an input data set and using SPUFI . . . . . . . . . . . . . . . . . . . . . . . . 59
Changing SPUFI defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Changing SPUFI defaults - panel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Entering SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Using the ISPF editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Retrieving Unicode UTF-16 graphic data . . . . . . . . . . . . . . . . . . . . . . . . 67
Entering comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Setting the SQL terminator character . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Controlling toleration of warnings . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Processing SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
When SQL statements exceed resource limit thresholds . . . . . . . . . . . . . . . . . . . . . 68
Browsing the output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Format of SELECT statement results . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Content of the messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Part 2. Coding SQL in your host application program . . . . . . . . . . . . . 73

Chapter 6. Basics of coding SQL in an application program . . . . . . . . . . . . . 77
Conventions used in examples of coding SQL statements . . . . . . . . . . . . . . . . . . . . 78
Delimiting an SQL statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Declaring table and view definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Accessing data using host variables, variable arrays, and structures . . . . . . . . . . . . . . . . 79

Using host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Using host variable arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Using host structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Checking the execution of SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . 91
Using the SQL communication area (SQLCA) . . . . . . . . . . . . . . . . . . . . . . . 91
SQLCODE and SQLSTATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
The WHENEVER statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Handling arithmetic or conversion errors . . . . . . . . . . . . . . . . . . . . . . . . 93
The GET DIAGNOSTICS statement . . . . . . . . . . . . . . . . . . . . . . . . . . 94

iv Application Programming and SQL Guide

##

##

##

||

||



Calling DSNTIAR to display SQLCA fields . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 7. Using a cursor to retrieve a set of rows . . . . . . . . . . . . . . . . 103
Accessing data by using a row-positioned cursor . . . . . . . . . . . . . . . . . . . . . . 103

Step 1: Declare the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Step 2: Open the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Step 3: Specify what to do at end-of-data . . . . . . . . . . . . . . . . . . . . . . . . 105
Step 4: Execute SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Step 5: Close the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Accessing data by using a rowset-positioned cursor . . . . . . . . . . . . . . . . . . . . . 108
Step 1: Declare the rowset cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Step 2: Open the rowset cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Step 3: Specify what to do at end-of-data for a rowset cursor . . . . . . . . . . . . . . . . . 109
Step 4: Execute SQL statements with a rowset cursor . . . . . . . . . . . . . . . . . . . . 109
Step 5: Close the rowset cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Types of cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Scrollable and non-scrollable cursors. . . . . . . . . . . . . . . . . . . . . . . . . . 113
Held and non-held cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Examples of using cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 8. Generating declarations for your tables using DCLGEN . . . . . . . . . 131
Invoking DCLGEN through DB2I . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Including the data declarations in your program . . . . . . . . . . . . . . . . . . . . . . 136
DCLGEN support of C, COBOL, and PL/I languages . . . . . . . . . . . . . . . . . . . . . 136
Example: Adding a table declaration and host-variable structure to a library . . . . . . . . . . . . . 138

Step 1. Specify COBOL as the host language . . . . . . . . . . . . . . . . . . . . . . . 138
Step 2. Create the table declaration and host structure . . . . . . . . . . . . . . . . . . . . 139
Step 3. Examine the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Chapter 9. Embedding SQL statements in host languages . . . . . . . . . . . . . 143
Coding SQL statements in an assembler application . . . . . . . . . . . . . . . . . . . . . 143

Defining the SQL communications area. . . . . . . . . . . . . . . . . . . . . . . . . 143
Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Using host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Determining equivalent SQL and assembler data types . . . . . . . . . . . . . . . . . . . 151
Determining compatibility of SQL and assembler data types. . . . . . . . . . . . . . . . . . 155
Using indicator variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Macros for assembler applications . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Coding SQL statements in a C or C++ application . . . . . . . . . . . . . . . . . . . . . . 158
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 158
Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Using host variables and host variable arrays. . . . . . . . . . . . . . . . . . . . . . . 161
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Declaring host variable arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Using host structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Determining equivalent SQL and C data types . . . . . . . . . . . . . . . . . . . . . . 175
Determining compatibility of SQL and C data types . . . . . . . . . . . . . . . . . . . . 181
Using indicator variables and indicator variable arrays . . . . . . . . . . . . . . . . . . . 182
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Coding considerations for C and C++ . . . . . . . . . . . . . . . . . . . . . . . . . 186

Coding SQL statements in a COBOL application. . . . . . . . . . . . . . . . . . . . . . . 186
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 186
Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Using host variables and host variable arrays. . . . . . . . . . . . . . . . . . . . . . . 191
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Contents v

||
||
||
||
||
||

||

||

||



Declaring host variable arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Using host structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Determining equivalent SQL and COBOL data types . . . . . . . . . . . . . . . . . . . . 210
Determining compatibility of SQL and COBOL data types . . . . . . . . . . . . . . . . . . 214
Using indicator variables and indicator variable arrays . . . . . . . . . . . . . . . . . . . 216
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Coding considerations for object-oriented extensions in COBOL . . . . . . . . . . . . . . . . 219

Coding SQL statements in a Fortran application . . . . . . . . . . . . . . . . . . . . . . . 220
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 220
Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Using host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Determining equivalent SQL and Fortran data types . . . . . . . . . . . . . . . . . . . . 225
Determining compatibility of SQL and Fortran data types . . . . . . . . . . . . . . . . . . 227
Using indicator variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Coding SQL statements in a PL/I application . . . . . . . . . . . . . . . . . . . . . . . 230
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 230
Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Using host variables and host variable arrays. . . . . . . . . . . . . . . . . . . . . . . 233
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Declaring host variable arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Using host structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Determining equivalent SQL and PL/I data types . . . . . . . . . . . . . . . . . . . . . 241
Determining compatibility of SQL and PL/I data types . . . . . . . . . . . . . . . . . . . 245
Using indicator variables and indicator variable arrays . . . . . . . . . . . . . . . . . . . 246
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Coding SQL statements in a REXX application . . . . . . . . . . . . . . . . . . . . . . . 249
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 249
Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Accessing the DB2 REXX Language Support application programming interfaces. . . . . . . . . . . 250
Embedding SQL statements in a REXX procedure . . . . . . . . . . . . . . . . . . . . . 252
Using cursors and statement names . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Using REXX host variables and data types . . . . . . . . . . . . . . . . . . . . . . . 255
Using indicator variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Setting the isolation level of SQL statements in a REXX procedure. . . . . . . . . . . . . . . . 259

Chapter 10. Using constraints to maintain data integrity . . . . . . . . . . . . . . 261
Using check constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Check constraint considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
When check constraints are enforced . . . . . . . . . . . . . . . . . . . . . . . . . 262
How check constraints set CHECK-pending status . . . . . . . . . . . . . . . . . . . . . 262

Using referential constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Parent key columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Defining a parent key and a unique index . . . . . . . . . . . . . . . . . . . . . . . . 264
Defining a foreign key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Referential constraints on tables with multilevel security with row-level granularity . . . . . . . . . . 268

Using informational referential constraints. . . . . . . . . . . . . . . . . . . . . . . . . 269

Chapter 11. Using DB2-generated values as keys . . . . . . . . . . . . . . . . . 271
Using ROWID columns as keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Defining a ROWID column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Direct row access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Using identity columns as keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Defining an identity column . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Parent keys and foreign keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Using values obtained from sequence objects as keys . . . . . . . . . . . . . . . . . . . . . 275
Creating a sequence object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

vi Application Programming and SQL Guide

||

||

||

||
||

||
||
||
||
||
||
||
||
||



Referencing a sequence object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Keys across multiple tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Chapter 12. Using triggers for active data . . . . . . . . . . . . . . . . . . . . 279
Example of creating and using a trigger . . . . . . . . . . . . . . . . . . . . . . . . . 279
Parts of a trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Trigger name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Subject table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Trigger activation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Triggering event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Transition variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Transition tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Triggered action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Invoking stored procedures and user-defined functions from triggers. . . . . . . . . . . . . . . . 287
Passing transition tables to user-defined functions and stored procedures . . . . . . . . . . . . . . 288
Trigger cascading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Ordering of multiple triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Interactions between triggers and referential constraints . . . . . . . . . . . . . . . . . . . . 290
Interactions between triggers and tables that have multilevel security with row-level granularity . . . . . . 291
Creating triggers to obtain consistent results . . . . . . . . . . . . . . . . . . . . . . . . 292

Part 3. Using DB2 object-relational extensions . . . . . . . . . . . . . . . . 295

Chapter 13. Introduction to DB2 object-relational extensions . . . . . . . . . . . . 297

Chapter 14. Programming for large objects . . . . . . . . . . . . . . . . . . . 299
Introduction to LOBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Declaring LOB host variables and LOB locators . . . . . . . . . . . . . . . . . . . . . . . 302
LOB materialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Using LOB locators to save storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Deferring evaluation of a LOB expression to improve performance . . . . . . . . . . . . . . . 307
Indicator variables and LOB locators . . . . . . . . . . . . . . . . . . . . . . . . . 309
Valid assignments for LOB locators . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Avoiding character conversion for LOB locators . . . . . . . . . . . . . . . . . . . . . . 310

Chapter 15. Creating and using user-defined functions . . . . . . . . . . . . . . 311
Overview of user-defined function definition, implementation, and invocation . . . . . . . . . . . . 311

Example of creating and using a user-defined scalar function . . . . . . . . . . . . . . . . . 312
User-defined function samples shipped with DB2 . . . . . . . . . . . . . . . . . . . . . 313

Defining a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Components of a user-defined function definition . . . . . . . . . . . . . . . . . . . . . 314
Examples of user-defined function definitions . . . . . . . . . . . . . . . . . . . . . . 316

Implementing an external user-defined function . . . . . . . . . . . . . . . . . . . . . . . 318
Writing a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Preparing a user-defined function for execution . . . . . . . . . . . . . . . . . . . . . . 350
Testing a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Implementing an SQL scalar function . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Invoking a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Syntax for user-defined function invocation . . . . . . . . . . . . . . . . . . . . . . . 355
Ensuring that DB2 executes the intended user-defined function. . . . . . . . . . . . . . . . . 356
Casting of user-defined function arguments . . . . . . . . . . . . . . . . . . . . . . . 362
What happens when a user-defined function abnormally terminates . . . . . . . . . . . . . . . 363
Nesting SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Recommendations for user-defined function invocation . . . . . . . . . . . . . . . . . . . 365

Chapter 16. Creating and using distinct types . . . . . . . . . . . . . . . . . . 367
Introduction to distinct types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Using distinct types in application programs . . . . . . . . . . . . . . . . . . . . . . . . 368

Contents vii

||
||

||

##



Comparing distinct types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Assigning distinct types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Using distinct types in UNIONs . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Invoking functions with distinct types . . . . . . . . . . . . . . . . . . . . . . . . . 371

Combining distinct types with user-defined functions and LOBs . . . . . . . . . . . . . . . . . 372

Part 4. Designing a DB2 database application . . . . . . . . . . . . . . . . 377

Chapter 17. Planning for DB2 program preparation . . . . . . . . . . . . . . . . 381
Planning to process SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Planning to bind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Binding DBRMs with packages and plans . . . . . . . . . . . . . . . . . . . . . . . . 384
Conversion of DBRMs that are bound to a plan to DBRMs that are bound to a package . . . . . . . . 386
Planning for changes to your application . . . . . . . . . . . . . . . . . . . . . . . . 387

Chapter 18. Planning for concurrency . . . . . . . . . . . . . . . . . . . . . . 393
Definitions of concurrency and locks . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Effects of DB2 locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Basic recommendations to promote concurrency . . . . . . . . . . . . . . . . . . . . . . . 397
Recommendations for database design . . . . . . . . . . . . . . . . . . . . . . . . . 398
Recommendations for application design . . . . . . . . . . . . . . . . . . . . . . . . 399

Aspects of transaction locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
The size of a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
The duration of a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
The mode of a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
The object of a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Options for tuning locks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Bind options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Isolation overriding with SQL statements . . . . . . . . . . . . . . . . . . . . . . . . 421
The LOCK TABLE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Access paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

LOB locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Relationship between transaction locks and LOB locks . . . . . . . . . . . . . . . . . . . 425
Hierarchy of LOB locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
LOB and LOB table space lock modes . . . . . . . . . . . . . . . . . . . . . . . . . 427
LOB lock and LOB table space lock duration . . . . . . . . . . . . . . . . . . . . . . . 427
Instances when LOB table space locks are not taken . . . . . . . . . . . . . . . . . . . . 428
The LOCK TABLE statement for LOBs . . . . . . . . . . . . . . . . . . . . . . . . . 428

Chapter 19. Planning for recovery . . . . . . . . . . . . . . . . . . . . . . . 431
Unit of work in TSO batch and online . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Unit of work in CICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Unit of work in IMS online programs . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Planning ahead for program recovery: Checkpoint and restart . . . . . . . . . . . . . . . . . 435
When are checkpoints important? . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Checkpoints in MPPs and transaction-oriented BMPs . . . . . . . . . . . . . . . . . . . . 436
Checkpoints in batch-oriented BMPs . . . . . . . . . . . . . . . . . . . . . . . . . 437
Specifying checkpoint frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Unit of work in DL/I and IMS batch programs . . . . . . . . . . . . . . . . . . . . . . . 438
Commit and rollback coordination . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Restart and recovery in IMS batch . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Using savepoints to undo selected changes within a unit of work . . . . . . . . . . . . . . . . . 439

Chapter 20. Planning to access distributed data . . . . . . . . . . . . . . . . . 441
Planning for DRDA and DB2 private protocol access . . . . . . . . . . . . . . . . . . . . . 441

Advantages of DRDA access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

viii Application Programming and SQL Guide

##



Moving from DB2 private protocol access to DRDA access . . . . . . . . . . . . . . . . . . 442
Bind processes for DRDA and DB2 private protocol access . . . . . . . . . . . . . . . . . . 444
Precompiler and bind options for DRDA access . . . . . . . . . . . . . . . . . . . . . . 445

Coding methods for distributed data . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Using three-part table names to access distributed data . . . . . . . . . . . . . . . . . . . 448
Using explicit CONNECT statements to access distributed data . . . . . . . . . . . . . . . . 450

Coordinating updates to two or more data sources . . . . . . . . . . . . . . . . . . . . . . 452
Working without two-phase commit. . . . . . . . . . . . . . . . . . . . . . . . . . 452
Update restrictions on servers that do not support two-phase commit . . . . . . . . . . . . . . 453
Forcing update restrictions by using CONNECT (Type 1). . . . . . . . . . . . . . . . . . . 453

Maximizing performance for distributed data . . . . . . . . . . . . . . . . . . . . . . . 454
Coding efficient queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
Maximizing LOB performance in a distributed environment . . . . . . . . . . . . . . . . . . 454
Using bind options to improve performance for distributed applications . . . . . . . . . . . . . 456
Using block fetch in distributed applications . . . . . . . . . . . . . . . . . . . . . . . 458
Limiting the number of DRDA network transmissions. . . . . . . . . . . . . . . . . . . . 461
Limiting the number of rows returned to DRDA clients . . . . . . . . . . . . . . . . . . . 464

Working with distributed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
SQL limitations at dissimilar servers. . . . . . . . . . . . . . . . . . . . . . . . . . 465
Executing long SQL statements in a distributed environment . . . . . . . . . . . . . . . . . 466
Retrieving data from ASCII or Unicode tables . . . . . . . . . . . . . . . . . . . . . . 466
Accessing data with a scrollable cursor when the requester is down-level . . . . . . . . . . . . . 467
Accessing data with a rowset-positioned cursor when the requester is down-level . . . . . . . . . . 467
Maintaining data currency by using cursors . . . . . . . . . . . . . . . . . . . . . . . 467
Copying a table from a remote location. . . . . . . . . . . . . . . . . . . . . . . . . 467
Transmitting mixed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Part 5. Developing your application . . . . . . . . . . . . . . . . . . . . . 469

Chapter 21. Preparing an application program to run . . . . . . . . . . . . . . . 471
Steps in program preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Step 1: Process SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Step 2: Compile (or assemble) and link-edit the application . . . . . . . . . . . . . . . . . . 495
Step 3: Bind the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Step 4: Run the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Using JCL procedures to prepare applications . . . . . . . . . . . . . . . . . . . . . . . 513
Available JCL procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
Including code from SYSLIB data sets . . . . . . . . . . . . . . . . . . . . . . . . . 514
Starting the precompiler dynamically . . . . . . . . . . . . . . . . . . . . . . . . . 515
An alternative method for preparing a CICS program . . . . . . . . . . . . . . . . . . . . 517
Using JCL to prepare a program with object-oriented extensions . . . . . . . . . . . . . . . . 518

Using ISPF and DB2 Interactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
DB2I help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
DB2I Primary Option Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
DB2 Program Preparation panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
DB2I Defaults Panel 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
DB2I Defaults Panel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
Precompile panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Bind/Rebind/Free selection panel . . . . . . . . . . . . . . . . . . . . . . . . . . 532
Bind Package panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Bind Plan panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Rebind Package panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Rebind Trigger Package panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Rebind Plan panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Free Package panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Free Plan panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
The Defaults for Bind or Rebind Package or Plan panels . . . . . . . . . . . . . . . . . . . 547
System Connection Types panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Panels for entering lists of values. . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Program Preparation: Compile, Link, and Run panel . . . . . . . . . . . . . . . . . . . . 554

Contents ix

||

||



The Run panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Chapter 22. Testing an application program . . . . . . . . . . . . . . . . . . . 559
Establishing a test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

Designing a test data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Filling the tables with test data . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Testing SQL statements using SPUFI. . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Debugging your program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Debugging programs in TSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Debugging programs in IMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
Debugging programs in CICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Locating the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Analyzing error and warning messages from the precompiler . . . . . . . . . . . . . . . . . 569
SYSTERM output from the precompiler . . . . . . . . . . . . . . . . . . . . . . . . 569
SYSPRINT output from the precompiler . . . . . . . . . . . . . . . . . . . . . . . . 570

Chapter 23. Processing DL/I batch applications. . . . . . . . . . . . . . . . . . 575
Planning to use DL/I batch applications . . . . . . . . . . . . . . . . . . . . . . . . . 575

Features and functions of DB2 DL/I batch support . . . . . . . . . . . . . . . . . . . . . 575
Requirements for using DB2 in a DL/I batch job . . . . . . . . . . . . . . . . . . . . . 576
Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

Program design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Address spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Commits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
SQL statements and IMS calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
Checkpoint calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
Application program synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 577
Checkpoint and XRST considerations . . . . . . . . . . . . . . . . . . . . . . . . . 577
Synchronization call abends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Input and output data sets for DL/I batch jobs . . . . . . . . . . . . . . . . . . . . . . . 578
DB2 DL/I batch input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
DB2 DL/I batch output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

Preparation guidelines for DL/I batch programs . . . . . . . . . . . . . . . . . . . . . . 580
Precompiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Link-editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Loading and running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

Restart and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
JCL example of a batch backout . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
JCL example of restarting a DL/I batch job . . . . . . . . . . . . . . . . . . . . . . . 583
Finding the DL/I batch checkpoint ID . . . . . . . . . . . . . . . . . . . . . . . . . 584

Part 6. Additional programming techniques . . . . . . . . . . . . . . . . . 585

Chapter 24. Coding dynamic SQL in application programs . . . . . . . . . . . . . 595
Choosing between static and dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . 595

Flexibility of static SQL with host variables . . . . . . . . . . . . . . . . . . . . . . . 596
Flexibility of dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Limitations of dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Dynamic SQL processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Performance of static and dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . 597

Caching dynamic SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
Using the dynamic statement cache . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Using the statement cache table . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Keeping prepared statements after commit points . . . . . . . . . . . . . . . . . . . . . 601

Limiting dynamic SQL with the resource limit facility . . . . . . . . . . . . . . . . . . . . . 603
Writing an application to handle reactive governing . . . . . . . . . . . . . . . . . . . . 604
Writing an application to handle predictive governing. . . . . . . . . . . . . . . . . . . . 604
Using predictive governing and down-level DRDA requesters . . . . . . . . . . . . . . . . . 605
Using predictive governing and enabled requesters. . . . . . . . . . . . . . . . . . . . . 605

x Application Programming and SQL Guide

##



Choosing a host language for dynamic SQL applications . . . . . . . . . . . . . . . . . . . . 605
Dynamic SQL for non-SELECT statements. . . . . . . . . . . . . . . . . . . . . . . . . 605

Dynamic execution using EXECUTE IMMEDIATE . . . . . . . . . . . . . . . . . . . . . 606
Dynamic execution using PREPARE and EXECUTE . . . . . . . . . . . . . . . . . . . . 607
Dynamic execution of a multiple-row INSERT statement . . . . . . . . . . . . . . . . . . . 610
Using DESCRIBE INPUT to put parameter information in an SQLDA . . . . . . . . . . . . . . 612

Dynamic SQL for fixed-list SELECT statements . . . . . . . . . . . . . . . . . . . . . . . 612
Declaring a cursor for the statement name. . . . . . . . . . . . . . . . . . . . . . . . 613
Preparing the statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Opening the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Fetching rows from the result table . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Closing the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Dynamic SQL for varying-list SELECT statements . . . . . . . . . . . . . . . . . . . . . . 615
What your application program must do . . . . . . . . . . . . . . . . . . . . . . . . 615
Preparing a varying-list SELECT statement . . . . . . . . . . . . . . . . . . . . . . . 615
Executing a varying-list SELECT statement dynamically . . . . . . . . . . . . . . . . . . . 625
Executing arbitrary statements with parameter markers . . . . . . . . . . . . . . . . . . . 626
How bind options REOPT(ALWAYS) and REOPT(ONCE) affect dynamic SQL. . . . . . . . . . . . 627

Using dynamic SQL in COBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Chapter 25. Using stored procedures for client/server processing. . . . . . . . . . 631
Introduction to stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
An example of a simple stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 632
Setting up the stored procedures environment . . . . . . . . . . . . . . . . . . . . . . . 636

Defining your stored procedure to DB2. . . . . . . . . . . . . . . . . . . . . . . . . 637
Refreshing the stored procedures environment (for system administrators) . . . . . . . . . . . . . 641
Moving stored procedures to a WLM-established environment (for system administrators) . . . . . . . 642

Writing and preparing an external stored procedure . . . . . . . . . . . . . . . . . . . . . 643
Language requirements for the stored procedure and its caller . . . . . . . . . . . . . . . . . 643
Calling other programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
Using reentrant code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
Writing a stored procedure as a main program or subprogram . . . . . . . . . . . . . . . . . 645
Restrictions on a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 648
Using COMMIT and ROLLBACK statements in a stored procedure . . . . . . . . . . . . . . . 648
Using special registers in a stored procedure . . . . . . . . . . . . . . . . . . . . . . . 649
Accessing other sites in a stored procedure . . . . . . . . . . . . . . . . . . . . . . . 651
Writing a stored procedure to access IMS databases . . . . . . . . . . . . . . . . . . . . 652
Writing a stored procedure to return result sets to a DRDA client . . . . . . . . . . . . . . . . 652
Preparing a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
Binding the stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
Writing a REXX stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 656

Writing and preparing an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . . . 659
Comparison of an SQL procedure and an external procedure . . . . . . . . . . . . . . . . . 660
Statements that you can include in a procedure body . . . . . . . . . . . . . . . . . . . . 661
Declaring and using variables, parameters, and conditions in an SQL procedure . . . . . . . . . . . 663
Parameter style for an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . . . 664
Terminating statements in an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . 664
Handling SQL conditions in an SQL procedure . . . . . . . . . . . . . . . . . . . . . . 665
Examples of SQL procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
Preparing an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

Writing and preparing an application to use stored procedures . . . . . . . . . . . . . . . . . . 683
Forms of the CALL statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
Authorization for executing stored procedures . . . . . . . . . . . . . . . . . . . . . . 685
Linkage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
Using indicator variables to speed processing . . . . . . . . . . . . . . . . . . . . . . 705
Declaring data types for passed parameters . . . . . . . . . . . . . . . . . . . . . . . 705
Writing a DB2 UDB for z/OS client program or SQL procedure to receive result sets . . . . . . . . . 710
Accessing transition tables in a stored procedure . . . . . . . . . . . . . . . . . . . . . 716
Calling a stored procedure from a REXX procedure . . . . . . . . . . . . . . . . . . . . 716
Preparing a client program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

Running a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Contents xi

||

||

##



How DB2 determines which version of a stored procedure to run . . . . . . . . . . . . . . . . 722
Using a single application program to call different versions of a stored procedure . . . . . . . . . . 722
Running multiple stored procedures concurrently . . . . . . . . . . . . . . . . . . . . . 724
Multiple instances of a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . 724
Accessing non-DB2 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

Testing a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
Debugging the stored procedure as a stand-alone program on a workstation . . . . . . . . . . . . 727
Debugging with the Debug Tool and IBM VisualAge COBOL . . . . . . . . . . . . . . . . . 727
Debugging an SQL procedure or C language stored procedure with the Debug Tool and C/C++ Productivity
Tools for z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
Debugging with Debug Tool for z/OS interactively and in batch mode . . . . . . . . . . . . . . 729
Using the MSGFILE run-time option . . . . . . . . . . . . . . . . . . . . . . . . . 730
Using driver applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
Using SQL INSERT statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

Chapter 26. Tuning your queries . . . . . . . . . . . . . . . . . . . . . . . . 733
General tips and questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Is the query coded as simply as possible? . . . . . . . . . . . . . . . . . . . . . . . . 733
Are all predicates coded correctly? . . . . . . . . . . . . . . . . . . . . . . . . . . 733
Are there subqueries in your query?. . . . . . . . . . . . . . . . . . . . . . . . . . 734
Does your query involve aggregate functions? . . . . . . . . . . . . . . . . . . . . . . 735
Do you have an input variable in the predicate of an SQL query? . . . . . . . . . . . . . . . . 736
Do you have a problem with column correlation? . . . . . . . . . . . . . . . . . . . . . 736
Can your query be written to use a noncolumn expression? . . . . . . . . . . . . . . . . . . 736
Can materialized query tables help your query performance? . . . . . . . . . . . . . . . . . 736
Does the query contain encrypted data? . . . . . . . . . . . . . . . . . . . . . . . . 737

Writing efficient predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
Properties of predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
Predicates in the ON clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

General rules about predicate evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 741
Order of evaluating predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
Summary of predicate processing. . . . . . . . . . . . . . . . . . . . . . . . . . . 742
Examples of predicate properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
Predicate filter factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
Column correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
DB2 predicate manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
Predicates with encrypted data . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

Using host variables efficiently . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Changing the access path at run time . . . . . . . . . . . . . . . . . . . . . . . . . 762
Rewriting queries to influence access path selection . . . . . . . . . . . . . . . . . . . . 765

Writing efficient subqueries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
Correlated subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
Noncorrelated subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
When DB2 transforms a subquery into a join . . . . . . . . . . . . . . . . . . . . . . . 771
Subquery tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

Using scrollable cursors efficiently . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
Writing efficient queries on tables with data-partitioned secondary indexes. . . . . . . . . . . . . . 774
Special techniques to influence access path selection . . . . . . . . . . . . . . . . . . . . . 776

Obtaining information about access paths . . . . . . . . . . . . . . . . . . . . . . . . 777
Fetching a limited number of rows: FETCH FIRST n ROWS ONLY . . . . . . . . . . . . . . . 777
Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS . . . . . . . . . . . . . 778
Favoring index access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
Using a subsystem parameter to control outer join processing . . . . . . . . . . . . . . . . . 780
Using the CARDINALITY clause to improve the performance of queries with user-defined table function
references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Reducing the number of matching columns . . . . . . . . . . . . . . . . . . . . . . . 782
Creating indexes for efficient star-join processing . . . . . . . . . . . . . . . . . . . . . 783
Rearranging the order of tables in a FROM clause . . . . . . . . . . . . . . . . . . . . . 786
Updating catalog statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
Using a subsystem parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

xii Application Programming and SQL Guide

##

||

||
||

||

||

||

||
##
|
||



Chapter 27. Using EXPLAIN to improve SQL performance . . . . . . . . . . . . . 789
Obtaining PLAN_TABLE information from EXPLAIN . . . . . . . . . . . . . . . . . . . . . 790

EXPLAIN tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Creating PLAN_TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Populating and maintaining a plan table . . . . . . . . . . . . . . . . . . . . . . . . 798
Reordering rows from a plan table . . . . . . . . . . . . . . . . . . . . . . . . . . 799

Asking questions about data access . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
Is access through an index? (ACCESSTYPE is I, I1, N or MX) . . . . . . . . . . . . . . . . . 801
Is access through more than one index? (ACCESSTYPE=M) . . . . . . . . . . . . . . . . . . 801
How many columns of the index are used in matching? (MATCHCOLS=n) . . . . . . . . . . . . 802
Is the query satisfied using only the index? (INDEXONLY=Y) . . . . . . . . . . . . . . . . . 802
Is direct row access possible? (PRIMARY_ACCESSTYPE = D) . . . . . . . . . . . . . . . . . 803
Is a view or nested table expression materialized? . . . . . . . . . . . . . . . . . . . . . 806
Was a scan limited to certain partitions? (PAGE_RANGE=Y) . . . . . . . . . . . . . . . . . 806
What kind of prefetching is expected? (PREFETCH = L, S, D, or blank) . . . . . . . . . . . . . . 807
Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C, or X) . . . . . . . . . . . 807
Are sorts performed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
Is a subquery transformed into a join? . . . . . . . . . . . . . . . . . . . . . . . . . 808
When are aggregate functions evaluated? (COLUMN_FN_EVAL) . . . . . . . . . . . . . . . . 808
How many index screening columns are used? . . . . . . . . . . . . . . . . . . . . . . 808
Is a complex trigger WHEN clause used? (QBLOCKTYPE=TRIGGR) . . . . . . . . . . . . . . . 809

Interpreting access to a single table . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
Table space scans (ACCESSTYPE=R PREFETCH=S) . . . . . . . . . . . . . . . . . . . . 809
Index access paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
UPDATE using an index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

Interpreting access to two or more tables (join) . . . . . . . . . . . . . . . . . . . . . . . 815
Definitions and examples of join operations . . . . . . . . . . . . . . . . . . . . . . . 815
Nested loop join (METHOD=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
Merge scan join (METHOD=2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
Hybrid join (METHOD=4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
Star join (JOIN_TYPE=’S’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Interpreting data prefetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
Sequential prefetch (PREFETCH=S) . . . . . . . . . . . . . . . . . . . . . . . . . . 830
Dynamic prefetch (PREFETCH=D) . . . . . . . . . . . . . . . . . . . . . . . . . . 831
List prefetch (PREFETCH=L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
Sequential detection at execution time . . . . . . . . . . . . . . . . . . . . . . . . . 832

Determining sort activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
Sorts of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
Sorts of RIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
The effect of sorts on OPEN CURSOR . . . . . . . . . . . . . . . . . . . . . . . . . 835

Processing for views and nested table expressions . . . . . . . . . . . . . . . . . . . . . . 836
Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
Materialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
Using EXPLAIN to determine when materialization occurs . . . . . . . . . . . . . . . . . . 839
Using EXPLAIN to determine UNION activity and query rewrite . . . . . . . . . . . . . . . . 840
Performance of merge versus materialization . . . . . . . . . . . . . . . . . . . . . . . 842

Estimating a statement's cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
Creating a statement table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
Populating and maintaining a statement table . . . . . . . . . . . . . . . . . . . . . . 845
Retrieving rows from a statement table . . . . . . . . . . . . . . . . . . . . . . . . . 845
The implications of cost categories . . . . . . . . . . . . . . . . . . . . . . . . . . 846

Chapter 28. Parallel operations and query performance . . . . . . . . . . . . . . 847
Comparing the methods of parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . 848
Enabling parallel processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
Restrictions for parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
Interpreting EXPLAIN output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

A method for examining PLAN_TABLE columns for parallelism . . . . . . . . . . . . . . . . 852
PLAN_TABLE examples showing parallelism. . . . . . . . . . . . . . . . . . . . . . . 853

Tuning parallel processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
Disabling query parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Contents xiii

##

||
||

||



Chapter 29. Programming for the Interactive System Productivity Facility . . . . . . 857
Using ISPF and the DSN command processor . . . . . . . . . . . . . . . . . . . . . . . 857
Invoking a single SQL program through ISPF and DSN . . . . . . . . . . . . . . . . . . . . 858
Invoking multiple SQL programs through ISPF and DSN. . . . . . . . . . . . . . . . . . . . 859
Invoking multiple SQL programs through ISPF and CAF . . . . . . . . . . . . . . . . . . . . 859

Chapter 30. Programming for the call attachment facility. . . . . . . . . . . . . . 861
CAF capabilities and requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 861

CAF capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
CAF requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863

How to use CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
Summary of connection functions . . . . . . . . . . . . . . . . . . . . . . . . . . 866
Accessing the CAF language interface . . . . . . . . . . . . . . . . . . . . . . . . . 867
General properties of CAF connections . . . . . . . . . . . . . . . . . . . . . . . . . 868
CAF function descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
CONNECT: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
OPEN: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876
CLOSE: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
DISCONNECT: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . 879
TRANSLATE: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
Summary of CAF behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

Sample scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
A single task with implicit connections . . . . . . . . . . . . . . . . . . . . . . . . . 883
A single task with explicit connections . . . . . . . . . . . . . . . . . . . . . . . . . 884
Several tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

Exit routines from your application . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
Attention exit routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
Recovery routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

Error messages and dsntrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
CAF return codes and reason codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
Program examples for CAF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886

Sample JCL for using CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
Sample assembler code for using CAF . . . . . . . . . . . . . . . . . . . . . . . . . 887
Loading and deleting the CAF language interface . . . . . . . . . . . . . . . . . . . . . 887
Connecting to DB2 for CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
Checking return codes and reason codes for CAF . . . . . . . . . . . . . . . . . . . . . 889
Using dummy entry point DSNHLI for CAF . . . . . . . . . . . . . . . . . . . . . . . 891
Variable declarations for CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

Chapter 31. Programming for the Resource Recovery Services attachment facility . . 895
RRSAF capabilities and requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 895

RRSAF capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
RRSAF requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896

How to use RRSAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898
Summary of connection functions . . . . . . . . . . . . . . . . . . . . . . . . . . 898
Implicit connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899
Accessing the RRSAF language interface . . . . . . . . . . . . . . . . . . . . . . . . 900
General properties of RRSAF connections . . . . . . . . . . . . . . . . . . . . . . . . 902
Summary of RRSAF behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904

RRSAF function descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905
Register conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905
Parameter conventions for function calls . . . . . . . . . . . . . . . . . . . . . . . . 906
IDENTIFY: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906
SWITCH TO: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
SIGNON: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
AUTH SIGNON: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . 916
CONTEXT SIGNON: Syntax and usage. . . . . . . . . . . . . . . . . . . . . . . . . 920
SET_ID: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924
SET_CLIENT_ID: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . 925
CREATE THREAD: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . 928

xiv Application Programming and SQL Guide

||

||



TERMINATE THREAD: Syntax and usage. . . . . . . . . . . . . . . . . . . . . . . . 930
TERMINATE IDENTIFY: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . 931
TRANSLATE: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 933

RRSAF connection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
Example of a single task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
Example of multiple tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
Example of calling SIGNON to reuse a DB2 thread . . . . . . . . . . . . . . . . . . . . . 935
Example of switching DB2 threads between tasks . . . . . . . . . . . . . . . . . . . . . 935

RRSAF return codes and reason codes . . . . . . . . . . . . . . . . . . . . . . . . . . 936
Program examples for RRSAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936

Sample JCL for using RRSAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
Loading and deleting the RRSAF language interface . . . . . . . . . . . . . . . . . . . . 937
Using dummy entry point DSNHLI for RRSAF . . . . . . . . . . . . . . . . . . . . . . 937
Connecting to DB2 for RRSAF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 938

Chapter 32. CICS-specific programming techniques . . . . . . . . . . . . . . . . 941
Controlling the CICS attachment facility from an application . . . . . . . . . . . . . . . . . . 941
Improving thread reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
Detecting whether the CICS attachment facility is operational . . . . . . . . . . . . . . . . . . 941

Chapter 33. WebSphere MQ with DB2 . . . . . . . . . . . . . . . . . . . . . . 943
WebSphere MQ messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943

WebSphere MQ message handling . . . . . . . . . . . . . . . . . . . . . . . . . . 943
WebSphere MQ functions and stored procedures . . . . . . . . . . . . . . . . . . . . . . 946

Commit environment for AMI-based DB2 MQ functions and stored procedures . . . . . . . . . . . 950
DB2 MQ tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
Converting applications to use the MQI functions . . . . . . . . . . . . . . . . . . . . . 960
How to use WebSphere MQ functions . . . . . . . . . . . . . . . . . . . . . . . . . 961

Asynchronous messaging in DB2 UDB for z/OS and OS/390 . . . . . . . . . . . . . . . . . . 968
MQListener in DB2 for OS/390 and z/OS . . . . . . . . . . . . . . . . . . . . . . . . 969
Configuring and running MQListener in DB2 UDB for OS/390 and z/OS . . . . . . . . . . . . . 970
Configuring MQListener tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
MQListener error processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974
Creating a sample stored procedure to use with MQListener . . . . . . . . . . . . . . . . . 975
MQListener examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976

Chapter 34. Using DB2 as a web services consumer and provider . . . . . . . . . 979
DB2 as a web services consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979

The SOAPHTTPV and SOAPHTTPC user-defined functions . . . . . . . . . . . . . . . . . . 979
The SOAPHTTPNV and SOAPHTTPNC user-defined functions . . . . . . . . . . . . . . . . 980
SQLSTATEs for DB2 as a web services consumer . . . . . . . . . . . . . . . . . . . . . 981

DB2 as a web services provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982

Chapter 35. Programming techniques: Questions and answers . . . . . . . . . . . 985
Providing a unique key for a table . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
Scrolling through previously retrieved data . . . . . . . . . . . . . . . . . . . . . . . . 985

Using a scrollable cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
Using a ROWID or identity column . . . . . . . . . . . . . . . . . . . . . . . . . . 986

Scrolling through a table in any direction . . . . . . . . . . . . . . . . . . . . . . . . . 987
Updating data as it is retrieved from the database . . . . . . . . . . . . . . . . . . . . . . 988
Updating previously retrieved data . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
Updating thousands of rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
Retrieving thousands of rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
Using SELECT * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
Optimizing retrieval for a small set of rows . . . . . . . . . . . . . . . . . . . . . . . . 989
Adding data to the end of a table . . . . . . . . . . . . . . . . . . . . . . . . . . . 990
Translating requests from end users into SQL statements . . . . . . . . . . . . . . . . . . . . 990
Changing the table definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 990
Storing data that does not have a tabular format . . . . . . . . . . . . . . . . . . . . . . 991
Finding a violated referential or check constraint . . . . . . . . . . . . . . . . . . . . . . 991

Contents xv

||
||
||
##
||
##
##
||
##
##
##
##
##
##
##

##



Part 7. Appendixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993

Appendix A. DB2 sample tables . . . . . . . . . . . . . . . . . . . . . . . . 995
Activity table (DSN8810.ACT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995
Department table (DSN8810.DEPT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 996
Employee table (DSN8810.EMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998
Employee photo and resume table (DSN8810.EMP_PHOTO_RESUME) . . . . . . . . . . . . . . . 1001
Project table (DSN8810.PROJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002
Project activity table (DSN8810.PROJACT) . . . . . . . . . . . . . . . . . . . . . . . . 1003
Employee to project activity table (DSN8810.EMPPROJACT) . . . . . . . . . . . . . . . . . . 1004
Unicode sample table (DSN8810.DEMO_UNICODE) . . . . . . . . . . . . . . . . . . . . . 1005
Relationships among the sample tables . . . . . . . . . . . . . . . . . . . . . . . . . 1006
Views on the sample tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006
Storage of sample application tables . . . . . . . . . . . . . . . . . . . . . . . . . . 1011

Storage group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012
Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012
Table spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012

Appendix B. Sample applications . . . . . . . . . . . . . . . . . . . . . . . 1015
Types of sample applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
Using the sample applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017

TSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018
IMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020
CICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020

Appendix C. Running the productivity-aid sample programs . . . . . . . . . . . 1021
Running DSNTIAUL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
Running DSNTIAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
Running DSNTEP2 and DSNTEP4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028

Appendix D. Programming examples. . . . . . . . . . . . . . . . . . . . . . 1033
Sample COBOL dynamic SQL program . . . . . . . . . . . . . . . . . . . . . . . . . 1033

Pointers and based variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
Storage allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

Sample dynamic and static SQL in a C program . . . . . . . . . . . . . . . . . . . . . . 1045
Sample DB2 REXX application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
Sample COBOL program using DRDA access . . . . . . . . . . . . . . . . . . . . . . . 1063
Sample COBOL program using DB2 private protocol access . . . . . . . . . . . . . . . . . . 1071
Examples of using stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 1077

Calling a stored procedure from a C program . . . . . . . . . . . . . . . . . . . . . . 1077
Calling a stored procedure from a COBOL program . . . . . . . . . . . . . . . . . . . . 1081
Calling a stored procedure from a PL/I program . . . . . . . . . . . . . . . . . . . . . 1084
C stored procedure: GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085
C stored procedure: GENERAL WITH NULLS . . . . . . . . . . . . . . . . . . . . . . 1087
COBOL stored procedure: GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . 1090
COBOL stored procedure: GENERAL WITH NULLS . . . . . . . . . . . . . . . . . . . . 1093
PL/I stored procedure: GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . 1095
PL/I stored procedure: GENERAL WITH NULLS . . . . . . . . . . . . . . . . . . . . . 1096

Appendix E. Recursive common table expression examples. . . . . . . . . . . . 1099

Appendix F. REBIND subcommands for lists of plans or packages . . . . . . . . . 1105
Overview of the procedure for generating lists of REBIND commands . . . . . . . . . . . . . . . 1105
Sample SELECT statements for generating REBIND commands . . . . . . . . . . . . . . . . . 1105
Sample JCL for running lists of REBIND commands . . . . . . . . . . . . . . . . . . . . . 1108

Appendix G. Reserved schema names and reserved words . . . . . . . . . . . . 1113
Reserved schema names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113

xvi Application Programming and SQL Guide

||

||



Reserved words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113

Appendix H. Characteristics of SQL statements in DB2 UDB for z/OS. . . . . . . . 1117
Actions allowed on SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
SQL statements allowed in external functions and stored procedures . . . . . . . . . . . . . . . 1120
SQL statements allowed in SQL procedures . . . . . . . . . . . . . . . . . . . . . . . . 1122

Appendix I. Program preparation options for remote packages . . . . . . . . . . 1127

Appendix J. DB2-supplied stored procedures . . . . . . . . . . . . . . . . . . 1131
WLM environment refresh stored procedure (WLM_REFRESH) . . . . . . . . . . . . . . . . . 1133

Environment for WLM_REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . 1134
Authorization required for WLM_REFRESH . . . . . . . . . . . . . . . . . . . . . . . 1134
WLM_REFRESH syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 1134
WLM_REFRESH option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 1134
Example of WLM_REFRESH invocation . . . . . . . . . . . . . . . . . . . . . . . . 1135

WLM_SET_CLIENT_INFO stored procedure. . . . . . . . . . . . . . . . . . . . . . . . 1136
Environment for WLM_SET_CLIENT_INFO . . . . . . . . . . . . . . . . . . . . . . . 1136
Authorization for WLM_SET_CLIENT_INFO . . . . . . . . . . . . . . . . . . . . . . 1136
WLM_SET_CLIENT_INFO syntax diagram . . . . . . . . . . . . . . . . . . . . . . . 1137
WLM_SET_CLIENT_INFO option descriptions . . . . . . . . . . . . . . . . . . . . . . 1137
Example of WLM_SET_CLIENT_INFO . . . . . . . . . . . . . . . . . . . . . . . . 1137

The CICS transaction invocation stored procedure (DSNACICS) . . . . . . . . . . . . . . . . . 1138
Environment for DSNACICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138
Authorization required for DSNACICS . . . . . . . . . . . . . . . . . . . . . . . . 1139
DSNACICS syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
DSNACICS option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
DSNACICX user exit routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
Example of DSNACICS invocation . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
DSNACICS output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
DSNACICS restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
DSNACICS debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145

IMS transactions stored procedure (DSNAIMS) . . . . . . . . . . . . . . . . . . . . . . . 1145
Environment for DSNAIMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
Authorization required for DSNAIMS . . . . . . . . . . . . . . . . . . . . . . . . . 1145
DSNAIMS syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
DSNAIMS option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
Examples of DSNAIMS invocation . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
Connecting to multiple IMS subsystems with DSNAIMS . . . . . . . . . . . . . . . . . . 1149

IMS transactions stored procedure (DSNAIMS2) . . . . . . . . . . . . . . . . . . . . . . 1149
Environment for DSNAIMS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
Authorization required for DSNAIMS2 . . . . . . . . . . . . . . . . . . . . . . . . 1150
DSNAIMS2 syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
DSNAIMS2 option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
Examples of DSNAIMS2 invocation . . . . . . . . . . . . . . . . . . . . . . . . . 1153
Connecting to multiple IMS subsystems with DSNAIMS2 . . . . . . . . . . . . . . . . . . 1153

The DB2 EXPLAIN stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
Authorization required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
DSNAEXP syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
DSNAEXP option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
Example of DSNAEXP invocation . . . . . . . . . . . . . . . . . . . . . . . . . . 1156
DSNAEXP output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157

Deprecated: Store an XML document from an MQ message queue in DB2 tables (DXXMQINSERT) . . . . . 1157
Environment for DXXMQINSERT . . . . . . . . . . . . . . . . . . . . . . . . . . 1157
Authorization required for DXXMQINSERT . . . . . . . . . . . . . . . . . . . . . . . 1157
DXXMQINSERT syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 1157
DXXMQINSERT option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 1158
Example of DXXMQINSERT invocation . . . . . . . . . . . . . . . . . . . . . . . . 1158
DXXMQINSERT output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159

Contents xvii

##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##



Deprecated: Store an XML document from an MQ message queue in DB2 tables (DXXMQSHRED) . . . . . 1159
Environment for DXXMQSHRED . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
Authorization required for DXXMQSHRED . . . . . . . . . . . . . . . . . . . . . . . 1160
DXXMQSHRED syntax diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
DXXMQSHRED option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 1160
Example of DXXMQSHRED invocation . . . . . . . . . . . . . . . . . . . . . . . . 1161
DXXMQSHRED output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162

Deprecated: Store a large XML document from an MQ message queue in DB2 tables (DXXMQINSERTCLOB) 1162
Environment for DXXMQINSERTCLOB . . . . . . . . . . . . . . . . . . . . . . . . 1162
Authorization required for DXXMQINSERTCLOB . . . . . . . . . . . . . . . . . . . . . 1162
DXXMQINSERTCLOB syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . 1162
DXXMQINSERTCLOB option descriptions . . . . . . . . . . . . . . . . . . . . . . . 1163
Example of DXXMQINSERTCLOB invocation . . . . . . . . . . . . . . . . . . . . . . 1163
DXXMQINSERTCLOB output . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164

Deprecated: Store a large XML document from an MQ message queue in DB2 tables (DXXMQSHREDCLOB) 1164
Environment for DXXMQSHREDCLOB . . . . . . . . . . . . . . . . . . . . . . . . 1164
Authorization required for DXXMQSHREDCLOB . . . . . . . . . . . . . . . . . . . . . 1165
DXXMQSHREDCLOB syntax diagram. . . . . . . . . . . . . . . . . . . . . . . . . 1165
DXXMQSHREDCLOB option descriptions . . . . . . . . . . . . . . . . . . . . . . . 1165
Example of DXXMQSHREDCLOB invocation . . . . . . . . . . . . . . . . . . . . . . 1166
DXXMQSHREDCLOB output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166

Deprecated: Store XML documents from an MQ message queue in DB2 tables (DXXMQINSERTALL) . . . . 1166
Environment for DXXMQINSERTALL . . . . . . . . . . . . . . . . . . . . . . . . . 1167
Authorization required for DXXMQINSERTALL . . . . . . . . . . . . . . . . . . . . . 1167
DXXMQINSERTALL syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . 1167
DXXMQINSERTALL option descriptions . . . . . . . . . . . . . . . . . . . . . . . . 1167
Example of DXXMQINSERTALL invocation . . . . . . . . . . . . . . . . . . . . . . . 1168
DXXMQINSERTALL output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169

Deprecated: Store XML documents from an MQ message queue in DB2 tables (DXXMQSHREDALL) . . . . 1169
Environment for DXXMQSHREDALL . . . . . . . . . . . . . . . . . . . . . . . . . 1169
Authorization required for DXXMQSHREDALL . . . . . . . . . . . . . . . . . . . . . 1169
DXXMQSHREDALL syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . 1169
DXXMQSHREDALL option descriptions . . . . . . . . . . . . . . . . . . . . . . . . 1170
Example of DXXMQSHREDALL invocation . . . . . . . . . . . . . . . . . . . . . . . 1170
DXXMQSHREDALL output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171

Deprecated: Store large XML documents from an MQ message queue in DB2 tables (DXXMQSHREDALLCLOB) 1171
Environment for DXXMQSHREDALLCLOB . . . . . . . . . . . . . . . . . . . . . . . 1172
Authorization required for DXXMQSHREDALLCLOB . . . . . . . . . . . . . . . . . . . 1172
DXXMQSHREDALLCLOB syntax diagram . . . . . . . . . . . . . . . . . . . . . . . 1172
DXXMQSHREDALLCLOB option descriptions . . . . . . . . . . . . . . . . . . . . . . 1172
Example of DXXMQSHREDALLCLOB invocation . . . . . . . . . . . . . . . . . . . . . 1173
DXXMQSHREDALLCLOB output . . . . . . . . . . . . . . . . . . . . . . . . . . 1174

Deprecated: Store large XML documents from an MQ message queue in DB2 tables (DXXMQINSERTALLCLOB) 1174
Environment for DXXMQINSERTALLCLOB . . . . . . . . . . . . . . . . . . . . . . . 1174
Authorization required for DXXMQINSERTALLCLOB . . . . . . . . . . . . . . . . . . . 1174
DXXMQINSERTALLCLOB syntax diagram . . . . . . . . . . . . . . . . . . . . . . . 1174
DXXMQINSERTALLCLOB option descriptions . . . . . . . . . . . . . . . . . . . . . . 1175
Example of DXXMQINSERTALLCLOB invocation . . . . . . . . . . . . . . . . . . . . . 1175
DXXMQINSERTALLCLOB output . . . . . . . . . . . . . . . . . . . . . . . . . . 1176

Deprecated: Send XML documents to an MQ message queue (DXXMQGEN) . . . . . . . . . . . . . 1176
Environment for DXXMQGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
Authorization required for DXXMQGEN . . . . . . . . . . . . . . . . . . . . . . . . 1177
DXXMQGEN syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
DXXMQGEN option descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
Example of DXXMQGEN invocation . . . . . . . . . . . . . . . . . . . . . . . . . 1179
DXXMQGEN output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180

Deprecated: Send XML documents to an MQ message queue (DXXMQRETRIEVE) . . . . . . . . . . . 1180
Environment for DXXMQRETRIEVE . . . . . . . . . . . . . . . . . . . . . . . . . 1180
Authorization required for DXXMQRETRIEVE . . . . . . . . . . . . . . . . . . . . . . 1180
DXXMQRETRIEVE syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . 1180
DXXMQRETRIEVE option descriptions . . . . . . . . . . . . . . . . . . . . . . . . 1181

xviii Application Programming and SQL Guide

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##



Example of DXXMQRETRIEVE invocation . . . . . . . . . . . . . . . . . . . . . . . 1182
DXXMQRETRIEVE output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183

Deprecated: Send large XML documents to an MQ message queue (DXXMQGENCLOB) . . . . . . . . . 1184
Environment for DXXMQGENCLOB . . . . . . . . . . . . . . . . . . . . . . . . . 1184
Authorization required for DXXMQGENCLOB . . . . . . . . . . . . . . . . . . . . . . 1184
DXXMQGENCLOB syntax diagram . . . . . . . . . . . . . . . . . . . . . . . . . 1184
DXXMQGENCLOB option descriptions . . . . . . . . . . . . . . . . . . . . . . . . 1184
Example of DXXMQGENCLOB invocation . . . . . . . . . . . . . . . . . . . . . . . 1186
DXXMQGENCLOB output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187

Deprecated: Send XML documents to an MQ message queue (DXXMQRETRIEVECLOB) . . . . . . . . . 1187
Environment for DXXMQRETRIEVECLOB . . . . . . . . . . . . . . . . . . . . . . . 1187
Authorization required for DXXMQRETRIEVECLOB . . . . . . . . . . . . . . . . . . . . 1188
DXXMQRETRIEVECLOB syntax diagram . . . . . . . . . . . . . . . . . . . . . . . 1188
DXXMQRETRIEVECLOB option descriptions . . . . . . . . . . . . . . . . . . . . . . 1188
Example of DXXMQRETRIEVECLOB invocation . . . . . . . . . . . . . . . . . . . . . 1189
DXXMQRETRIEVECLOB output . . . . . . . . . . . . . . . . . . . . . . . . . . 1191

Appendix K. How to use the DB2 library . . . . . . . . . . . . . . . . . . . . 1193

Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
Programming interface information. . . . . . . . . . . . . . . . . . . . . . . . . . . 1196
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .X-1

Contents xix

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##



xx Application Programming and SQL Guide



About this book

This book discusses how to design and write application programs that access DB2
Universal Database for z/OS (DB2), a highly flexible relational database
management system (DBMS).

This information assumes that your DB2 subsystem is running in Version 8
new-function mode. New functions are available only in new-function mode,
unless explicitly stated otherwise in the product documentation. A few general
exceptions exist for utilities and for optimization. In most cases, new functions are
not supported in compatibility mode unless noted. For utilities and optimization,
new functions are available in compatibility mode unless noted. The new functions
that are available in compatibility mode and enabling-new-function mode are
almost identical, but some new functions are supported to provide easier
migration. Exceptions to these general statements are noted in the information.

Visit the following Web site for information about ordering DB2 books and
obtaining other valuable information about DB2 UDB for z/OS:
http://publib.boulder.ibm.com/infocenter/imzic

Important
In this version of DB2 UDB for z/OS, the DB2 Utilities Suite is available as an
optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them. See Part 1 of
DB2 Utility Guide and Reference for packaging details.

The DB2 Utilities Suite is designed to work with the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not
otherwise license DFSORT or DB2 Sort for general use. If your primary sort
product is not DFSORT or DB2 Sort, consider the following informational
APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.

Who should read this book
This book is for DB2 application developers who are familiar with Structured
Query Language (SQL) and who know one or more programming languages that
DB2 supports.

Terminology and citations
In this information, DB2 Universal Database™ for z/OS® is referred to as "DB2
UDB for z/OS." In cases where the context makes the meaning clear, DB2 UDB for
z/OS is referred to as "DB2®." When this information refers to titles of books in
this library, a short title is used. (For example, "See DB2 SQL Reference" is a citation
to IBM® DB2 Universal Database for z/OS SQL Reference.)

© Copyright IBM Corp. 1983, 2012 xxi



When referring to a DB2 product other than DB2 UDB for z/OS, this information
uses the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON
Refers to any of the following products:
v IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS or CICS Transaction Server
for OS/390®.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

How to read the syntax diagrams
The following rules apply to the syntax diagrams that are used in this book:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.

xxii Application Programming and SQL Guide

#
#
#
#
#
#



If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Accessibility
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products. The major accessibility
features in z/OS products, including DB2 UDB for z/OS, enable users to:
v Use assistive technologies such as screen reader and screen magnifier software
v Operate specific or equivalent features by using only a keyboard
v Customize display attributes such as color, contrast, and font size

About this book xxiii



Assistive technology products, such as screen readers, function with the DB2 UDB
for z/OS user interfaces. Consult the documentation for the assistive technology
products for specific information when you use assistive technology to access these
interfaces.

Online documentation for Version 8 of DB2 UDB for z/OS is available in the
Information management software for z/OS solutions information center, which is
an accessible format when used with assistive technologies such as screen reader
or screen magnifier software. The Information management software for z/OS
solutions information center is available at the following Web site:
http://publib.boulder.ibm.com/infocenter/dzichelp

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 UDB for z/OS
documentation. You can use the following methods to provide comments:
v Send your comments by e-mail to db2zinfo@us.ibm.com and include the name

of the product, the version number of the product, and the number of the book.
If you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can send comments from the Web. Visit the DB2 for z/OS - Technical
Resources Web site at:

http://www.ibm.com/support/docview.wss?&uid=swg27011656

This Web site has a an online reader comment form that you can use to send
comments.

v You can also send comments by using the feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://publib.boulder.ibm.com/infocenter/db2zhelp.

xxiv Application Programming and SQL Guide



Summary of changes to this book

The principal changes to this book are:
v Chapter 1, “Retrieving data,” on page 3 explains how to create and use common

table expressions in SELECT, CREATE VIEW, and INSERT statements, and also
describes how to use common table expressions to create recursive SQL.

v Chapter 2, “Working with tables and modifying data,” on page 19 explains how
to select column values as you insert rows into a table by using the SELECT
from INSERT statement.

v Chapter 6, “Basics of coding SQL in an application program,” on page 77
contains information on how to use:
– Host variable arrays, and their indicator arrays, in a multiple-row INSERT

statement (in a C or C++, COBOL, or PL/I program).
– The GET DIAGNOSTICS statement to return diagnostic information about the

last SQL statement that was executed (for example, information about input
data errors during the execution of a multiple-row INSERT statement).

v Chapter 7, “Using a cursor to retrieve a set of rows,” on page 103 explains how
to use:
– Static and dynamic scrollable cursors.
– A rowset-positioned cursor in a multiple-row FETCH statement (in a C or

C++, COBOL, or PL/I program).
– Positioned updates and deletes with a rowset-positioned cursor.

v Chapter 9, “Embedding SQL statements in host languages,” on page 143 contains
information on how to declare host variable arrays (for C or C++, COBOL, and
PL/I) for use with multiple-row INSERT and FETCH statements.

v Chapter 10, “Using constraints to maintain data integrity,” on page 261 describes
informational referential constraints (not enforced by DB2), describes referential
constraints on tables with multi-level security with row-level granularity, and
explains how to maintain referential integrity when using data encryption.

v Chapter 11, “Using DB2-generated values as keys,” on page 271 is a new chapter
that describes the use of ROWID columns for direct row access, identity columns
as parent keys and foreign keys, and values generated from sequence objects as
keys across multiple tables.

v Chapter 12, “Using triggers for active data,” on page 279 describes interactions
between triggers and tables that use multi-level security with row-level
granularity.

v Chapter 21, “Preparing an application program to run,” on page 471 describes
the new SQL processing options:
– CCSID, which specifies the CCSID in which the source program is written.
– NEWFUN, which indicates whether to accept the syntax for DB2 Version 8

new functions.
– For C programs, PADNSTR or NOPADNSTR, which indicates whether or not

output host variables that are NUL-terminated strings are padded with
blanks.

This chapter also describes how the CURRENT PACKAGE PATH special register
is used in identifying the collection for packages at run time.

v Chapter 24, “Coding dynamic SQL in application programs,” on page 595
describes how to use a descriptor when you prepare and execute a multiple-row

© Copyright IBM Corp. 1983, 2012 xxv

|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|

|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

|
|



INSERT statement. This chapter also includes information about how bind
option REOPT(ONCE) affects dynamic SQL statements.

v Chapter 25, “Using stored procedures for client/server processing,” on page 631
describes how to invoke DSNTPSMP (the SQL Procedure Processor that prepares
SQL procedures for execution) with the SQL CALL statement. This chapter also
describes new SQL procedure statements and describes how to run multiple
instances of the same stored procedure at the same time.

v Chapter 31, “Programming for the Resource Recovery Services attachment
facility,” on page 895 contains information about using implicit connections to
DB2 when applications include SQL statements.

v Chapter 33, “WebSphere MQ with DB2,” on page 943 is a new chapter that
describes how to use DB2 WebSphere® MQ functions in SQL statements to
combine DB2 database access with WebSphere MQ message handling.

v Appendix E, “Recursive common table expression examples,” on page 1099 is a
new appendix that includes examples of using common table expressions to
create recursive SQL in a bill of materials application.

xxvi Application Programming and SQL Guide

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|



Part 1. Using SQL queries
Chapter 1. Retrieving data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Result tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Selecting columns: SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Selecting all columns: SELECT * . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Selecting some columns: SELECT column-name . . . . . . . . . . . . . . . . . . . . . . 6
Selecting derived columns: SELECT expression . . . . . . . . . . . . . . . . . . . . . . . 7
Eliminating duplicate rows: DISTINCT . . . . . . . . . . . . . . . . . . . . . . . . . 7
Naming result columns: AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Selecting rows using search conditions: WHERE . . . . . . . . . . . . . . . . . . . . . . . 8
Putting the rows in order: ORDER BY . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Specifying the sort key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Referencing derived columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Summarizing group values: GROUP BY . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Subjecting groups to conditions: HAVING . . . . . . . . . . . . . . . . . . . . . . . . . 11
Merging lists of values: UNION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Using UNION to eliminate duplicates . . . . . . . . . . . . . . . . . . . . . . . . . 13
Using UNION ALL to keep duplicates . . . . . . . . . . . . . . . . . . . . . . . . . 13

Creating common table expressions: WITH . . . . . . . . . . . . . . . . . . . . . . . . . 13
Using WITH instead of CREATE VIEW . . . . . . . . . . . . . . . . . . . . . . . . . 14
Using common table expressions with CREATE VIEW . . . . . . . . . . . . . . . . . . . . 14
Using common table expressions when you use INSERT . . . . . . . . . . . . . . . . . . . 15
Using recursive SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Accessing DB2 data that is not in a table . . . . . . . . . . . . . . . . . . . . . . . . . 16
Using 15-digit and 31-digit precision for decimal numbers. . . . . . . . . . . . . . . . . . . . 16
Finding information in the DB2 catalog . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Displaying a list of tables you can use . . . . . . . . . . . . . . . . . . . . . . . . . 18
Displaying a list of columns in a table . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2. Working with tables and modifying data . . . . . . . . . . . . . . . . . . . . . 19
Working with tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Creating your own tables: CREATE TABLE . . . . . . . . . . . . . . . . . . . . . . . . 19
Identifying defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Creating work tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Creating a new department table . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Creating a new employee table . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Working with temporary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Working with created temporary tables . . . . . . . . . . . . . . . . . . . . . . . . 22
Working with declared temporary tables. . . . . . . . . . . . . . . . . . . . . . . . 23

Dropping tables: DROP TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Working with views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Defining a view: CREATE VIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Changing data through a view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Dropping views: DROP VIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Modifying DB2 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Inserting rows: INSERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Inserting a single row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Inserting rows into a table from another table . . . . . . . . . . . . . . . . . . . . . . 29
Other ways to insert data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Inserting data into a ROWID column . . . . . . . . . . . . . . . . . . . . . . . . . 30
Inserting data into an identity column . . . . . . . . . . . . . . . . . . . . . . . . 30

Selecting values as you insert: SELECT FROM INSERT . . . . . . . . . . . . . . . . . . . . 31
Result table of the INSERT operation . . . . . . . . . . . . . . . . . . . . . . . . . 32
Selecting values when you insert a single row . . . . . . . . . . . . . . . . . . . . . . 32
Selecting values when you insert data into a view . . . . . . . . . . . . . . . . . . . . 33
Selecting values when you insert multiple rows . . . . . . . . . . . . . . . . . . . . . 33

© Copyright IBM Corp. 1983, 2012 1

||
||
||
||
||

||
||
||
||
||



Result table of the cursor when you insert multiple rows . . . . . . . . . . . . . . . . . . 34
What happens if an error occurs . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Updating current values: UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Deleting rows: DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Deleting every row in a table . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3. Joining data from more than one table . . . . . . . . . . . . . . . . . . . . . 39
Inner join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Full outer join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Left outer join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Right outer join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
SQL rules for statements containing join operations . . . . . . . . . . . . . . . . . . . . . . 44
Using more than one join in an SQL statement . . . . . . . . . . . . . . . . . . . . . . . 45
Using nested table expressions and user-defined table functions in joins . . . . . . . . . . . . . . . 46
Using correlated references in table specifications in joins . . . . . . . . . . . . . . . . . . . . 47

Chapter 4. Using subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Conceptual overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Correlated and uncorrelated subqueries . . . . . . . . . . . . . . . . . . . . . . . . . 50
Subqueries and predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
The subquery result table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Tables in subqueries of UPDATE, DELETE, and INSERT statements . . . . . . . . . . . . . . . 51

How to code a subquery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Basic predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Quantified predicate : ALL, ANY, or SOME. . . . . . . . . . . . . . . . . . . . . . . . 51

Using the ALL predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Using the ANY or SOME predicate . . . . . . . . . . . . . . . . . . . . . . . . . 52

IN keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
EXISTS keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Using correlated subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
An example of a correlated subquery . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Using correlation names in references . . . . . . . . . . . . . . . . . . . . . . . . . 54
Using correlated subqueries in an UPDATE statement . . . . . . . . . . . . . . . . . . . . 55
Using correlated subqueries in a DELETE statement . . . . . . . . . . . . . . . . . . . . . 56

Using tables with no referential constraints . . . . . . . . . . . . . . . . . . . . . . . 56
Using a single table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Using tables with referential constraints . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5. Using SPUFI to execute SQL from your workstation. . . . . . . . . . . . . . . . . 59
Allocating an input data set and using SPUFI . . . . . . . . . . . . . . . . . . . . . . . . 59
Changing SPUFI defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Changing SPUFI defaults - panel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Entering SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Using the ISPF editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Retrieving Unicode UTF-16 graphic data . . . . . . . . . . . . . . . . . . . . . . . . 67
Entering comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Setting the SQL terminator character . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Controlling toleration of warnings . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Processing SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
When SQL statements exceed resource limit thresholds . . . . . . . . . . . . . . . . . . . . . 68
Browsing the output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Format of SELECT statement results . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Content of the messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2 Application Programming and SQL Guide

||
||

##

##

##



Chapter 1. Retrieving data

You can retrieve data using the SQL statement SELECT to specify a result table.
This chapter describes how to interactively use SELECT statements to retrieve data
from DB2 tables. It includes the following sections:
v “Result tables”
v “Data types” on page 4
v “Selecting columns: SELECT” on page 5
v “Selecting rows using search conditions: WHERE” on page 8
v “Putting the rows in order: ORDER BY” on page 9
v “Summarizing group values: GROUP BY” on page 11
v “Merging lists of values: UNION” on page 12
v “Creating common table expressions: WITH” on page 13
v “Accessing DB2 data that is not in a table” on page 16
v “Using 15-digit and 31-digit precision for decimal numbers” on page 16
v “Finding information in the DB2 catalog” on page 17

For more advanced topics on using SELECT statements, see Chapter 4, “Using
subqueries,” on page 49, and Chapter 20, “Planning to access distributed data,” on
page 441.

Examples of SQL statements illustrate the concepts that this chapter discusses.
Consider developing SQL statements similar to these examples and then running
them dynamically using SPUFI or DB2 Query Management Facility (DB2 QMF).

Result tables
The data retrieved through SQL is always in the form of a table, which is called a
result table. Like the tables from which you retrieve the data, a result table has rows
and columns. A program fetches this data one row at a time.

Example: SELECT statement: The following SELECT statement retrieves the last
name, first name, and phone number of employees in department D11 from the
sample employee table:
SELECT LASTNAME, FIRSTNME, PHONENO

FROM DSN8810.EMP
WHERE WORKDEPT = ’D11’
ORDER BY LASTNAME;

The result table looks similar to the following output:
LASTNAME FIRSTNME PHONENO
================ ============== ==========
ADAMSON BRUCE 4510
BROWN DAVID 4501
JOHN REBA 0672
JONES WILLIAM 0942
LUTZ JENNIFER 0672
PIANKA ELIZABETH 3782
SCOUTTEN MARILYN 1682
STERN IRVING 6432
WALKER JAMES 2986
YAMAMOTO KIYOSHI 2890
YOSHIMURA MASATOSHI 2890

© Copyright IBM Corp. 1983, 2012 3



Data types
When you create a DB2 table, you define each column to have a specific data type.
The data type can be a built-in data type or a distinct type. This section discusses
built-in data types. For information about distinct types, see Chapter 16, “Creating
and using distinct types,” on page 367. The data type of a column determines what
you can and cannot do with the column. When you perform operations on
columns, the data must be compatible with the data type of the referenced column.
For example, you cannot insert character data, like a last name, into a column
whose data type is numeric. Similarly, you cannot compare columns containing
incompatible data types.

To better understand the concepts that are presented in this chapter, you must
understand the data types of the columns to which an example refers. As shown in
Figure 1, built-in data types have four general categories: datetime, string, numeric,
and row identifier (ROWID).

For more detailed information about each data type, see Chapter 2 of DB2 SQL
Reference.

Table 1 on page 5 shows whether operands of any two data types are compatible,
Y (Yes), or incompatible, N (No). Numbers in the table, either as superscript of Y
or N, or as a value in the column, indicates a note at the bottom of the table.

built-in
data
types

stringdatetime

floating
point

decimal

packed

DECIMAL

ROWID

binary
integer

time timestamp date

16 bit 32 bit

single
precision

double
precision

fixed
length

varying
length

fixed
length

varying
length

graphiccharacter

varying
length
binary

row
identifier

signed
numeric

exact approximate

SMALLINT INTEGER

REAL DOUBLE

TIME

GRAPHIC

VARGRAPHICVARCHAR DBCLOBCLOB

CHAR

TIMESTAMP DATE

BLOB

Figure 1. DB2 data types

4 Application Programming and SQL Guide



Table 1. Compatibility of data types for assignments and comparisons. Y indicates that the data types are compatible.
N indicates no compatibility. For any number in a column, read the corresponding note at the bottom of the table.

Operands
Binary
integer

Decimal
number

Floating
point

Character
string

Graphic
string

Binary
string Date Time

Time-
stamp

Row
ID

Distinct
type

Binary Integer Y Y Y N N N N N N N 2

Decimal
Number

Y Y Y N N N N N N N 2

Floating Point Y Y Y N N N N N N N 2

Character
String

N N N Y Y4,5 N3 1 1 1 N 2

Graphic String N N N Y4,5 Y N 1,4 1,4 1,4 N 2

Binary String N N N N3 N Y N N N N 2

Date N N N 1 1,4 N Y N N N 2

Time N N N 1 1,4 N N Y N N 2

Timestamp N N N 1 1,4 N N N Y N 2

Row ID N N N N N N N N N Y 2

Distinct Type 2 2 2 2 2 2 2 2 2 2 Y2

Notes:

1. The compatibility of datetime values is limited to assignment and comparison:
v Datetime values can be assigned to string columns and to string variables, as explained in Chapter 2 of DB2

SQL Reference.
v A valid string representation of a date can be assigned to a date column or compared to a date.
v A valid string representation of a time can be assigned to a time column or compared to a time.
v A valid string representation of a timestamp can be assigned to a timestamp column or compared to a

timestamp.

2. A value with a distinct type is comparable only to a value that is defined with the same distinct type. In general,
DB2 supports assignments between a distinct type value and its source data type. For additional information, see
Chapter 2 of DB2 SQL Reference.

3. All character strings, even those with subtype FOR BIT DATA, are not compatible with binary strings.

4. On assignment and comparison from Graphic to Character, the resulting length in bytes is 3 * (LENGTH(graphic
string)), depending on the CCSIDs.

5. Character strings with subtype FOR BIT DATA are not compatible with Graphic Data.

Selecting columns: SELECT
You have several options for selecting columns from a database for your result
tables. This section describes how to select columns using a variety of techniques.

Selecting all columns: SELECT *
You do not need to know the column names to select DB2 data. Use an asterisk (*)
in the SELECT clause to indicate that you want to retrieve all columns of each
selected row of the named table.

Example: SELECT *: The following SQL statement selects all columns from the
department table:
SELECT *

FROM DSN8810.DEPT;

The result table looks similar to the following output:

Chapter 1. Retrieving data 5



DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
====== ============================== ====== ======== ========
A00 SPIFFY COMPUTER SERVICES DIV. 000010 A00 --------
B01 PLANNING 000020 A00 --------
C01 INFORMATION CENTER 000030 A00 --------
D01 DEVELOPMENT CENTER ------ A00 --------
D11 MANUFACTURING CENTER 000060 D01 --------
D21 ADMINSTRATION SYSTEMS 000070 D01 --------
E01 SUPPORT SERVICES 000050 A00 --------
E11 OPERATIONS 000090 E01 --------
E21 SOFTWARE SUPPORT 000100 E01 --------
F22 BRANCH OFFICE F2 ------ E01 --------
G22 BRANCH OFFICE G2 ------ E01 --------
H22 BRANCH OFFICE H2 ------ E01 --------
I22 BRANCH OFFICE I2 ------ E01 --------
J22 BRANCH OFFICE J2 ------ E01 --------

Because the example does not specify a WHERE clause, the statement retrieves
data from all rows.

The dashes for MGRNO and LOCATION in the result table indicate null values.

SELECT * is recommended mostly for use with dynamic SQL and view definitions.
You can use SELECT * in static SQL, but this is not recommended; if you add a
column to the table to which SELECT * refers, the program might reference
columns for which you have not defined receiving host variables. For more
information about host variables, see “Accessing data using host variables, variable
arrays, and structures” on page 79.

If you list the column names in a static SELECT statement instead of using an
asterisk, you can avoid the problem created by using SELECT *. You can also see
the relationship between the receiving host variables and the columns in the result
table.

Selecting some columns: SELECT column-name
Select the column or columns you want to retrieve by naming each column. All
columns appear in the order you specify, not in their order in the table.

Example: SELECT column-name: The following SQL statement selects only the
MGRNO and DEPTNO columns from the department table:
SELECT MGRNO, DEPTNO

FROM DSN8810.DEPT;

The result table looks similar to the following output:
MGRNO DEPTNO
====== ======
000010 A00
000020 B01
000030 C01
------ D01
000050 E01
000060 D11
000070 D21
000090 E11
000100 E21
------ F22
------ G22
------ H22
------ I22
------ J22

6 Application Programming and SQL Guide



With a single SELECT statement, you can select data from one column or as many
as 750 columns.

Selecting derived columns: SELECT expression
You can select columns derived from a constant, an expression, or a function.

Example: SELECT with an expression: This SQL statement generates a result table
in which the second column is a derived column that is generated by adding the
values of the SALARY, BONUS, and COMM columns.
SELECT EMPNO, (SALARY + BONUS + COMM)

FROM DSN8810.EMP;

Derived columns in a result table, such as (SALARY + BONUS + COMM), do not
have names. You can use the AS clause to give a name to an unnamed column of
the result table. For information about using the AS clause, see “Naming result
columns: AS.”

To order the rows in a result table by the values in a derived column, specify a
name for the column by using the AS clause, and specify that name in the ORDER
BY clause. For information about using the ORDER BY clause, see “Putting the
rows in order: ORDER BY” on page 9.

Eliminating duplicate rows: DISTINCT
The DISTINCT keyword removes duplicate rows from your result table, so that
each row contains unique data.

Example: SELECT DISTINCT: The following SELECT statement lists unique
department numbers for administrating departments:
SELECT DISTINCT ADMRDEPT

FROM DSN8810.DEPT;

The result table looks similar to the following output:
ADMRDEPT
========
A00
D01
E01

Naming result columns: AS
With the AS clause, you can name result columns in a SELECT statement. This is
particularly useful for a column that is derived from an expression or a function.
For syntax and more information about the AS clause, see Chapter 4 of DB2 SQL
Reference.

The following examples show different ways to use the AS clause.

Example: SELECT with AS CLAUSE: The following example of the SELECT
statement gives the expression SALARY+BONUS+COMM the name TOTAL_SAL.
SELECT SALARY+BONUS+COMM AS TOTAL_SAL

FROM DSN8810.EMP
ORDER BY TOTAL_SAL;

Example: CREATE VIEW with AS clause: You can specify result column names in
the select-clause of a CREATE VIEW statement. You do not need to supply the

Chapter 1. Retrieving data 7



column list of CREATE VIEW, because the AS keyword names the derived column.
The columns in the view EMP_SAL are EMPNO and TOTAL_SAL.
CREATE VIEW EMP_SAL AS

SELECT EMPNO,SALARY+BONUS+COMM AS TOTAL_SAL
FROM DSN8810.EMP;

For more information about using the CREATE VIEW statement, see “Defining a
view: CREATE VIEW” on page 25.

Example: UNION ALL with AS clause: You can use the AS clause to give the same
name to corresponding columns of tables in a union. The third result column from
the union of the two tables has the name TOTAL_VALUE, even though it contains
data derived from columns with different names:
SELECT ’On hand’ AS STATUS, PARTNO, QOH * COST AS TOTAL_VALUE

FROM PART_ON_HAND
UNION ALL
SELECT ’Ordered’ AS STATUS, PARTNO, QORDER * COST AS TOTAL_VALUE

FROM ORDER_PART
ORDER BY PARTNO, TOTAL_VALUE;

The column STATUS and the derived column TOTAL_VALUE have the same name
in the first and second result tables, and are combined in the union of the two
result tables, which is similar to the following partial output:
STATUS PARTNO TOTAL_VALUE
======= ====== ===========
On hand 00557 345.60
Ordered 00557 150.50
.
.
.

For information about unions, see “Merging lists of values: UNION” on page 12.

Example: GROUP BY derived column: You can use the AS clause in a FROM clause
to assign a name to a derived column that you want to refer to in a GROUP BY
clause. This SQL statement names HIREYEAR in the nested table expression,
which lets you use the name of that result column in the GROUP BY clause:
SELECT HIREYEAR, AVG(SALARY)

FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, SALARY
FROM DSN8810.EMP) AS NEWEMP

GROUP BY HIREYEAR;

You cannot use GROUP BY with a name that is defined with an AS clause for the
derived column YEAR(HIREDATE) in the outer SELECT, because that name does
not exist when the GROUP BY runs. However, you can use GROUP BY with a
name that is defined with an AS clause in the nested table expression, because the
nested table expression runs before the GROUP BY that references the name. For
more information about using the GROUP BY clause, see “Summarizing group
values: GROUP BY” on page 11.

Selecting rows using search conditions: WHERE
Use a WHERE clause to select the rows that meet certain conditions. A WHERE
clause specifies a search condition. A search condition consists of one or more
predicates. A predicate specifies a test you want DB2 to apply to each table row.

DB2 evaluates a predicate for each row as true, false, or unknown. Results are
unknown only if an operand is null.

8 Application Programming and SQL Guide

|
|

|
|
|



If a search condition contains a column of a distinct type, the value to which that
column is compared must be of the same distinct type, or you must cast the value
to the distinct type. See Chapter 16, “Creating and using distinct types,” on page
367 for more information about distinct types.

Table 2 lists the type of comparison, the comparison operators, and an example of
how each type of comparison that you can use in a predicate in a WHERE clause.

Table 2. Comparison operators used in conditions

Type of comparison Comparison operator Example

Equal to = DEPTNO = 'X01'

Not equal to <> DEPTNO <> ’X01’

Less than < AVG(SALARY) < 30000

Less than or equal to <= AGE <= 25

Not less than >= AGE >= 21

Greater than > SALARY > 2000

Greater than or equal to >= SALARY >= 5000

Not greater than <= SALARY <= 5000

Equal to null IS NULL PHONENO IS NULL

Not equal to or one
value is equal to null

IS DISTINCT FROM PHONENO IS DISTINCT FROM
:PHONEHV

Similar to another value LIKE NAME LIKE ’%SMITH%’ or STATUS
LIKE ’N_’

At least one of two
conditions

OR HIREDATE < ’1965-01-01’ OR SALARY
< 16000

Both of two conditions AND HIREDATE < ’1965-01-01’ AND
SALARY < 16000

Between two values BETWEEN SALARY BETWEEN 20000 AND 40000

Equals a value in a set IN (X, Y, Z) DEPTNO IN (’B01’, ’C01’, ’D01’)

Note: SALARY BETWEEN 20000 AND 40000 is equivalent to SALARY >= 20000 AND
SALARY <= 40000. For more information about predicates, see Chapter 2 of DB2 SQL
Reference.

You can also search for rows that do not satisfy one of the preceding conditions by
using the NOT keyword before the specified condition.

You can search for rows that do not satisfy the IS DISTINCT FROM predicate by
using either of the following predicates:
v value IS NOT DISTINCT FROM value

v NOT(value IS DISTINCT FROM value)

Both of these forms of the predicate create an expression where one value is equal
to another value or both values are equal to null.

Putting the rows in order: ORDER BY
To retrieve rows in a specific order, use the ORDER BY clause. Using ORDER BY is
the only way to guarantee that your rows are ordered as you want them. The
following sections show you how to use the ORDER BY clause.

Chapter 1. Retrieving data 9

|
|

|
|

|

|

|
|



Specifying the sort key
The order of the selected rows depends on the sort keys that you identify in the
ORDER BY clause. A sort key can be a column name, an integer that represents the
number of a column in the result table, or an expression. DB2 orders the rows by
the first sort key, followed by the second sort key, and so on.

You can list the rows in ascending or descending order. Null values appear last in
an ascending sort and first in a descending sort.

DB2 sorts strings in the collating sequence associated with the encoding scheme of
the table. DB2 sorts numbers algebraically and sorts datetime values
chronologically.

Example: ORDER BY clause with a column name as the sort key: Retrieve the
employee numbers, last names, and hire dates of employees in department A00 in
ascending order of hire dates:
SELECT EMPNO, LASTNAME, HIREDATE

FROM DSN8810.EMP
WHERE WORKDEPT = ’A00’
ORDER BY HIREDATE ASC;

The result table looks similar to the following output:
EMPNO LASTNAME HIREDATE
===== ========= ==========
000110 LUCCHESI 1958-05-16
000120 O'CONNELL 1963-12-05
000010 HAAS 1965-01-01
200010 HEMMINGER 1965-01-01
200120 ORLANDO 1972-05-05

Example: ORDER BY clause with an expression as the sort key: The following
subselect retrieves the employee numbers, salaries, commissions, and total
compensation (salary plus commission) for employees with a total compensation
greater than 40000. Order the results by total compensation:
SELECT EMPNO, SALARY, COMM, SALARY+COMM AS "TOTAL COMP"

FROM DSN8810.EMP
WHERE SALARY+COMM > 40000
ORDER BY SALARY+COMM;

The intermediate result table looks similar to the following output:
EMPNO SALARY COMM TOTAL COMP
====== ======== ======= ==========
000030 38250.00 3060.00 41310.00
000050 40175.00 3214.00 43389.00
000020 41250.00 3300.00 44550.00
000110 46500.00 3720.00 50220.00
200010 46500.00 4220.00 50720.00
000010 52750.00 4220.00 56970.00

Referencing derived columns
If you use the AS clause to name an unnamed column in a SELECT statement, you
can use that name in the ORDER BY clause.

Example: ORDER BY clause using a derived column name: The following SQL
statement orders the selected information by total salary:
SELECT EMPNO, (SALARY + BONUS + COMM) AS TOTAL_SAL

FROM DSN8810.EMP
ORDER BY TOTAL_SAL;

10 Application Programming and SQL Guide



Summarizing group values: GROUP BY
Use GROUP BY to group rows by the values of one or more columns or by the
results of an expression. You can then apply aggregate functions to each group.

Except for the columns that are named in the GROUP BY clause, the SELECT
statement must specify any other selected columns as an operand of one of the
aggregate functions.

Example: GROUP BY clause using one column: The following SQL statement lists,
for each department, the lowest and highest education level within that
department:
SELECT WORKDEPT, MIN(EDLEVEL), MAX(EDLEVEL)

FROM DSN8810.EMP
GROUP BY WORKDEPT;

If a column that you specify in the GROUP BY clause contains null values, DB2
considers those null values to be equal. Thus, all nulls form a single group.

When it is used, the GROUP BY clause follows the FROM clause and any WHERE
clause, and precedes the ORDER BY clause.

You can group the rows by the values of more than one column.

Example: GROUP BY clause using more than one column: The following statement
finds the average salary for men and women in departments A00 and C01:
SELECT WORKDEPT, SEX, AVG(SALARY) AS AVG_SALARY

FROM DSN8810.EMP
WHERE WORKDEPT IN (’A00’, ’C01’)
GROUP BY WORKDEPT, SEX;

The result table looks similar to the following output:
WORKDEPT SEX AVG_SALARY
======== === ==============
A00 F 49625.00000000
A00 M 35000.00000000
C01 F 29722.50000000

DB2 groups the rows first by department number and then (within each
department) by sex before it derives the average SALARY value for each group.

You can also group the rows by the results of an expression

Example: GROUP BY clause using a expression: The following statement groups
departments by their leading characters, and lists the lowest and highest education
level for each group:
SELECT SUBSTR(WORKDEPT,1,1), MIN(EDLEVEL), MAX(EDLEVEL)

FROM DSN8810.EMP
GROUP BY SUBSTR(WORKDEPT,1,1);

Subjecting groups to conditions: HAVING
Use HAVING to specify a search condition that each retrieved group must satisfy.
The HAVING clause acts like a WHERE clause for groups, and contains the same
kind of search conditions you specify in a WHERE clause. The search condition in
the HAVING clause tests properties of each group rather than properties of
individual rows in the group.

Chapter 1. Retrieving data 11

|
|

|

#
#
#

#
#
#



Example: HAVING clause: The following SQL statement includes a HAVING clause
that specifies a search condition for groups of work departments in the employee
table:
SELECT WORKDEPT, AVG(SALARY) AS AVG_SALARY

FROM DSN8810.EMP
GROUP BY WORKDEPT
HAVING COUNT(*) > 1
ORDER BY WORKDEPT;

The result table looks similar to the following output:
WORKDEPT AVG_SALARY
======== ==============
A00 40850.00000000
C01 29722.50000000
D11 25147.27272727
D21 25668.57142857
E11 21020.00000000
E21 24086.66666666

Compare the preceding example with the second example shown in “Summarizing
group values: GROUP BY” on page 11. The clause, HAVING COUNT(*) > 1, ensures
that only departments with more than one member are displayed. In this case,
departments B01 and E01 do not display because the HAVING clause tests a
property of the group.

Example: HAVING clause used with a GROUP BY clause: Use the HAVING clause
to retrieve the average salary and minimum education level of women in each
department for which all female employees have an education level greater than or
equal to 16. Assuming you only want results from departments A00 and D11, the
following SQL statement tests the group property, MIN(EDLEVEL):
SELECT WORKDEPT, AVG(SALARY) AS AVG_SALARY,

MIN(EDLEVEL) AS MIN_EDLEVEL
FROM DSN8810.EMP
WHERE SEX = ’F’ AND WORKDEPT IN (’A00’, ’D11’)
GROUP BY WORKDEPT
HAVING MIN(EDLEVEL) >= 16;

The result table looks similar to the following output:
WORKDEPT AVG_SALARY MIN_EDLEVEL
======== ============== ===========
A00 49625.00000000 18
D11 25817.50000000 17

When you specify both GROUP BY and HAVING, the HAVING clause must follow
the GROUP BY clause. A function in a HAVING clause can include DISTINCT if
you have not used DISTINCT anywhere else in the same SELECT statement. You
can also connect multiple predicates in a HAVING clause with AND and OR, and
you can use NOT for any predicate of a search condition.

Merging lists of values: UNION
Using the UNION keyword, you can combine two or more SELECT statements to
form a single result table. When DB2 encounters the UNION keyword, it processes
each SELECT statement to form an interim result table, and then combines the
interim result table of each statement. If you use UNION to combine two columns
with the same name, the result table inherits that name. If the two columns do not
have the same name, and you do not use labels, the column in the result set is

12 Application Programming and SQL Guide

#
#
#
#
#
#



unnamed. When you use the UNION statement, the SQLNAME field of the
SQLDA contains the unqualified name or label of the column, or a string of length
zero if the name or label does not exist.

Using UNION to eliminate duplicates
You can use UNION to eliminate duplicates when merging lists of values obtained
from several tables.

Example: UNION clause: You can obtain a combined list of employee numbers that
includes both of the following:
v People in department D11
v People whose assignments include projects MA2112, MA2113, and AD3111.

The following SQL statement gives a combined result table containing employee
numbers in ascending order with no duplicates listed:
SELECT EMPNO

FROM DSN8810.EMP
WHERE WORKDEPT = ’D11’

UNION
SELECT EMPNO

FROM DSN8810.EMPPROJACT
WHERE PROJNO = ’MA2112’ OR

PROJNO = ’MA2113’ OR
PROJNO = ’AD3111’

ORDER BY EMPNO;

If you have an ORDER BY clause, it must appear after the last SELECT statement
that is part of the union. In this example, the first column of the final result table
determines the final order of the rows.

Using UNION ALL to keep duplicates
If you want to keep duplicates in the final result table of a UNION, specify the
optional keyword ALL after the UNION keyword.

Example: UNION ALL clause: The following SQL statement gives a combined
result table containing employee numbers in ascending order, and includes
duplicate numbers:
SELECT EMPNO

FROM DSN8810.EMP
WHERE WORKDEPT = ’D11’

UNION ALL
SELECT EMPNO

FROM DSN8810.EMPPROJACT
WHERE PROJNO = ’MA2112’ OR

PROJNO = ’MA2113’ OR
PROJNO = ’AD3111’

ORDER BY EMPNO;

Creating common table expressions: WITH
A common table expression is like a temporary view that is defined and used for the
duration of an SQL statement. You can define a common table expression for the
SELECT, INSERT, and CREATE VIEW statements.

Each common table expression must have a unique name and be defined only
once. However, you can reference a common table expression many times in the
same SQL statement. Unlike regular views or nested table expressions, which

Chapter 1. Retrieving data 13

#
#
#

|

|
|
|

|
|
|



derive their result tables for each reference, all references to common table
expressions in a given statement share the same result table.

A common table expression can be used in the following situations:
v When you want to avoid creating a view (when general use of the view is not

required and positioned updates or deletes are not used)
v When the desired result table is based on host variables
v When the same result table needs to be shared in a fullselect
v When the results need to be derived using recursion

Using WITH instead of CREATE VIEW
Using the WITH clause to create a common table expression saves you the
overhead of needing to create and drop a regular view that you only need to use
once. Also, during statement preparation, DB2 does not need to access the catalog
for the view, which saves you additional overhead.

You can use a common table expression in a SELECT statement by using the WITH
clause at the beginning of the statement.

Example: WITH clause in a SELECT statement: The following statement finds the
department with the highest total pay. The query involves two levels of
aggregation. First, you need to determine the total pay for each department by
using the SUM function and order the results by using the GROUP BY clause. You
then need to find the department with maximum total pay based on the total pay
for each department.
WITH DTOTAL (deptno, totalpay) AS

(SELECT deptno, sum(salary+bonus)
FROM DSN8810.EMP
GROUP BY deptno)

SELECT deptno
FROM DTOTAL

WHERE totalpay = (SELECT max(totalpay)
FROM DTOTAL);

The result table for the common table expression, DTOTAL, contains the
department number and total pay for each department in the employee table. The
fullselect in the previous example uses the result table for DTOTAL to find the
department with the highest total pay. The result table for the entire statement
looks similar to the following results:
DEPTNO
======
D11

Using common table expressions with CREATE VIEW
You can use common table expressions before a fullselect in a CREATE VIEW
statement. The common table expression must be placed immediately inside of the
statement. This is useful if you need to use the results of a common table
expression in more than one query.

Example: Using a WITH clause in a CREATE VIEW statement: The following
statement finds the departments that have a greater than average total pay and
saves the results as the view RICH_DEPT:
CREATE VIEW RICH_DEPT (deptno) AS

WITH DTOTAL (deptno, totalpay) AS
(SELECT deptno, sum(salary+bonus)

14 Application Programming and SQL Guide

|
|

|

|
|

|

|

|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|



FROM DSN8810.EMP
GROUP BY deptno)

SELECT deptno
FROM DTOTAL

WHERE totalpay > (SELECT AVG(totalpay)
FROM DTOTAL);

The fullselect in the previous example uses the result table for DTOTAL to find the
departments that have a greater than average total pay. The result table is saved as
the RICH_DEPT view and looks similar to the following results:
DEPTNO
======
A00
D11
D21

Using common table expressions when you use INSERT
You can use common table expressions before a fullselect in an INSERT statement.
The common table expression must be placed immediately inside of the statement.

Example: Using a WITH clause in an INSERT statement: The following example
illustrates the use of a common table expression in an INSERT statement.
INSERT INTO vital_mgr (mgrno)

WITH VITALDEPT (deptno, se_count) AS
(SELECT deptno, count(*)

FROM DSN8810.EMP
WHERE job = ’senior engineer’
GROUP BY deptno)

SELECT d.manager
FROM DSN8810.DEPT d, VITALDEPT s
WHERE d.deptno = s.deptno

AND s.se_count > (SELECT AVG(se_count)
FROM VITALDEPT);

The fullselect in the previous example uses the result table for VITALDEPT to find
the manager's number for departments that have a greater than average number of
senior engineers. The manager's number is then inserted into the vital_mgr table.

Using recursive SQL
You can use common table expressions to create recursive SQL. If a fullselect of a
common table expression contains a reference to itself in a FROM clause, the
common table expression is a recursive common table expression. Queries that use
recursion are useful in applications like bill of materials applications, network
planning applications, and reservation systems.

Recursive common table expressions must follow these rules:
v The first fullselect of the first union (the initialization fullselect) must not include

a reference to the common table expression
v Each fullselect that is part of the recursion cycle must:

– Start with SELECT or SELECT ALL. SELECT DISTINCT is not allowed
– Include only one reference to the common table expression that is part of the

recursion cycle in it's FROM clause
– Not include aggregate functions, a GROUP BY clause, or a HAVING clause

v The column names must be specified following the table name of the common
table expression

Chapter 1. Retrieving data 15

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|

|
|

|

|

|
|

|

|
|



v The data types, lengths, and CCSIDs of the column names from the common
table expression that are referenced in the iterative fullselect must match

v The UNION statements must be UNION ALL
v Outer joins must not be part of any recursion cycle
v Subquery must not be part on any recursion cycle

It is possible to introduce an infinite loop when developing a recursive common
table expression. A recursive common table expression is expected to include a
predicate that will prevent an infinite loop. A warning is issued if one of the
following is not found in the iterative fullselect of a recursive common table
expression:
v An integer column that increments by a constant
v A predicate in the WHERE clause in the form of counter_column < constant or

counter_column < :host variable

See Appendix E, “Recursive common table expression examples,” on page 1099 for
examples of bill of materials applications that use recursive common table
expressions.

Accessing DB2 data that is not in a table
You can access DB2 data that is not in a table by returning the value of an SQL
expression in a host variable. The expression does not include a column of a table.
The three ways to return a value in a host variable are as follows:
v Set the contents of a host variable to the value of an expression by using the SET

host-variable assignment statement.
EXEC SQL SET :hvrandval = RAND(:hvrand);

v Use the VALUES INTO statement to return the value of an expression in a host
variable.
EXEC SQL VALUES RAND(:hvrand)

INTO :hvrandval;

v Select the expression from the DB2-provided EBCDIC table, named
SYSIBM.SYSDUMMY1, which consists of one row.
EXEC SQL SELECT RAND(:hvrand)

INTO :hvrandval
FROM SYSIBM.SYSDUMMY1;

Using 15-digit and 31-digit precision for decimal numbers
DB2 allows two sets of rules for determining the precision and scale of the result
of an operation with decimal numbers.
v DEC15 rules allow a maximum precision of 15 digits in the result of an

operation. DEC15 rules are in effect when both operands have a precision of 15
or less, or unless the DEC31 rules apply.

v DEC31 rules allow a maximum precision of 31 digits in the result. DEC31 rules
are in effect if any of the following conditions is true:
– Either operand of the operation has a precision greater than 15 digits.
– The operation is in a dynamic SQL statement, and any of the following

conditions is true:
- The current value of special register CURRENT PRECISION is DEC31 or

D31.s. s is a number between one and nine and represents the minimum
scale to be used for division operations.

16 Application Programming and SQL Guide

|
|

|

|

|

|
|
|
|
|

|

|
|

|
|
|



- The installation option for DECIMAL ARITHMETIC on panel DSNTIP4 is
DEC31, D31.s, or 31; the installation option for USE FOR DYNAMICRULES
on panel DSNTIP4 is YES; and the value of CURRENT PRECISION has not
been set by the application.

- The SQL statement has bind, define, or invoke behavior; the statement is in
an application precompiled with option DEC(31); the installation option for
USE FOR DYNAMICRULES on panel DSNTIP4 is NO; and the value of
CURRENT PRECISION has not been set by the application. See “Using
DYNAMICRULES to specify behavior of dynamic SQL statements” on page
504 for an explanation of bind, define, and invoke behavior.

– The operation is in an embedded (static) SQL statement that you precompiled
with the DEC(31), DEC31, or D31.s option, or with the default for that option
when the install option DECIMAL ARITHMETIC is DEC31 or 31. s is a
number between one and nine and represents the minimum scale to be used
for division operations. See “Step 1: Process SQL statements” on page 473 for
information about precompiling and for a list of all precompiler options.

Recommendation: Choose DEC31 or D31.s to reduce the chance of overflow, or
when dealing with a precision greater than 15 digits. s is a number between one
and nine and represents the minimum scale to be used for division operations.

Avoiding decimal arithmetic errors: For static SQL statements, the simplest way to
avoid a division error is to override DEC31 rules by specifying the precompiler
option DEC(15). In some cases you can avoid a division error by specifying D31.s.
This specification reduces the probability of errors for statements that are
embedded in the program. s is a number between one and nine and represents the
minimum scale to be used for division operations.

If the dynamic SQL statements have bind, define, or invoke behavior and the value
of the installation option for USE FOR DYNAMICRULES on panel DSNTIP4 is
NO, you can use the precompiler option DEC(15), DEC15, or D15.s to override
DEC31 rules.

For a dynamic statement, or for a single static statement, use the scalar function
DECIMAL to specify values of the precision and scale for a result that causes no
errors.

Before you execute a dynamic statement, set the value of special register
CURRENT PRECISION to DEC15 or D15.s.

Even if you use DEC31 rules, multiplication operations can sometimes cause
overflow because the precision of the product is greater than 31. To avoid overflow
from multiplication of large numbers, use the MULTIPLY_ALT built-in function
instead of the multiplication operator.

Finding information in the DB2 catalog
The following examples show you how to access the DB2 system catalog tables to
list the following objects:
v The tables that you can access
v The column names of a table

The contents of the DB2 system catalog tables can be a useful reference tool when
you begin to develop an SQL statement or an application program.

Chapter 1. Retrieving data 17

|

|

|

|



Displaying a list of tables you can use
The catalog table, SYSIBM.SYSTABAUTH, lists table privileges granted to
authorization IDs. To display the tables that you have authority to access (by
privileges granted either to your authorization ID or to PUBLIC), you can execute
an SQL statement similar to the one shown in the following example. To do this,
you must have the SELECT privilege on SYSIBM.SYSTABAUTH.
SELECT DISTINCT TCREATOR, TTNAME

FROM SYSIBM.SYSTABAUTH
WHERE GRANTEE IN (USER, ’PUBLIC’, ’PUBLIC*’) AND GRANTEETYPE = ’ ’;

In this query, the predicate GRANTEETYPE = ’ ’ selects authorization IDs.

If your DB2 subsystem uses an exit routine for access control authorization, you
cannot rely on catalog queries to tell you the tables you can access. When such an
exit routine is installed, both RACF and DB2 control table access.

Displaying a list of columns in a table
Another catalog table, SYSIBM.SYSCOLUMNS, describes every column of every
table. Suppose you run the previous SQL statements to display a list of tables you
can access and you now want to display information about table DSN8810.DEPT.
To execute the following example, you must have the SELECT privilege on
SYSIBM.SYSCOLUMNS.
SELECT NAME, COLTYPE, SCALE, LENGTH

FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME = ’DEPT’
AND TBCREATOR = ’DSN8810’;

If you display column information about a table that includes LOB or ROWID
columns, the LENGTH field for those columns contains the number of bytes those
column occupy in the base table, rather than the length of the LOB or ROWID
data. To determine the maximum length of data for a LOB or ROWID column,
include the LENGTH2 column in your query, as in the following example:
SELECT NAME, COLTYPE, LENGTH, LENGTH2

FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME = ’EMP_PHOTO_RESUME’
AND TBCREATOR = ’DSN8810’;

18 Application Programming and SQL Guide



Chapter 2. Working with tables and modifying data

This chapter discusses these topics:
v Creating your own tables: CREATE TABLE
v “Working with temporary tables” on page 21
v “Dropping tables: DROP TABLE” on page 25
v “Defining a view: CREATE VIEW” on page 25
v “Changing data through a view” on page 26
v “Dropping views: DROP VIEW” on page 27
v “Inserting rows: INSERT” on page 27
v “Selecting values as you insert: SELECT FROM INSERT” on page 31
v “Updating current values: UPDATE” on page 36
v “Deleting rows: DELETE” on page 37

See DB2 SQL Reference for more information about working with tables and data.

Working with tables
This section discusses how to work with tables. As you work with tables, you
might need to create new tables, copy existing tables, add columns, add or drop
referential and check constraints, drop the tables you are working with, or make
any number of changes.

Creating your own tables: CREATE TABLE
Use the CREATE TABLE statement to create a table. The following SQL statement
creates a table named PRODUCT:
CREATE TABLE PRODUCT

(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) DEFAULT,
MFGCOST DECIMAL(8,2),
MFGDEPT CHAR(3),
MARKUP SMALLINT,
SALESDEPT CHAR(3),
CURDATE DATE DEFAULT);

The preceding CREATE statement has the following elements:
v CREATE TABLE, which names the table PRODUCT.
v A list of the columns that make up the table. For each column, specify the

following information:
– The column's name (for example, SERIAL).
– The data type and length attribute (for example, CHAR(8)). For more

information about data types, see “Data types” on page 4.
– Optionally, a default value. See “Identifying defaults.”
– Optionally, a referential constraint or check constraint. See “Using referential

constraints” on page 263 and “Using check constraints” on page 261.

You must separate each column description from the next with a comma, and
enclose the entire list of column descriptions in parentheses.

Identifying defaults
If you want to constrain the input or identify the default of a column, you can use
the following values:

© Copyright IBM Corp. 1983, 2012 19

|



v NOT NULL, when the column cannot contain null values.
v UNIQUE, when the value for each row must be unique, and the column cannot

contain null values.
v DEFAULT, when the column has one of the following DB2-assigned defaults:

– For numeric columns, zero is the default value.
– For fixed-length strings, blank is the default value.
– For variable-length strings, including LOB strings, the empty string (string of

zero-length) is the default value.
– For datetime columns, the current value of the associated special register is

the default value.
v DEFAULT value, when you want to identify one of the following values as the

default value:
– A constant
– NULL
– USER, which specifies the value of the USER special register at the time that

an INSERT statement assigns a default value to the column in the row that is
being inserted

– CURRENT SQLID, which specifies the value of the CURRENT SQLID special
register at the time that an INSERT statement assigns a default value to the
column in the row that is being inserted

– The name of a cast function that casts a default value (of a built-in data type)
to the distinct type of a column

Creating work tables
Before testing SQL statements that insert, update, and delete rows, you should
create work tables (duplicates of the DSN8810.EMP and DSN8810.DEPT tables), so
that the original sample tables remain intact. This section shows how to create two
work tables and how to fill a work table with the contents of another table.

Each example shown in this chapter assumes that you logged on using your own
authorization ID. The authorization ID qualifies the name of each object you create.
For example, if your authorization ID is SMITH, and you create table YDEPT, the
name of the table is SMITH.YDEPT. If you want to access table DSN8810.DEPT,
you must refer to it by its complete name. If you want to access your own table
YDEPT, you need only to refer to it as YDEPT.

Creating a new department table
Use the following statements to create a new department table called YDEPT,
modeled after the existing table, DSN8810.DEPT, and an index for YDEPT:
CREATE TABLE YDEPT

LIKE DSN8810.DEPT;

CREATE UNIQUE INDEX YDEPTX
ON YDEPT (DEPTNO);

If you want DEPTNO to be a primary key, as in the sample table, explicitly define
the key. Use an ALTER TABLE statement, as in the following example:
ALTER TABLE YDEPT

PRIMARY KEY(DEPTNO);

You can use an INSERT statement to copy the rows of the result table of a
fullselect from one table to another. The following statement copies all of the rows
from DSN8810.DEPT to your own YDEPT work table.
INSERT INTO YDEPT

SELECT *
FROM DSN8810.DEPT;

20 Application Programming and SQL Guide



For information about using the INSERT statement, see “Inserting rows: INSERT”
on page 27.

Creating a new employee table
You can use the following statements to create a new employee table called YEMP.
CREATE TABLE YEMP

(EMPNO CHAR(6) PRIMARY KEY NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) REFERENCES YDEPT

ON DELETE SET NULL,
PHONENO CHAR(4) UNIQUE NOT NULL,
HIREDATE DATE ,
JOB CHAR(8) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DATE ,
SALARY DECIMAL(9, 2) ,
BONUS DECIMAL(9, 2) ,
COMM DECIMAL(9, 2) );

This statement also creates a referential constraint between the foreign key in
YEMP (WORKDEPT) and the primary key in YDEPT (DEPTNO). It also restricts all
phone numbers to unique numbers.

If you want to change a table definition after you create it, use the statement
ALTER TABLE. If you want to change a table name after you create it, use the
statement RENAME TABLE.

You can change a table definition by using the ALTER TABLE statement only in
certain ways. For example, you can add and drop constraints on columns in a
table. You can also change the data type of a column within character data types,
within numeric data types, and within graphic data types. You can add a column
to a table. However, you cannot drop a column from a table.

For more information about changing a table definition by using ALTER TABLE,
see Part 2 (Volume 1) of DB2 Administration Guide. For other details about the
ALTER TABLE and RENAME TABLE statements, see Chapter 5 of DB2 SQL
Reference.

Working with temporary tables
When you need a table only for the duration of an application process, you can
create a temporary table. There are two kinds of temporary tables:
v Created temporary tables, which you define using a CREATE GLOBAL

TEMPORARY TABLE statement
v Declared temporary tables, which you define using a DECLARE GLOBAL

TEMPORARY TABLE statement

SQL statements that use temporary tables can run faster because of the following
reasons:
v DB2 does no logging (for created temporary tables) or limited logging (for

declared temporary tables).
v DB2 does no locking (for created temporary tables) or limited locking (for

declared temporary tables).

Chapter 2. Working with tables and modifying data 21

|
|
|
|
|

|
|
|
|



Temporary tables are especially useful when you need to sort or query
intermediate result tables that contain a large number of rows, but you want to
store only a small subset of those rows permanently.

Temporary tables can also return result sets from stored procedures. For more
information, see “Writing a stored procedure to return result sets to a DRDA
client” on page 652. The following sections provide more details on created
temporary tables and declared temporary tables.

Working with created temporary tables
You create the definition of a created temporary table using the SQL statement
CREATE GLOBAL TEMPORARY TABLE.

Example: The following statement creates the definition of a table called
TEMPPROD:
CREATE GLOBAL TEMPORARY TABLE TEMPPROD

(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOST DECIMAL(8,2),
MFGDEPT CHAR(3),
MARKUP SMALLINT,
SALESDEPT CHAR(3),
CURDATE DATE NOT NULL);

Example: You can also create this same definition by copying the definition of a
base table using the LIKE clause:
CREATE GLOBAL TEMPORARY TABLE TEMPPROD LIKE PROD;

The SQL statements in the previous examples create identical definitions, even
though table PROD contains two columns, DESCRIPTION and CURDATE, that are
defined as NOT NULL WITH DEFAULT. Unlike the PROD sample table, the
DESCRIPTION and CURDATE columns in the TEMPPROD table are defined as
NOT NULL and do not have defaults, because created temporary tables do not
support non-null default values.

After you run one of the two CREATE statements, the definition of TEMPPROD
exists, but no instances of the table exist. To drop the definition of TEMPPROD,
you must run the following statement:
DROP TABLE TEMPPROD;

To create an instance of TEMPPROD, you must use TEMPPROD in an application.
DB2 creates an instance of the table when TEMPPROD is specified in one of the
following SQL statements:
v OPEN
v SELECT
v INSERT
v DELETE

An instance of a created temporary table exists at the current server until one of
the following actions occurs:
v The application process ends.
v The remote server connection through which the instance was created

terminates.
v The unit of work in which the instance was created completes.

When you run a ROLLBACK statement, DB2 deletes the instance of the created
temporary table. When you run a COMMIT statement, DB2 deletes the instance

22 Application Programming and SQL Guide



of the created temporary table unless a cursor for accessing the created
temporary table is defined WITH HOLD and is open.

Example: Suppose that you create a definition of TEMPPROD and then run an
application that contains the following statements:
EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM TEMPPROD;
EXEC SQL INSERT INTO TEMPPROD SELECT * FROM PROD;
EXEC SQL OPEN C1;...
EXEC SQL COMMIT;...
EXEC SQL CLOSE C1;

When you run the INSERT statement, DB2 creates an instance of TEMPPROD and
populates that instance with rows from table PROD. When the COMMIT statement
is run, DB2 deletes all rows from TEMPPROD. However, assume that you change
the declaration of cursor C1 to the following declaration:
EXEC SQL DECLARE C1 CURSOR WITH HOLD

FOR SELECT * FROM TEMPPROD;

In this case, DB2 does not delete the contents of TEMPPROD until the application
ends because C1, a cursor defined WITH HOLD, is open when the COMMIT
statement is run. In either case, DB2 drops the instance of TEMPPROD when the
application ends.

Working with declared temporary tables
You create an instance of a declared temporary table using the SQL statement
DECLARE GLOBAL TEMPORARY TABLE. That instance is known only to the
application process in which the table is declared, so you can declare temporary
tables with the same name in different applications. The qualifier for a declared
temporary table is SESSION.

Before you can define declared temporary tables, you must create a special
database and table spaces for them. You do that by running the CREATE
DATABASE statement with the AS TEMP clause, and then creating segmented
table spaces in that database. A DB2 subsystem can have only one database for
declared temporary tables, but that database can contain more than one table
space. There must be at least one table space with a 8-KB page size in the TEMP
database to declare a temporary table.

Example: The following statements create a database and table space for declared
temporary tables:
CREATE DATABASE DTTDB AS TEMP;
CREATE TABLESPACE DTTTS IN DTTDB

SEGSIZE 4;

You can define a declared temporary table in any of the following ways:
v Specify all the columns in the table.

Unlike columns of created temporary tables, columns of declared temporary
tables can include the WITH DEFAULT clause.

v Use a LIKE clause to copy the definition of a base table, created temporary table,
or view.
If the base table or created temporary table that you copy has identity columns,
you can specify that the corresponding columns in the declared temporary table
are also identity columns. Do that by specifying the INCLUDING IDENTITY
COLUMN ATTRIBUTES clause when you define the declared temporary table.

Chapter 2. Working with tables and modifying data 23

|
|



v Use a fullselect to choose specific columns from a base table, created temporary
table, or view.
If the base table, created temporary table, or view from which you select
columns has identity columns, you can specify that the corresponding columns
in the declared temporary table are also identity columns. Do that by specifying
the INCLUDING IDENTITY COLUMN ATTRIBUTES clause when you define
the declared temporary table.
If you want the declared temporary table columns to inherit the defaults for
columns of the table or view that is named in the fullselect, specify the
INCLUDING COLUMN DEFAULTS clause. If you want the declared temporary
table columns to have default values that correspond to their data types, specify
the USING TYPE DEFAULTS clause.

Example: The following statement defines a declared temporary table called
TEMPPROD by explicitly specifying the columns.
DECLARE GLOBAL TEMPORARY TABLE TEMPPROD

(SERIAL CHAR(8) NOT NULL WITH DEFAULT ’99999999’,
DESCRIPTION VARCHAR(60) NOT NULL,
PRODCOUNT INTEGER GENERATED ALWAYS AS IDENTITY,
MFGCOST DECIMAL(8,2),
MFGDEPT CHAR(3),
MARKUP SMALLINT,
SALESDEPT CHAR(3),
CURDATE DATE NOT NULL);

Example: The following statement defines a declared temporary table called
TEMPPROD by copying the definition of a base table. The base table has an
identity column that the declared temporary table also uses as an identity column.
DECLARE GLOBAL TEMPORARY TABLE TEMPPROD LIKE BASEPROD

INCLUDING IDENTITY COLUMN ATTRIBUTES;

Example: The following statement defines a declared temporary table called
TEMPPROD by selecting columns from a view. The view has an identity column
that the declared temporary table also uses as an identity column. The declared
temporary table inherits its default column values from the default column values
of a base table underlying the view.
DECLARE GLOBAL TEMPORARY TABLE TEMPPROD

AS (SELECT * FROM PRODVIEW)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS;

After you run a DECLARE GLOBAL TEMPORARY TABLE statement, the
definition of the declared temporary table exists as long as the application process
runs. If you need to delete the definition before the application process completes,
you can do that with the DROP TABLE statement. For example, to drop the
definition of TEMPPROD, run the following statement:
DROP TABLE SESSION.TEMPPROD;

DB2 creates an empty instance of a declared temporary table when it runs the
DECLARE GLOBAL TEMPORARY TABLE statement. You can populate the
declared temporary table using INSERT statements, modify the table using
searched or positioned UPDATE or DELETE statements, and query the table using
SELECT statements. You can also create indexes on the declared temporary table.

The ON COMMIT clause that you specify in the DECLARE GLOBAL
TEMPORARY TABLE statement determines whether DB2 keeps or deletes all the

24 Application Programming and SQL Guide



rows from the table when you run a COMMIT statement in an application with a
declared temporary table. ON COMMIT DELETE ROWS, which is the default,
causes all rows to be deleted from the table at a commit point, unless there is a
held cursor open on the table at the commit point. ON COMMIT PRESERVE
ROWS causes the rows to remain past the commit point.

Example: Suppose that you run the following statement in an application program:
EXEC SQL DECLARE GLOBAL TEMPORARY TABLE TEMPPROD

AS (SELECT * FROM BASEPROD)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS
ON COMMIT PRESERVE ROWS;

EXEC SQL INSERT INTO SESSION.TEMPPROD SELECT * FROM BASEPROD;...
EXEC SQL COMMIT;...

When DB2 runs the preceding DECLARE GLOBAL TEMPORARY TABLE
statement, DB2 creates an empty instance of TEMPPROD. The INSERT statement
populates that instance with rows from table BASEPROD. The qualifier, SESSION,
must be specified in any statement that references TEMPPROD. When DB2
executes the COMMIT statement, DB2 keeps all rows in TEMPPROD because
TEMPPROD is defined with ON COMMIT PRESERVE ROWS. When the program
ends, DB2 drops TEMPPROD.

Dropping tables: DROP TABLE
The following SQL statement drops the YEMP table:
DROP TABLE YEMP;

Use the DROP TABLE statement with care: Dropping a table is NOT equivalent to
deleting all its rows. When you drop a table, you lose more than its data and its
definition. You lose all synonyms, views, indexes, and referential and check
constraints associated with that table. You also lose all authorities granted on the
table.

For more information about the DROP statement, see Chapter 5 of DB2 SQL
Reference.

Working with views
This section discusses how to use CREATE VIEW and DROP VIEW to control your
views of existing tables. Although you cannot modify an existing view, you can
drop it and create a new one if your base tables change in a way that affects the
view. Dropping and creating views does not affect the base tables or their data.

Defining a view: CREATE VIEW
A view does not contain data; it is a stored definition of a set of rows and columns.
A view can present any or all of the data in one or more tables and, in most cases,
is interchangeable with a table. Using views can simplify writing SQL statements.

Use the CREATE VIEW statement to define a view and give the view a name, just
as you do for a table. The view created with the following statement shows each
department manager's name with the department data in the DSN8810.DEPT table.

Chapter 2. Working with tables and modifying data 25



CREATE VIEW VDEPTM AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT

FROM DSN8810.DEPT, DSN8810.EMP
WHERE DSN8810.EMP.EMPNO = DSN8810.DEPT.MGRNO;

When a program accesses the data defined by a view, DB2 uses the view definition
to return a set of rows the program can access with SQL statements. To see the
departments administered by department D01 and the managers of those
departments, run the following statement, which returns information from the
VDEPTM view:
SELECT DEPTNO, LASTNAME

FROM VDEPTM
WHERE ADMRDEPT = ’DO1’;

When you create a view, you can reference the USER and CURRENT SQLID
special registers in the CREATE VIEW statement. When referencing the view, DB2
uses the value of the USER or CURRENT SQLID that belongs to the user of the
SQL statement (SELECT, UPDATE, INSERT, or DELETE) rather than the creator of
the view. In other words, a reference to a special register in a view definition refers
to its run-time value.

A column in a view might be based on a column in a base table that is an identity
column. The column in the view is also an identity column, except under any of the
following circumstances:
v The column appears more than once in the view.
v The view is based on a join of two or more tables.
v The view is based on the union of two or more tables.
v Any column in the view is derived from an expression that refers to an identity

column.

You can use views to limit access to certain kinds of data, such as salary
information. You can also use views for the following actions:
v Make a subset of a table's data available to an application. For example, a view

based on the employee table might contain rows only for a particular
department.

v Combine columns from two or more tables and make the combined data
available to an application. By using a SELECT statement that matches values in
one table with those in another table, you can create a view that presents data
from both tables. However, you can only select data from this type of view. You
cannot update, delete, or insert data using a view that joins two or more
tables.

v Combine rows from two or more tables and make the combined data available
to an application. By using two or more subselects that are connected by
UNION or UNION ALL operators, you can create a view that presents data
from several tables. However, you can only select data from this type of view.
You cannot update, delete, or insert data using a view that contains UNION
operations.

v Present computed data, and make the resulting data available to an application.
You can compute such data using any function or operation that you can use in
a SELECT statement.

Changing data through a view
Some views are read-only; other views are subject to update or insert restrictions.
(See Chapter 5 of DB2 SQL Reference for more information about read-only views.)
If a view does not have update restrictions, some additional considerations include:

26 Application Programming and SQL Guide



v You must have the appropriate authorization to insert, update, or delete rows
using the view.

v When you use a view to insert a row into a table, the view definition must
specify all the columns in the base table that do not have a default value. The
row being inserted must contain a value for each of those columns.

v Views that you can use to update data are subject to the same referential
constraints and check constraints as the tables you used to define the views.

v You can use the WITH CHECK option of the CREATE VIEW statement to
specify the constraint that every row that is inserted or updated through the
view must conform to the definition of the view. You can select every row that is
inserted or updated through a view that specifies WITH CHECK.

Dropping views: DROP VIEW
When you drop a view, you also drop all views that are defined on the following
view. This SQL statement drops the VDEPTM view:
DROP VIEW VDEPTM;

Modifying DB2 data
This section discusses how to add or modify data in an existing table using the
statements INSERT, UPDATE, and DELETE:
v “Inserting rows: INSERT”
v “Selecting values as you insert: SELECT FROM INSERT” on page 31
v “Updating current values: UPDATE” on page 36
v “Deleting rows: DELETE” on page 37

Inserting rows: INSERT
Use an INSERT statement to add new rows to a table or view. Using an INSERT
statement, you can do the following actions:
v Specify the column values to insert a single row. You can specify constants, host

variables, expressions, DEFAULT, or NULL by using the VALUES clause.
“Inserting a single row” on page 28 explains how to use the VALUES clause of
the INSERT statement to add a single row of column values to a table.

v In an application program, specify arrays of column values to insert multiple
rows into a table. “Inserting multiple rows of data from host variable arrays” on
page 87 explains how to use host variable arrays in the VALUES clause of the
INSERT FOR n ROWS statement to add multiple rows of column values to a
table.

v Include a SELECT statement in the INSERT statement to tell DB2 that another
table or view contains the data for the new row or rows. “Inserting rows into a
table from another table” on page 29 explains how to use the SELECT statement
within an INSERT statement to add multiple rows to a table.

In each case, for every row you insert, you must provide a value for any column
that does not have a default value. For a column that meets one of the following
conditions, you can specify DEFAULT to tell DB2 to insert the default value for
that column:
v Is nullable.
v Is defined with a default value.
v Has data type ROWID. ROWID columns always have default values.
v Is an identity column. Identity columns always have default values.

Chapter 2. Working with tables and modifying data 27

|
|
|
|
|



The values that you can insert into a ROWID column or an identity column
depend on whether the column is defined with GENERATED ALWAYS or
GENERATED BY DEFAULT. See “Inserting data into a ROWID column” on page
30 and “Inserting data into an identity column” on page 30 for more information.

Inserting a single row
You can use the VALUES clause of the INSERT statement to insert a single row of
column values into a table. You can either name all of the columns for which you
are providing values, or you can omit the list of column names. If you omit the
column name list, you must specify values for all of the columns.

Recommendation: For static INSERT statements, name all of the columns for
which you are providing values for because of the following reasons:
v Your INSERT statement is independent of the table format. (For example, you do

not need to change the statement when a column is added to the table.)
v You can verify that you are giving the values in order.
v Your source statements are more self-descriptive.

If you do not name the columns in a static INSERT statement, and a column is
added to the table, an error can occur if the INSERT statement is rebound. An
error will occur after any rebind of the INSERT statement unless you change the
INSERT statement to include a value for the new column. This is true even if the
new column has a default value.

When you list the column names, you must specify their corresponding values in
the same order as in the list of column names.

Example: The following statement inserts information about a new department
into the YDEPT table.
INSERT INTO YDEPT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION)

VALUES (’E31’, ’DOCUMENTATION’, ’000010’, ’E01’, ’ ’);

After inserting a new department row into your YDEPT table, you can use a
SELECT statement to see what you have loaded into the table. The following SQL
statement shows you all the new department rows that you have inserted:
SELECT *

FROM YDEPT
WHERE DEPTNO LIKE ’E%’
ORDER BY DEPTNO;

The result table looks similar to the following output:
DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
====== ==================================== ====== ======== ===========
E01 SUPPORT SERVICES 000050 A00 -----------
E11 OPERATIONS 000090 E01 -----------
E21 SOFTWARE SUPPORT 000100 E01 -----------
E31 DOCUMENTATION 000010 E01 -----------

Example: The following statement inserts information about a new employee into
the YEMP table. Because YEMP has a foreign key, WORKDEPT, referencing the
primary key, DEPTNO, in YDEPT, the value inserted for WORKDEPT (E31) must
be a value of DEPTNO in YDEPT or null.
INSERT INTO YEMP

VALUES (’000400’, ’RUTHERFORD’, ’B’, ’HAYES’, ’E31’, ’5678’, ’1983-01-01’,
’MANAGER’, 16, ’M’, ’1943-07-10’, 24000, 500, 1900);

28 Application Programming and SQL Guide



Example: The following statement also inserts a row into the YEMP table. Because
the unspecified columns allow nulls, DB2 inserts null values into the columns that
you do not specify. Because YEMP has a foreign key, WORKDEPT, referencing the
primary key, DEPTNO, in YDEPT, the value inserted for WORKDEPT (D11) must
be a value of DEPTNO in YDEPT or null.
INSERT INTO YEMP

(EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, JOB)
VALUES (’000410’, ’MILLARD’, ’K’, ’FILLMORE’, ’D11’, ’4888’, ’MANAGER’);

Inserting rows into a table from another table
You can copy data from one table into another table. Use a fullselect within an
INSERT statement to select rows from one table to insert into another table.

Example: The following SQL statement creates a table named TELE:
CREATE TABLE TELE

(NAME2 VARCHAR(15) NOT NULL,
NAME1 VARCHAR(12) NOT NULL,
PHONE CHAR(4));

The following statement copies data from DSN8810.EMP into the newly created
table:
INSERT INTO TELE

SELECT LASTNAME, FIRSTNME, PHONENO
FROM DSN8810.EMP
WHERE WORKDEPT = ’D21’;

The two previous statements create and fill a table, TELE, that looks similar to the
following table:
NAME2 NAME1 PHONE
=============== ============ =====
PULASKI EVA 7831
JEFFERSON JAMES 2094
MARINO SALVATORE 3780
SMITH DANIEL 0961
JOHNSON SYBIL 8953
PEREZ MARIA 9001
MONTEVERDE ROBERT 3780

The CREATE TABLE statement example creates a table which, at first, is empty.
The table has columns for last names, first names, and phone numbers, but does
not have any rows.

The INSERT statement fills the newly created table with data selected from the
DSN8810.EMP table: the names and phone numbers of employees in department
D21.

Example: The following CREATE statement creates a table that contains an
employee's department name as well as phone number. The fullselect within the
INSERT statement fills the DLIST table with data from rows selected from two
existing tables, DSN8810.DEPT and DSN8810.EMP.
CREATE TABLE DLIST

(DEPT CHAR(3) NOT NULL,
DNAME VARCHAR(36) ,
LNAME VARCHAR(15) NOT NULL,
FNAME VARCHAR(12) NOT NULL,
INIT CHAR ,
PHONE CHAR(4) );

Chapter 2. Working with tables and modifying data 29



INSERT INTO DLIST
SELECT DEPTNO, DEPTNAME, LASTNAME, FIRSTNME, MIDINIT, PHONENO

FROM DSN8810.DEPT, DSN8810.EMP
WHERE DEPTNO = WORKDEPT;

Other ways to insert data
Besides using stand-alone INSERT statements, you can use the following two ways
to insert data into a table:
v You can write an application program to prompt for and enter large amounts of

data into a table. For details, see Part 2, “Coding SQL in your host application
program,” on page 73.

v You can also use the DB2 LOAD utility to enter data from other sources. See
Part 2 of DB2 Utility Guide and Reference for more information about the LOAD
utility.

Inserting data into a ROWID column
A ROWID column is a column that is defined with a ROWID data type. You must
have a column with a ROWID data type in a table that contains a LOB column.
The ROWID column is stored in the base table and is used to look up the actual
LOB data in the LOB table space. In addition, a ROWID column enables you to
write queries that navigate directly to a row in a table. For information about using
ROWID columns for direct-row access, see “Using ROWID columns as keys” on
page 271.

Before you insert data into a ROWID column, you must know how the ROWID
column is defined. ROWID columns can be defined as GENERATED ALWAYS or
GENERATED BY DEFAULT. GENERATED ALWAYS means that DB2 generates a
value for the column, and you cannot insert data into that column. If the column is
defined as GENERATED BY DEFAULT, you can insert a value, and DB2 provides a
default value if you do not supply one.

Example: Suppose that tables T1 and T2 have two columns: an integer column and
a ROWID column. For the following statement to run successfully, ROWIDCOL2
must be defined as GENERATED BY DEFAULT.
INSERT INTO T2 (INTCOL2,ROWIDCOL2)

SELECT * FROM T1;

If ROWIDCOL2 is defined as GENERATED ALWAYS, you cannot insert the
ROWID column data from T1 into T2, but you can insert the integer column data.
To insert only the integer data, use one of the following methods:
v Specify only the integer column in your INSERT statement, as in the following

statement:
INSERT INTO T2 (INTCOL2)

SELECT INTCOL1 FROM T1;

v Specify the OVERRIDING USER VALUE clause in your INSERT statement to tell
DB2 to ignore any values that you supply for system-generated columns, as in
the following statement:
INSERT INTO T2 (INTCOL2,ROWIDCOL2) OVERRIDING USER VALUE

SELECT * FROM T1;

Inserting data into an identity column
An identity column is a numeric column, defined in a CREATE TABLE or ALTER
TABLE statement, that has ascending or descending values. For an identity column
to be as useful as possible, its values should also be unique. The column has a
SMALLINT, INTEGER, or DECIMAL(p,0) data type and is defined with the AS
IDENTITY clause. The AS IDENTITY clause specifies that the column is an identity

30 Application Programming and SQL Guide



column. For information about using identity columns to uniquely identify rows,
see “Using identity columns as keys” on page 272

Before you insert data into an identity column, you must know how the column is
defined. Identity columns are defined with the GENERATED ALWAYS or
GENERATED BY DEFAULT clause. GENERATED ALWAYS means that DB2
generates a value for the column, and you cannot insert data into that column. If
the column is defined as GENERATED BY DEFAULT, you can insert a value, and
DB2 provides a default value if you do not supply one.

Example: Suppose that tables T1 and T2 have two columns: a character column
and an integer column that is defined as an identity column. For the following
statement to run successfully, IDENTCOL2 must be defined as GENERATED BY
DEFAULT.
INSERT INTO T2 (CHARCOL2,IDENTCOL2)

SELECT * FROM T1;

If IDENTCOL2 is defined as GENERATED ALWAYS, you cannot insert the identity
column data from T1 into T2, but you can insert the character column data. To
insert only the character data, use one of the following methods:
v Specify only the character column in your INSERT statement, as in the following

statement:
INSERT INTO T2 (CHARCOL2)

SELECT CHARCOL1 FROM T1;

v Specify the OVERRIDING USER VALUE clause in your INSERT statement to tell
DB2 to ignore any values that you supply for system-generated columns, as in
the following statement:
INSERT INTO T2 (CHARCOL2,IDENTCOL2) OVERRIDING USER VALUE

SELECT * FROM T1;

Selecting values as you insert: SELECT FROM INSERT
You can select values from rows that are being inserted by specifying the INSERT
statement in the FROM clause of the SELECT statement. When you insert one or
more new rows into a table, you can retrieve:
v The value of an automatically generated column such as a ROWID or identity

column
v Any default values for columns
v All values for an inserted row, without specifying individual column names
v All values that are inserted by a multiple-row INSERT operation
v Values that are changed by a BEFORE INSERT trigger

Example: In addition to examples that use the DB2 sample tables, the examples in
this section use an EMPSAMP table that has the following definition:
CREATE TABLE EMPSAMP

(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(10,2),
DEPTNO SMALLINT,
LEVEL CHAR(30),
HIRETYPE VARCHAR(30) NOT NULL WITH DEFAULT ’New Hire’,
HIREDATE DATE NOT NULL WITH DEFAULT);

Assume that you need to insert a row for a new employee into the EMPSAMP
table. To find out the values for the generated EMPNO, HIRETYPE, and
HIREDATE columns, use the following SELECT FROM INSERT statement:

Chapter 2. Working with tables and modifying data 31

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|



SELECT EMPNO, HIRETYPE, HIREDATE
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, DEPTNO, LEVEL)

VALUES(’Mary Smith’, 35000.00, 11, ’Associate’));

The SELECT statement returns the DB2-generated identity value for the EMPNO
column, the default value 'New Hire' for the HIRETYPE column, and the value of
the CURRENT DATE special register for the HIREDATE column.

Recommendation: Use the SELECT FROM INSERT statement to insert a row into a
parent table and retrieve the value of a primary key that was generated by DB2 (a
ROWID or identity column). In another INSERT statement, specify this generated
value as a value for a foreign key in a dependent table. For an example of this
method, see “Parent keys and foreign keys” on page 274.

Result table of the INSERT operation
The rows that are inserted into the target table produce a result table whose
columns can be referenced in the SELECT list of the query. The columns of the
result table are affected by the columns, constraints, and triggers that are defined
for the target table:
v The result table includes DB2-generated values for identity columns, ROWID

columns, or columns that are based on expressions.
v Before DB2 generates the result table, it enforces any constraints that affect the

insert operation (that is, check constraints, unique index constraints, and
referential integrity constraints).

v The result table includes any changes that result from a BEFORE trigger that is
activated by the insert operation. An AFTER trigger does not affect the values in
the result table. For information about triggers, see Chapter 12, “Using triggers
for active data,” on page 279.

Example: Suppose a BEFORE INSERT trigger is created on table EMPSAMP to
give all new employees at the Associate level a $5000 increase in salary. The trigger
has the following definition:
CREATE TRIGGER NEW_ASSOC

NO CASCADE BEFORE INSERT ON EMPSAMP
REFERENCING NEW AS NEWSALARY
FOR EACH ROW MODE DB2SQL

WHEN LEVEL = ’Associate’
BEGIN ATOMIC

SET NEWSALARY.SALARY = NEWSALARY.SALARY + 5000.00;
END;

The INSERT statement in the FROM clause of the following SELECT statement
inserts a new employee into the EMPSAMP table:
SELECT NAME, SALARY

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, LEVEL)
VALUES(’Mary Smith’, 35000.00, ’Associate’));

The SELECT statement returns a salary of 40000.00 for Mary Smith instead of the
initial salary of 35000.00 that was explicitly specified in the INSERT statement.

Selecting values when you insert a single row
When you insert a new row into a table, you can retrieve any column in the result
table of the SELECT FROM INSERT statement. When you embed this statement in
an application, you retrieve the row into host variables by using the SELECT ...
INTO form of the statement. For information about using host variables and
SELECT ... INTO, see “Using host variables ” on page 80.

32 Application Programming and SQL Guide

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|



Example: You can retrieve all the values for a row that is inserted into a structure:
EXEC SQL SELECT * INTO :empstruct

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, DEPTNO, LEVEL)
VALUES(’Mary Smith’, 35000.00, 11, ’Associate’));

For this example, :empstruct is a host variable structure that is declared with
variables for each of the columns in the EMPSAMP table.

Selecting values when you insert data into a view
If the INSERT statement references a view that is defined with a search condition,
that view must be defined with the WITH CASCADED CHECK OPTION. When
you insert data into the view, the result table of the SELECT FROM INSERT
statement includes only rows that satisfy the view definition.

Example: Because view V1 is defined with the WITH CASCADED CHECK
OPTION, you can reference V1 in the INSERT statement:
CREATE VIEW V1 AS

SELECT C1, I1 FROM T1 WHERE I1 > 10
WITH CASCADED CHECK OPTON;

SELECT C1 FROM
FINAL TABLE (INSERT INTO V1 (I1) VALUES(12));

The value 12 satisfies the search condition of the view definition, and the result
table consists of the value for C1 in the inserted row.

If you use a value that does not satisfy the search condition of the view definition,
the insert operation fails, and DB2 returns an error.

Selecting values when you insert multiple rows
In an application program, to retrieve values from the insertion of multiple rows,
declare a cursor so that the INSERT statement is in the FROM clause of the
SELECT statement of the cursor. For information about using cursors, see
Chapter 7, “Using a cursor to retrieve a set of rows,” on page 103.

Example: Inserting rows with ROWID values: To see the values of the ROWID
columns that are inserted into the employee photo and resume table, you can
declare the following cursor:
EXEC SQL DECLARE CS1 CURSOR FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8810.EMP);

Example: Using the FETCH FIRST clause: To see only the first five rows that are
inserted into the employee photo and resume table, use the FETCH FIRST clause:
EXEC SQL DECLARE CS2 CURSOR FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8810.EMP)
FETCH FIRST 5 ROWS ONLY;

Example: Using the INPUT SEQUENCE clause: To retrieve rows in the order in
which they are inserted, use the INPUT SEQUENCE clause:

Chapter 2. Working with tables and modifying data 33

|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|



EXEC SQL DECLARE CS3 CURSOR FOR
SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

VALUES(:hva_empno)
FOR 5 ROWS)

ORDER BY INPUT SEQUENCE;

The INPUT SEQUENCE clause can be specified only if an INSERT statement is in
the FROM clause of the SELECT statement. In this example, the rows are inserted
from an array of employee numbers. For information about the multiple-row
INSERT statement, see “Inserting multiple rows of data from host variable arrays”
on page 87.

Example: Inserting rows with multiple encoding CCSIDs: Suppose that you want
to populate an ASCII table with values from an EBCDIC table and then see
selected values from the ASCII table. You can use the following cursor to select the
EBCDIC columns, populate the ASCII table, and then retrieve the ASCII values:
EXEC SQL DECLARE CS4 CURSOR FOR

SELECT C1, C2
FROM FINAL TABLE (INSERT INTO ASCII_TABLE

SELECT * FROM EBCDIC_TABLE);

Result table of the cursor when you insert multiple rows
In an application program, when you insert multiple rows into a table, you declare
a cursor so that the INSERT statement is in the FROM clause of the SELECT
statement of the cursor. The result table of the cursor is determined during OPEN
cursor processing. The result table may or may not be affected by other processes
in your application.

Effect on cursor sensitivity: When you declare a scrollable cursor, the cursor
must be declared with the INSENSITIVE keyword if an INSERT statement is in the
FROM clause of the cursor specification. The result table is generated during
OPEN cursor processing and does not reflect any future changes. You cannot
declare the cursor with the SENSITIVE DYNAMIC or SENSITIVE STATIC
keywords. For information about cursor sensitivity, see “Using a scrollable cursor”
on page 114.

Effect of searched updates and deletes: When you declare a non-scrollable
cursor, any searched updates or deletes do not affect the result table of the cursor.
The rows of the result table are determined during OPEN cursor processing.

Example: Assume that your application declares a cursor, opens the cursor,
performs a fetch, updates the table, and then fetches additional rows:
EXEC SQL DECLARE CS1 CURSOR FOR

SELECT SALARY
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, LEVEL)

SELECT NAME, INCOME, BAND FROM OLD_EMPLOYEE);
EXEC SQL OPEN CS1;
EXEC SQL FETCH CS1 INTO :hv_salary;
/* print fetch result */
...
EXEC SQL UPDATE EMPSAMP SET SALARY = SALARY + 500;
while (SQLCODE == 0) {

EXEC SQL FETCH CS1 INTO :hv_salary;
/* print fetch result */
...

}

34 Application Programming and SQL Guide

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|



The fetches that occur after the update processing return the rows that were
generated during OPEN cursor processing. However, if you use a simple SELECT
(with no INSERT statement in the FROM clause), the fetches might return the
updated values, depending on the access path that DB2 uses.

Effect of WITH HOLD: When you declare a cursor with the WITH HOLD
option, and open the cursor, all of the rows are inserted into the target table. The
WITH HOLD option has no effect on the SELECT FROM INSERT statement of the
cursor definition. After your application performs a commit, you can continue to
retrieve all of the inserted rows. For information about held cursors, see “Held and
non-held cursors” on page 122.

Example: Assume that the employee table in the DB2 sample application has five
rows. Your application declares a WITH HOLD cursor, opens the cursor, fetches
two rows, performs a commit, and then fetches the third row successfully:
EXEC SQL DECLARE CS2 CURSOR WITH HOLD FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8810.EMP);
EXEC SQL OPEN CS2; /* Inserts 5 rows */
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 1st row */
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 2nd row */
EXEC SQL COMMIT; /* Commits 5 rows */
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 3rd row */

Effect of SAVEPOINT and ROLLBACK: When you set a savepoint prior to
opening the cursor and then roll back to that savepoint, all of the insertions are
undone. For information about savepoints and ROLLBACK processing, see “Using
savepoints to undo selected changes within a unit of work” on page 439.

Example: Assume that your application declares a cursor, sets a savepoint, opens
the cursor, sets another savepoint, rolls back to the second savepoint, and then rolls
back to the first savepoint:
EXEC SQL DECLARE CS3 CURSOR FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8810.EMP);
EXEC SQL SAVEPOINT A ON ROLLBACK RETAIN CURSORS; /* Sets 1st savepoint */
EXEC SQL OPEN CS3;
EXEC SQL SAVEPOINT B ON ROLLBACK RETAIN CURSORS; /* Sets 2nd savepoint */
...
EXEC SQL ROLLBACK TO SAVEPOINT B; /* Rows still in DSN8810.EMP_PHOTO_RESUME */
...
EXEC SQL ROLLBACK TO SAVEPOINT A; /* All inserted rows are undone */

What happens if an error occurs
In an application program, when you insert one or more rows into a table by using
the SELECT FROM INSERT statement, the result table of the insert operation may
or may not be affected depending on where the error occurred in the application
processing.

During SELECT INTO processing: If the insert processing or the select
processing fails during a SELECT INTO statement, no rows are inserted into the
target table, and no rows are returned from the result table of the insert operation.

Example: Assume that the employee table of the DB2 sample application has one
row, and that the SALARY column has a value of 9 999 000.00.

Chapter 2. Working with tables and modifying data 35

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|



EXEC SQL SELECT EMPNO INTO :hv_empno
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY)

SELECT FIRSTNAME || MIDINIT || LASTNAME,
SALARY + 10000.00

FROM DSN8810.EMP)

The addition of 10000.00 causes a decimal overflow to occur, and no rows are
inserted into the EMPSAMP table.

During OPEN cursor processing: If the insertion of any row fails during the
OPEN cursor processing, all previously successful insertions are undone. The result
table of the INSERT is empty.

During FETCH processing: If the FETCH statement fails while retrieving rows
from the result table of the insert operation, a negative SQLCODE is returned to
the application, but the result table still contains the original number of rows that
was determined during the OPEN cursor processing. At this point, you can undo
all of the inserts.

Example: Assume that the result table contains 100 rows and the 90th row that is
being fetched from the cursor returns a negative SQLCODE:
EXEC SQL DECLARE CS1 CURSOR FOR

SELECT EMPNO
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY)

SELECT FIRSTNAME || MIDINIT || LASTNAME, SALARY + 10000.00
FROM DSN8810.EMP);

EXEC SQL OPEN CS1; /* Inserts 100 rows */
while (SQLCODE == 0)

EXEC SQL FETCH CS1 INTO :hv_empno;
if (SQLCODE == -904) /* If SQLCODE is -904, undo all inserts */

EXEC SQL ROLLBACK;
else /* Else, commit inserts */

EXEC SQL COMMIT;

Updating current values: UPDATE
To change the data in a table, use the UPDATE statement. You can also use the
UPDATE statement to remove a value from a row's column (without removing the
row) by changing the column's value to null.

Example: Suppose an employee relocates. To update several items of the
employee's data in the YEMP work table to reflect the move, you can execute:
UPDATE YEMP

SET JOB = ’MANAGER ’,
PHONENO =’5678’
WHERE EMPNO = ’000400’;

You cannot update rows in a created temporary table, but you can update rows in
a declared temporary table.

The SET clause names the columns that you want to update and provides the
values you want to assign to those columns. You can replace a column value in the
SET clause with any of the following items:
v A null value

The column to which you assign the null value must not be defined as NOT
NULL.

v An expression
An expression can be any of the following items:

36 Application Programming and SQL Guide

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|



– A column
– A constant
– A fullselect that returns a scalar
– A host variable
– A special register

In addition, you can replace one or more column values in the SET clause with the
column values in a row that is returned by a fullselect.

Next, identify the rows to update:
v To update a single row, use a WHERE clause that locates one, and only one, row
v To update several rows, use a WHERE clause that locates only the rows you

want to update.

If you omit the WHERE clause, DB2 updates every row in the table or view with
the values you supply.

If DB2 finds an error while executing your UPDATE statement (for example, an
update value that is too large for the column), it stops updating and returns an
error. No rows in the table change. Rows already changed, if any, are restored to
their previous values. If the UPDATE statement is successful, SQLERRD(3) is set to
the number of rows that are updated.

Example: The following statement supplies a missing middle initial and changes
the job for employee 000200.
UPDATE YEMP

SET MIDINIT = ’H’, JOB = ’FIELDREP’
WHERE EMPNO = ’000200’;

The following statement gives everyone in department D11 a raise of 400.00. The
statement can update several rows.
UPDATE YEMP

SET SALARY = SALARY + 400.00
WHERE WORKDEPT = ’D11’;

The following statement sets the salary and bonus for employee 000190 to the
average salary and minimum bonus for all employees.
UPDATE YEMP

SET (SALARY, BONUS) =
(SELECT AVG(SALARY), MIN(BONUS)

FROM EMP)
WHERE EMPNO = ’000190’;

Deleting rows: DELETE
You can use the DELETE statement to remove entire rows from a table. The
DELETE statement removes zero or more rows of a table, depending on how many
rows satisfy the search condition you specify in the WHERE clause. If you omit a
WHERE clause from a DELETE statement, DB2 removes all the rows from the
table or view you have named. The DELETE statement does not remove specific
columns from the row.

You can use DELETE to remove all rows from a created temporary table or
declared temporary table. However, you can use DELETE with a WHERE clause to
remove only selected rows from a declared temporary table.

Chapter 2. Working with tables and modifying data 37



This DELETE statement deletes each row in the YEMP table that has an employee
number 000060.
DELETE FROM YEMP

WHERE EMPNO = ’000060’;

When this statement executes, DB2 deletes any row from the YEMP table that
meets the search condition.

If DB2 finds an error while executing your DELETE statement, it stops deleting
data and returns error codes in the SQLCODE and SQLSTATE host variables or
related fields in the SQLCA. The data in the table does not change.

If the DELETE is successful, SQLERRD(3) in the SQLCA contains the number of
deleted rows. This number includes only the number of deleted rows in the table
that is specified in the DELETE statement. Rows that are deleted (in other tables)
according to the CASCADE rule are not included in SQLERRD(3).

Deleting every row in a table
The DELETE statement is a powerful statement that deletes all rows of a table
unless you specify a WHERE clause to limit it. (With segmented table spaces,
deleting all rows of a table is very fast.) For example, the following statement
deletes every row in the YDEPT table:
DELETE FROM YDEPT;

If the statement executes, the table continues to exist (that is, you can insert rows
into it), but it is empty. All existing views and authorizations on the table remain
intact when using DELETE. By comparison, using DROP TABLE drops all views
and authorizations, which can invalidate plans and packages. For information
about the DROP statement, see “Dropping tables: DROP TABLE” on page 25.

38 Application Programming and SQL Guide



Chapter 3. Joining data from more than one table

Sometimes the information that you want to see is not in a single table. To form a
row of the result table, you might want to retrieve some column values from one
table and some column values from another table. You can use a SELECT
statement to retrieve and join column values from two or more tables into a single
row.

DB2 supports the following types of joins: inner join, left outer join, right outer
join, and full outer join. You can specify joins in the FROM clause of a query.

The examples in this section use the following two tables to show various types of
joins:

The PARTS table The PRODUCTS table
PART PROD# SUPPLIER PROD# PRODUCT PRICE
======= ===== ============ ===== =========== =====
WIRE 10 ACWF 505 SCREWDRIVER 3.70
OIL 160 WESTERN_CHEM 30 RELAY 7.55
MAGNETS 10 BATEMAN 205 SAW 18.90
PLASTIC 30 PLASTIK_CORP 10 GENERATOR 45.75
BLADES 205 ACE_STEEL

Figure 2 illustrates how these two tables can be combined using the three outer
join functions.

The result table contains data joined from all of the tables, for rows that satisfy the
search conditions.

PART PROD#
WIRE
MAGNETS
BLADES
PLASTIC
OIL

10
10
205
30
160

PROD# PRICE
505
10
205
30

3.70
45.75
18.90
7.55

PART PROD# PRICE
WIRE
MAGNETS
BLADES
PLASTIC
OIL

10
10
205
30
160

45.75
45.75
18.90
7.55
(null)

PARTS

Unmatched
row

Unmatched
rowMatches

PRODUCTS

LEFT OUTER JOIN FULL OUTER JOIN RIGHT OUTER JOIN

PART PROD# PRICE
WIRE
MAGNETS
BLADES
PLASTIC
(null)

10
10
205
30
505

45.75
45.75
18.90
7.55
3.70

PART PROD# PRICE
WIRE
MAGNETS
BLADES
PLASTIC
OIL
(null)

10
10
205
30
160
505

45.75
45.75
18.90
7.55
(null)
3.70

Figure 2. Three outer joins from the PARTS and PRODUCTS tables

© Copyright IBM Corp. 1983, 2012 39



The result columns of a join have names if the outermost SELECT list refers to
base columns. But, if you use a function (such as COALESCE or VALUE) to build
a column of the result, that column does not have a name unless you use the AS
clause in the SELECT list.

Inner join
To request an inner join, execute a SELECT statement in which you specify the
tables that you want to join in the FROM clause, and specify a WHERE clause or
an ON clause to indicate the join condition. The join condition can be any simple
or compound search condition that does not contain a subquery reference. See
Chapter 4 of DB2 SQL Reference for the complete syntax of a join condition.

In the simplest type of inner join, the join condition is column1=column2.

Example: You can join the PARTS and PRODUCTS tables on the PROD# column to
get a table of parts with their suppliers and the products that use the parts.

To do this, you can use either one of the following SELECT statements:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS, PRODUCTS
WHERE PARTS.PROD# = PRODUCTS.PROD#;

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS INNER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks like the following output:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== =========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

Notice three things about this example:
v A part in the parts table (OIL) has product (#160), which is not in the products

table. A product (SCREWDRIVER, #505) has no parts listed in the parts table.
Neither OIL nor SCREWDRIVER appears in the result of the join.
An outer join, however, includes rows where the values in the joined columns do
not match.

v You can explicitly specify that this join is an inner join (not an outer join). Use
INNER JOIN in the FROM clause instead of the comma, and use ON to specify
the join condition (rather than WHERE) when you explicitly join tables in the
FROM clause.

v If you do not specify a WHERE clause in the first form of the query, the result
table contains all possible combinations of rows for the tables identified in the
FROM clause. You can obtain the same result by specifying a join condition that
is always true in the second form of the query, as in the following statement:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON 1=1;

In either case, the number of rows in the result table is the product of the
number of rows in each table.

40 Application Programming and SQL Guide



You can specify more complicated join conditions to obtain different sets of results.
For example, to eliminate the suppliers that begin with the letter A from the table
of parts, suppliers, product numbers and products, write a query like the following
query:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#
AND SUPPLIER NOT LIKE ’A%’;

The result of the query is all rows that do not have a supplier that begins with A.
The result table looks like the following output:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

Example of joining a table to itself by using an inner join: In the following
example, A indicates the first instance of table DSN8810.PROJ and B indicates the
second instance of this table. The join condition is such that the value in column
PROJNO in table DSN8810.PROJ A must be equal to a value in column MAJPROJ
in table DSN8810.PROJ B.

The following SQL statement joins table DSN8810.PROJ to itself and returns the
number and name of each major project followed by the number and name of the
project that is part of it:
SELECT A.PROJNO, A.PROJNAME, B.PROJNO, B.PROJNAME

FROM DSN8810.PROJ A, DSN8810.PROJ B
WHERE A.PROJNO = B.MAJPROJ;

The result table looks similar to the following output:
PROJNO PROJNAME PROJNO PROJNAME
====== ======================== ======= ========================
AD3100 ADMIN SERVICES AD3110 GENERAL AD SYSTEMS
AD3110 GENERAL AD SYSTEMS AD3111 PAYROLL PROGRAMMING
AD3110 GENERAL AD SYSTEMS AD3112 PERSONNEL PROGRAMMG...
OP2010 SYSTEMS SUPPORT OP2013 DB/DC SUPPORT

In this example, the comma in the FROM clause implicitly specifies an inner join,
and it acts the same as if the INNER JOIN keywords had been used. When you
use the comma for an inner join, you must specify the join condition on the
WHERE clause. When you use the INNER JOIN keywords, you must specify the
join condition on the ON clause.

Full outer join
The clause FULL OUTER JOIN includes unmatched rows from both tables. If any
column of the result table does not have a value, that column has the null value in
the result table.

The join condition for a full outer join must be a simple search condition that
compares two columns or an invocation of a cast function that has a column name
as its argument.

Example: The following query performs a full outer join of the PARTS and
PRODUCTS tables:

Chapter 3. Joining data from more than one table 41



SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

The result table from the query looks similar to the following output:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 -----------
------- ------------ --- SCREWDRIVER

Example of Using COALESCE or VALUE: COALESCE is the keyword specified by
the SQL standard as a synonym for the VALUE function. This function, by either
name, can be particularly useful in full outer join operations, because it returns the
first non-null value from the pair of join columns.

The product number in the result of the example for “Full outer join” on page 41 is
null for SCREWDRIVER, even though the PRODUCTS table contains a product
number for SCREWDRIVER. If you select PRODUCTS.PROD# instead, PROD# is
null for OIL. If you select both PRODUCTS.PROD# and PARTS.PROD#, the result
contains two columns, both of which contain some null values. You can merge data
from both columns into a single column, eliminating the null values, by using the
COALESCE function.

With the same PARTS and PRODUCTS tables, the following example merges the
non-null data from the PROD# columns:
SELECT PART, SUPPLIER,

COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks similar to the following output:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 -----------
------- ------------ 505 SCREWDRIVER

The AS clause (AS PRODNUM) provides a name for the result of the COALESCE
function.

Left outer join
The clause LEFT OUTER JOIN includes rows from the table that is specified before
LEFT OUTER JOIN that have no matching values in the table that is specified after
LEFT OUTER JOIN.

As in an inner join, the join condition can be any simple or compound search
condition that does not contain a subquery reference.

Example: To include rows from the PARTS table that have no matching values in
the PRODUCTS table, and to include prices that exceed $10.00 , run the following
query:

42 Application Programming and SQL Guide



SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT, PRICE
FROM PARTS LEFT OUTER JOIN PRODUCTS

ON PARTS.PROD#=PRODUCTS.PROD#
AND PRODUCTS.PRICE>10.00;

The result table looks similar to the following output:
PART SUPPLIER PROD# PRODUCT PRICE
======= ============ ===== ========== =====
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
PLASTIC PLASTIK_CORP 30 ----------- -------
BLADES ACE_STEEL 205 SAW 18.90
OIL WESTERN_CHEM 160 ----------- -------

A row from the PRODUCTS table is in the result table only if its product number
matches the product number of a row in the PARTS table and the price is greater
than $10.00 for that row. Rows in which the PRICE value does not exceed $10.00
are included in the result of the join, but the PRICE value is set to null.

In this result table, the row for PROD# 30 has null values on the right two columns
because the price of PROD# 30 is less than $10.00. PROD# 160 has null values on
the right two columns because PROD# 160 does not match another product
number.

Right outer join
The clause RIGHT OUTER JOIN includes rows from the table that is specified after
RIGHT OUTER JOIN that have no matching values in the table that is specified
before RIGHT OUTER JOIN.

As in an inner join, the join condition can be any simple or compound search
condition that does not contain a subquery reference.

Example: To include rows from the PRODUCTS table that have no corresponding
rows in the PARTS table, execute this query:
SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT, PRICE

FROM PARTS RIGHT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#

AND PRODUCTS.PRICE>10.00;

The result table looks similar to the following output:
PART SUPPLIER PROD# PRODUCT PRICE
======= ============ ===== ========== =====
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
BLADES ACE_STEEL 205 SAW 18.90
---------- ------------ 30 RELAY 7.55
---------- ------------ 505 SCREWDRIVER 3.70

A row from the PARTS table is in the result table only if its product number
matches the product number of a row in the PRODUCTS table and the price is
greater than 10.00 for that row.

Because the PRODUCTS table can have rows with nonmatching product numbers
in the result table, and the PRICE column is in the PRODUCTS table, rows in
which PRICE is less than or equal to 10.00 are included in the result. The PARTS
columns contain null values for these rows in the result table.

Chapter 3. Joining data from more than one table 43



SQL rules for statements containing join operations
SQL rules dictate that the result of a SELECT statement look as if the clauses had
been evaluated in this order:
v FROM
v WHERE
v GROUP BY
v HAVING
v SELECT

A join operation is part of a FROM clause; therefore, for the purpose of predicting
which rows will be returned from a SELECT statement containing a join operation,
assume that the join operation is performed first.

Example: Suppose that you want to obtain a list of part names, supplier names,
product numbers, and product names from the PARTS and PRODUCTS tables. You
want to include rows from either table where the PROD# value does not match a
PROD# value in the other table, which means that you need to do a full outer join.
You also want to exclude rows for product number 10. Consider the following
SELECT statement:
SELECT PART, SUPPLIER,

VALUE(PARTS.PROD#,PRODUCTS.PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#
WHERE PARTS.PROD# <> ’10’ AND PRODUCTS.PROD# <> ’10’;

The following result is not what you wanted:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

DB2 performs the join operation first. The result of the join operation includes
rows from one table that do not have corresponding rows from the other table.
However, the WHERE clause then excludes the rows from both tables that have
null values for the PROD# column.

The following statement is a correct SELECT statement to produce the list:
SELECT PART, SUPPLIER,

VALUE(X.PROD#, Y.PROD#) AS PRODNUM, PRODUCT
FROM

(SELECT PART, SUPPLIER, PROD# FROM PARTS WHERE PROD# <> ’10’) X
FULL OUTER JOIN
(SELECT PROD#, PRODUCT FROM PRODUCTS WHERE PROD# <> ’10’) Y
ON X.PROD# = Y.PROD#;

For this statement, DB2 applies the WHERE clause to each table separately. DB2
then performs the full outer join operation, which includes rows in one table that
do not have a corresponding row in the other table. The final result includes rows
with the null value for the PROD# column and looks similar to the following
output:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
OIL WESTERN_CHEM 160 -----------
BLADES ACE_STEEL 205 SAW
PLASTIC PLASTIK_CORP 30 RELAY
------- ------------ 505 SCREWDRIVER

44 Application Programming and SQL Guide



Using more than one join in an SQL statement
Using more than one join: You can join more than two tables. Suppose you want a
result table that shows employees who have projects that they are responsible for,
their projects, and their department names. You need to join three tables to get all
the information. You can use the following SELECT statement:
SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO

FROM DSN8810.EMP, DSN8810.PROJ, DSN8810.DEPT
WHERE EMPNO = RESPEMP
AND WORKDEPT = DSN8810.DEPT.DEPTNO;

The result table looks similar to the following output:
EMPNO LASTNAME DEPTNAME PROJNO
====== ========= =========================== ======
000010 HAAS SPIFFY COMPUTER SERVICE DIV AD3100
000010 HAAS SPIFFY COMPUTER SERVICE DIV MA2100
000020 THOMPSON PLANNING PL2100
000030 KWAN INFORMATION CENTER IF1000
000030 KWAN INFORMATION CENTER IF2000
000050 GEYER SUPPORT SERVICES OP1000
000050 GEYER SUPPORT SERVICES OP2000
000060 STERN MANUFACTURING SYSTEMS MA2110
000070 PULASKI ADMINISTRATION SYSTEMS AD3110
000090 HENDERSON OPERATIONS OP1010
000100 SPENSER SOFTWARE SUPPORT OP2010
000150 ADAMSON MANUFACTURING SYSTEMS MA2112
000160 PIANKA MANUFACTURING SYSTEMS MA2113
000220 LUTZ MANUFACTURING SYSTEMS MA2111
000230 JEFFERSON ADMINISTRATION SYSTEMS AD3111
000250 SMITH ADMINISTRATION SYSTEMS AD3112
000270 PEREZ ADMINISTRATION SYSTEMS AD3113
000320 MEHTA SOFTWARE SUPPORT OP2011
000330 LEE SOFTWARE SUPPORT OP2012
000340 GOUNOT SOFTWARE SUPPORT OP2013

DB2 determines the intermediate and final results of the previous query by
performing the following logical steps:
1. Join the employee and project tables on the employee number, dropping the

rows with no matching employee number in the project table.
2. Join the intermediate result table with the department table on matching

department numbers.
3. Process the select list in the final result table, leaving only four columns.

Using more than one join type: You can use more than one join type in the FROM
clause. Suppose that you want a result table that shows employees whose last
name begins with 'S' or a letter after 'S', their department names, and the projects
that they are responsible for, if any. You can use the following SELECT statement:
SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO

FROM DSN8810.EMP INNER JOIN DSN8810.DEPT
ON WORKDEPT = DSN8810.DEPT.DEPTNO

LEFT OUTER JOIN DSN8810.PROJ
ON EMPNO = RESPEMP

WHERE LASTNAME > ’S’;

The result table looks like similar to the following output:
EMPNO LASTNAME DEPTNAME PROJNO
====== ========= ====================== ======
000020 THOMPSON PLANNING PL2100
000060 STERN MANUFACTURING SYSTEMS MA2110
000100 SPENSER SOFTWARE SUPPORT OP2010
000170 YOSHIMURA MANUFACTURING SYSTEMS ------

Chapter 3. Joining data from more than one table 45



000180 SCOUTTEN MANUFACTURING SYSTEMS ------
000190 WALKER MANUFACTURING SYSTEMS ------
000250 SMITH ADMINISTRATION SYSTEMS AD3112
000280 SCHNEIDER OPERATIONS ------
000300 SMITH OPERATIONS ------
000310 SETRIGHT OPERATIONS ------
200170 YAMAMOTO MANUFACTURING SYSTEMS ------
200280 SCHWARTZ OPERATIONS ------
200310 SPRINGER OPERATIONS ------
200330 WONG SOFTWARE SUPPORT ------

DB2 determines the intermediate and final results of the previous query by
performing the following logical steps:
1. Join the employee and department tables on matching department numbers,

dropping the rows where the last name begins with a letter before 'S'.
2. Join the intermediate result table with the project table on the employee

number, keeping the rows with no matching employee number in the project
table.

3. Process the select list in the final result table, leaving only four columns.

Using nested table expressions and user-defined table functions in
joins

An operand of a join can be more complex than the name of a single table. You
can use:
v A nested table expression, which is a fullselect enclosed in parentheses and

followed by a correlation name
v A user-defined table function, which is a user-defined function that returns a

table

Example of using a nested table expression as the right operand of a join: The
following query contains a fullselect as the right operand of a left outer join with
the PROJECTS table. The correlation name is TEMP.
SELECT PROJECT, COALESCE(PROJECTS.PROD#, PRODNUM) AS PRODNUM,

PRODUCT, PART, UNITS
FROM PROJECTS LEFT JOIN

(SELECT PART,
COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS.PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP
ON PROJECTS.PROD# = PRODNUM;

The following statement is the nested table expression:
(SELECT PART,

COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS.PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP

Example of using correlated references: In the following example, the correlation
name that is used for the nested table expression is CHEAP_PARTS. The correlated
references are CHEAP_PARTS.PROD# and CHEAP_PARTS.PRODUCT.
SELECT CHEAP_PARTS.PROD#, CHEAP_PARTS.PRODUCT

FROM (SELECT PROD#, PRODUCT
FROM PRODUCTS
WHERE PRICE < 10) AS CHEAP_PARTS;

The result table looks similar to the following output:

46 Application Programming and SQL Guide



PROD# PRODUCT
===== ===========
505 SCREWDRIVER
30 RELAY

The correlated references are valid because they do not occur in the table
expression where CHEAP_PARTS is defined. The correlated references are from a
table specification at a higher level in the hierarchy of subqueries.

Example of using a nested table expression as the left operand of a join: The
following query contains a fullselect as the left operand of a left outer join with the
PRODUCTS table. The correlation name is PARTX.
SELECT PART, SUPPLIER, PRODNUM, PRODUCT

FROM (SELECT PART, PROD# AS PRODNUM, SUPPLIER
FROM PARTS
WHERE PROD# < ’200’) AS PARTX

LEFT OUTER JOIN PRODUCTS
ON PRODNUM = PROD#;

The result table looks similar to the following output:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
OIL WESTERN_CHEM 160 ----------

Because PROD# is a character field, DB2 does a character comparison to determine
the set of rows in the result. Therefore, because ’30’ is greater than ’200’, the row in
which PROD# is equal to ’30’ does not appear in the result.

Example: Using a table function as an operand of a join: You can join the results
of a user-defined table function with a table, just as you can join two tables. For
example, suppose CVTPRICE is a table function that converts the prices in the
PRODUCTS table to the currency you specify and returns the PRODUCTS table
with the prices in those units. You can obtain a table of parts, suppliers, and
product prices with the prices in your choice of currency by executing a query
similar to the following query:
SELECT PART, SUPPLIER, PARTS.PROD#, Z.PRODUCT, Z.PRICE

FROM PARTS, TABLE(CVTPRICE(:CURRENCY)) AS Z
WHERE PARTS.PROD# = Z.PROD#;

Using correlated references in table specifications in joins
You can include correlated references in nested table expressions or as arguments
to table functions. The basic rule that applies for both of these cases is that the
correlated reference must be from a table specification at a higher level in the
hierarchy of subqueries. You can also use a correlated reference and the table
specification to which it refers in the same FROM clause if the table specification
appears to the left of the correlated reference and the correlated reference is in one
of the following clauses:
v A nested table expression preceded by the keyword TABLE
v The argument of a table function

For more information about correlated references, see “Using correlation names in
references” on page 54.

Chapter 3. Joining data from more than one table 47



A table function or a table expression that contains correlated references to other
tables in the same FROM clause cannot participate in a full outer join or a right
outer join. The following examples illustrate valid uses of correlated references in
table specifications.

Example: In this example, the correlated reference T.C2 is valid because the table
specification, to which it refers, T, is to its left.
SELECT T.C1, Z.C5

FROM T, TABLE(TF3(T.C2)) AS Z
WHERE T.C3 = Z.C4;

If you specify the join in the opposite order, with T following TABLE(TF3(T.C2),
then T.C2 is invalid.

Example: In this example, the correlated reference D.DEPTNO is valid because the
nested table expression within which it appears is preceded by TABLE and the
table specification D appears to the left of the nested table expression in the FROM
clause.
SELECT D.DEPTNO, D.DEPTNAME,

EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPT D,

TABLE(SELECT AVG(E.SALARY) AS AVGSAL,
COUNT(*) AS EMPCOUNT
FROM EMP E
WHERE E.WORKDEPT=D.DEPTNO) AS EMPINFO;

If you remove the keyword TABLE, D.DEPTNO is invalid.

48 Application Programming and SQL Guide



Chapter 4. Using subqueries

When you need to narrow your search condition based on information in an
interim table, you can use a subquery. For example, you might want to find all
employee numbers in one table that also exist for a given project in a second table.

This chapter presents the following sections:
v “Conceptual overview”
v “How to code a subquery” on page 51
v “Using correlated subqueries” on page 53

Conceptual overview
Suppose that you want a list of the employee numbers, names, and commissions of
all employees working on a particular project, whose project number is MA2111.
The first part of the SELECT statement is easy to write:
SELECT EMPNO, LASTNAME, COMM

FROM DSN8810.EMP
WHERE EMPNO

...

But you cannot proceed because the DSN8810.EMP table does not include project
number data. You do not know which employees are working on project MA2111
without issuing another SELECT statement against the DSN8810.EMPPROJACT
table.

You can use a subquery to solve this problem. A subquery is a subselect or a
fullselect in a WHERE clause. The SELECT statement surrounding the subquery is
called the outer SELECT.
SELECT EMPNO, LASTNAME, COMM

FROM DSN8810.EMP
WHERE EMPNO IN

(SELECT EMPNO
FROM DSN8810.EMPPROJACT
WHERE PROJNO = ’MA2111’);

To better understand the results of this SQL statement, imagine that DB2 goes
through the following process:
1. DB2 evaluates the subquery to obtain a list of EMPNO values:

(SELECT EMPNO
FROM DSN8810.EMPPROJACT
WHERE PROJNO = ’MA2111’);

The result is in an interim result table, similar to the one shown in the following
output:
from EMPNO

=====
200
200
220

2. The interim result table then serves as a list in the search condition of the outer
SELECT. Effectively, DB2 executes this statement:

© Copyright IBM Corp. 1983, 2012 49



SELECT EMPNO, LASTNAME, COMM
FROM DSN8810.EMP
WHERE EMPNO IN
(’000200’, ’000220’);

As a consequence, the result table looks similar to the following output:
EMPNO LASTNAME COMM
====== ======== ====
000200 BROWN 2217
000220 LUTZ 2387

Correlated and uncorrelated subqueries
Subqueries supply information that is needed to qualify a row (in a WHERE
clause) or a group of rows (in a HAVING clause). The subquery produces a result
table that is used to qualify the row or group of selected rows. The subquery
executes only once, if the subquery is the same for every row or group.

This kind of subquery is uncorrelated. In the previous query, for example, the
content of the subquery is the same for every row of the table DSN8810.EMP.

Subqueries that vary in content from row to row or group to group are correlated
subqueries. For information about correlated subqueries, see “Using correlated
subqueries” on page 53. All of the following information that precedes the section
about correlated subqueries applies to both correlated and uncorrelated subqueries.

Subqueries and predicates
A subquery is always part of a predicate. The predicate is of the form:
operand operator (subquery)

The predicate can be part of a WHERE or HAVING clause. A WHERE or HAVING
clause can include predicates that contain subqueries. A predicate containing a
subquery, like any other search predicate, can be enclosed in parentheses, can be
preceded by the keyword NOT, and can be linked to other predicates through the
keywords AND and OR. For example, the WHERE clause of a query can look
something like the following clause:
WHERE X IN (subquery1) AND (Y > SOME (subquery2) OR Z IS NULL)

Subqueries can also appear in the predicates of other subqueries. Such subqueries
are nested subqueries at some level of nesting. For example, a subquery within a
subquery within an outer SELECT has a nesting level of 2. DB2 allows nesting
down to a level of 15, but few queries require a nesting level greater than 1.

The relationship of a subquery to its outer SELECT is the same as the relationship
of a nested subquery to a subquery, and the same rules apply, except where
otherwise noted.

The subquery result table
A subquery must produce a result table that has the same number of columns as
the number of columns on the left side of the comparison operator. For example,
both of the following SELECT statements are acceptable:
SELECT EMPNO, LASTNAME

FROM DSN8810.EMP
WHERE SALARY =
(SELECT AVG(SALARY)

FROM DSN8810.EMP);

50 Application Programming and SQL Guide



SELECT EMPNO, LASTNAME
FROM DSN8810.EMP
WHERE (SALARY, BONUS) IN
(SELECT AVG(SALARY), AVG(BONUS)

FROM DSN8810.EMP);

Except for a subquery of a basic predicate, the result table can contain more than
one row. For more information, see “Basic predicate .”

Tables in subqueries of UPDATE, DELETE, and INSERT
statements

The following rules apply to a table that is used in a subquery for an UPDATE,
DELETE, or INSERT statement:
v When you use a subquery in an INSERT statement, the subquery can use the

same table as the INSERT statement.
v When you use a subquery in a searched UPDATE or DELETE statement (an

UPDATE or DELETE that does not use a cursor), the subquery can use the same
table as the UPDATE or DELETE statement.

v When you use a subquery in a positioned UPDATE or DELETE statement (an
UPDATE or DELETE that uses a cursor), the subquery cannot use the same table
as the UPDATE or DELETE statement.

How to code a subquery
You can specify a subquery in either a WHERE or HAVING clause by using:
v A basic predicate
v A quantified predicate: ALL, ANY, or SOME
v The IN keyword
v The EXISTS keyword

Basic predicate
You can use a subquery immediately after any of the comparison operators. If you
do, the subquery can return at most one value. DB2 compares that value with the
value to the left of the comparison operator.

Example: The following SQL statement returns the employee numbers, names, and
salaries for employees whose education level is higher than the average
company-wide education level.
SELECT EMPNO, LASTNAME, SALARY

FROM DSN8810.EMP
WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP);

Quantified predicate : ALL, ANY, or SOME
You can use a subquery after a comparison operator, followed by the keyword
ALL, ANY, or SOME. The number of columns and rows that the subquery can
return for a quantified predicate depends on the type of quantified predicate:
v For = SOME, = ANY, or <> ALL, the subquery can return one or many rows and

one or many columns. The number of columns in the result table must match
the number of columns on the left side of the operator.

v For all other quantified predicates, the subquery can return one or many rows,
but no more than one column.

Chapter 4. Using subqueries 51



If a subquery that returns one or more null values gives you unexpected results,
see the description of quantified predicates in Chapter 2 of DB2 SQL Reference.

Using the ALL predicate
Use ALL to indicate that the operands on the left side of the comparison must
compare in the same way with all of the values that the subquery returns. For
example, suppose you use the greater-than comparison operator with ALL:
WHERE column > ALL (subquery)

To satisfy this WHERE clause, the column value must be greater than all of the
values that the subquery returns. A subquery that returns an empty result table
satisfies the predicate.

Now suppose that you use the <> operator with ALL in a WHERE clause like this:
WHERE (column1, column1, ... columnn) <> ALL (subquery)

To satisfy this WHERE clause, each column value must be unequal to all of the
values in the corresponding column of the result table that the subquery returns. A
subquery that returns an empty result table satisfies the predicate.

Using the ANY or SOME predicate
Use ANY or SOME to indicate that the values on the left side of the operator must
compare in the indicated way to at least one of the values that the subquery
returns. For example, suppose you use the greater-than comparison operator with
ANY:
WHERE expression > ANY (subquery)

To satisfy this WHERE clause, the value in the expression must be greater than at
least one of the values (that is, greater than the lowest value) that the subquery
returns. A subquery that returns an empty result table does not satisfy the
predicate.

Now suppose that you use the = operator with SOME in a WHERE clause like
this:
WHERE (column1, column1, ... columnn) = SOME (subquery)

To satisfy this WHERE clause, each column value must be equal to at least one of
the values in the corresponding column of the result table that the subquery
returns. A subquery that returns an empty result table does not satisfy the
predicate.

IN keyword
You can use IN to say that the value or values on the left side of the IN operator
must be among the values that are returned by the subquery. Using IN is
equivalent to using = ANY or = SOME.

Example: The following query returns the names of department managers:
SELECT EMPNO,LASTNAME

FROM DSN8810.EMP
WHERE EMPNO IN

(SELECT DISTINCT MGRNO
FROM DSN8810.DEPT);

52 Application Programming and SQL Guide



EXISTS keyword
In the subqueries presented thus far, DB2 evaluates the subquery and uses the
result as part of the WHERE clause of the outer SELECT. In contrast, when you
use the keyword EXISTS, DB2 simply checks whether the subquery returns one or
more rows. Returning one or more rows satisfies the condition; returning no rows
does not satisfy the condition.

Example: The search condition in the following query is satisfied if any project that
is represented in the project table has an estimated start date that is later than 1
January 2005:
SELECT EMPNO,LASTNAME

FROM DSN8810.EMP
WHERE EXISTS

(SELECT *
FROM DSN8810.PROJ
WHERE PRSTDATE > ’2005-01-01’);

The result of the subquery is always the same for every row that is examined for
the outer SELECT. Therefore, either every row appears in the result of the outer
SELECT or none appears. A correlated subquery is more powerful than the
uncorrelated subquery that is used in this example because the result of a
correlated subquery is evaluated for each row of the outer SELECT.

As shown in the example, you do not need to specify column names in the
subquery of an EXISTS clause. Instead, you can code SELECT *. You can also use
the EXISTS keyword with the NOT keyword in order to select rows when the data
or condition you specify does not exist; that is, you can code the following clause:
WHERE NOT EXISTS (SELECT ...);

Using correlated subqueries
In an uncorrelated subquery, DB2 executes the subquery once, substitutes the result
of the subquery in the right side of the search condition, and evaluates the outer
SELECT based on the value of the search condition. You can also write a subquery
that DB2 re-evaluates when it examines a new row (in a WHERE clause) or group
of rows (in a HAVING clause) as it executes the outer SELECT. This is called a
correlated subquery.

User-defined functions in correlated subqueries: Use care when you invoke a
user-defined function in a correlated subquery, and that user-defined function uses
a scratchpad. DB2 does not refresh the scratchpad between invocations of the
subquery. This can cause undesirable results because the scratchpad keeps values
across the invocations of the subquery.

An example of a correlated subquery
Suppose that you want a list of all the employees whose education levels are
higher than the average education levels in their respective departments. To get
this information, DB2 must search the DSN8810.EMP table. For each employee in
the table, DB2 needs to compare the employee's education level to the average
education level for that employee's department.

For this example, you need to use a correlated subquery, which differs from an
uncorrelated subquery. An uncorrelated subquery compares the employee’s

Chapter 4. Using subqueries 53



education level to the average of the entire company, which requires looking at the
entire table. A correlated subquery evaluates only the department that corresponds
to the particular employee.

In the subquery, you tell DB2 to compute the average education level for the
department number in the current row. A query that does this follows:
SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL

FROM DSN8810.EMP X
WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP
WHERE WORKDEPT = X.WORKDEPT);

A correlated subquery looks like an uncorrelated one, except for the presence of
one or more correlated references. In the example, the single correlated reference is
the occurrence of X.WORKDEPT in the WHERE clause of the subselect. In this
clause, the qualifier X is the correlation name that is defined in the FROM clause of
the outer SELECT statement. X designates rows of the first instance of
DSN8810.EMP. At any time during the execution of the query, X designates the
row of DSN8810.EMP to which the WHERE clause is being applied.

Consider what happens when the subquery executes for a given row of
DSN8810.EMP. Before it executes, X.WORKDEPT receives the value of the
WORKDEPT column for that row. Suppose, for example, that the row is for
Christine Haas. Her work department is A00, which is the value of WORKDEPT
for that row. Therefore, the following is the subquery that is executed for that row:
(SELECT AVG(EDLEVEL)

FROM DSN8810.EMP
WHERE WORKDEPT = ’A00’);

The subquery produces the average education level of Christine's department. The
outer SELECT then compares this average to Christine's own education level. For
some other row for which WORKDEPT has a different value, that value appears in
the subquery in place of A00. For example, in the row for Michael L Thompson,
this value is B01, and the subquery for his row delivers the average education level
for department B01.

The result table produced by the query is similar to the following output:
EMPNO LASTNAME WORKDEPT EDLEVEL
====== ========= ======== =======
000010 HASS A00 18
000030 KWAN C01 20
000070 PULASKI D21 16
000090 HENDERSON E11 16

Using correlation names in references
A correlated reference can appear in a subquery, in a nested table expression, or as
an argument of a user-defined table function. For information about correlated
references in nested table expressions and table functions, see “Using nested table
expressions and user-defined table functions in joins” on page 46. In a subquery,
the reference should be of the form X.C, where X is a correlation name and C is
the name of a column in the table that X represents.

Any number of correlated references can appear in a subquery, with no restrictions
on variety. For example, you can use one correlated reference in the outer SELECT,
and another in a nested subquery.

54 Application Programming and SQL Guide



When you use a correlated reference in a subquery, the correlation name can be
defined in the outer SELECT or in any of the subqueries that contain the reference.
Suppose, for example, that a query contains subqueries A, B, and C, and that A
contains B and B contains C. The subquery C can use a correlation reference that is
defined in B, A, or the outer SELECT.

You can define a correlation name for each table name in a FROM clause. Specify
the correlation name after its table name. Leave one or more blanks between a
table name and its correlation name. You can include the word AS between the
table name and the correlation name to increase the readability of the SQL
statement.

The following example demonstrates the use of a correlated reference in the search
condition of a subquery:
SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL

FROM DSN8810.EMP AS X
WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP
WHERE WORKDEPT = X.WORKDEPT);

The following example demonstrates the use of a correlated reference in the select
list of a subquery:
UPDATE BP1TBL T1

SET (KEY1, CHAR1, VCHAR1) =
(SELECT VALUE(T2.KEY1,T1.KEY1), VALUE(T2.CHAR1,T1.CHAR1),

VALUE(T2.VCHAR1,T1.VCHAR1)
FROM BP2TBL T2
WHERE (T2.KEY1 = T1.KEY1))

WHERE KEY1 IN
(SELECT KEY1

FROM BP2TBL T3
WHERE KEY2 > 0);

Using correlated subqueries in an UPDATE statement
When you use a correlated subquery in an UPDATE statement, the correlation
name refers to the rows you are updating. For example, when all activities of a
project must complete before September 2004, your department considers that
project to be a priority project. You can use the following SQL statement to
evaluate the projects in the DSN8810.PROJ table, and write a 1 (a flag to indicate
PRIORITY) in the PRIORITY column (a column you have added to DSN8810.PROJ
for this purpose) for each priority project:
UPDATE DSN8810.PROJ X
SET PRIORITY = 1
WHERE DATE(’2004-09-01’) >

(SELECT MAX(ACENDATE)
FROM DSN8810.PROJACT
WHERE PROJNO = X.PROJNO);

As DB2 examines each row in the DSN8810.PROJ table, it determines the
maximum activity end date (the ACENDATE column) for all activities of the
project (from the DSN8810.PROJACT table). If the end date of each activity
associated with the project is before September 2004, the current row in the
DSN8810.PROJ table qualifies and DB2 updates it.

Chapter 4. Using subqueries 55



Using correlated subqueries in a DELETE statement
When you use a correlated subquery in a DELETE statement, the correlation name
represents the row you delete. DB2 evaluates the correlated subquery once for each
row in the table that is named in the DELETE statement to decide whether or not
to delete the row.

Using tables with no referential constraints
Suppose that a department considers a project to be complete when the combined
amount of time currently spent on it is half a person's time or less. The department
then deletes the rows for that project from the DSN8810.PROJ table. In the
examples in this section, PROJ and PROJACT are independent tables; that is, they
are separate tables with no referential constraints defined on them.
DELETE FROM DSN8810.PROJ X

WHERE .5 >
(SELECT SUM(ACSTAFF)

FROM DSN8810.PROJACT
WHERE PROJNO = X.PROJNO);

To process this statement, DB2 determines for each project (represented by a row in
the DSN8810.PROJ table) whether or not the combined staffing for that project is
less than 0.5. If it is, DB2 deletes that row from the DSN8810.PROJ table.

To continue this example, suppose DB2 deletes a row in the DSN8810.PROJ table.
You must also delete rows related to the deleted project in the DSN8810.PROJACT
table. To do this, use:
DELETE FROM DSN8810.PROJACT X

WHERE NOT EXISTS
(SELECT *

FROM DSN8810.PROJ
WHERE PROJNO = X.PROJNO);

DB2 determines, for each row in the DSN8810.PROJACT table, whether a row with
the same project number exists in the DSN8810.PROJ table. If not, DB2 deletes the
row in DSN8810.PROJACT.

Using a single table
A subquery of a searched DELETE statement (a DELETE statement that does not
use a cursor) can reference the same table from which rows are deleted. In the
following statement, which deletes the employee with the highest salary from each
department, the employee table appears in the outer DELETE and in the subselect:
DELETE FROM YEMP X

WHERE SALARY = (SELECT MAX(SALARY) FROM YEMP Y
WHERE X.WORKDEPT =Y.WORKDEPT);

This example uses a copy of the employee table for the subquery.

The following statement, without a correlated subquery, yields equivalent results:
DELETE FROM YEMP

WHERE (SALARY, WORKDEPT) IN (SELECT MAX(SALARY), WORKDEPT
FROM YEMP
GROUP BY WORKDEPT);

Using tables with referential constraints
DB2 restricts delete operations for dependent tables that are involved in referential
constraints. If a DELETE statement has a subquery that references a table that is
involved in the deletion, the last delete rule in the path to that table must be
RESTRICT or NO ACTION if the result of the subquery is not materialized before

56 Application Programming and SQL Guide

|



the deletion occurs. However, if the result of the subquery is materialized before
the deletion, the delete rule can also be CASCADE or SET NULL.

Example: Without referential constraints, the following statement deletes
departments from the department table whose managers are not listed correctly in
the employee table:
DELETE FROM DSN8810.DEPT THIS

WHERE NOT DEPTNO =
(SELECT WORKDEPT

FROM DSN8810.EMP
WHERE EMPNO = THIS.MGRNO);

With the referential constraints that are defined for the sample tables, this
statement causes an error because the result table for the subquery is not
materialized before the deletion occurs. The deletion involves the table that is
referred to in the subquery (DSN8810.EMP is a dependent table of DSN8810.DEPT)
and the last delete rule in the path to EMP is SET NULL, not RESTRICT or NO
ACTION. If the statement could execute, its results would depend on the order in
which DB2 accesses the rows. Therefore, DB2 prohibits the deletion. See
“Materialization” on page 836 for more information about materialization.

Chapter 4. Using subqueries 57

|
|

|
|



58 Application Programming and SQL Guide



Chapter 5. Using SPUFI to execute SQL from your workstation

This chapter explains how to enter and execute SQL statements at a TSO
workstation by using the SPUFI (SQL processor using file input) facility. This
chapter contains the following sections:
v “Allocating an input data set and using SPUFI”
v “Changing SPUFI defaults” on page 62
v “Entering SQL statements ” on page 66
v “Processing SQL statements ” on page 68
v “When SQL statements exceed resource limit thresholds” on page 68
v “Browsing the output ” on page 69

You can execute most of the interactive SQL examples shown in Part 1, “Using SQL
queries,” on page 1 by following the instructions provided in this chapter and
using the sample tables shown in Appendix A, “DB2 sample tables,” on page 995.
The instructions assume that ISPF is available to you.

You can use the TSO PROFILE command to control whether message IDs are
displayed. To view message IDs, type TSO PROFILE MSGID on the ISPF command
line. To suppress message IDs, type TSO PROFILE NOMSGID.

Allocating an input data set and using SPUFI
Before you use SPUFI, you should allocate an input data set, if one does not
already exist. This data set will contain one or more SQL statements that you want
to execute. For information on ISPF and allocating data sets, see z/OS ISPF User's
Guide Volumes 1 and 2.

To use SPUFI, select SPUFI from the DB2I Primary Option Menu as shown in
Figure 152 on page 520

The SPUFI panel then displays as shown in Figure 3 on page 60.

From then on, when the SPUFI panel displays, the data entry fields on the panel
contain the values that you previously entered. You can specify data set names and
processing options each time the SPUFI panel displays, as needed. Values that you
do not change remain in effect.

© Copyright IBM Corp. 1983, 2012 59

#
#
#



Fill out the SPUFI panel. You can access descriptions for each of the fields in the
panel in the DB2I help system. See “DB2I help” on page 519 for more information
about the DB2I help system. The following descriptions explain the information
that you need to provide on the SPUFI panel.

1,2,3 INPUT DATA SET NAME
Identify the input data set in fields 1 through 3. This data set contains one
or more SQL statements that you want to execute. Allocate this data set
before you use SPUFI, if one does not already exist. Consider the following
rules:
v The name of the data set must conform to standard TSO naming

conventions.
v The data set can be empty before you begin the session. You can then

add the SQL statements by editing the data set from SPUFI.
v The data set can be either sequential or partitioned, but it must have the

following DCB characteristics:
– A record format (RECFM) of either F or FB.
– A logical record length (LRECL) of either 79 or 80. Use 80 for any

data set that the EXPORT command of DB2 QMF did not create.
v Data in the data set can begin in column 1. It can extend to column 71 if

the logical record length is 79, and to column 72 if the logical record
length is 80. SPUFI assumes that the last 8 bytes of each record are for
sequence numbers.

If you use this panel a second time, the name of the data set you
previously used displays in the field DATA SET NAME. To create a new
member of an existing partitioned data set, change only the member name.

4 OUTPUT DATA SET NAME
Enter the name of a data set to receive the output of the SQL statement.
You do not need to allocate the data set before you do this.

If the data set exists, the new output replaces its content. If the data set
does not exist, DB2 allocates a data set on the device type specified on the
CURRENT SPUFI DEFAULTS panel and then catalogs the new data set.
The device must be a direct-access storage device, and you must be
authorized to allocate space on that device.

DSNESP01 SPUFI SSID: DSN
===>
Enter the input data set name: (Can be sequential or partitioned)
1 DATA SET NAME..... ===> EXAMPLES(XMP1)
2 VOLUME SERIAL..... ===> (Enter if not cataloged)
3 DATA SET PASSWORD. ===> (Enter if password protected)

Enter the output data set name: (Must be a sequential data set)
4 DATA SET NAME..... ===> RESULT

Specify processing options:
5 CHANGE DEFAULTS... ===> Y (Y/N - Display SPUFI defaults panel?)
6 EDIT INPUT........ ===> Y (Y/N - Enter SQL statements?)
7 EXECUTE........... ===> Y (Y/N - Execute SQL statements?)
8 AUTOCOMMIT........ ===> Y (Y/N - Commit after successful run?)
9 BROWSE OUTPUT..... ===> Y (Y/N - Browse output data set?)

For remote SQL processing:
10 CONNECT LOCATION ===>

PRESS: ENTER to process END to exit HELP for more information

Figure 3. The SPUFI panel filled in

60 Application Programming and SQL Guide

|
|
|
|



Attributes required for the output data set are:
v Organization: sequential
v Record format: F, FB, FBA, V, VB, or VBA
v Record length: 80 to 32768 bytes, not less than the input data set

Figure 3 on page 60 shows the simplest choice, entering RESULT. SPUFI
allocates a data set named userid.RESULT and sends all output to that data
set. If a data set named userid.RESULT already exists, SPUFI sends DB2
output to it, replacing all existing data.

5 CHANGE DEFAULTS
Allows you to change control values and characteristics of the output data
set and format of your SPUFI session. If you specify Y(YES) you can look
at the SPUFI defaults panel. See “Changing SPUFI defaults” on page 62 for
more information about the values you can specify and how they affect
SPUFI processing and output characteristics. You do not need to change
the SPUFI defaults for this example.

6 EDIT INPUT
To edit the input data set, leave Y(YES) on line 6. You can use the ISPF
editor to create a new member of the input data set and enter SQL
statements in it. (To process a data set that already contains a set of SQL
statements you want to execute immediately, enter N (NO). Specifying N
bypasses the step described in “Entering SQL statements ” on page 66.)

7 EXECUTE
To execute SQL statements contained in the input data set, leave Y(YES) on
line 7.

SPUFI handles the SQL statements that can be dynamically prepared. For a
list of those SQL statements, see Appendix H, “Characteristics of SQL
statements in DB2 UDB for z/OS,” on page 1117.

8 AUTOCOMMIT
To make changes to the DB2 data permanent, leave Y(YES) on line 8.
Specifying Y makes SPUFI issue COMMIT if all statements execute
successfully. If all statements do not execute successfully, SPUFI issues a
ROLLBACK statement, which deletes changes already made to the file
(back to the last commit point). For information about the COMMIT and
ROLLBACK functions, see “Unit of work in TSO batch and online” on
page 432 or Chapter 5 of DB2 SQL Reference.

If you specify N, DB2 displays the SPUFI COMMIT OR ROLLBACK panel
after it executes the SQL in your input data set. That panel prompts you to
COMMIT, ROLLBACK, or DEFER any updates made by the SQL. If you
enter DEFER, you neither commit nor roll back your changes.

9 BROWSE OUTPUT
To look at the results of your query, leave Y(YES) on line 9. SPUFI saves
the results in the output data set. You can look at them at any time, until
you delete or write over the data set. For more information, see “Format of
SELECT statement results ” on page 70.

10 CONNECT LOCATION
Specify the name of the database server, if applicable, to which you want
to submit SQL statements. SPUFI then issues a type 2 CONNECT
statement to this server.

Chapter 5. Using SPUFI to execute SQL from your workstation 61



SPUFI is a locally bound package. SQL statements in the input data set can
process only if the CONNECT statement is successful. If the connect
request fails, the output data set contains the resulting SQL return codes
and error messages.

Important: Ensure that the TSO terminal CCSID matches the DB2 CCSID. If these
CCSIDs do not match, data corruption can occur. If SPUFI issues the warning
message DSNE345I, terminate your SPUFI session and notify the system
administrator.

Changing SPUFI defaults
When you finish with the SPUFI panel, press the ENTER key. If you specified YES
on line 5 of the SPUFI panel, the next panel you see is the SPUFI Defaults panel.
SPUFI provides default values the first time you use SPUFI, for all options except
the DB2 subsystem name. Any changes that you make to these values remain in
effect until you change the values again. Figure 4 shows the initial default values.

If you want to change the current default values, specify new values in the fields
of the panel. All fields must contain a value. The DB2I help system contains
detailed descriptions of each of the fields of the CURRENT SPUFI DEFAULTS
panel.The following descriptions explain the information you need to provide on
the CURRENT SPUFI DEFAULTS panel.

1 SQL TERMINATOR
Allows you to specify the character that you use to end each SQL
statement. You can specify any character except the characters listed in
Table 3. A semicolon (;) is the default SQL terminator.

Table 3. Invalid special characters for the SQL terminator

Name Character
Hexadecimal

representation

blank X'40'

comma , X'5E'

DSNESP02 CURRENT SPUFI DEFAULTS SSID: DSN
===>
Enter the following to control your SPUFI session:
1 SQL TERMINATOR ===> ; (SQL Statement Terminator)
2 ISOLATION LEVEL ===> RR (RR=Repeatable Read, CS=Cursor Stability)
3 MAX SELECT LINES ===> 250 (Maximum lines to be returned from a SELECT)
4 ALLOW SQL WARNINGS===> NO (Continue fetching after SQL warning)
5 CHANGE PLAN NAMES ===> NO (Change the plan names used by SPUFI)
Output data set characteristics:
6 RECORD LENGTH ... ===> 4092 (LRECL= logical record length)
7 BLOCKSIZE ....... ===> 4096 (Size of one block)
8 RECORD FORMAT.... ===> VB (RECFM= F, FB, FBA, V, VB, or VB)
9 DEVICE TYPE...... ===> SYSDA (Must be a DASD unit name)

Output format characteristics:
10 MAX NUMERIC FIELD ===> 33 (Maximum width for numeric field)
11 MAX CHAR FIELD .. ===> 80 (Maximum width for character field)
12 COLUMN HEADING .. ===> NAMES (NAMES, LABELS, ANY, or BOTH)

PRESS: ENTER to process END to exit HELP for more information

Figure 4. The SPUFI defaults panel

62 Application Programming and SQL Guide

#
#

#
#
#
#

|
|
|



Table 3. Invalid special characters for the SQL terminator (continued)

Name Character
Hexadecimal

representation

double quote " X'7F'

left parenthesis ( X'4D'

right parenthesis ) X'5D'

single quote ' X'7D'

underscore _ X'6D'

Use a character other than a semicolon if you plan to execute a statement
that contains embedded semicolons. For example, suppose you choose the
character # as the statement terminator. Then a CREATE TRIGGER
statement with embedded semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like
the following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

LANGUAGE SQL
BEGIN

DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;

END #

Be careful to choose a character for the SQL terminator that is not used
within the statement.

You can also set or change the SQL terminator within a SPUFI input data
set by using the --#SET TERMINATOR statement. See “Entering SQL
statements ” on page 66 for details.

2 ISOLATION LEVEL
Allows you to specify the isolation level for your SQL statements. See “The
ISOLATION option” on page 412 for more information.

3 MAX SELECT LINES
The maximum number of output lines that a SELECT statement can return.
To limit the number of rows retrieved, enter another maximum number
greater than 1.

4 ALLOW SQL WARNINGS
Enter NO (the default) or YES to indicate whether SPUFI will continue to
process an SQL statement after receiving SQL warnings:

NO If a warning occurs when SPUFI executes an OPEN or FETCH for
a SELECT statement, SPUFI stops processing the SELECT
statement. If SQLCODE +802 occurs when SPUFI executes a
FETCH for a SELECT statement, SPUFI continues to process the
SELECT statement.

Chapter 5. Using SPUFI to execute SQL from your workstation 63

#
#

#
#
#
#
#
#
#
#

#
#
#

##
#
#
#
#



YES If a warning occurs when SPUFI executes an OPEN or FETCH for
a SELECT statement, SPUFI continues to process the SELECT
statement.

5 CHANGE PLAN NAMES
If you enter YES in this field, you can change plan names on a subsequent
SPUFI defaults panel, DSNESP07. Enter YES in this field only if you are
certain that you want to change the plan names that are used by SPUFI.
Consult with your DB2 system administrator if you are uncertain whether
you want to change the plan names. Using an invalid or incorrect plan
name might cause SPUFI to experience operational errors or it might cause
data contamination.

6 RECORD LENGTH
The record length must be at least 80 bytes. The maximum record length
depends on the device type you use. The default value allows a 4092-byte
record.

Each record can hold a single line of output. If a line is longer than a
record, the output is truncated, and SPUFI discards fields that extend
beyond the record length.

7 BLOCKSIZE
Follow the normal rules for selecting the block size. For record format F,
the block size is equal to the record length. For FB and FBA, choose a
block size that is an even multiple of LRECL. For VB and VBA only, the
block size must be 4 bytes larger than the block size for FB or FBA.

8 RECORD FORMAT
Specify F, FB, FBA, V, VB, or VBA. FBA and VBA formats insert a printer
control character after the number of lines specified in the LINES/PAGE
OF LISTING field on the DB2I Defaults panel. The record format default is
VB (variable-length blocked).

9 DEVICE TYPE
Allows you to specify a standard z/OS name for direct-access storage
device types. The default is SYSDA. SYSDA specifies that z/OS is to select
an appropriate direct access storage device.

10 MAX NUMERIC FIELD
The maximum width of a numeric value column in your output. Choose a
value greater than 0. The default is 33. For more information, see “Format
of SELECT statement results ” on page 70.

11 MAX CHAR FIELD
The maximum width of a character value column in your output.
DATETIME and GRAPHIC data strings are externally represented as
characters, and SPUFI includes their defaults with the default values for
character fields. Choose a value greater than 0. The IBM-supplied default is
80. For more information, see “Format of SELECT statement results ” on
page 70.

12 COLUMN HEADING
You can specify NAMES, LABELS, ANY, or BOTH for column headings.
v NAMES (default) uses column names only.
v LABELS uses column labels. Leave the title blank if no label exists.
v ANY uses existing column labels or column names.
v BOTH creates two title lines, one with names and one with labels.

Column names are the column identifiers that you can use in SQL
statements. If an SQL statement has an AS clause for a column, SPUFI

64 Application Programming and SQL Guide

##
#
#

#
#
#
#
#
#
#
#



displays the contents of the AS clause in the heading, rather than the
column name. You define column labels with LABEL statements.

When you have entered your SPUFI options, press the ENTER key to continue.
SPUFI then processes the next processing option for which you specified YES. If all
other processing options are NO, SPUFI displays the SPUFI panel.

If you press the END key, you return to the SPUFI panel, but you lose all the
changes you made on the SPUFI Defaults panel. If you press ENTER, SPUFI saves
your changes.

Changing SPUFI defaults - panel 2
If you specify YES on line 5 of the SPUFI Defaults panel, the next panel that you
see is the second SPUFI Defaults panel.Figure 5 shows the initial default values.

Specify values for the following options on the CURRENT SPUFI DEFAULTS -
PANEL 2 panel. All fields must contain a value. Using an invalid or incorrect plan
name might cause SPUFI to experience operational errors or it might cause data
contamination.

1 CS ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of cursor stability (CS). By default, this name is DSNESPCS.

2 RR ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of repeatable read (RR). By default, this name is DSNESPRR.

3 BLANK CCSID ALERT
Indicate whether to receive message DSNE345I when the terminal CCSID
setting is blank. A blank terminal CCSID setting occurs when the terminal
code page and character set cannot be queried or if they are not supported
by ISPF.

DSNESP07 CURRENT SPUFI DEFAULTS - PANEL 2 SSID: DSN
===>
DO NOT CHANGE THE FIELDS BELOW UNLESS DIRECTED BY THE DB2 SYSTEM ADMINISTRATOR
Change plans to be used by your SPUFI session:
1 CS ISOLATION PLAN ===> DSNESPC (Name of plan for CS isolation level)
2 RR ISOLATION PLAN ===> DSNESPC (Name of plan for RR isolation level)

Indicate warning message status:
3 BLANK CCSID WARNING ===> YES (Show warning if terminal CCSID is blank)

PRESS: ENTER to process END to exit HELP for more information

Figure 5. CURRENT SPUFI DEFAULTS - PANEL 2

Chapter 5. Using SPUFI to execute SQL from your workstation 65

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#

#

#
#
#

#
#
#
#

#
#
#

#
#
#

#
#
#
#
#



Recommendation: To avoid possible data contamination use the default
setting of YES, unless you are specifically directed by your DB2 system
administrator to use NO.

Entering SQL statements
Next, SPUFI lets you edit the input data set. Initially, editing consists of entering
an SQL statement into the input data set. You can also edit an input data set that
contains SQL statements and you can change, delete, or insert SQL statements.

Using the ISPF editor
The ISPF Editor shows you an empty EDIT panel.

On the panel, use the ISPF EDIT program to enter SQL statements that you want
to execute, as shown in Figure 6.

Move the cursor to the first input line and enter the first part of an SQL statement.
You can enter the rest of the SQL statement on subsequent lines, as shown in
Figure 6. Indenting your lines and entering your statements on several lines make
your statements easier to read, without changing how your statements process.

You can put more than one SQL statement in the input data set. You can put an
SQL statement on one line of the input data set or on more than one line. DB2
executes the statements in the order you placed them in the data set. Do not put
more than one SQL statement on a single line. The first one executes, but DB2
ignores the other SQL statements on the same line.

In your SPUFI input data set, end each SQL statement with the statement
terminator that you specified in the CURRENT SPUFI DEFAULTS panel.

When you have entered your SQL statements, press the END PF key to save the
file and to execute the SQL statements.

Pressing the END PF key saves the data set. You can save the data set and continue
editing it by entering the SAVE command. Saving the data set after every 10
minutes or so of editing is recommended.

Figure 6 shows what the panel looks like if you enter the sample SQL statement,
followed by a SAVE command.

You can bypass the editing step by resetting the EDIT INPUT processing option:
EDIT INPUT ... ===> NO

EDIT --------userid.EXAMPLES(XMP1) --------------------- COLUMNS 001 072
COMMAND INPUT ===> SAVE SCROLL ===> PAGE
********************************** TOP OF DATA ***********************
000100 SELECT LASTNAME, FIRSTNME, PHONENO
000200 FROM DSN8810.EMP
000300 WHERE WORKDEPT= ’D11’
000400 ORDER BY LASTNAME;
********************************* BOTTOM OF DATA *********************

Figure 6. The edit panel: After entering an SQL statement

66 Application Programming and SQL Guide

#
#
#



Retrieving Unicode UTF-16 graphic data
7SPUFI can be used to retrieve Unicode UTF-16 graphic data. However, SPUFI
might not be able to display some characters, if those characters have no mapping
in the target SBCS EBCDIC CCSID.

Entering comments
You can put comments about SQL statements either on separate lines or on the
same line. In either case, use two hyphens (--) to begin a comment. Specify any
text other than #SET TERMINATOR or #SET TOLWARN after the comment. DB2
ignores everything to the right of the two hyphens.

Setting the SQL terminator character
Use the text --#SET TERMINATOR character in a SPUFI input data set as an
instruction to SPUFI to interpret character as a statement terminator. A semicolon (;)
is the default SQL terminator. You can specify any single-byte character except one
of the characters that are listed in . The terminator that you specify overrides a
terminator that you specified in option 1 of the CURRENT SPUFI DEFAULTS
panel or in a previous --#SET TERMINATOR statement.

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons. For example, suppose you choose the character #
as the statement terminator. Then a CREATE TRIGGER statement with embedded
semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

Be careful to choose a character for the SQL terminator that is not used within the
statement.

Controlling toleration of warnings
When you use SPUFI, you can control the toleration of warnings with the control
statement TOLWARN:

--#SET TOLWARN NO
If a warning occurs when SPUFI executes an OPEN or FETCH for SELECT
statement, SPUFI stops processing the SELECT statement. If SQLCODE
+802 occurs when SPUFI executes a FETCH for a SELECT statement,
SPUFI continues to process the SELECT statement.

--#SET TOLWARN YES
If a warning occurs when SPUFI executes an OPEN or FETCH for SELECT
statement, SPUFI continues to process the SELECT statement.

Example: The following example activates and then deactivates toleration of SQL
warnings:
SELECT * FROM MY.T1;
--#SET TOLWARN YES
SELECT * FROM YOUR.T1;
--#SET TOLWARN NO

Chapter 5. Using SPUFI to execute SQL from your workstation 67

#

#
#
#

#
#
#
#

#

#
#

#
#
#
#
#

#
#
#

#
#

#
#
#
#



Processing SQL statements

SPUFI passes the input data set to DB2 for processing. DB2 executes the SQL
statement in the input data set EXAMPLES(XMP1), and sends the output to the
output data set userid.RESULT.

You can bypass the DB2 processing step by resetting the EXECUTE processing
option:
EXECUTE ..... ===> NO

Your SQL statement might take a long time to execute, depending on how large a
table DB2 must search, or on how many rows DB2 must process. To interrupt
DB2's processing, press the PA1 key and respond to the prompting message that
asks you if you really want to stop processing. This cancels the executing SQL
statement and returns you to the ISPF-PDF menu.

What happens to the output data set? This depends on how much of the input
data set DB2 was able to process before you interrupted its processing. DB2 might
not have opened the output data set yet, or the output data set might contain all or
part of the results data that are produced so far.

When SQL statements exceed resource limit thresholds
Your system administrator might use the DB2 resource limit facility (governor) to
set time limits for processing SQL statements in SPUFI. Those limits can be error
limits or warning limits.

If you execute an SQL statement through SPUFI that runs longer than the error
time limit for predictive or reactive governing, SPUFI terminates processing of that
SQL statement and all statements that follow in the SPUFI input data set.
However, SPUFI displays a panel that lets you commit or roll back the previously
uncommitted changes that you have made. That panel is shown in Figure 7.

DSNESP04 SQL STATEMENT RESOURCE LIMIT EXCEEDED SSID: DSN
===>

The following SQL statement has encountered an SQLCODE of -905 or -495:

Statement text

Your SQL statement has exceeded the resource utilization threshold set
by your site administrator.

You must ROLLBACK or COMMIT all the changes made since the last COMMIT.
SPUFI processing for the current input file will terminate immediately
after the COMMIT or ROLLBACK is executed.

1 NEXT ACTION ===> (Enter COMMIT or ROLLBACK)

PRESS: ENTER to process HELP for more information

Figure 7. The resource limit facility error panel

68 Application Programming and SQL Guide

#



If you execute an SQL statement through SPUFI that runs longer than the warning
time limit for predictive governing, SPUFI displays a panel that lets you tell DB2
to continue executing that statement, or stop processing that statement and
continue to the next statement in the SPUFI input data set. That panel is shown in
Figure 8.

For information on the DB2 governor and how to set error and warning time
limits, see Part 5 (Volume 2) of DB2 Administration Guide.

Browsing the output
SPUFI formats and displays the output data set using the ISPF Browse program.
Figure 9 on page 70 shows the output from the sample program. An output data
set contains these items for each SQL statement that DB2 executes:
v The executed SQL statement, copied from the input data set
v The results of executing the SQL statement
v The formatted SQLCA, if an error occurs during statement execution

At the end of the data set are summary statistics that describe the processing of the
input data set as a whole.

For SELECT statements executed with SPUFI, the message “SQLCODE IS 100”
indicates an error-free result. If the message SQLCODE IS 100 is the only result,
DB2 is unable to find any rows that satisfy the condition specified in the statement.

For all other types of SQL statements executed with SPUFI, the message
“SQLCODE IS 0” indicates an error-free result.

DSNESP05 SQL STATEMENT RESOURCE LIMIT EXCEEDED SSID: DSN
===>

The following SQL statement has encountered an SQLCODE of 495:

Statement text

You can now either CONTINUE executing this statement or BYPASS the execution
of this statement. SPUFI processing for the current input file will continue
after the CONTINUE or BYPASS processing is completed.

1 NEXT ACTION ===> (Enter CONTINUE or BYPASS)

PRESS: ENTER to process HELP for more information

Figure 8. The resource limit facility warning panel

Chapter 5. Using SPUFI to execute SQL from your workstation 69



Format of SELECT statement results
The results of SELECT statements follow these rules:
v If a column's numeric or character data cannot display completely:

– Character values that are too wide truncate on the right.
– Numeric values that are too wide display as asterisks (*).
– For columns other than LOB columns, if truncation occurs, the output data

set contains a warning message. Because LOB columns are generally longer
than the value you choose for field MAX CHAR FIELD on panel CURRENT
SPUFI DEFAULTS, SPUFI displays no warning message when it truncates
LOB column output.

You can change the amount of data displayed for numeric and character
columns by changing values on the CURRENT SPUFI DEFAULTS panel, as
described in “Changing SPUFI defaults” on page 62.

v A null value displays as a series of hyphens (-).
v A ROWID or BLOB column value displays in hexadecimal.
v A CLOB column value displays in the same way as a VARCHAR column value.
v A DBCLOB column value displays in the same way as a VARGRAPHIC column

value.
v A heading identifies each selected column, and repeats at the top of each output

page. The contents of the heading depend on the value you specified in field
COLUMN HEADING of the CURRENT SPUFI DEFAULTS panel.

BROWSE-- userid.RESULT COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===> PAGE
--------+---------+---------+---------+---------+---------+---------+---------+
SELECT LASTNAME, FIRSTNME, PHONENO 00010000
FROM DSN8810.EMP 00020000
WHERE WORKDEPT = ’D11’ 00030000
ORDER BY LASTNAME; 00040000

---------+---------+---------+---------+---------+---------+---------+---------+
LASTNAME FIRSTNME PHONENO
ADAMSON BRUCE 4510
BROWN DAVID 4501
JOHN REBA 0672
JONES WILLIAM 0942
LUTZ JENNIFER 0672
PIANKA ELIZABETH 3782
SCOUTTEN MARILYN 1682
STERN IRVING 6423
WALKER JAMES 2986
YAMAMOTO KIYOSHI 2890
YOSHIMURA MASATOSHI 2890
DSNE610I NUMBER OF ROWS DISPLAYED IS 11
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+----
---------+---------+---------+---------+---------+---------+----
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+----
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 1
DSNE621I NUMBER OF INPUT RECORDS READ IS 4
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 30

Figure 9. Result data set from the sample problem

70 Application Programming and SQL Guide



Content of the messages
Each message contains the following:
v The SQLCODE, if the statement executes successfully
v The formatted SQLCA, if the statement executes unsuccessfully
v What character positions of the input data set that SPUFI scanned to find SQL

statements. This information helps you check the assumptions SPUFI made
about the location of line numbers (if any) in your input data set.

v Some overall statistics:
– Number of SQL statements processed
– Number of input records read (from the input data set)
– Number of output records written (to the output data set).

Other messages that you could receive from the processing of SQL statements
include:
v The number of rows that DB2 processed, that either:

– Your SELECT statement retrieved
– Your UPDATE statement modified
– Your INSERT statement added to a table
– Your DELETE statement deleted from a table

v Which columns display truncated data because the data was too wide

Chapter 5. Using SPUFI to execute SQL from your workstation 71



72 Application Programming and SQL Guide



Part 2. Coding SQL in your host application program
Chapter 6. Basics of coding SQL in an application program . . . . . . . . . . . . . . . . . . 77
Conventions used in examples of coding SQL statements . . . . . . . . . . . . . . . . . . . . 78
Delimiting an SQL statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Declaring table and view definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Accessing data using host variables, variable arrays, and structures . . . . . . . . . . . . . . . . 79

Using host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Retrieving a single row of data into host variables . . . . . . . . . . . . . . . . . . . . 81
Updating data using values in host variables . . . . . . . . . . . . . . . . . . . . . . 82
Inserting data from column values that use host variables . . . . . . . . . . . . . . . . . . 83
Using indicator variables with host variables . . . . . . . . . . . . . . . . . . . . . . 83
Assignments and comparisons using different data types . . . . . . . . . . . . . . . . . . 85
Changing the coded character set ID of host variables . . . . . . . . . . . . . . . . . . . 85

Using host variable arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Retrieving multiple rows of data into host variable arrays . . . . . . . . . . . . . . . . . . 87
Inserting multiple rows of data from host variable arrays . . . . . . . . . . . . . . . . . . 87
Using indicator variable arrays with host variable arrays . . . . . . . . . . . . . . . . . . 87

Using host structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Retrieving a single row of data into a host structure . . . . . . . . . . . . . . . . . . . . 90
Using indicator variables with host structures . . . . . . . . . . . . . . . . . . . . . . 90

Checking the execution of SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . 91
Using the SQL communication area (SQLCA) . . . . . . . . . . . . . . . . . . . . . . . 91
SQLCODE and SQLSTATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
The WHENEVER statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Handling arithmetic or conversion errors . . . . . . . . . . . . . . . . . . . . . . . . 93
The GET DIAGNOSTICS statement . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Retrieving statement and condition items . . . . . . . . . . . . . . . . . . . . . . . 94
Data types for GET DIAGNOSTICS items . . . . . . . . . . . . . . . . . . . . . . . 95

Calling DSNTIAR to display SQLCA fields . . . . . . . . . . . . . . . . . . . . . . . . 98
Defining a message output area . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Possible return codes from DSNTIAR . . . . . . . . . . . . . . . . . . . . . . . . 100
Preparing to use DSNTIAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A scenario for using DSNTIAR . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 7. Using a cursor to retrieve a set of rows. . . . . . . . . . . . . . . . . . . . . 103
Accessing data by using a row-positioned cursor . . . . . . . . . . . . . . . . . . . . . . 103

Step 1: Declare the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Step 2: Open the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Step 3: Specify what to do at end-of-data . . . . . . . . . . . . . . . . . . . . . . . . 105
Step 4: Execute SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Using FETCH statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Using positioned UPDATE statements . . . . . . . . . . . . . . . . . . . . . . . . 107
Using positioned DELETE statements . . . . . . . . . . . . . . . . . . . . . . . . 107

Step 5: Close the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Accessing data by using a rowset-positioned cursor . . . . . . . . . . . . . . . . . . . . . 108

Step 1: Declare the rowset cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Step 2: Open the rowset cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Step 3: Specify what to do at end-of-data for a rowset cursor . . . . . . . . . . . . . . . . . 109
Step 4: Execute SQL statements with a rowset cursor . . . . . . . . . . . . . . . . . . . . 109

Using a multiple-row FETCH statement with host variable arrays . . . . . . . . . . . . . . . 109
Using a multiple-row FETCH statement with a descriptor . . . . . . . . . . . . . . . . . 109
Using rowset-positioned UPDATE statements. . . . . . . . . . . . . . . . . . . . . . 111
Using rowset-positioned DELETE statements . . . . . . . . . . . . . . . . . . . . . . 112
Number of rows in a rowset . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Step 5: Close the rowset cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Types of cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Scrollable and non-scrollable cursors. . . . . . . . . . . . . . . . . . . . . . . . . . 113

© Copyright IBM Corp. 1983, 2012 73

||
||
||
||

||
||
||

||
||
||
||
||
||
||
||
||
||
||



Using a non-scrollable cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Using a scrollable cursor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Comparison of scrollable cursors . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Holes in the result table of a scrollable cursor . . . . . . . . . . . . . . . . . . . . . 119

Held and non-held cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Examples of using cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 8. Generating declarations for your tables using DCLGEN . . . . . . . . . . . . . . . 131
Invoking DCLGEN through DB2I . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Including the data declarations in your program . . . . . . . . . . . . . . . . . . . . . . 136
DCLGEN support of C, COBOL, and PL/I languages . . . . . . . . . . . . . . . . . . . . . 136
Example: Adding a table declaration and host-variable structure to a library . . . . . . . . . . . . . 138

Step 1. Specify COBOL as the host language . . . . . . . . . . . . . . . . . . . . . . . 138
Step 2. Create the table declaration and host structure . . . . . . . . . . . . . . . . . . . . 139
Step 3. Examine the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Chapter 9. Embedding SQL statements in host languages . . . . . . . . . . . . . . . . . . 143
Coding SQL statements in an assembler application . . . . . . . . . . . . . . . . . . . . . 143

Defining the SQL communications area. . . . . . . . . . . . . . . . . . . . . . . . . 143
If you specify STDSQL(YES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
If you specify STDSQL(NO) . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Using host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Determining equivalent SQL and assembler data types . . . . . . . . . . . . . . . . . . . 151

Notes on assembler variable declaration and usage . . . . . . . . . . . . . . . . . . . . 154
Determining compatibility of SQL and assembler data types. . . . . . . . . . . . . . . . . . 155
Using indicator variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Macros for assembler applications . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Coding SQL statements in a C or C++ application . . . . . . . . . . . . . . . . . . . . . . 158
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 158

If you specify STDSQL(YES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
If you specify STDSQL(NO) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Using host variables and host variable arrays. . . . . . . . . . . . . . . . . . . . . . . 161
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Declaring host variable arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Using host structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Determining equivalent SQL and C data types . . . . . . . . . . . . . . . . . . . . . . 175

Notes on C variable declaration and usage . . . . . . . . . . . . . . . . . . . . . . 179
Notes on syntax differences for constants . . . . . . . . . . . . . . . . . . . . . . . 180

Determining compatibility of SQL and C data types . . . . . . . . . . . . . . . . . . . . 181
Using indicator variables and indicator variable arrays . . . . . . . . . . . . . . . . . . . 182
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Coding considerations for C and C++ . . . . . . . . . . . . . . . . . . . . . . . . . 186

Coding SQL statements in a COBOL application. . . . . . . . . . . . . . . . . . . . . . . 186
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 186

If you specify STDSQL(YES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
If you specify STDSQL(NO) . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Using host variables and host variable arrays. . . . . . . . . . . . . . . . . . . . . . . 191
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Declaring host variable arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Using host structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Determining equivalent SQL and COBOL data types . . . . . . . . . . . . . . . . . . . . 210

Notes on COBOL variable declaration and usage . . . . . . . . . . . . . . . . . . . . 212
Determining compatibility of SQL and COBOL data types . . . . . . . . . . . . . . . . . . 214

74 Application Programming and SQL Guide

||

||

||

||

||



Using indicator variables and indicator variable arrays . . . . . . . . . . . . . . . . . . . 216
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Coding considerations for object-oriented extensions in COBOL . . . . . . . . . . . . . . . . 219

Coding SQL statements in a Fortran application . . . . . . . . . . . . . . . . . . . . . . . 220
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 220

If you specify STDSQL(YES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
If you specify STDSQL(NO) . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Using host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Determining equivalent SQL and Fortran data types . . . . . . . . . . . . . . . . . . . . 225

Notes on Fortran variable declaration and usage . . . . . . . . . . . . . . . . . . . . 226
Notes on syntax differences for constants . . . . . . . . . . . . . . . . . . . . . . . 227

Determining compatibility of SQL and Fortran data types . . . . . . . . . . . . . . . . . . 227
Using indicator variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Coding SQL statements in a PL/I application . . . . . . . . . . . . . . . . . . . . . . . 230
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 230

If you specify STDSQL(YES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
If you specify STDSQL(NO) . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Embedding SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Using host variables and host variable arrays. . . . . . . . . . . . . . . . . . . . . . . 233
Declaring host variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Declaring host variable arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Using host structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Determining equivalent SQL and PL/I data types . . . . . . . . . . . . . . . . . . . . . 241

Notes on PL/I variable declaration and usage . . . . . . . . . . . . . . . . . . . . . 244
Determining compatibility of SQL and PL/I data types . . . . . . . . . . . . . . . . . . . 245
Using indicator variables and indicator variable arrays . . . . . . . . . . . . . . . . . . . 246
Handling SQL error return codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Coding SQL statements in a REXX application . . . . . . . . . . . . . . . . . . . . . . . 249
Defining the SQL communication area . . . . . . . . . . . . . . . . . . . . . . . . . 249
Defining SQL descriptor areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Accessing the DB2 REXX Language Support application programming interfaces. . . . . . . . . . . 250
Embedding SQL statements in a REXX procedure . . . . . . . . . . . . . . . . . . . . . 252
Using cursors and statement names . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Using REXX host variables and data types . . . . . . . . . . . . . . . . . . . . . . . 255

Determining equivalent SQL and REXX data types . . . . . . . . . . . . . . . . . . . . 255
Letting DB2 determine the input data type . . . . . . . . . . . . . . . . . . . . . . 255
Ensuring that DB2 correctly interprets character input data . . . . . . . . . . . . . . . . . 256
Passing the data type of an input variable to DB2 . . . . . . . . . . . . . . . . . . . . 257
Retrieving data from DB2 tables . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Using indicator variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Setting the isolation level of SQL statements in a REXX procedure. . . . . . . . . . . . . . . . 259

Chapter 10. Using constraints to maintain data integrity . . . . . . . . . . . . . . . . . . . 261
Using check constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Check constraint considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
When check constraints are enforced . . . . . . . . . . . . . . . . . . . . . . . . . 262
How check constraints set CHECK-pending status . . . . . . . . . . . . . . . . . . . . . 262

Using referential constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Parent key columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Defining a parent key and a unique index . . . . . . . . . . . . . . . . . . . . . . . . 264

Incomplete definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Recommendations for defining primary keys . . . . . . . . . . . . . . . . . . . . . . 265

Defining a foreign key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
The relationship name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Indexes on foreign keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
The FOREIGN KEY clause in ALTER TABLE . . . . . . . . . . . . . . . . . . . . . . 267

Part 2.Coding SQL in your host application program 75

||

||



Restrictions on cycles of dependent tables . . . . . . . . . . . . . . . . . . . . . . . 267
Maintaining referential integrity when using data encryption . . . . . . . . . . . . . . . . 268

Referential constraints on tables with multilevel security with row-level granularity . . . . . . . . . . 268
Using informational referential constraints. . . . . . . . . . . . . . . . . . . . . . . . . 269

Chapter 11. Using DB2-generated values as keys . . . . . . . . . . . . . . . . . . . . . 271
Using ROWID columns as keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Defining a ROWID column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Direct row access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Using identity columns as keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Defining an identity column . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Parent keys and foreign keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Using values obtained from sequence objects as keys . . . . . . . . . . . . . . . . . . . . . 275
Creating a sequence object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Referencing a sequence object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Keys across multiple tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Chapter 12. Using triggers for active data . . . . . . . . . . . . . . . . . . . . . . . . 279
Example of creating and using a trigger . . . . . . . . . . . . . . . . . . . . . . . . . 279
Parts of a trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Trigger name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Subject table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Trigger activation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Triggering event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Transition variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Transition tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Triggered action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Trigger condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Trigger body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Invoking stored procedures and user-defined functions from triggers. . . . . . . . . . . . . . . . 287
Passing transition tables to user-defined functions and stored procedures . . . . . . . . . . . . . . 288
Trigger cascading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Ordering of multiple triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Interactions between triggers and referential constraints . . . . . . . . . . . . . . . . . . . . 290
Interactions between triggers and tables that have multilevel security with row-level granularity . . . . . . 291
Creating triggers to obtain consistent results . . . . . . . . . . . . . . . . . . . . . . . . 292

76 Application Programming and SQL Guide

||
||
||

||
||
||
||
||
||
||
||
||
||
||

||



Chapter 6. Basics of coding SQL in an application program

Suppose you are writing an application program to access data in a DB2 database.
When your program executes an SQL statement, the program needs to
communicate with DB2. When DB2 finishes processing an SQL statement, DB2
sends back a return code, and your program should test the return code to
examine the results of the operation.

To communicate with DB2, you need to perform the following actions:
v Choose a method for communicating with DB2. You can use one of the

following methods:
– Static SQL
– Embedded dynamic SQL
– Open Database Connectivity (ODBC)
– JDBC application support
– SQLJ application support

This book discusses embedded SQL. See Chapter 24, “Coding dynamic SQL in
application programs,” on page 595 for a comparison of static and embedded
dynamic SQL and an extended discussion of embedded dynamic SQL.
ODBC lets you access data through ODBC function calls in your application.
You execute SQL statements by passing them to DB2 through a ODBC function
call. ODBC eliminates the need for precompiling and binding your application
and increases the portability of your application by using the ODBC interface.
If you are writing your applications in Java, you can use JDBC application
support to access DB2. JDBC is similar to ODBC but is designed specifically for
use with Java. In addition to using JDBC, you can use SQLJ application support
to access DB2. SQLJ is designed to simplify the coding of DB2 calls for Java
applications. For more information about using both JDBC and SQLJ, see DB2
Application Programming Guide and Reference for Java.

v Delimit SQL statements, as described in “Delimiting an SQL statement” on page
78.

v Declare the tables that you use, as described in “Declaring table and view
definitions” on page 79. (This is optional.)

v Declare the data items for passing data between DB2 and a host language,
according to the host language rules described in Chapter 9, “Embedding SQL
statements in host languages,” on page 143.

v Code SQL statements to access DB2 data. See “Accessing data using host
variables, variable arrays, and structures” on page 79.
For information about using the SQL language, see Part 1, “Using SQL queries,”
on page 1 and DB2 SQL Reference. Details about how to use SQL statements
within application programs are described in Chapter 9, “Embedding SQL
statements in host languages,” on page 143.

v Declare an SQL communications area (SQLCA). Alternatively, you can use the
GET DIAGNOSTICS statement to provide diagnostic information about the last
SQL statement that executed. See “Checking the execution of SQL statements”
on page 91 for more information.

In addition to these basic requirements, you should also consider the following
special topics:

© Copyright IBM Corp. 1983, 2012 77



v Cursors — Chapter 7, “Using a cursor to retrieve a set of rows,” on page 103
discusses how to use a cursor in your application program to select a set of rows
and then process the set either one row at a time or one rowset at a time.

v DCLGEN — Chapter 8, “Generating declarations for your tables using
DCLGEN,” on page 131 discusses how to use DB2's declarations generator,
DCLGEN, to obtain accurate SQL DECLARE statements for tables and views.

This section includes information about using SQL in application programs written
in assembler, C, C++, COBOL, Fortran, PL/I, and REXX.

Conventions used in examples of coding SQL statements
The SQL statements shown in this section use the following conventions:
v The SQL statement is part of a C or COBOL application program. Each SQL

example is displayed on several lines, with each clause of the statement on a
separate line.

v The use of the precompiler options APOST and APOSTSQL are assumed
(although they are not the defaults). Therefore, apostrophes (’) are used to
delimit character string literals within SQL and host language statements.

v The SQL statements access data in the sample tables provided with DB2. The
tables contain data that a manufacturing company might keep about its
employees and its current projects. For a description of the tables, see
Appendix A, “DB2 sample tables,” on page 995.

v An SQL example does not necessarily show the complete syntax of an SQL
statement. For the complete description and syntax of any of the statements
described in this book, see Chapter 5 of DB2 SQL Reference.

v Examples do not take referential constraints into account. For more information
about how referential constraints affect SQL statements, and examples of how
SQL statements operate with referential constraints, see Chapter 2, “Working
with tables and modifying data,” on page 19 and “Using referential constraints”
on page 263.

Some of the examples vary from these conventions. Exceptions are noted where
they occur.

Delimiting an SQL statement
For languages other than REXX, delimit an SQL statement in your program with
the beginning keyword EXEC SQL and a statement terminator. The terminators for
the languages that are described in this book are the following:

Language SQL Statement Terminator

Assembler End of line or end of last continued line

C and C++ Semicolon (;)

COBOL END-EXEC.

Fortran End of line or end of last continued line

PL/I Semicolon (;)

For REXX, precede the statement with EXECSQL. If the statement is in a literal
string, enclose it in single or double quotation marks.

78 Application Programming and SQL Guide



Example: Use EXEC SQL and END-EXEC. to delimit an SQL statement in a COBOL
program:
EXEC SQL

an SQL statement
END-EXEC.

Declaring table and view definitions
Before your program issues SQL statements that select, insert, update, or delete
data, you should declare the tables and views that your program accesses. To do
this, include an SQL DECLARE statement in your program.

You do not need to declare tables or views, but doing so offers advantages. One
advantage is documentation. For example, the DECLARE statement specifies the
structure of the table or view you are working with, and the data type of each
column. You can refer to the DECLARE statement for the column names and data
types in the table or view. Another advantage is that the DB2 precompiler uses
your declarations to make sure that you have used correct column names and data
types in your SQL statements. The DB2 precompiler issues a warning message
when the column names and data types do not correspond to the SQL DECLARE
statements in your program.

One way to declare a table or view is to code a DECLARE statement in the
WORKING-STORAGE SECTION or LINKAGE SECTION within the DATA
DIVISION of your COBOL program. Specify the name of the table and list each
column and its data type. When you declare a table or view, you specify
DECLARE table-name TABLE regardless of whether the table-name refers to a table
or a view.

For example, the DECLARE TABLE statement for the DSN8810.DEPT table looks
like the following DECLARE statement in COBOL:
EXEC SQL
DECLARE DSN8810.DEPT TABLE

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) )

END-EXEC.

As an alternative to coding the DECLARE statement yourself, you can use
DCLGEN, the declarations generator that is supplied with DB2. For more
information about using DCLGEN, see Chapter 8, “Generating declarations for
your tables using DCLGEN,” on page 131.

When you declare a table or view that contains a column with a distinct type,
declare that column with the source type of the distinct type, rather than with the
distinct type itself. When you declare the column with the source type, DB2 can
check embedded SQL statements that reference that column at precompile time.

Accessing data using host variables, variable arrays, and structures
You can access data by using host variables, host variable arrays, and host
structures within the SQL statements that you use in your application program.

A host variable is a data item that is declared in the host language for use within an
SQL statement. Using host variables, you can:

Chapter 6. Basics of coding SQL in an application program 79

|
|



v Retrieve data into the host variable for your application program's use
v Place data into the host variable to insert into a table or to change the contents

of a row
v Use the data in the host variable when evaluating a WHERE or HAVING clause
v Assign the value that is in the host variable to a special register, such as

CURRENT SQLID and CURRENT DEGREE
v Insert null values in columns using a host indicator variable that contains a

negative value
v Use the data in the host variable in statements that process dynamic SQL, such

as EXECUTE, PREPARE, and OPEN

A host variable array is a data array that is declared in the host language for use
within an SQL statement. Using host variable arrays, you can:
v Retrieve data into host variable arrays for your application program's use
v Place data into host variable arrays to insert rows into a table

A host structure is a group of host variables that is referred to by a single name.
You can use host structures in all host languages except REXX. Host structures are
defined by statements of the host language. You can refer to a host structure in any
context where you would refer to the list of host variables in the structure. A host
structure reference is equivalent to a reference to each of the host variables within
the structure in the order in which they are defined in the structure declaration.

This section describes:
v “Using host variables ”
v “Using host variable arrays ” on page 86
v “Using host structures ” on page 90

Using host variables
To use a host variable in an SQL statement, you can specify any valid host variable
name that is declared according to the rules of the host language, as described in
Chapter 9, “Embedding SQL statements in host languages,” on page 143. You must
declare the name of the host variable in the host program before you use it.

To optimize performance, make sure that the host language declaration maps as
closely as possible to the data type of the associated data in the database. For more
performance suggestions, see Part 6, “Additional programming techniques,” on
page 585.

You can use a host variable to represent a data value, but you cannot use it to
represent a table, view, or column name. (You can specify table, view, or column
names at run time using dynamic SQL. See Chapter 24, “Coding dynamic SQL in
application programs,” on page 595 for more information.)

Host variables follow the naming conventions of the host language. A colon (:)
must precede host variables that are used in SQL statements so DB2 can
distinguish a variable name from a column name. A colon must not precede host
variables outside of SQL statements.

For more information about declaring host variables, see the appropriate language
section:
v Assembler: “Declaring host variables” on page 148
v C and C++: “Declaring host variables” on page 162
v COBOL: “Declaring host variables” on page 192

80 Application Programming and SQL Guide

|
|

|

|



v Fortran: “Declaring host variables” on page 223
v PL/I: “Declaring host variables” on page 234
v REXX: “Using REXX host variables and data types” on page 255.

This section describes the following ways to use host variables:
v “Retrieving a single row of data into host variables”
v “Updating data using values in host variables” on page 82
v “Inserting data from column values that use host variables” on page 83
v “Using indicator variables with host variables” on page 83
v “Assignments and comparisons using different data types” on page 85
v “Changing the coded character set ID of host variables” on page 85

Retrieving a single row of data into host variables
You can use one or more host variables to specify a program data area that is to
contain the column values of a retrieved row. The INTO clause of the SELECT
statement names one or more host variables to contain the retrieved column
values. The named variables correspond one-to-one with the list of column names
in the SELECT statement.

If you do not know how many rows DB2 will return, or if you expect more than
one row to return, you must use an alternative to the SELECT ... INTO statement.
The DB2 cursor enables an application to return a set of rows and fetch either one
row at a time or one rowset at a time from the result table. For information about
using cursors, see Chapter 7, “Using a cursor to retrieve a set of rows,” on page
103.

Example: Retrieving a single row: Suppose you are retrieving the LASTNAME and
WORKDEPT column values from the DSN8810.EMP table for a particular
employee. You can define a host variable in your program to hold each column
and then name the host variables with an INTO clause, as in the following COBOL
example:
MOVE ’000110’ TO CBLEMPNO.
EXEC SQL

SELECT LASTNAME, WORKDEPT
INTO :CBLNAME, :CBLDEPT
FROM DSN8810.EMP
WHERE EMPNO = :CBLEMPNO

END-EXEC.

Note that the host variable CBLEMPNO is preceded by a colon (:) in the SQL
statement, but it is not preceded by a colon in the COBOL MOVE statement. In the
DATA DIVISION section of a COBOL program, you must declare the host
variables CBLEMPNO, CBLNAME, and CBLDEPT to be compatible with the data
types in the columns EMPNO, LASTNAME, and WORKDEPT of the
DSN8810.EMP table.

You can use a host variable to specify a value in a search condition. For this
example, you have defined a host variable CBLEMPNO for the employee number,
so that you can retrieve the name and the work department of the employee
whose number is the same as the value of the host variable, CBLEMPNO; in this
case, 000110.

If the SELECT ... INTO statement returns more than one row, an error occurs, and
any data that is returned is undefined and unpredictable.

Chapter 6. Basics of coding SQL in an application program 81



To prevent undefined and unpredictable data from being returned, you can use the
FETCH FIRST 1 ROW ONLY clause to ensure that only one row is returned. For
example:
EXEC SQL

SELECT LASTNAME, WORKDEPT
INTO :CBLNAME, :CBLDEPT
FROM DSN8810.EMP
FETCH FIRST 1 ROW ONLY

END-EXEC.

You can include an ORDER BY clause in the preceding example. This gives your
application some control over which row is returned when you use a FETCH
FIRST 1 ROW ONLY clause in a SELECT INTO statement.
EXEC SQL

SELECT LASTNAME, WORKDEPT
INTO :CBLNAME, :CBLDEPT
FROM DSN8810.EMP
ORDER BY LASTNAME
FETCH FIRST 1 ROW ONLY

END-EXEC.

When you specify both the ORDER BY clause and the FETCH FIRST clause,
ordering is done first and then the first row is returned. This means that the
ORDER BY clause determines which row is returned. If you specify both the
ORDER BY clause and the FETCH FIRST clause, ordering is performed on the
entire result set before the first row is returned.

Example: Specifying expressions in the SELECT clause: When you specify a list of
items in the SELECT clause, you can use more than the column names of tables
and views. You can request a set of column values mixed with host variable values
and constants. For example:
MOVE 4476 TO RAISE.
MOVE ’000220’ TO PERSON.
EXEC SQL

SELECT EMPNO, LASTNAME, SALARY, :RAISE, SALARY + :RAISE
INTO :EMP-NUM, :PERSON-NAME, :EMP-SAL, :EMP-RAISE, :EMP-TTL
FROM DSN8810.EMP
WHERE EMPNO = :PERSON

END-EXEC.

The following results have column headings that represent the names of the host
variables:
EMP-NUM PERSON-NAME EMP-SAL EMP-RAISE EMP-TTL
======= =========== ======= ========= =======
000220 LUTZ 29840 4476 34316

Example: Specifying summary values in the SELECT clause: You can request
summary values to be returned from aggregate functions. For example:
MOVE ’D11’ TO DEPTID.
EXEC SQL

SELECT WORKDEPT, AVG(SALARY)
INTO :WORK-DEPT, :AVG-SALARY
FROM DSN8810.EMP
WHERE WORKDEPT = :DEPTID

END-EXEC.

Updating data using values in host variables
You can set or change values in a DB2 table to the value of host variables. To do
this, use the host variable name in the SET clause of the UPDATE statement.

82 Application Programming and SQL Guide

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|



Example: Updating a single row: The following example changes an employee's
phone number:
MOVE ’4246’ TO NEWPHONE.
MOVE ’000110’ TO EMPID.
EXEC SQL

UPDATE DSN8810.EMP
SET PHONENO = :NEWPHONE
WHERE EMPNO = :EMPID

END-EXEC.

Example: Updating multiple rows: The following example gives the employees in a
particular department a salary increase of 10%:
MOVE ’D11’ TO DEPTID.
EXEC SQL

UPDATE DSN8810.EMP
SET SALARY = 1.10 * SALARY
WHERE WORKDEPT = :DEPTID

END-EXEC.

Inserting data from column values that use host variables
You can insert a single row of data into a DB2 table by using the INSERT
statement with column values in the VALUES clause. A column value can be a host
variable, a constant, or any valid combination of host variables and constants.

To insert multiple rows, you can use the form of the INSERT statement that selects
values from another table or view. You can also use a form of the INSERT
statement that inserts multiple rows from values that are provided in host variable
arrays. For more information, see “Inserting multiple rows of data from host
variable arrays” on page 87.

Example: The following example inserts a single row into the activity table:
EXEC SQL

INSERT INTO DSN8810.ACT
VALUES (:HV-ACTNO, :HV-ACTKWD, :HV-ACTDESC)

END-EXEC.

Using indicator variables with host variables
Indicator variables are small integers that you can use to:
v Determine whether the value of an associated output host variable is null or

indicate that the value of an input host variable is null
v Determine the original length of a character string that was truncated during

assignment to a host variable
v Determine that a character value could not be converted during assignment to a

host variable
v Determine the seconds portion of a time value that was truncated during

assignment to a host variable

Retrieving data and testing the indicator variable: When DB2 retrieves the value
of a column into a host variable, you can test the indicator variable that is
associated with that host variable:
v If the value of the indicator variable is less than zero, the column value is null.

The value of the host variable does not change from its previous value. If it is
null because of a numeric or character conversion error, or an arithmetic
expression error, DB2 sets the indicator variable to -2. See “Handling arithmetic
or conversion errors” on page 93 for more information.

Chapter 6. Basics of coding SQL in an application program 83

|
|
|
|
|

|

|
|
|
|



v If the indicator variable contains a positive integer, the retrieved value is
truncated, and the integer is the original length of the string.

v If the value of the indicator variable is zero, the column value is nonnull. If the
column value is a character string, the retrieved value is not truncated.

An error occurs if you do not use an indicator variable and DB2 retrieves a null
value.

You can specify an indicator variable, preceded by a colon, immediately after the
host variable. Optionally, you can use the word INDICATOR between the host
variable and its indicator variable. Thus, the following two examples are
equivalent:

EXEC SQL
SELECT PHONENO

INTO :CBLPHONE:INDNULL
FROM DSN8810.EMP
WHERE EMPNO = :EMPID

END-EXEC.

EXEC SQL
SELECT PHONENO

INTO :CBLPHONE INDICATOR :INDNULL
FROM DSN8810.EMP
WHERE EMPNO = :EMPID

END-EXEC.

You can then test INDNULL for a negative value. If it is negative, the
corresponding value of PHONENO is null, and you can disregard the contents of
CBLPHONE.

When you use a cursor to fetch a column value, you can use the same technique to
determine whether the column value is null.

Inserting null values into columns by using host variable indicators: You can use
an indicator variable to insert a null value from a host variable into a column.
When DB2 processes INSERT and UPDATE statements, it checks the indicator
variable (if one exists). If the indicator variable is negative, the column value is
null. If the indicator variable is greater than -1, the associated host variable
contains a value for the column.

For example, suppose your program reads an employee ID and a new phone
number, and must update the employee table with the new number. The new
number could be missing if the old number is incorrect, but a new number is not
yet available. If the new value for column PHONENO might be null, you can use
an indicator variable in the UPDATE statement. For example:
EXEC SQL

UPDATE DSN8810.EMP
SET PHONENO = :NEWPHONE:PHONEIND
WHERE EMPNO = :EMPID

END-EXEC.

When NEWPHONE contains a non-null value, set PHONEIND to zero by
preceding the UPDATE statement with the following line:
MOVE 0 TO PHONEIND.

When NEWPHONE contains a null value, set PHONEIND to a negative value by
preceding the UPDATE statement with the following line:
MOVE -1 TO PHONEIND.

Testing for a null column value: You cannot determine whether a column value is
null by comparing it to a host variable with an indicator variable that is set to -1.

84 Application Programming and SQL Guide



To test whether a column has a null value, use the IS NULL predicate or the IS
DISTINCT FROM predicate. For example, the following code does not select the
employees who have no phone number:
MOVE -1 TO PHONE-IND.
EXEC SQL

SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8810.EMP
WHERE PHONENO = :PHONE-HV:PHONE-IND

END-EXEC.

You can use the IS NULL predicate to select employees who have no phone
number, as in the following statement:
EXEC SQL

SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8810.EMP
WHERE PHONENO IS NULL

END-EXEC.

To select employees whose phone numbers are equal to the value of :PHONE-HV
and employees who have no phone number (as in the second example), you would
need to code two predicates, one to handle the non-null values and another to
handle the null values, as in the following statement:
EXEC SQL

SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8810.EMP
WHERE (PHONENO = :PHONE-HV AND PHONENO IS NOT NULL AND :PHONE-HV IS NOT NULL)

OR
(PHONENO IS NULL AND :PHONE-HV:PHONE-IND IS NULL)

END-EXEC.

You can simplify the preceding example by coding the statement using the NOT
form of the IS DISTINCT FROM predicate, as in the following statement:
EXEC SQL

SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8810.EMP
WHERE PHONENO IS NOT DISTINCT FROM :PHONE-HV:PHONE-IND

END-EXEC.

Assignments and comparisons using different data types
For assignments and comparisons involving a DB2 column and a host variable of a
different data type or length, you can expect conversions to occur. If you assign
retrieved data to a host variable or compare retrieved data to a value in a host
variable, see Chapter 2 of DB2 SQL Reference for the rules that are associated with
these operations.

Changing the coded character set ID of host variables
All DB2 string data, other than BLOB data, has an encoding scheme and a coded
character set ID (CCSID) associated with it. You can use the DECLARE VARIABLE
statement to associate an encoding scheme and a CCSID with individual host
variables. The DECLARE VARIABLE statement has the following effects on a host
variable:
v When you use the host variable to update a table, the local subsystem or the

remote server assumes that the data in the host variable is encoded with the
CCSID and encoding scheme that the DECLARE VARIABLE statement assigns.

Chapter 6. Basics of coding SQL in an application program 85

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|



v When you retrieve data from a local or remote table into the host variable, the
retrieved data is converted to the CCSID and encoding scheme that are assigned
by the DECLARE VARIABLE statement.

You can use the DECLARE VARIABLE statement in static or dynamic SQL
applications. However, you cannot use the DECLARE VARIABLE statement to
control the CCSID and encoding scheme of data that you retrieve or update using
an SQLDA. See “Changing the CCSID for retrieved data” on page 621 for
information on changing the CCSID in an SQLDA.

When you use a DECLARE VARIABLE statement in a program, put the DECLARE
VARIABLE statement after the corresponding host variable declaration and before
your first reference to that host variable.

Example: Using a DECLARE VARIABLE statement to change the encoding scheme
of retrieved data: Suppose that you are writing a C program that runs on a DB2
UDB for z/OS subsystem. The subsystem has an EBCDIC application encoding
scheme. The C program retrieves data from the following columns of a local table
that is defined with CCSID UNICODE.
PARTNUM CHAR(10)
JPNNAME GRAPHIC(10)
ENGNAME VARCHAR(30)

Because the application encoding scheme for the subsystem is EBCDIC, the
retrieved data is EBCDIC. To make the retrieved data Unicode, use DECLARE
VARIABLE statements to specify that the data that is retrieved from these columns
is encoded in the default Unicode CCSIDs for the subsystem. Suppose that you
want to retrieve the character data in Unicode CCSID 1208 and the graphic data in
Unicode CCSID 1200. Use DECLARE VARIABLE statements like these:
EXEC SQL BEGIN DECLARE SECTION;
char hvpartnum[11];
EXEC SQL DECLARE :hvpartnum VARIABLE CCSID 1208;
sqldbchar hvjpnname[11];
EXEC SQL DECLARE :hvjpnname VARIABLE CCSID 1200;
struct {

short len;
char d[30];
} hvengname;

EXEC SQL DECLARE :hvengname VARIABLE CCSID 1208;
EXEC SQL END DECLARE SECTION;

The BEGIN DECLARE SECTION and END DECLARE SECTION statements mark
the beginning and end of a host variable declare section.

Using host variable arrays
To use a host variable array in an SQL statement, specify any valid host variable
array that is declared according to the host language rules that are described in
Chapter 9, “Embedding SQL statements in host languages,” on page 143. You can
specify host variable arrays in C or C++, COBOL, and PL/I. You must declare the
array in the host program before you use it.

For more information about declaring host variable arrays, see the appropriate
language section:
v C or C++: “Declaring host variable arrays” on page 168
v COBOL: “Declaring host variable arrays” on page 199
v PL/I: “Declaring host variable arrays” on page 237

86 Application Programming and SQL Guide

|

|

|
|
|
|
|

|
|
|
|
|



Assembler support for the multiple-row FETCH and INSERT statements is limited
to the FETCH statement with the USING DESCRIPTOR clause and the dynamic
INSERT statement using EXECUTE USING DESCRIPTOR. The DB2 precompiler
does not recognize declarations of host variable arrays for Assembler; it recognizes
these declarations only in C, COBOL, and PL/I.

This section describes the following ways to use host variable arrays:
v “Retrieving multiple rows of data into host variable arrays”
v “Inserting multiple rows of data from host variable arrays”
v “Using indicator variable arrays with host variable arrays”

Retrieving multiple rows of data into host variable arrays
You can use host variable arrays to specify a program data area to contain multiple
rows of column values. A DB2 rowset cursor enables an application to retrieve and
process a set of rows from the result table of the cursor. For information about
using rowset cursors, see “Accessing data by using a rowset-positioned cursor” on
page 108.

Inserting multiple rows of data from host variable arrays
You can use a form of the INSERT statement to insert multiple rows from values
that are provided in host variable arrays. Each array contains values for a column
of the target table. The first value in an array corresponds to the value for that
column for the first inserted row, the second value in the array corresponds to the
value for the column in the second inserted row, and so on. DB2 determines the
attributes of the values based on the declaration of the array.

Example: You can insert the number of rows that are specified in the host variable
NUM-ROWS by using the following INSERT statement:
EXEC SQL

INSERT INTO DSN8810.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:HVA1, :HVA2, :HVA3)
FOR :NUM-ROWS ROWS

END-EXEC.

Assume that the host variable arrays HVA1, HVA2, and HVA3 have been declared
and populated with the values that are to be inserted into the ACTNO, ACTKWD,
and ACTDESC columns. The NUM-ROWS host variable specifies the number of
rows that are to be inserted, which must be less than or equal to the dimension of
each host variable array.

Using indicator variable arrays with host variable arrays
You can use indicator variable arrays with host variable arrays in the same way
that you use indicator variables with host variables. For details, see “Using
indicator variables with host variables” on page 83. An indicator variable array
must have at least as many entries as its host variable array.

Retrieving data and using indicator arrays: When you retrieve data into a host
variable array, if a value in its indicator array is negative, you can disregard the
contents of the corresponding element in the host variable array. If a value in an
indicator array is:

-1 The corresponding row in the column that is being retrieved is null.

-2 DB2 returns a null value because an error occurred in numeric conversion
or in an arithmetic expression in the corresponding row.

Chapter 6. Basics of coding SQL in an application program 87

#
#
#
#
#

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

||

||
|



-3 DB2 returns a null value because a hole was detected for the
corresponding row during a multiple-row FETCH operation.

For information about the multiple-row FETCH operation, see “Step 4: Execute
SQL statements with a rowset cursor” on page 109. For information about holes in
the result table of a cursor, see “Holes in the result table of a scrollable cursor” on
page 119.

Specifying an indicator array: You can specify an indicator variable array,
preceded by a colon, immediately after the host variable array. Optionally, you can
use the word INDICATOR between the host variable array and its indicator
variable array.

Example: Suppose that you declare a scrollable rowset cursor by using the
following statement:
EXEC SQL

DECLARE CURS1 SCROLL CURSOR WITH ROWSET POSITIONING FOR
SELECT PHONENO
FROM DSN8810.EMP

END-EXEC.

For information about using rowset cursors, see “Accessing data by using a
rowset-positioned cursor” on page 108.

The following two specifications of indicator arrays in the multiple-row FETCH
statement are equivalent:

EXEC SQL
FETCH NEXT ROWSET CURS1

FOR 10 ROWS
INTO :CBLPHONE :INDNULL

END-EXEC.

EXEC SQL
FETCH NEXT ROWSET CURS1

FOR 10 ROWS
INTO :CBLPHONE INDICATOR :INDNULL

END-EXEC.

After the multiple-row FETCH statement, you can test each element of the
INDNULL array for a negative value. If an element is negative, you can disregard
the contents of the corresponding element in the CBLPHONE host variable array.

Inserting null values by using indicator arrays: You can use a negative value in
an indicator array to insert a null value into a column.

Example: Assume that host variable arrays hva1 and hva2 have been populated
with values that are to be inserted into the ACTNO and ACTKWD columns.
Assume the ACTDESC column allows nulls. To set the ACTDESC column to null,
assign -1 to the elements in its indicator array:
/* Initialize each indicator array */
for (i=0; i<10; i++) {

ind1[i] = 0;
ind2[i] = 0;
ind3[i] = -1;

}

EXEC SQL
INSERT INTO DSN8810.ACT

(ACTNO, ACTKWD, ACTDESC)
VALUES (:hva1:ind1, :hva2:ind2, :hva3:ind3)
FOR 10 ROWS;

88 Application Programming and SQL Guide

||
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|

||
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|



DB2 ignores the values in the hva3 array and assigns the values in the ARTDESC
column to null for the 10 rows that are inserted.

Identifying errors during output host variable processing: Output host variable
processing is the process of moving data that is retrieved from DB2 (such as from a
FETCH) to an application. Errors that occur while processing output host variables
do not affect the position of the cursor, and are usually caused by a problem in
converting from one data type to another.

Example: Suppose that an integer value of 32768 is fetched into a smallint host
variable. The conversion might cause an error if you provide insufficient
conversion information to DB2.

If an indicator variable is provided during output host variable processing or if
data type conversion is not required, a positive SQLCODE is returned for the row
in most cases. In other cases where data conversion problems occur, a negative
SQLCODE is returned for that row. Regardless of the SQLCODE for the row, no
new values are assigned to the host variable or to subsequent variables for that
row. Any values that are already assigned to variables remain assigned.

Even when a negative SQLCODE is returned for a row, statement processing
continues and a positive SQLCODE is returned for the statement (SQLSTATE
01668, SQLCODE +354). To determine which rows cause errors when SQLCODE =
+354, you can use GET DIAGNOSTICS.

Example: Suppose that no indicator variables are provided for values that are
returned by the following statement:
FETCH FIRST ROWSET FROM C1 FOR 10 ROWS INTO :hva_col1, :hva_col2;

For each row with an error, a negative SQLCODE is recorded and processing
continues until the 10 rows are fetched. When SQLCODE = +354 is returned for
the statement, you can use GET DIAGNOSTICS to determine which errors occur
for which rows. The following statement returns num_rows = 10 and num_cond =
3:
GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

To investigate the three conditions, use the following statements:

Statement A
GET DIAGNOSTICS CONDITION 3 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Output A
sqlstate = 22003
sqlcode = -304
row_num = 5

Statement B
GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Output B
sqlstate = 22003
sqlcode = -802
row_num = 7

Statement C
GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Chapter 6. Basics of coding SQL in an application program 89

|
#

#
#
#
#
#

#
#
#

#
#
#
#
#
#

#
#
#
#

#
#

#

#
#
#
#
#

#

#

#
#
#

#
#
#
#

#
#
#

#
#
#
#

#
#
#



Output C
sqlstate = 01668
sqlcode = +354
row_num = 0

The fifth row has a data mapping error (-304) for column 1 and the seventh row
has a data mapping error (-802)for column 2. These rows do not contain valid data,
and they should not be used.

Using host structures
You can substitute a host structure for one or more host variables. You can also use
indicator variables (or indicator structures) with host structures.

Retrieving a single row of data into a host structure
In the following example, assume that your COBOL program includes the
following SQL statement:
EXEC SQL

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
INTO :EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME, :WORKDEPT
FROM DSN8810.VEMP
WHERE EMPNO = :EMPID

END-EXEC.

If you want to avoid listing host variables, you can substitute the name of a
structure, say :PEMP, that contains :EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME,
and :WORKDEPT. The example then reads:
EXEC SQL

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
INTO :PEMP
FROM DSN8810.VEMP
WHERE EMPNO = :EMPID

END-EXEC.

You can declare a host structure yourself, or you can use DCLGEN to generate a
COBOL record description, PL/I structure declaration, or C structure declaration
that corresponds to the columns of a table. For more detailed information about
coding a host structure in your program, see Chapter 9, “Embedding SQL
statements in host languages,” on page 143. For more information about using
DCLGEN and the restrictions that apply to the C language, see Chapter 8,
“Generating declarations for your tables using DCLGEN,” on page 131.

Using indicator variables with host structures
You can define an indicator structure (an array of halfword integer variables) to
support a host structure. You define indicator structures in the DATA DIVISION
section of your COBOL program. If the column values your program retrieves into
a host structure can be null, you can attach an indicator structure name to the host
structure name. This allows DB2 to notify your program about each null value it
returns to a host variable in the host structure. For example:
01 PEMP-ROW.

10 EMPNO PIC X(6).
10 FIRSTNME.

49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNME-TEXT PIC X(12).

10 MIDINIT PIC X(1).
10 LASTNAME.

49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 WORKDEPT PIC X(3).
10 EMP-BIRTHDATE PIC X(10).

90 Application Programming and SQL Guide

#
#
#
#

#
#
#



01 INDICATOR-TABLE.
02 EMP-IND PIC S9(4) COMP OCCURS 6 TIMES....

MOVE ’000230’ TO EMPNO....
EXEC SQL

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, BIRTHDATE
INTO :PEMP-ROW:EMP-IND
FROM DSN8810.EMP
WHERE EMPNO = :EMPNO

END-EXEC.

In this example, EMP-IND is an array containing six values, which you can test for
negative values. If, for example, EMP-IND(6) contains a negative value, the
corresponding host variable in the host structure (EMP-BIRTHDATE) contains a
null value.

Because this example selects rows from the table DSN8810.EMP, some of the values
in EMP-IND are always zero. The first four columns of each row are defined NOT
NULL. In the preceding example, DB2 selects the values for a row of data into a
host structure. You must use a corresponding structure for the indicator variables
to determine which (if any) selected column values are null. For information on
using the IS NULL keyword phrase in WHERE clauses, see “Selecting rows using
search conditions: WHERE” on page 8.

Checking the execution of SQL statements
You can check the execution of SQL statements in various ways:
v By displaying specific fields in the SQLCA; see “Using the SQL communication

area (SQLCA).”
v By testing SQLCODE or SQLSTATE for specific values; see “SQLCODE and

SQLSTATE” on page 92.
v By using the WHENEVER statement in your application program; see “The

WHENEVER statement” on page 93.
v By testing indicator variables to detect numeric errors; see “Handling arithmetic

or conversion errors” on page 93.
v By using the GET DIAGNOSTICS statement in your application program to

return all the condition information that results from the execution of an SQL
statement; see “The GET DIAGNOSTICS statement” on page 94.

v By calling DSNTIAR to display the contents of the SQLCA; see “Calling
DSNTIAR to display SQLCA fields” on page 98.

Using the SQL communication area (SQLCA)
A program that includes SQL statements can have an area set apart for
communication with DB2—an SQL communication area (SQLCA). If you use the
SQLCA, include the necessary instructions to display information that is contained
in the SQLCA in your application program. Alternatively, you can use the GET
DIAGNOSTICS statement, which is an SQL standard, to diagnose problems.
v When DB2 processes an SQL statement, it places return codes that indicate the

success or failure of the statement execution in SQLCODE and SQLSTATE. For
details, see “SQLCODE and SQLSTATE” on page 92.

v When DB2 processes an UPDATE, INSERT, or DELETE statement, and the
statement execution is successful, the contents of SQLERRD(3) in the SQLCA is
set to the number of rows that are updated, inserted, or deleted.

Chapter 6. Basics of coding SQL in an application program 91

|
|
|



v When DB2 processes a FETCH statement, and the FETCH is successful, the
contents of SQLERRD(3) in the SQLCA is set to the number of returned rows.

v When DB2 processes a multiple-row FETCH statement, the contents of
SQLCODE is set to +100 if the last row in the table has been returned with the
set of rows. For details, see “Accessing data by using a rowset-positioned
cursor” on page 108.

v If SQLWARN0 contains W, DB2 has set at least one of the SQL warning flags
(SQLWARN1 through SQLWARNA):
– SQLWARN1 contains N for non-scrollable cursors and S for scrollable cursors

after an OPEN CURSOR or ALLOCATE CURSOR statement.
– SQLWARN4 contains I for insensitive scrollable cursors, S for sensitive static

scrollable cursors, and D for sensitive dynamic scrollable cursors, after an
OPEN CURSOR or ALLOCATE CURSOR statement, or blank if the cursor is
not scrollable.

– SQLWARN5 contains a character value of 1 (read only), 2 (read and delete),
or 4 (read, delete, and update) to indicate the operation that is allowed on the
result table of the cursor.

See Appendix D of DB2 SQL Reference for a description of all the fields in the
SQLCA.

SQLCODE and SQLSTATE
Whenever an SQL statement executes, the SQLCODE and SQLSTATE fields of the
SQLCA receive a return code. Portable applications should use SQLSTATE instead
of SQLCODE, although SQLCODE values can provide additional DB2-specific
information about an SQL error or warning.

SQLCODE: DB2 returns the following codes in SQLCODE:
v If SQLCODE = 0, execution was successful.
v If SQLCODE > 0, execution was successful with a warning.
v If SQLCODE < 0, execution was not successful.

SQLCODE 100 indicates that no data was found.

The meaning of SQLCODEs other than 0 and 100 varies with the particular
product implementing SQL.

SQLSTATE: SQLSTATE allows an application program to check for errors in the
same way for different IBM database management systems. See Appendix C of
DB2 Codes for a complete list of possible SQLSTATE values.

Using SQLCODE and SQLSTATE: An advantage to using the SQLCODE field is
that it can provide more specific information than the SQLSTATE. Many of the
SQLCODEs have associated tokens in the SQLCA that indicate, for example, which
object incurred an SQL error. However, an SQL standard application uses only
SQLSTATE.

You can declare SQLCODE and SQLSTATE (SQLCOD and SQLSTA in Fortran) as
stand-alone host variables. If you specify the STDSQL(YES) precompiler option,
these host variables receive the return codes, and you should not include an
SQLCA in your program.

92 Application Programming and SQL Guide

|
|
|
|



The WHENEVER statement
The WHENEVER statement causes DB2 to check the SQLCA and continue
processing your program, or branch to another area in your program if an error,
exception, or warning occurs. The condition handling area of your program can
then examine SQLCODE or SQLSTATE to react specifically to the error or
exception.

The WHENEVER statement is not supported for REXX. For information on REXX
error handling, see “Embedding SQL statements in a REXX procedure” on page
252.

The WHENEVER statement allows you to specify what to do if a general condition
is true. You can specify more than one WHENEVER statement in your program.
When you do this, the first WHENEVER statement applies to all subsequent SQL
statements in the source program until the next WHENEVER statement.

The WHENEVER statement looks like this:
EXEC SQL

WHENEVER condition action
END-EXEC

The condition of the WHENEVER statement is one of these three values:

SQLWARNING
Indicates what to do when SQLWARN0 = W or SQLCODE contains a
positive value other than 100. DB2 can set SQLWARN0 for several
reasons—for example, if a column value is truncated when moved into a
host variable. Your program might not regard this as an error.

SQLERROR
Indicates what to do when DB2 returns an error code as the result of an
SQL statement (SQLCODE < 0).

NOT FOUND
Indicates what to do when DB2 cannot find a row to satisfy your SQL
statement or when there are no more rows to fetch (SQLCODE = 100).

The action of the WHENEVER statement is one of these two values:

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
single token, preceded by an optional colon. The form of the token
depends on the host language. In COBOL, for example, it can be
section-name or an unqualified paragraph-name.

The WHENEVER statement must precede the first SQL statement it is to affect.
However, if your program checks SQLCODE directly, you must check SQLCODE
after each SQL statement.

Handling arithmetic or conversion errors
Numeric or character conversion errors or arithmetic expression errors can set an
indicator variable to -2. For example, division by zero and arithmetic overflow do
not necessarily halt the execution of a SELECT statement. If you use indicator
variables and an error occurs in the SELECT list, the statement can continue to
execute and return good data for rows in which the error does not occur.

Chapter 6. Basics of coding SQL in an application program 93

#
#
#
#



For rows in which a conversion or arithmetic expression error does occur, the
indicator variable indicates that one or more selected items have no meaningful
value. The indicator variable flags this error with a -2 for the affected host variable
and an SQLCODE of +802 (SQLSTATE '01519') in the SQLCA.

The GET DIAGNOSTICS statement
You can use the GET DIAGNOSTICS statement to return diagnostic information
about the last SQL statement that was executed. You can request individual items
of diagnostic information from the following groups of items:
v Statement items, which contain information about the SQL statement as a whole
v Condition items, which contain information about each error or warning that

occurred during the execution of the SQL statement
v Connection items, which contain information about the SQL statement if it was a

CONNECT statement

In addition to requesting individual items, you can request that GET
DIAGNOSTICS return ALL diagnostic items that are set during the execution of
the last SQL statement as a single string. For more information, see Chapter 5 of
DB2 SQL Reference.

Use the GET DIAGNOSTICS statement to handle multiple SQL errors that might
result from the execution of a single SQL statement. First, check SQLSTATE (or
SQLCODE) to determine whether diagnostic information should be retrieved by
using GET DIAGNOSTICS. This method is especially useful for diagnosing
problems that result from a multiple-row INSERT that is specified as NOT
ATOMIC CONTINUE ON SQLEXCEPTION.

Even if you use only the GET DIAGNOSTICS statement in your application
program to check for conditions, you must either include the instructions required
to use the SQLCA or you must declare SQLSTATE (or SQLCODE) separately in
your program.

Restriction: If you issue a GET DIAGNOSTICS statement immediately following
an SQL statement that uses private protocol access, DB2 returns an error.

Retrieving statement and condition items
When you use the GET DIAGNOSTICS statement, you assign the requested
diagnostic information to host variables. Declare each target host variable with a
data type that is compatible with the data type of the requested item. For a
description of available items and their data types, see “Data types for GET
DIAGNOSTICS items” on page 95.

To retrieve condition information, you must first retrieve the number of condition
items (that is, the number of errors and warnings that DB2 detected during the
execution of the last SQL statement). The number of condition items is at least one.
If the last SQL statement returned SQLSTATE ’00000’ (or SQLCODE 0), the number
of condition items is one.

Example: Using GET DIAGNOSTICS with multiple-row INSERT: You want to
display diagnostic information for each condition that might occur during the
execution of a multiple-row INSERT statement in your application program. You
specify the INSERT statement as NOT ATOMIC CONTINUE ON SQLEXCEPTION,
which means that execution continues regardless of the failure of any single-row
insertion. DB2 does not insert the row that was processed at the time of the error.

94 Application Programming and SQL Guide

|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|



In Figure 10, the first GET DIAGNOSTICS statement returns the number of rows
inserted and the number of conditions returned. The second GET DIAGNOSTICS
statement returns the following items for each condition: SQLCODE, SQLSTATE,
and the number of the row (in the rowset that was being inserted) for which the
condition occurred.
In the activity table, the ACTNO column is defined as SMALLINT. Suppose that

you declare the host variable array hva1 as an array with data type long, and you
populate the array so that the value for the fourth element is 32768.

If you check the SQLCA values after the INSERT statement, the value of
SQLCODE is equal to 0, the value of SQLSTATE is ’00000’, and the value of
SQLERRD(3) is 9 for the number of rows that were inserted. However, the INSERT
statement specified that 10 rows were to be inserted.

The GET DIAGNOSTICS statement provides you with the information that you
need to correct the data for the row that was not inserted. The printed output from
your program looks like this:
Number of rows inserted = 9
SQLCODE = -302, SQLSTATE = 22003, ROW NUMBER = 4

The value 32768 for the input variable is too large for the target column ACTNO.
You can print the MESSAGE_TEXT condition item, or see DB2 Codes for
information about SQLCODE -302.

Data types for GET DIAGNOSTICS items
Table 4 on page 96, Table 5 on page 97, and Table 6 on page 98 specify the data
types for the statement, condition, and connection information items that you can
request by using the GET DIAGNOSTICS statement. You must declare each target
host variable with a data type that is compatible with the data type of the
requested item.

EXEC SQL BEGIN DECLARE SECTION;
long row_count, num_condns, i;
long ret_sqlcode, row_num;
char ret_sqlstate[6];
...

EXEC SQL END DECLARE SECTION;
...
EXEC SQL

INSERT INTO DSN8810.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:hva1, :hva2, :hva3)
FOR 10 ROWS
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

EXEC SQL GET DIAGNOSTICS
:row_count = ROW_COUNT, :num_condns = NUMBER;

printf("Number of rows inserted = %d\n", row_count);

for (i=1; i<=num_condns; i++) {
EXEC SQL GET DIAGNOSTICS CONDITION :i

:ret_sqlcode = DB2_RETURNED_SQLCODE,
:ret_sqlstate = RETURNED_SQLSTATE,
:row_num = DB2_ROW_NUMBER;
printf("SQLCODE = %d, SQLSTATE = %s, ROW NUMBER = %d\n",

ret_sqlcode, ret_sqlstate, row_num);
}

Figure 10. Using GET DIAGNOSTICS to return the number of rows and conditions returned
and condition information

Chapter 6. Basics of coding SQL in an application program 95

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
||

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|



Table 4. Data types for GET DIAGNOSTICS items that return statement information

Item Description Data type

DB2_GET_DIAGNOSTICS
_DIAGNOSTICS

After a GET DIAGNOSTICS statement, if
any error or warning occurred, this item
contains all of the diagnostics as a single
string.

VARCHAR(32672)

DB2_LAST_ROW After a multiple-row FETCH statement,
this item contains a value of +100 if the
last row in the table is in the rowset that
was returned.

INTEGER

DB2_NUMBER_PARAMETER
_MARKERS

After a PREPARE statement, this item
contains the number of parameter
markers in the prepared statement.

INTEGER

DB2_NUMBER_RESULT_SETS After a CALL statement that invokes a
stored procedure, this item contains the
number of result sets that are returned by
the procedure.

INTEGER

DB2_NUMBER_ROWS After an OPEN or FETCH statement for
which the size of the result table is
known, this item contains the number of
rows in the result table. After a PREPARE
statement, this item contains the estimated
number of rows in the result table for the
prepared statement. For SENSITIVE
DYNAMIC cursors, this item contains the
approximate number of rows.

DECIMAL(31,0)

DB2_RETURN_STATUS After a CALL statement that invokes an
SQL procedure, this item contains the
return status if the procedure contains a
RETURN statement.

INTEGER

DB2_SQL_ATTR
_CURSOR_HOLD

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor can
be held open across multiple units of
work (Y or N).

CHAR(1)

DB2_SQL_ATTR
_CURSOR_ROWSET

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor can
use rowset positioning (Y or N).

CHAR(1)

DB2_SQL_ATTR
_CURSOR_SCROLLABLE

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor is
scrollable (Y or N).

CHAR(1)

DB2_SQL_ATTR
_CURSOR_SENSITIVITY

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor
shows updates made by other processes
(sensitivity A, I, or S).

CHAR(1)

DB2_SQL_ATTR
_CURSOR_TYPE

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor is
declared static (S for INSENSITIVE or
SENSITIVE STATIC) or dynamic (D for
SENSITIVE DYNAMIC).

CHAR(1)

MORE After any SQL statement, this item
indicates whether some conditions items
were discarded because of insufficient
storage (Y or N).

CHAR(1)

96 Application Programming and SQL Guide

||

|||

|
|
|
|
|
|

|

||
|
|
|

|

|
|
|
|
|

|

||
|
|
|

|

||
|
|
|
|
|
|
|
|

|

||
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

||
|
|
|

|



Table 4. Data types for GET DIAGNOSTICS items that return statement information (continued)

Item Description Data type

NUMBER After any SQL statement, this item
contains the number of condition items. If
no warning or error occurred, or if no
previous SQL statement has been
executed, the number that is returned is 1.

INTEGER

ROW_COUNT After DELETE, INSERT, UPDATE, or
FETCH, this item contains the number of
rows that are deleted, inserted, updated,
or fetched. After PREPARE, this item
contains the estimated number of result
rows in the prepared statement.

DECIMAL(31,0)

Table 5. Data types for GET DIAGNOSTICS items that return condition information

Item Description Data type

CATALOG_NAME This item contains the server name of the
table that owns a constraint that caused an
error, or that caused an access rule or check
violation.

VARCHAR(128)

CONDITION_NUMBER This item contains the number of the
condition.

INTEGER

CURSOR_NAME This item contains the name of a cursor in
an invalid cursor state.

VARCHAR(128)

DB2_ERROR_CODE1 This item contains an internal error code. INTEGER

DB2_ERROR_CODE2 This item contains an internal error code. INTEGER

DB2_ERROR_CODE3 This item contains an internal error code. INTEGER

DB2_ERROR_CODE4 This item contains an internal error code. INTEGER

DB2_INTERNAL
_ERROR_POINTER

For some errors, this item contains a
negative value that is an internal error
pointer.

INTEGER

DB2_MESSAGE_ID This item contains the message ID that
corresponds to the message that is contained
in the MESSAGE_TEXT diagnostic item.

CHAR(10)

DB2_MODULE_DETECTING
_ERROR

After any SQL statement, this item indicates
which module detected the error.

CHAR(8)

DB2_ORDINAL_TOKEN_n After any SQL statement, this item contains
the nth token, where n is a value from 1 to
100.

VARCHAR(515)

DB2_REASON_CODE After any SQL statement, this item contains
the reason code for errors that have a reason
code token in the message text.

INTEGER

DB2_RETURNED_SQLCODE After any SQL statement, this item contains
the SQLCODE for the condition.

INTEGER

DB2_ROW_NUMBER After any SQL statement that involves
multiple rows, this item contains the row
number on which DB2 detected the
condition.

DECIMAL(31,0)

DB2_TOKEN_COUNT After any SQL statement, this item contains
the number of tokens available for the
condition.

INTEGER

Chapter 6. Basics of coding SQL in an application program 97

|

|||

||
|
|
|
|

|

||
|
|
|
|
|

|

|

||

|||

||
|
|
|

|

||
|
|

||
|
|

|||

|||

|||

|||

|
|
|
|
|

|

||
|
|

|

|
|
|
|
|

||
|
|

|

||
|
|

|

||
|
|

||
|
|
|

|

||
|
|

|



Table 5. Data types for GET DIAGNOSTICS items that return condition information (continued)

Item Description Data type

MESSAGE_TEXT After any SQL statement, this item contains
the message text associated with the
SQLCODE.

VARCHAR(32672)

RETURNED_SQLSTATE After any SQL statement, this item contains
the SQLSTATE for the condition.

CHAR(5)

SERVER_NAME After a CONNECT, DISCONNECT, or SET
CONNECTION statement, this item contains
the name of the server specified in the
statement.

VARCHAR(128)

Table 6. Data types for GET DIAGNOSTICS items that return connection information

Item Description Data type

DB2_AUTHENTICATION_TYPE This item contains the authentication type (S,
C, D, E, or blank). For more information, see
Chapter 5 of DB2 SQL Reference.

CHAR(1)

DB2_AUTHORIZATION_ID This item contains the authorization ID that
is used by the connected server.

VARCHAR(128)

DB2_CONNECTION_STATE This item indicates whether the connection is
unconnected (-1), local (0), or remote (1).

INTEGER

DB2_CONNECTION_STATUS This item indicates whether updates can be
committed for the current unit of work (1 for
Yes, 2 for No).

INTEGER

DB2_ENCRYPTION_TYPE This item contains one of the following
values that indicates the level of encryption
for the connection:
A Only the authentication tokens

(authid and password) are
encrypted

D All of the data for the connection is
encrypted

CHAR(1)

DB2_SERVER_CLASS_NAME After a CONNECT or SET CONNECTION
statement, this item contains the DB2 server
class name.

VARCHAR(128)

DB2_PRODUCT_ID This item contains the DB2 product
signature.

VARCHAR(8)

For a complete description of the GET DIAGNOSTICS items, see Chapter 5 of DB2
SQL Reference.

Calling DSNTIAR to display SQLCA fields
You should check for errors codes before you commit data, and handle the errors
that they represent. The assembler subroutine DSNTIAR helps you to obtain a
formatted form of the SQLCA and a text message based on the SQLCODE field of
the SQLCA. You can retrieve this same message text by using the MESSAGE_TEXT
condition item field of the GET DIAGNOSTICS statement. Programs that require
long token message support should code the GET DIAGNOSTICS statement
instead of DSNTIAR.

You can find the programming language-specific syntax and details for calling
DSNTIAR on the following pages:

98 Application Programming and SQL Guide

|

|||

||
|
|

|

||
|
|

||
|
|
|

|

|

||

|||

||
|
|

|

||
|
|

||
|
|

||
|
|

|

||
|
|
||
|
|
||
|

|

||
|
|

|

||
|
|

|

|
|

|
|
|
|



For Assembler programs, see page 157
For C programs, see page 184
For COBOL programs, see page 217
For Fortran programs, see page 229
For PL/I programs, see page 247

DSNTIAR takes data from the SQLCA, formats it into a message, and places the
result in a message output area that you provide in your application program.
Each time you use DSNTIAR, it overwrites any previous messages in the message
output area. You should move or print the messages before using DSNTIAR again,
and before the contents of the SQLCA change, to get an accurate view of the
SQLCA.

DSNTIAR expects the SQLCA to be in a certain format. If your application
modifies the SQLCA format before you call DSNTIAR, the results are
unpredictable.

Defining a message output area
The calling program must allocate enough storage in the message output area to
hold all of the message text. You will probably need no more than 10 lines,
80-bytes each, for your message output area. An application program can have
only one message output area.

You must define the message output area in VARCHAR format. In this varying
character format, a 2-byte length field precedes the data. The length field indicates
to DSNTIAR how many total bytes are in the output message area; the minimum
length of the output area is 240-bytes.

Figure 11 shows the format of the message output area, where length is the 2-byte
total length field, and the length of each line matches the logical record length
(lrecl) you specify to DSNTIAR.

When you call DSNTIAR, you must name an SQLCA and an output message area
in the DSNTIAR parameters. You must also provide the logical record length (lrecl)
as a value between 72 and 240 bytes. DSNTIAR assumes the message area contains
fixed-length records of length lrecl.

DSNTIAR places up to 10 lines in the message area. If the text of a message is
longer than the record length you specify on DSNTIAR, the output message splits

Line:

1

2

.

.

.

n-1

n

Field sizes (in bytes):

2 Logical record length

Figure 11. Format of the message output area

Chapter 6. Basics of coding SQL in an application program 99



into several records, on word boundaries if possible. The split records are indented.
All records begin with a blank character for carriage control. If you have more
lines than the message output area can contain, DSNTIAR issues a return code of
4. A completely blank record marks the end of the message output area.

Possible return codes from DSNTIAR
Code Meaning

0 Successful execution.

4 More data available than could fit into the provided message area.

8 Logical record length not between 72 and 240, inclusive.

12 Message area not large enough. The message length was 240 or greater.

16 Error in TSO message routine.

20 Module DSNTIA1 could not be loaded.

24 SQLCA data error.

Preparing to use DSNTIAR
DSNTIAR can run either above or below the 16-MB line of virtual storage. The
DSNTIAR object module that comes with DB2 has the attributes AMODE(31) and
RMODE(ANY). At install time, DSNTIAR links as AMODE(31) and RMODE(ANY).
DSNTIAR runs in 31-bit mode if any of the following conditions is true:
v DSNTIAR is linked with other modules that also have the attributes AMODE(31)

and RMODE(ANY).
v DSNTIAR is linked into an application that specifies the attributes AMODE(31)

and RMODE(ANY) in its link-edit JCL.
v An application loads DSNTIAR.

When loading DSNTIAR from another program, be careful how you branch to
DSNTIAR. For example, if the calling program is in 24-bit addressing mode and
DSNTIAR is loaded above the 16-MB line, you cannot use the assembler BALR
instruction or CALL macro to call DSNTIAR, because they assume that DSNTIAR
is in 24-bit mode. Instead, you must use an instruction that is capable of branching
into 31-bit mode, such as BASSM.

You can dynamically link (load) and call DSNTIAR directly from a language that
does not handle 31-bit addressing. To do this, link a second version of DSNTIAR
with the attributes AMODE(24) and RMODE(24) into another load module library.
Alternatively, you can write an intermediate assembler language program that calls
DSNTIAR in 31-bit mode and then call that intermediate program in 24-bit mode
from your application.

For more information on the allowed and default AMODE and RMODE settings
for a particular language, see the application programming guide for that
language. For details on how the attributes AMODE and RMODE of an application
are determined, see the linkage editor and loader user's guide for the language in
which you have written the application.

A scenario for using DSNTIAR
Suppose you want your DB2 COBOL application to check for deadlocks and
timeouts, and you want to make sure your cursors are closed before continuing.
You use the statement WHENEVER SQLERROR to transfer control to an error
routine when your application receives a negative SQLCODE.

100 Application Programming and SQL Guide



In your error routine, you write a section that checks for SQLCODE -911 or -913.
You can receive either of these SQLCODEs when a deadlock or timeout occurs.
When one of these errors occurs, the error routine closes your cursors by issuing
the statement:
EXEC SQL CLOSE cursor-name

An SQLCODE of 0 or -501 resulting from that statement indicates that the close
was successful.

To use DSNTIAR to generate the error message text, first follow these steps:
1. Choose a logical record length (lrecl) of the output lines. For this example,

assume lrecl is 72 (to fit on a terminal screen) and is stored in the variable
named ERROR-TEXT-LEN.

2. Define a message area in your COBOL application. Assuming you want an area
for up to 10 lines of length 72, you should define an area of 720 bytes, plus a
2-byte area that specifies the total length of the message output area.
01 ERROR-MESSAGE.

02 ERROR-LEN PIC S9(4) COMP VALUE +720.
02 ERROR-TEXT PIC X(72) OCCURS 10 TIMES

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +72.

For this example, the name of the message area is ERROR-MESSAGE.
3. Make sure you have an SQLCA. For this example, assume the name of the

SQLCA is SQLCA.

To display the contents of the SQLCA when SQLCODE is 0 or -501, call DSNTIAR
after the SQL statement that produces SQLCODE 0 or -501:
CALL ’DSNTIAR’ USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

You can then print the message output area just as you would any other variable.
Your message might look like this:
DSNT408I SQLCODE = -501, ERROR: THE CURSOR IDENTIFIED IN A FETCH OR

CLOSE STATEMENT IS NOT OPEN
DSNT418I SQLSTATE = 24501 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXERT SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -315 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X’FFFFFEC5’ X’00000000’ X’00000000’

X’FFFFFFFF’ X’00000000’ X’00000000’ SQL DIAGNOSTIC
INFORMATION

Chapter 6. Basics of coding SQL in an application program 101



102 Application Programming and SQL Guide



Chapter 7. Using a cursor to retrieve a set of rows

Use a cursor in an application program to retrieve rows from a table or from a
result set that is returned by a stored procedure. This chapter explains how your
application program can use a cursor to retrieve rows from a table. For information
about using a cursor to retrieve rows from a result set that is returned by a stored
procedure, see Chapter 25, “Using stored procedures for client/server processing,”
on page 631.

When you execute a SELECT statement, you retrieve a set of rows. That set of
rows is called the result table of the SELECT statement. In an application program,
you can use either of the following types of cursors to retrieve rows from a result
table:
v A row-positioned cursor retrieves at most a single row at a time from the result

table into host variables. At any point in time, the cursor is positioned on at
most a single row. For information about how to use a row-positioned cursor,
see “Accessing data by using a row-positioned cursor.”

v A rowset-positioned cursor retrieves zero, one, or more rows at a time, as a
rowset, from the result table into host variable arrays. At any point in time, the
cursor can be positioned on a rowset. You can reference all of the rows in the
rowset, or only one row in the rowset, when you use a positioned DELETE or
positioned UPDATE statement. For information about how to use a
rowset-positioned cursor, see “Accessing data by using a rowset-positioned
cursor” on page 108.

This chapter also includes the following sections:
v “Types of cursors” on page 113
v “Examples of using cursors” on page 124

Accessing data by using a row-positioned cursor
The basic steps in using a row-positioned cursor are:
1. Execute a DECLARE CURSOR statement to define the result table on which the

cursor operates. See “Step 1: Declare the cursor.”
2. Execute an OPEN CURSOR to make the cursor available to the application. See

“Step 2: Open the cursor” on page 105.
3. Specify what the program is to do when all rows have been retrieved. See

“Step 3: Specify what to do at end-of-data” on page 105.
4. Execute multiple SQL statements to retrieve data from the table or modify

selected rows of the table. See “Step 4: Execute SQL statements” on page 106.
5. Execute a CLOSE CURSOR statement to make the cursor unavailable to the

application. See “Step 5: Close the cursor” on page 108.

Your program can have several cursors, each of which performs the previous steps.

Step 1: Declare the cursor
To define and identify a set of rows to be accessed with a cursor, issue a
DECLARE CURSOR statement. The DECLARE CURSOR statement names a cursor
and specifies a SELECT statement. The SELECT statement defines the criteria for

© Copyright IBM Corp. 1983, 2012 103

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|



the rows that are to make up the result table. See Chapter 4 of DB2 SQL Reference
for a complete list of clauses that you can use in the SELECT statement.

The following example shows a simple form of the DECLARE CURSOR statement:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

FROM DSN8810.EMP
END-EXEC.

You can use this cursor to list select information about employees.

More complicated cursors might include WHERE clauses or joins of several tables.
For example, suppose that you want to use a cursor to list employees who work
on a certain project. Declare a cursor like this to identify those employees:
EXEC SQL

DECLARE C2 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

FROM DSN8810.EMP X
WHERE EXISTS

(SELECT *
FROM DSN8810.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ);

Declaring cursors for tables that use multilevel security: You can declare a cursor
that retrieves rows from a table that uses multilevel security with row-level
granularity. However, the result table for the cursor contains only those rows that
have a security label value that is equivalent to or dominated by the security label
value of your ID. Refer to Part 3 (Volume 1) of DB2 Administration Guide for a
discussion of multilevel security with row-level granularity.

Updating a column: You can update columns in the rows that you retrieve.
Updating a row after you use a cursor to retrieve it is called a positioned update. If
you intend to perform any positioned updates on the identified table, include the
FOR UPDATE clause. The FOR UPDATE clause has two forms:
v The first form is FOR UPDATE OF column-list. Use this form when you know in

advance which columns you need to update.
v The second form is FOR UPDATE, with no column list. Use this form when you

might use the cursor to update any of the columns of the table.

For example, you can use this cursor to update only the SALARY column of the
employee table:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

FROM DSN8810.EMP X
WHERE EXISTS

(SELECT *
FROM DSN8810.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ)

FOR UPDATE OF SALARY;

If you might use the cursor to update any column of the employee table, define
the cursor like this:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

104 Application Programming and SQL Guide

|
|
|
|
|
|



FROM DSN8810.EMP X
WHERE EXISTS

(SELECT *
FROM DSN8810.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ)

FOR UPDATE;

DB2 must do more processing when you use the FOR UPDATE clause without a
column list than when you use the FOR UPDATE clause with a column list.
Therefore, if you intend to update only a few columns of a table, your program
can run more efficiently if you include a column list.

The precompiler options NOFOR and STDSQL affect the use of the FOR UPDATE
clause in static SQL statements. For information about these options, see Table 64
on page 485. If you do not specify the FOR UPDATE clause in a DECLARE
CURSOR statement, and you do not specify the STDSQL(YES) option or the
NOFOR precompiler options, you receive an error if you execute a positioned
UPDATE statement.

You can update a column of the identified table even though it is not part of the
result table. In this case, you do not need to name the column in the SELECT
statement. When the cursor retrieves a row (using FETCH) that contains a column
value you want to update, you can use UPDATE ... WHERE CURRENT OF to
identify the row that is to be updated.

Read-only result table: Some result tables cannot be updated—for example, the
result of joining two or more tables. The defining characteristics of a read-only
result tables are described in greater detail in the discussion of DECLARE
CURSOR in Chapter 5 of DB2 SQL Reference.

Step 2: Open the cursor
To tell DB2 that you are ready to process the first row of the result table, execute
the OPEN statement in your program. DB2 then uses the SELECT statement within
DECLARE CURSOR to identify a set of rows. If you use host variables in the
search condition of that SELECT statement, DB2 uses the current value of the
variables to select the rows. The result table that satisfies the search condition
might contain zero, one, or many rows. An example of an OPEN statement is:
EXEC SQL

OPEN C1
END-EXEC.

If you use the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP
special registers in a cursor, DB2 determines the values in those special registers
only when it opens the cursor. DB2 uses the values that it obtained at OPEN time
for all subsequent FETCH statements.

Two factors that influence the amount of time that DB2 requires to process the
OPEN statement are:
v Whether DB2 must perform any sorts before it can retrieve rows
v Whether DB2 uses parallelism to process the SELECT statement of the cursor

For more information, see “The effect of sorts on OPEN CURSOR” on page 835.

Step 3: Specify what to do at end-of-data
To determine whether the program has retrieved the last row of data, test the
SQLCODE field for a value of 100 or the SQLSTATE field for a value of '02000'.

Chapter 7. Using a cursor to retrieve a set of rows 105



These codes occur when a FETCH statement has retrieved the last row in the result
table and your program issues a subsequent FETCH. For example:
IF SQLCODE = 100 GO TO DATA-NOT-FOUND.

An alternative to this technique is to code the WHENEVER NOT FOUND
statement. The WHENEVER NOT FOUND statement causes your program to
branch to another part that then issues a CLOSE statement. For example, to branch
to label DATA-NOT-FOUND when the FETCH statement does not return a row,
use this statement:
EXEC SQL

WHENEVER NOT FOUND GO TO DATA-NOT-FOUND
END-EXEC.

Your program must anticipate and handle an end-of-data whenever you use a
cursor to fetch a row. For more information about the WHENEVER NOT FOUND
statement, see “Checking the execution of SQL statements” on page 91.

Step 4: Execute SQL statements
You execute one of these SQL statements using the cursor:
v A FETCH statement
v A positioned UPDATE statement
v A positioned DELETE statement

Using FETCH statements
Execute a FETCH statement for one of the following purposes:
v To copy data from a row of the result table into one or more host variables
v To position the cursor before you perform a positioned update or positioned

delete operation

The following example shows a FETCH statement that retrieves selected columns
from the employee table:
EXEC SQL

FETCH C1 INTO
:HV-EMPNO, :HV-FIRSTNME, :HV-MIDINIT, :HV-LASTNAME, :HV-SALARY :IND-SALARY

END-EXEC.

The SELECT statement within DECLARE CURSOR statement identifies the result
table from which you fetch rows, but DB2 does not retrieve any data until your
application program executes a FETCH statement.

When your program executes the FETCH statement, DB2 positions the cursor on a
row in the result table. That row is called the current row. DB2 then copies the
current row contents into the program host variables that you specify on the INTO
clause of FETCH. This sequence repeats each time you issue FETCH, until you
process all rows in the result table.

The row that DB2 points to when you execute a FETCH statement depends on
whether the cursor is declared as a scrollable or non-scrollable. See “Scrollable and
non-scrollable cursors” on page 113 for more information.

When you query a remote subsystem with FETCH, consider using block fetch for
better performance. For more information see “Using block fetch in distributed
applications” on page 458. Block fetch processes rows ahead of the current row.
You cannot use a block fetch when you perform a positioned update or delete
operation.

106 Application Programming and SQL Guide



Using positioned UPDATE statements
After your program has executed a FETCH statement to retrieve the current row,
you can use a positioned UPDATE statement to modify the data in that row. An
example of a positioned UPDATE statement is:
EXEC SQL

UPDATE DSN8810.EMP
SET SALARY = 50000
WHERE CURRENT OF C1

END-EXEC.

A positioned UPDATE statement updates the row on which the cursor is
positioned.

A positioned UPDATE statement is subject to these restrictions:
v You cannot update a row if your update violates any unique, check, or

referential constraints.
v You cannot use an UPDATE statement to modify the rows of a created

temporary table. However, you can use an UPDATE statement to modify the
rows of a declared temporary table.

v If the right side of the SET clause in the UPDATE statement contains a fullselect,
that fullselect cannot include a correlated name for a table that is being updated.

v You cannot use an INSERT statement in the FROM clause of a SELECT
statement that defines a cursor that is used in a positioned UPDATE statement.

v A positioned UPDATE statement will fail if the value of the security label
column of the row where the cursor is positioned is not equivalent to the
security label value of your user id. If your user id has write down privilege, a
positioned UPDATE statement will fail if the value of the security label column
of the row where the cursor is positioned does not dominate the security label
value of your user id.

Using positioned DELETE statements
After your program has executed a FETCH statement to retrieve the current row,
you can use a positioned DELETE statement to delete that row. A example of a
positioned DELETE statement looks like this:
EXEC SQL

DELETE FROM DSN8810.EMP
WHERE CURRENT OF C1

END-EXEC.

A positioned DELETE statement deletes the row on which the cursor is positioned.

A positioned DELETE statement is subject to these restrictions:
v You cannot use a DELETE statement with a cursor to delete rows from a created

temporary table. However, you can use a DELETE statement with a cursor to
delete rows from a declared temporary table.

v After you have deleted a row, you cannot update or delete another row using
that cursor until you execute a FETCH statement to position the cursor on
another row.

v You cannot delete a row if doing so violates any referential constraints.
v You cannot use an INSERT statement in the FROM clause of a SELECT

statement that defines a cursor that is used in a positioned DELETE statement.
v A positioned DELETE statement will fail if the value of the security label column

of the row where the cursor is positioned is not equivalent to the security label
value of your user id. If your user id has write down privilege, a positioned

Chapter 7. Using a cursor to retrieve a set of rows 107

|
|

|
|
|
|
|
|

|
|

|
|
|



DELETE statement will fail if the value of the security label column of the row
where the cursor is positioned does not dominate the security label value of
your user id.

Step 5: Close the cursor
If you finish processing the rows of the result table and want to use the cursor
again, issue a CLOSE statement to close the cursor and then issue an OPEN
statement to reopen the cursor. An example of a CLOSE statement looks like this:
EXEC SQL

CLOSE C1
END-EXEC.

When you finish processing the rows of the result table, and the cursor is no
longer needed, you can let DB2 automatically close the cursor when the current
transaction terminates or when your program terminates.

Recommendation: To free the resources that are held by the cursor, close the
cursor explicitly by issuing the CLOSE statement.

Accessing data by using a rowset-positioned cursor
The basic steps in using a rowset cursor are:
1. Execute a DECLARE CURSOR statement to define the result table on which the

cursor operates. See “Step 1: Declare the rowset cursor.”
2. Execute an OPEN CURSOR to make the cursor available to the application. See

“Step 2: Open the rowset cursor.”
3. Specify what the program is to do when all rows have been retrieved. See

“Step 3: Specify what to do at end-of-data for a rowset cursor” on page 109.
4. Execute multiple SQL statements to retrieve data from the table or modify

selected rows of the table. See “Step 4: Execute SQL statements with a rowset
cursor” on page 109.

5. Execute a CLOSE CURSOR statement to make the cursor unavailable to the
application. See “Step 5: Close the rowset cursor” on page 113.

Your program can have several cursors, each of which performs the previous steps.

Step 1: Declare the rowset cursor
To enable a cursor to fetch rowsets, use the WITH ROWSET POSITIONING clause
in the DECLARE CURSOR statement. The following example shows how to
declare a rowset cursor:
EXEC SQL

DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR
SELECT EMPNO, LASTNAME, SALARY

FROM DSN8810.EMP
END-EXEC.

For restrictions that apply to rowset-positioned cursors and row-positioned cursors,
see “Step 1: Declare the cursor” on page 103.

Step 2: Open the rowset cursor
To tell DB2 that you are ready to process the first rowset of the result table, execute
the OPEN statement in your program. DB2 then uses the SELECT statement within
DECLARE CURSOR to identify the rows in the result table. For more information
about the OPEN CURSOR process, see “Step 2: Open the cursor” on page 105.

108 Application Programming and SQL Guide

|
|
|

|

|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|

|
|
|
|
|

|
|

|

|
|
|
|



Step 3: Specify what to do at end-of-data for a rowset cursor
To determine whether the program has retrieved the last row of data in the result
table, test the SQLCODE field for a value of 100 or the SQLSTATE field for a value
of '02000'. With a rowset cursor, these codes occur when a FETCH statement
retrieves the last row in the result table. However, when the last row has been
retrieved, the program must still process the rows in the last rowset through that
last row. For an example of end-of-data processing for a rowset cursor, see
Figure 21 on page 127.

To determine the number of retrieved rows, use either of the following values:
v The contents of the SQLERRD(3) field in the SQLCA
v The contents of the ROW_COUNT item of GET DIAGNOSTICS

For information about GET DIAGNOSTICS, see “The GET DIAGNOSTICS
statement” on page 94.

If you declare the cursor as dynamic scrollable, and SQLCODE has the value 100,
you can continue with a FETCH statement until no more rows are retrieved.
Additional fetches might retrieve more rows because a dynamic scrollable cursor is
sensitive to updates by other application processes. For information about dynamic
cursors, see “Types of cursors” on page 113.

Step 4: Execute SQL statements with a rowset cursor
You can execute these static SQL statements when you use a rowset cursor:
v A multiple-row FETCH statement that copies a rowset of column values into

either of the following data areas:
– Host variable arrays that are declared in your program
– Dynamically-allocated arrays whose storage addresses are put into an SQL

descriptor area (SQLDA), along with the attributes of the columns that are to
be retrieved

v After either form of the multiple-row FETCH statement, you can issue:
– A positioned UPDATE statement on the current rowset
– A positioned DELETE statement on the current rowset

You must use the WITH ROWSET POSITIONING clause of the DECLARE
CURSOR statement if you plan to use a rowset-positioned FETCH statement.

Using a multiple-row FETCH statement with host variable arrays
The following example shows a FETCH statement that retrieves 20 rows into host
variable arrays that are declared in your program:
EXEC SQL

FETCH NEXT ROWSET FROM C1
FOR 20 ROWS
INTO :HVA-EMPNO, :HVA-LASTNAME, :HVA-SALARY :INDA-SALARY

END-EXEC.

When your program executes a FETCH statement with the ROWSET keyword, the
cursor is positioned on a rowset in the result table. That rowset is called the current
rowset. The dimension of each of the host variable arrays must be greater than or
equal to the number of rows to be retrieved.

Using a multiple-row FETCH statement with a descriptor
Suppose that you want to dynamically allocate the storage needed for the arrays of
column values that are to be retrieved from the employee table. You must:
1. Declare an SQLDA structure and the variables that reference the SQLDA.

Chapter 7. Using a cursor to retrieve a set of rows 109

|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|



2. Dynamically allocate the SQLDA and the arrays needed for the column values.
3. Set the fields in the SQLDA for the column values to be retrieved.
4. Open the cursor.
5. Fetch the rows.

Declare the SQLDA: You must first declare the SQLDA structure. The following
SQL INCLUDE statement requests a standard SQLDA declaration:
EXEC SQL INCLUDE SQLDA;

Your program must also declare variables that reference the SQLDA structure, the
SQLVAR structure within the SQLDA, and the DECLEN structure for the precision
and scale if you are retrieving a DECIMAL column. For C programs, the code
looks like this:
struct sqlda *sqldaptr;
struct sqlvar *varptr;
struct DECLEN {

unsigned char precision;
unsigned char scale;
};

Allocate the SQLDA: Before you can set the fields in the SQLDA for the column
values to be retrieved, you must dynamically allocate storage for the SQLDA
structure. For C programs, the code looks like this:
sqldaptr = (struct sqlda *) malloc (3 * 44 + 16);

The size of the SQLDA is SQLN * 44 + 16, where the value of the SQLN field is the
number of output columns.

Set the fields in the SQLDA: You must set the fields in the SQLDA structure for
your FETCH statement. Suppose you want to retrieve the columns EMPNO,
LASTNAME, and SALARY. The C code to set the SQLDA fields for these columns
looks like this:

strcpy(sqldaptr->sqldaid,"SQLDA");
sqldaptr->sqldabc = 148; /* number bytes of storage allocated for the SQLDA */
sqldaptr->sqln = 3; /* number of SQLVAR occurrences */
sqldaptr->sqld = 3;
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0])); /* Point to first SQLVAR */
varptr->sqltype = 452; /* data type CHAR(6) */
varptr->sqllen = 6;
varptr->sqldata = (char *) hva1;
varptr->sqlind = (short *) inda1;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 1); /* Point to next SQLVAR */
varptr->sqltype = 448; /* data type VARCHAR(15) */
varptr->sqllen = 15;
varptr->sqldata = (char *) hva2;
varptr->sqlind = (short *) inda2;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 2); /* Point to next SQLVAR */
varptr->sqltype = 485; /* data type DECIMAL(9,2) */
((struct DECLEN *) &(varptr->sqllen))->precision = 9;
((struct DECLEN *) &(varptr->sqllen))->scale = 2;
varptr->sqldata = (char *) hva3;
varptr->sqlind = (short *) inda3;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);

The SQLDA structure has these fields:

110 Application Programming and SQL Guide

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

|



v SQLDABC indicates the number of bytes of storage that are allocated for the
SQLDA. The storage includes a 16-byte header and 44 bytes for each SQLVAR
field. The value is SQLN x 44 + 16, or 148 for this example.

v SQLN is the number of SQLVAR occurrences (or the number of output columns).
v SQLD is the number of variables in the SQLDA that are used by DB2 when

processing the FETCH statement.
v Each SQLVAR occurrence describes a host variable array or buffer into which the

values for a column in the result table are to be returned. Within each SQLVAR:
– SQLTYPE indicates the data type of the column.
– SQLLEN indicates the length of the column. If the data type is DECIMAL,

this field has two parts: the PRECISION and the SCALE.
– SQLDATA points to the first element of the array for the column values. For

this example, assume that your program allocates the dynamic variable arrays
hva1, hva2, and hva3, and their indicator arrays inda1, inda2, and inda3.

– SQLIND points to the first element of the array of indicator values for the
column. If SQLTYPE is an odd number, this attribute is required. (If SQLTYPE
is an odd number, null values are allowed for the column.)

– SQLNAME has two parts: the LENGTH and the DATA. The LENGTH is 8.
The first two bytes of the DATA field is X'0000'. Bytes 5 and 6 of the DATA
field are a flag indicating whether the variable is an array or a FOR n ROWS
value. Bytes 7 and 8 are a two-byte binary integer representation of the
dimension of the array.

For information about using the SQLDA in dynamic SQL, see Chapter 24, “Coding
dynamic SQL in application programs,” on page 595. For a complete layout of the
SQLDA and the descriptions given by the INCLUDE statement, see Appendix E of
DB2 SQL Reference.

Open the cursor: You can open the cursor only after all of the fields have been set
in the output SQLDA:
EXEC SQL OPEN C1;

Fetch the rows: After the OPEN statement, the program fetches the next rowset:
EXEC SQL

FETCH NEXT ROWSET FROM C1
FOR 20 ROWS
USING DESCRIPTOR :*sqldaptr;

The USING clause of the FETCH statement names the SQLDA that describes the
columns that are to be retrieved.

Using rowset-positioned UPDATE statements
After your program executes a FETCH statement to establish the current rowset,
you can use a positioned UPDATE statement with either of the following clauses:
v Use WHERE CURRENT OF to modify all of the rows in the current rowset
v Use FOR ROW n OF ROWSET to modify row n in the current rowset

For information about restrictions for a positioned UPDATE, see “Using positioned
UPDATE statements” on page 107.

Using the WHERE CURRENT OF clause: An example of a positioned UPDATE
statement that uses the WHERE CURRENT OF clause is:

Chapter 7. Using a cursor to retrieve a set of rows 111

|
|
|

|

|
|

|
|

|

|
|

|
|
|

|
|
|

#
#
#
#
#

|
|
|
|

|
|

|

|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|



EXEC SQL
UPDATE DSN8810.EMP

SET SALARY = 50000
WHERE CURRENT OF C1

END-EXEC.

When the UPDATE statement is executed, the cursor must be positioned on a row
or rowset of the result table. If the cursor is positioned on a row, that row is
updated. If the cursor is positioned on a rowset, all of the rows in the rowset are
updated.

Using the FOR ROW n OF ROWSET clause: An example of a positioned
UPDATE statement that uses the FOR ROW n OF ROWSET clause is:
EXEC SQL

UPDATE DSN8810.EMP
SET SALARY = 50000
FOR CURSOR C1 FOR ROW 5 OF ROWSET

END-EXEC.

When the UPDATE statement is executed, the cursor must be positioned on a
rowset of the result table. The specified row (in the example, row 5) of the current
rowset is updated.

Using rowset-positioned DELETE statements
After your program executes a FETCH statement to establish the current rowset,
you can use a positioned DELETE statement with either of the following clauses:
v Use WHERE CURRENT OF to delete all of the rows in the current rowset
v Use FOR ROW n OF ROWSET to delete row n in the current rowset

For information about restrictions for a positioned DELETE, see “Using positioned
DELETE statements” on page 107.

Using the WHERE CURRENT OF clause: An example of a positioned DELETE
statement that uses the WHERE CURRENT OF clause is:
EXEC SQL

DELETE FROM DSN8810.EMP
WHERE CURRENT OF C1

END-EXEC.

When the DELETE statement is executed, the cursor must be positioned on a row
or rowset of the result table. If the cursor is positioned on a row, that row is
deleted, and the cursor is positioned before the next row of its result table. If the
cursor is positioned on a rowset, all of the rows in the rowset are deleted, and the
cursor is positioned before the next rowset of its result table.

Using the FOR ROW n OF ROWSET clause: An example of a positioned
DELETE statement that uses the FOR ROW n OF ROWSET clause is:
EXEC SQL

DELETE FROM DSN8810.EMP
FOR CURSOR C1 FOR ROW 5 OF ROWSET

END-EXEC.

When the DELETE statement is executed, the cursor must be positioned on a
rowset of the result table. The specified row of the current rowset is deleted, and
the cursor remains positioned on that rowset. The deleted row (in the example,
row 5 of the rowset) cannot be retrieved or updated.

112 Application Programming and SQL Guide

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|



Number of rows in a rowset
The number of rows in a rowset is determined either explicitly or implicitly. To
explicitly set the size of a rowset, use the FOR n ROWS clause in the FETCH
statement. If a FETCH statement specifies the ROWSET keyword, and not the FOR
n ROWS clause, the size of the rowset is implicitly set to the size of the rowset that
was most recently specified in a prior FETCH statement. If a prior FETCH
statement did not specify the FOR n ROWS clause or the ROWSET keyword, the
size of the current rowset is implicitly set to 1. For examples of rowset positioning,
see Table 8 on page 118.

Step 5: Close the rowset cursor
If you finish processing the rows of the result table and want to use the cursor
again, issue a CLOSE statement to close the cursor and then issue an OPEN
statement to reopen the cursor.

When you finish processing the rows of the result table, and you no longer need
the cursor, you can let DB2 automatically close the cursor when the current
transaction terminates or when your program terminates.

Recommendation: To free the resources held by the cursor, close the cursor
explicitly by issuing the CLOSE statement.

Types of cursors
You can declare cursors, both row-positioned and rowset-positioned, as scrollable
or not scrollable, held or not held, and returnable or not returnable. The following
sections discuss these characteristics:
v “Scrollable and non-scrollable cursors”
v “Held and non-held cursors” on page 122

In addition, you can declare a returnable cursor in a stored procedure by including
the WITH RETURN clause; the cursor can return result sets to a caller of the stored
procedure. For information about returnable cursors, see Chapter 25, “Using stored
procedures for client/server processing,” on page 631.

Scrollable and non-scrollable cursors
When you declare a cursor, you tell DB2 whether you want the cursor to be
scrollable or non-scrollable by including or omitting the SCROLL clause. This
clause determines whether the cursor moves sequentially forward through the
result table or can move randomly through the result table.

Using a non-scrollable cursor
The simplest type of cursor is a non-scrollable cursor. A non-scrollable cursor can
be either row-positioned or rowset-positioned. A row-positioned non-scrollable
cursor moves forward through its result table one row at a time. Similarly, a
rowset-positioned non-scrollable cursor moves forward through its result table one
rowset at a time.

A non-scrollable cursor always moves sequentially forward in the result table.
When the application opens the cursor, the cursor is positioned before the first row
(or first rowset) in the result table. When the application executes the first FETCH,
the cursor is positioned on the first row (or first rowset). When the application
executes subsequent FETCH statements, the cursor moves one row ahead (or one
rowset ahead) for each FETCH. After each FETCH statement, the cursor is
positioned on the row (or rowset) that was fetched.

Chapter 7. Using a cursor to retrieve a set of rows 113

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
#

|

|
|
|
|
|



After the application executes a positioned UPDATE or positioned DELETE
statement, the cursor stays at the current row (or rowset) of the result table. You
cannot retrieve rows (or rowsets) backward or move to a specific position in a
result table with a non-scrollable cursor.

Using a scrollable cursor
To make a cursor scrollable, you declare it as scrollable. A scrollable cursor can be
either row-positioned or rowset-positioned. To use a scrollable cursor, you execute
FETCH statements that indicate where you want to position the cursor. For
examples of FETCH statements that position a cursor for both rows and rowsets,
see Table 8 on page 118.

If you want to order the rows of the cursor's result set, and you also want the
cursor to be updatable, you need to declare the cursor as scrollable, even if you
use it only to retrieve rows (or rowsets) sequentially. You can use the ORDER BY
clause in the declaration of an updatable cursor only if you declare the cursor as
scrollable.

Declaring a scrollable cursor: To indicate that a cursor is scrollable, you declare it
with the SCROLL keyword. The following examples show a characteristic of
scrollable cursors: the sensitivity.

Figure 12 shows a declaration for an insensitive scrollable cursor.

Declaring a scrollable cursor with the INSENSITIVE keyword has the following
effects:
v The size, the order of the rows, and the values for each row of the result table

do not change after the application opens the cursor.
v The result table is read-only. Therefore, you cannot declare the cursor with the

FOR UPDATE clause, and you cannot use the cursor for positioned update or
delete operations.

Figure 13 shows a declaration for a sensitive static scrollable cursor.

Declaring a cursor as SENSITIVE STATIC has the following effects:
v When the application executes positioned UPDATE and DELETE statements

with the cursor, those changes are visible in the result table.
v When the current value of a row no longer satisfies the SELECT statement that

was used in the cursor declaration, that row is no longer visible in the result
table.

v When a row of the result table is deleted from the underlying table, that row is
no longer visible in the result table.

EXEC SQL DECLARE C1 INSENSITIVE SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8810.DEPT
ORDER BY DEPTNO

END-EXEC.

Figure 12. Declaration for an insensitive scrollable row cursor

EXEC SQL DECLARE C2 SENSITIVE STATIC SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8810.DEPT
ORDER BY DEPTNO

END-EXEC.

Figure 13. Declaration for a sensitive static scrollable row cursor

114 Application Programming and SQL Guide



v Changes that are made to the underlying table by other cursors or other
application processes can be visible in the result table, depending on whether
the FETCH statements that you use with the cursor are FETCH INSENSITIVE or
FETCH SENSITIVE statements.

Figure 14 shows a declaration for a sensitive dynamic scrollable cursor.

Declaring a cursor as SENSITIVE DYNAMIC has the following effects:
v When the application executes positioned UPDATE and DELETE statements

with the cursor, those changes are visible. In addition, when the application
executes INSERT, UPDATE, and DELETE statements (within the application but
outside the cursor), those changes are visible.

v All committed inserts, updates, and deletes by other application processes are
visible.

v Because the FETCH statement executes against the base table, the cursor needs
no temporary result table. When you define a cursor as SENSITIVE DYNAMIC,
you cannot specify the INSENSITIVE keyword in a FETCH statement for that
cursor.

v If you specify an ORDER BY clause for a SENSITIVE DYNAMIC cursor, DB2
might choose an index access path if the ORDER BY is fully satisfied by an
existing index. However, a dynamic scrollable cursor that is declared with an
ORDER BY clause is not updatable.

Static scrollable cursor: Both the INSENSITIVE cursor and the SENSITIVE
STATIC cursor follow the static cursor model:
v The size of the result table does not grow after the application opens the cursor.

Rows that are inserted into the underlying table are not added to the result
table.

v The order of the rows does not change after the application opens the cursor.
If the cursor declaration contains an ORDER BY clause, and the columns that are
in the ORDER BY clause are updated after the cursor is opened, the order of the
rows in the result table does not change.

Dynamic scrollable cursor: When you declare a cursor as SENSITIVE, you can
declare it either STATIC or DYNAMIC. The SENSITIVE DYNAMIC cursor follows
the dynamic cursor model:
v The size and contents of the result table can change with every fetch.

The base table can change while the cursor is scrolling on it. If another
application process changes the data, the cursor sees the newly changed data
when it is committed. If the application process of the cursor changes the data,
the cursor sees the newly changed data immediately.

v The order of the rows can change after the application opens the cursor.
If the cursor declaration contains an ORDER BY clause, and columns that are in
the ORDER BY clause are updated after the cursor is opened, the order of the
rows in the result table changes.

EXEC SQL DECLARE C2 SENSITIVE DYNAMIC SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8810.DEPT
ORDER BY DEPTNO

END-EXEC.

Figure 14. Declaration for a sensitive dynamic scrollable cursor

Chapter 7. Using a cursor to retrieve a set of rows 115

|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|



Determining attributes of a cursor by checking the SQLCA: After you open a
cursor, you can determine the following attributes of the cursor by checking the
following SQLWARN and SQLERRD fields of the SQLCA:

SQLWARN1
Indicates whether the cursor is scrollable or non-scrollable.

SQLWARN4
Indicates whether the cursor is insensitive (I), sensitive static (S), or sensitive
dynamic (D).

SQLWARN5
Indicates whether the cursor is read-only, readable and deletable, or readable,
deletable, and updatable.

SQLERRD(1)
The number of rows in the result table of a cursor when the cursor position is
after the last row (when SQLCODE is equal to +100). This field is not set for
dynamic scrollable cursors.

SQLERRD(2)
The number of rows in the result table of a cursor when the cursor position is
after the last row (when SQLCODE is equal to +100). This field is not set for
dynamic scrollable cursors.

SQLERRD(3)
The number of rows in the result table of an INSERT when the SELECT
statement of the cursor contains the INSERT statement.

If the OPEN statement executes with no errors or warnings, DB2 does not set
SQLWARN0 when it sets SQLWARN1, SQLWARN4, or SQLWARN5. See Appendix
D of DB2 SQL Reference for specific information about fields in the SQLCA.

Determining attributes of a cursor by using the GET DIAGNOSTICS
statement: After you open a cursor, you can determine the following attributes of
the cursor by checking these GET DIAGNOSTICS items:

DB2_SQL_ATTR_CURSOR_HOLD
Indicates whether the cursor can be held open across commits (Y or N)

DB2_SQL_ATTR_CURSOR_ROWSET
Indicates whether the cursor can use rowset positioning (Y or N)

DB2_SQL_ATTR_CURSOR_SCROLLABLE
Indicates whether the cursor is scrollable (Y or N)

DB2_SQL_ATTR_CURSOR_SENSITIVITY
Indicates whether the cursor is asensitive, insensitive, or sensitive to changes
that are made by other processes (A, I, or S)

DB2_SQL_ATTR_CURSOR_TYPE
Indicates whether the cursor is declared static (S for INSENSITIVE or
SENSITIVE STATIC) or dynamic (D for SENSITIVE DYNAMIC)

For more information about the GET DIAGNOSTICS statement, see “The GET
DIAGNOSTICS statement” on page 94.

Retrieving rows with a scrollable cursor: When you open any cursor, the cursor
is positioned before the first row of the result table. You move a scrollable cursor
around in the result table by specifying a fetch orientation keyword in a FETCH
statement. A fetch orientation keyword indicates the absolute or relative position of
the cursor when the FETCH statement is executed. Table 7 on page 117 lists the

116 Application Programming and SQL Guide

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|



fetch orientation keywords that you can specify and their meanings. These
keywords apply to both row-positioned scrollable cursors and rowset-positioned
scrollable cursors.

Table 7. Positions for a scrollable cursor

Keyword in FETCH statement Cursor position when FETCH is executed1

BEFORE Before the first row

FIRST or ABSOLUTE +1 On the first row

LAST or ABSOLUTE −1 On the last row

AFTER After the last row

ABSOLUTE2 On an absolute row number, from before the first
row forward or from after the last row backward

RELATIVE2 On the row that is forward or backward a relative
number of rows from the current row

CURRENT On the current row

PRIOR or RELATIVE −1 On the previous row

NEXT On the next row (default)

Notes:

1. The cursor position applies to both row position and rowset position, for example, before
the first row or before the first rowset.

2. ABSOLUTE and RELATIVE are described in greater detail in the discussion of FETCH in
Chapter 5 of DB2 SQL Reference.

Example: To use the cursor that is declared in Figure 12 on page 114 to fetch the
fifth row of the result table, use a FETCH statement like this:
EXEC SQL FETCH ABSOLUTE +5 C1 INTO :HVDEPTNO, :DEPTNAME, :MGRNO;

To fetch the fifth row from the end of the result table, use this FETCH statement:
EXEC SQL FETCH ABSOLUTE -5 C1 INTO :HVDEPTNO, :DEPTNAME, :MGRNO;

Determining the number of rows in the result table for a static scrollable
cursor: You can determine how many rows are in the result table of an
INSENSITIVE or SENSITIVE STATIC scrollable cursor. To do that, execute a
FETCH statement, such as FETCH AFTER, that positions the cursor after the last
row. You can then examine the fields SQLERRD(1) and SQLERRD(2) in the SQLCA
(fields sqlerrd[0] and sqlerrd[1] for C and C++) for the number of rows in the
result table. Alternatively, you can use the GET DIAGNOSTICS statement to
retrieve the number of rows in the ROW_COUNT statement item.

FETCH statement interaction between row and rowset positioning: When you
declare a cursor with the WITH ROWSET POSITIONING clause, you can intermix
row-positioned FETCH statements with rowset-positioned FETCH statements. For
information about using a multiple-row FETCH statement, see “Using a
multiple-row FETCH statement with host variable arrays” on page 109.

Table 8 on page 118 shows the interaction between row and rowset positioning for
a scrollable cursor. Assume that you declare the scrollable cursor on a table with 15
rows.

Chapter 7. Using a cursor to retrieve a set of rows 117

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|



Table 8. Interaction between row and rowset positioning for a scrollable cursor

Keywords in FETCH statement Cursor position when FETCH is executed

FIRST On row 1

FIRST ROWSET On a rowset of size 1, consisting of row 1

FIRST ROWSET FOR 5 ROWS On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

CURRENT ROWSET On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

CURRENT On row 1

NEXT (default) On row 2

NEXT ROWSET On a rowset of size 1, consisting of row 3

NEXT ROWSET FOR 3 ROWS On a rowset of size 3, consisting of rows 4, 5, and
6

NEXT ROWSET On a rowset of size 3, consisting of rows 7, 8, and
9

LAST On row 15

LAST ROWSET FOR 2 ROWS On a rowset of size 2, consisting of rows 14 and
15

PRIOR ROWSET On a rowset of size 2, consisting of rows 12 and
13

ABSOLUTE 2 On row 2

ROWSET STARTING AT ABSOLUTE 2
FOR 3 ROWS

On a rowset of size 3, consisting of rows 2, 3, and
4

RELATIVE 2 On row 4

ROWSET STARTING AT ABSOLUTE 2
FOR 4 ROWS

On a rowset of size 4, consisting of rows 2, 3, 4,
and 5

RELATIVE -1 On row 1

ROWSET STARTING AT ABSOLUTE 3
FOR 2 ROWS

On a rowset of size 2, consisting of rows 3 and 4

ROWSET STARTING AT RELATIVE 4 On a rowset of size 2, consisting of rows 7 and 8

PRIOR On row 6

ROWSET STARTING AT ABSOLUTE 13
FOR 5 ROWS

On a rowset of size 3, consisting of rows 13, 14,
and 15

FIRST ROWSET On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

Note: The FOR n ROWS clause and the ROWSET clause are described in greater detail in
the discussion of FETCH in Chapter 5 of DB2 SQL Reference.

Comparison of scrollable cursors
When you declare a cursor as SENSITIVE STATIC, changes that other processes or
cursors make to the underlying table can be visible to the result table of the cursor.
Whether those changes are visible depends on whether you specify SENSITIVE or
INSENSITIVE when you execute FETCH statements with the cursor. When you
specify FETCH INSENSITIVE, changes that other processes or other cursors make
to the underlying table are not visible in the result table. When you specify FETCH
SENSITIVE, changes that other processes or cursors make to the underlying table
are visible in the result table.

118 Application Programming and SQL Guide

||

||

||

||

||
|

||
|

||

||

||

||
|

||
|

||

||
|

||
|

||

|
|
|
|

||

|
|
|
|

||

|
|
|

||

||

|
|
|
|

||
|

|
|
|

|
|
|
|
|
|
|
|
|



When you declare a cursor as SENSITIVE DYNAMIC, changes that other processes
or cursors make to the underlying table are visible to the result table after the
changes are committed.

Table 9 summarizes the sensitivity values and their effects on the result table of a
scrollable cursor.

Table 9. How sensitivity affects the result table for a scrollable cursor

DECLARE
sensitivity FETCH INSENSITIVE FETCH SENSITIVE

INSENSITIVE No changes to the underlying
table are visible in the result
table. Positioned UPDATE and
DELETE statements using the
cursor are not allowed.

Not valid.

SENSITIVE STATIC Only positioned updates and
deletes that are made by the
cursor are visible in the result
table.

All updates and deletes are visible
in the result table. Inserts made by
other processes are not visible in
the result table.

SENSITIVE
DYNAMIC

Not valid. All committed changes are visible
in the result table, including
updates, deletes, inserts, and
changes in the order of the rows.

Holes in the result table of a scrollable cursor
In some situations, you might not be able to fetch a row from the result table of a
scrollable cursor, depending on how the cursor is declared:
v Scrollable cursors that are declared as INSENSITIVE or SENSITIVE STATIC

follow a static model, which means that DB2 determines the size of the result
table and the order of the rows when you open the cursor.
Deleting or updating rows after a static cursor is open can result in holes in the
result table, which means that the result table does not shrink to fill the space of
deleted rows or the space of rows that have been updated and no longer satisfy
the search condition. You cannot access a delete hole or an update hole of a
static cursor, although you can remove holes in specific situations; see
“Removing a delete hole or an update hole” on page 121.

v Scrollable cursors that are declared as SENSITIVE DYNAMIC follow a dynamic
model, which means that the size and contents of the result table, and the order
of the rows, can change after you open the cursor.
A dynamic cursor scrolls directly on the base table. If the current row of the
cursor is deleted or if it is updated so that it no longer satisfies the search
condition, and the next cursor operation is FETCH CURRENT, then DB2 issues
an SQL warning.

The following examples demonstrate how delete and update holes can occur when
you use a SENSITIVE STATIC scrollable cursor.

Creating a delete hole with a static scrollable cursor: Suppose that table A
consists of one integer column, COL1, which has the values shown in Figure 15 on
page 120.

Chapter 7. Using a cursor to retrieve a set of rows 119

|
|
|

|
|

||

|
|||

||
|
|
|
|

|

||
|
|
|

|
|
|
|

|
|
||
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|



Now suppose that you declare the following SENSITIVE STATIC scrollable cursor,
which you use to delete rows from A:
EXEC SQL DECLARE C3 SENSITIVE STATIC SCROLL CURSOR FOR

SELECT COL1
FROM A
FOR UPDATE OF COL1;

Now you execute the following SQL statements:
EXEC SQL OPEN C3;
EXEC SQL FETCH ABSOLUTE +3 C3 INTO :HVCOL1;
EXEC SQL DELETE FROM A WHERE CURRENT OF C3;

The positioned delete statement creates a delete hole, as shown in Figure 16.

After you execute the positioned delete statement, the third row is deleted from
the result table, but the result table does not shrink to fill the space that the deleted
row creates.

Creating an update hole with a static scrollable cursor: Suppose that you declare
the following SENSITIVE STATIC scrollable cursor, which you use to update rows
in A:
EXEC SQL DECLARE C4 SENSITIVE STATIC SCROLL CURSOR FOR

SELECT COL1
FROM A
WHERE COL1<6;

Now you execute the following SQL statements:
EXEC SQL OPEN C4;
UPDATE A SET COL1=COL1+1;

Figure 15. Values for COL1 of table A

Figure 16. Creating a delete hole

120 Application Programming and SQL Guide



The searched UPDATE statement creates an update hole, as shown in Figure 17.

After you execute the searched UPDATE statement, the last row no longer qualifies
for the result table, but the result table does not shrink to fill the space that the
disqualified row creates.

Removing a delete hole or an update hole: You can remove a delete hole or an
update hole in specific situations.

If you try to fetch from a delete hole, DB2 issues an SQL warning. If you try to
update or delete a delete hole, DB2 issues an SQL error. You can remove a delete
hole only by opening the scrollable cursor, setting a savepoint, executing a
positioned DELETE statement with the scrollable cursor, and rolling back to the
savepoint.

If you try to fetch from an update hole, DB2 issues an SQL warning. If you try to
delete an update hole, DB2 issues an SQL error. However, you can convert an
update hole back to a result table row by updating the row in the base table, as
shown in Figure 18 on page 122. You can update the base table with a searched
UPDATE statement in the same application process, or a searched or positioned
UPDATE statement in another application process. After you update the base table,
if the row qualifies for the result table, the update hole disappears.

Figure 17. Creating an update hole

Chapter 7. Using a cursor to retrieve a set of rows 121



A hole becomes visible to a cursor when a cursor operation returns a non-zero
SQLCODE. The point at which a hole becomes visible depends on the following
factors:
v Whether the scrollable cursor creates the hole
v Whether the FETCH statement is FETCH SENSITIVE or FETCH INSENSITIVE

If the scrollable cursor creates the hole, the hole is visible when you execute a
FETCH statement for the row that contains the hole. The FETCH statement can be
FETCH INSENSITIVE or FETCH SENSITIVE.

If an update or delete operation outside the scrollable cursor creates the hole, the
hole is visible at the following times:
v If you execute a FETCH SENSITIVE statement for the row that contains the hole,

the hole is visible when you execute the FETCH statement.
v If you execute a FETCH INSENSITIVE statement, the hole is not visible when

you execute the FETCH statement. DB2 returns the row as it was before the
update or delete operation occurred. However, if you follow the FETCH
INSENSITIVE statement with a positioned UPDATE or DELETE statement, the
hole becomes visible.

Held and non-held cursors
When you declare a cursor, you tell DB2 whether you want the cursor to be held
or not held by including or omitting the WITH HOLD clause. A held cursor, which
is declared with the WITH HOLD clause, does not close after a commit operation.
A cursor that is not held closes after a commit operation.

After a commit operation, the position of a held cursor depends on its type:
v A non-scrollable cursor that is held is positioned after the last retrieved row and

before the next logical row. The next row can be returned from the result table
with a FETCH NEXT statement.

Figure 18. Removing an update hole

122 Application Programming and SQL Guide

|

|
|
|



v A static scrollable cursor that is held is positioned on the last retrieved row. The
last retrieved row can be returned from the result table with a FETCH
CURRENT statement.

v A dynamic scrollable cursor that is held is positioned after the last retrieved row
and before the next logical row. The next row can be returned from the result
table with a FETCH NEXT statement. DB2 returns SQLCODE +231 for a FETCH
CURRENT statement.

A held cursor can close when:
v You issue a CLOSE cursor, ROLLBACK, or CONNECT statement
v You issue a CAF CLOSE function call or an RRSAF TERMINATE THREAD

function call
v The application program terminates.

If the program abnormally terminates, the cursor position is lost. To prepare for
restart, your program must reposition the cursor.

The following restrictions apply to cursors that are declared WITH HOLD:
v Do not use DECLARE CURSOR WITH HOLD with the new user signon from a

DB2 attachment facility, because all open cursors are closed.
v Do not declare a WITH HOLD cursor in a thread that might become inactive. If

you do, its locks are held indefinitely.
v Do not define CURSOR WITH HOLD if PARTKEYU = YES is declared.

IMS
You cannot use DECLARE CURSOR...WITH HOLD in message processing
programs (MPP) and message-driven batch message processing (BMP). Each
message is a new user for DB2; whether or not you declare them using WITH
HOLD, no cursors continue for new users. You can use WITH HOLD in
non-message-driven BMP and DL/I batch programs.

CICS
In CICS applications, you can use DECLARE CURSOR...WITH HOLD to
indicate that a cursor should not close at a commit or sync point. However,
SYNCPOINT ROLLBACK closes all cursors, and end-of-task (EOT) closes all
cursors before DB2 reuses or terminates the thread. Because
pseudo-conversational transactions usually have multiple EXEC CICS
RETURN statements and thus span multiple EOTs, the scope of a held cursor
is limited. Across EOTs, you must reopen and reposition a cursor declared
WITH HOLD, as if you had not specified WITH HOLD.

You should always close cursors that you no longer need. If you let DB2 close
a CICS attachment cursor, the cursor might not close until the CICS
attachment facility reuses or terminates the thread.

If the CICS application is using a protected entry thread, this thread will
continue to hold resources, even when the task that has used these resources
ends. These resources will not be released until the protected thread
terminates.

Chapter 7. Using a cursor to retrieve a set of rows 123

|
|
|

|
|
|
|

#

#
#
#
#



The following cursor declaration causes the cursor to maintain its position in the
DSN8810.EMP table after a commit point:
EXEC SQL

DECLARE EMPLUPDT CURSOR WITH HOLD FOR
SELECT EMPNO, LASTNAME, PHONENO, JOB, SALARY, WORKDEPT

FROM DSN8810.EMP
WHERE WORKDEPT < ’D11’
ORDER BY EMPNO

END-EXEC.

Examples of using cursors
The examples in this section show the SQL statements that you include in a
COBOL program to define and use cursors in the following ways:
v Non-scrollable cursor for row-positioned updates; see Figure 19 on page 125.
v Scrollable cursor to retrieve rows backward; see Figure 20 on page 126.
v Non-scrollable cursor for rowset-positioned updates; see Figure 21 on page 127.
v Scrollable cursor for rowset-positioned operations; see Figure 22 on page 128.

Figure 19 on page 125 shows how to update a row by using a cursor.

124 Application Programming and SQL Guide



Figure 20 on page 126 shows how to retrieve data backward with a cursor.

**************************************************
* Declare a cursor that will be used to update *
* the JOB column of the EMP table. *
**************************************************
EXEC SQL
DECLARE THISEMP CURSOR FOR

SELECT EMPNO, LASTNAME,
WORKDEPT, JOB

FROM DSN8810.EMP
WHERE WORKDEPT = ’D11’

FOR UPDATE OF JOB
END-EXEC.
**************************************************
* Open the cursor *
**************************************************
EXEC SQL
OPEN THISEMP
END-EXEC.
**************************************************
* Indicate what action to take when all rows *
* in the result table have been fetched. *
**************************************************
EXEC SQL
WHENEVER NOT FOUND

GO TO CLOSE-THISEMP
END-EXEC.
**************************************************
* Fetch a row to position the cursor. *
**************************************************
EXEC SQL
FETCH FROM THISEMP

INTO :EMP-NUM, :NAME2,
:DEPT, :JOB-NAME

END-EXEC.
**************************************************
* Update the row where the cursor is positioned. *
**************************************************
EXEC SQL
UPDATE DSN8810.EMP

SET JOB = :NEW-JOB
WHERE CURRENT OF THISEMP

END-EXEC....
**************************************************
* Branch back to fetch and process the next row. *
**************************************************...
**************************************************
* Close the cursor *
**************************************************
CLOSE-THISEMP.
EXEC SQL

CLOSE THISEMP
END-EXEC.

Figure 19. Performing cursor operations with a non-scrollable cursor

Chapter 7. Using a cursor to retrieve a set of rows 125



Figure 21 on page 127 shows how to update an entire rowset with a cursor.

**************************************************
* Declare a cursor to retrieve the data backward *
* from the EMP table. The cursor has access to *
* changes by other processes. *
**************************************************
EXEC SQL
DECLARE THISEMP SENSITIVE STATIC SCROLL CURSOR FOR

SELECT EMPNO, LASTNAME, WORKDEPT, JOB
FROM DSN8810.EMP

END-EXEC.
**************************************************
* Open the cursor *
**************************************************
EXEC SQL
OPEN THISEMP
END-EXEC.
**************************************************
* Indicate what action to take when all rows *
* in the result table have been fetched. *
**************************************************
EXEC SQL
WHENEVER NOT FOUND GO TO CLOSE-THISEMP
END-EXEC.
**************************************************
* Position the cursor after the last row of the *
* result table. This FETCH statement cannot *
* include the SENSITIVE or INSENSITIVE keyword *
* and cannot contain an INTO clause. *
**************************************************
EXEC SQL
FETCH AFTER FROM THISEMP
END-EXEC.
**************************************************
* Fetch the previous row in the table. *
**************************************************
EXEC SQL
FETCH SENSITIVE PRIOR FROM THISEMP

INTO :EMP-NUM, :NAME2, :DEPT, :JOB-NAME
END-EXEC.
**************************************************
* Check that the fetched row is not a hole *
* (SQLCODE +222). If not, print the contents. *
**************************************************
IF SQLCODE IS GREATER THAN OR EQUAL TO 0 AND

SQLCODE IS NOT EQUAL TO +100 AND
SQLCODE IS NOT EQUAL TO +222 THEN
PERFORM PRINT-RESULTS....

**************************************************
* Branch back to fetch the previous row. *
**************************************************...
**************************************************
* Close the cursor *
**************************************************
CLOSE-THISEMP.
EXEC SQL

CLOSE THISEMP
END-EXEC.

Figure 20. Performing cursor operations with a SENSITIVE STATIC scrollable cursor

126 Application Programming and SQL Guide



Figure 22 on page 128 shows how to update specific rows with a rowset cursor.

**************************************************
* Declare a rowset cursor to update the JOB *
* column of the EMP table. *
**************************************************
EXEC SQL
DECLARE EMPSET CURSOR
WITH ROWSET POSITIONING FOR
SELECT EMPNO, LASTNAME, WORKDEPT, JOB
FROM DSN8810.EMP
WHERE WORKDEPT = ’D11’

FOR UPDATE OF JOB
END-EXEC.
**************************************************
* Open the cursor. *
**************************************************
EXEC SQL
OPEN EMPSET
END-EXEC.
**************************************************
* Indicate what action to take when end-of-data *
* occurs in the rowset being fetched. *
**************************************************
EXEC SQL
WHENEVER NOT FOUND

GO TO CLOSE-EMPSET
END-EXEC.
**************************************************
* Fetch next rowset to position the cursor. *
**************************************************
EXEC SQL
FETCH NEXT ROWSET FROM EMPSET

FOR :SIZE-ROWSET ROWS
INTO :HVA-EMPNO, :HVA-LASTNAME,

:HVA-WORKDEPT, :HVA-JOB
END-EXEC.
**************************************************
* Update rowset where the cursor is positioned. *
**************************************************
UPDATE-ROWSET.
EXEC SQL

UPDATE DSN8810.EMP
SET JOB = :NEW-JOB
WHERE CURRENT OF EMPSET

END-EXEC.
END-UPDATE-ROWSET....
**************************************************
* Branch back to fetch the next rowset. *
**************************************************...
**************************************************
* Update the remaining rows in the current *
* rowset and close the cursor. *
**************************************************
CLOSE-EMPSET.
PERFORM UPDATE-ROWSET.
EXEC SQL

CLOSE EMPSET
END-EXEC.

Figure 21. Performing positioned update with a rowset cursor

Chapter 7. Using a cursor to retrieve a set of rows 127

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
||||
|
|
|
|
|
|
|
|
|
|
|



*****************************************************
* Declare a static scrollable rowset cursor. *
*****************************************************
EXEC SQL

DECLARE EMPSET SENSITIVE STATIC SCROLL CURSOR
WITH ROWSET POSITIONING FOR
SELECT EMPNO, WORKDEPT, JOB

FROM DSN8810.EMP
FOR UPDATE OF JOB

END-EXEC.
*****************************************************
* Open the cursor. *
*****************************************************
EXEC SQL

OPEN EMPSET
END-EXEC.
*****************************************************
* Fetch next rowset to position the cursor. *
*****************************************************
EXEC SQL

FETCH SENSITIVE NEXT ROWSET FROM EMPSET
FOR :SIZE-ROWSET ROWS
INTO :HVA-EMPNO,

:HVA-WORKDEPT :INDA-WORKDEPT,
:HVA-JOB :INDA-JOB

END-EXEC.
*****************************************************
* Process fetch results if no error and no hole. *
*****************************************************
IF SQLCODE >= 0

EXEC SQL GET DIAGNOSTICS
:HV-ROWCNT = ROW_COUNT

END-EXEC
PERFORM VARYING N FROM 1 BY 1 UNTIL N > HV-ROWCNT

IF INDA-WORKDEPT(N) NOT = -3
EVALUATE HVA-WORKDEPT(N)

WHEN (’D11’)
PERFORM UPDATE-ROW

WHEN (’E11’)
PERFORM DELETE-ROW

END-EVALUATE
END-IF

END-PERFORM
IF SQLCODE = 100

GO TO CLOSE-EMPSET
END-IF

ELSE
EXEC SQL GET DIAGNOSTICS

:HV-NUMCOND = NUMBER
END-EXEC
PERFORM VARYING N FROM 1 BY 1 UNTIL N > HV-NUMCOND

EXEC SQL GET DIAGNOSTICS CONDITION :N
:HV-SQLCODE = DB2_RETURNED_SQLCODE,
:HV-ROWNUM = DB2_ROW_NUMBER

END-EXEC
DISPLAY "SQLCODE = " HV-SQLCODE
DISPLAY "ROW NUMBER = " HV-ROWNUM

END-PERFORM
GO TO CLOSE-EMPSET

END-IF.

Figure 22. Performing positioned update and delete with a sensitive rowset cursor (Part 1 of
2)

128 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



...
*****************************************************
* Branch back to fetch and process *
* the next rowset. *
*****************************************************...
*****************************************************
* Update row N in current rowset. *
*****************************************************
UPDATE-ROW.

EXEC SQL
UPDATE DSN8810.EMP
SET JOB = :NEW-JOB
FOR CURSOR EMPSET FOR ROW :N OF ROWSET

END-EXEC.
END-UPDATE-ROW.
*****************************************************
* Delete row N in current rowset. *
*****************************************************
DELETE-ROW.

EXEC SQL
DELETE FROM DSN8810.EMP
FOR CURSOR EMPSET FOR ROW :N OF ROWSET

END-EXEC.
END-DELETE-ROW....
*****************************************************
* Close the cursor. *
*****************************************************
CLOSE-EMPSET.
EXEC SQL

CLOSE EMPSET
END-EXEC.

Figure 22. Performing positioned update and delete with a sensitive rowset cursor (Part 2 of
2)

Chapter 7. Using a cursor to retrieve a set of rows 129

|



130 Application Programming and SQL Guide



Chapter 8. Generating declarations for your tables using
DCLGEN

DCLGEN, the declarations generator supplied with DB2, produces a DECLARE
statement you can use in a C, COBOL, or PL/I program, so that you do not need
to code the statement yourself. For detailed syntax of DCLGEN, see Part 3 of DB2
Command Reference.

DCLGEN generates a table declaration and puts it into a member of a partitioned
data set that you can include in your program. When you use DCLGEN to
generate a table's declaration, DB2 gets the relevant information from the DB2
catalog, which contains information about the table's definition and the definition
of each column within the table. DCLGEN uses this information to produce a
complete SQL DECLARE statement for the table or view and a corresponding
PL/I, C structure declaration, or COBOL record description. You can use DCLGEN
for table declarations only if the table you are declaring already exists.

You must use DCLGEN before you precompile your program. Supply the table or
view name to DCLGEN before you precompile your program. To use the
declarations generated by DCLGEN in your program, use the SQL INCLUDE
statement. For more information about the INCLUDE statement, see Chapter 5 of
DB2 SQL Reference.

DB2 must be active before you can use DCLGEN. You can start DCLGEN in
several different ways:
v From ISPF through DB2I. Select the DCLGEN option on the DB2I Primary

Option Menu panel.
v Directly from TSO. To do this, sign on to TSO, issue the TSO command DSN,

and then issue the subcommand DCLGEN.
v From a CLIST, running in TSO foreground or background, that issues DSN and

then DCLGEN.
v With JCL. Supply the required information, using JCL, and run DCLGEN in

batch. In the prefix.SDSNSAMP library, sample jobs DSNTEJ2C and DSNTEJ2P
show how to use JCL to run DCLGEN. For more information about the syntax
of the DSN subcommand DCLGEN, see in DB2 Command Reference.
If you want to start DCLGEN in the foreground, and your table names include
DBCS characters, you must provide and display double-byte characters. If you
do not have a terminal that displays DBCS characters, you can enter DBCS
characters using the hex mode of ISPF edit.

This chapter includes the following sections:
v “Invoking DCLGEN through DB2I” on page 132
v “Including the data declarations in your program” on page 136
v “DCLGEN support of C, COBOL, and PL/I languages” on page 136
v “Example: Adding a table declaration and host-variable structure to a library”

on page 138

© Copyright IBM Corp. 1983, 2012 131

#
#
#
#

#
#
#
#



Invoking DCLGEN through DB2I
The easiest way to start DCLGEN is through DB2I. Figure 23 shows the DCLGEN
panel you reach by selecting the DCLGEN option on the DB2I Primary Option
Menu panel. For more instructions on using DB2I, see “Using ISPF and DB2
Interactive” on page 519.

Fill in the DCLGEN panel as follows:

1 SOURCE TABLE NAME
Is the unqualified name of the table, view, or created temporary table for
which you want DCLGEN to produce SQL data declarations. The table can
be stored at your DB2 location or at another DB2 location. To specify a
table name at another DB2 location, enter the table qualifier in the TABLE
OWNER field and the location name in the AT LOCATION field. DCLGEN
generates a three-part table name from the SOURCE TABLE NAME,
TABLE OWNER, and AT LOCATION fields. You can also use an alias for a
table name.

To specify a table name that contains special characters or blanks, enclose
the name in apostrophes. If the name contains apostrophes, you must
double each one(’ ’). For example, to specify a table named DON'S TABLE,
enter the following:
'DON''S TABLE'

You do not need to enclose DBCS table names in apostrophes. If you do
not enclose the table name in apostrophes, DB2 converts lowercase
characters to uppercase.

The underscore is not handled as a special character in DCLGEN. For
example, the table name JUNE_PROFITS does not need to be enclosed in
apostrophes. Because COBOL field names cannot contain underscores,
DCLGEN substitutes hyphens (-) for single-byte underscores in COBOL
field names that are built from the table name.

2 TABLE OWNER
Is the owner of the source table. If you do not specify this value and the

DSNEDP01 DCLGEN SSID: DSN
===>

Enter table name for which declarations are required:
1 SOURCE TABLE NAME ===>

2 TABLE OWNER ..... ===>

3 AT LOCATION ..... ===> (Optional)
Enter destination data set: (Can be sequential or partitioned)
4 DATA SET NAME ... ===>
5 DATA SET PASSWORD ===> (If password protected)
Enter options as desired:
6 ACTION .......... ===> ADD (ADD new or REPLACE old declaration)
7 COLUMN LABEL .... ===> NO (Enter YES for column label)
8 STRUCTURE NAME .. ===> (Optional)
9 FIELD NAME PREFIX ===> (Optional)
10 DELIMIT DBCS .... ===> YES (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)
12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)
13 ADDITIONAL OPTIONS===> YES (Enter YES to change additional options)

PRESS: ENTER to process END to exit HELP for more information

Figure 23. DCLGEN panel

132 Application Programming and SQL Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



table is a local table, DB2 assumes that the table qualifier is your TSO
logon ID. If the table is at a remote location, you must specify this value.

3 AT LOCATION
Is the location of a table or view at another DB2 subsystem. If you specify
this parameter, you must also specify a qualified name in the SOURCE
TABLE NAME field. The value of the AT LOCATION field becomes a
prefix for the table name on the SQL DECLARE statement, as follows:
location_name.owner_id.table_name

For example, for the location PLAINS_GA:
PLAINS_GA.CARTER.CROP_YIELD_89

The default is the local location name. This field applies to DB2 private
protocol access only. The location you name must be another DB2 UDB for
z/OS.

4 DATA SET NAME
Is the name of the data set you allocated to contain the declarations that
DCLGEN produces. You must supply a name; no default exists.

The data set must already exist, be accessible to DCLGEN, and can be
either sequential or partitioned. If you do not enclose the data set name in
apostrophes, DCLGEN adds a standard TSO prefix (user ID) and suffix
(language). DCLGEN knows what the host language is from the DB2I
defaults panel.

For example, for library name LIBNAME(MEMBNAME), the name
becomes:
userid.libname.language(membname)

For library name LIBNAME, the name becomes:
userid.libname.language

If this data set is password protected, you must supply the password in
the DATA SET PASSWORD field.

5 DATA SET PASSWORD
Is the password for the data set in the DATA SET NAME field, if the data
set is password protected. It is not displayed on your terminal, and it is
not recognized if you issued it from a previous session.

6 ACTION
Tells DCLGEN what to do with the output when it is sent to a partitioned
data set. (The option is ignored if the data set you specify in the DATA
SET NAME field is sequential.)

ADD indicates that an old version of the output does not exist and
creates a new member with the specified data set name. This is the
default.
REPLACE replaces an old version, if it already exists. If the member
does not exist, this option creates a new member.

7 COLUMN LABEL
Tells DCLGEN whether to include labels that are declared on any columns
of the table or view as comments in the data declarations. (The SQL
statement LABEL ON creates column labels to use as supplements to
column names.) Use:

YES to include column labels.
NO to ignore column labels. This is the default.

Chapter 8. Generating declarations for your tables using DCLGEN 133



8 STRUCTURE NAME
Is the name of the generated data structure. The name can be up to 31
characters. If the name is not a DBCS string, and the first character is not
alphabetic, then enclose the name in apostrophes. If you use special
characters, be careful to avoid name conflicts.

If you leave this field blank, DCLGEN generates a name that contains the
table or view name with a prefix of DCL. If the language is COBOL or
PL/I, and the table or view name consists of a DBCS string, the prefix
consists of DBCS characters.

For C, lowercase characters you enter in this field do not fold to uppercase.

9 FIELD NAME PREFIX
Specifies a prefix that DCLGEN uses to form field names in the output. For
example, if you choose ABCDE, the field names generated are ABCDE1,
ABCDE2, and so on.

DCLGEN accepts a field name prefix of up to 28 bytes that can include
special and double-byte characters. If you specify a single-byte or
mixed-string prefix and the first character is not alphabetic, apostrophes
must enclose the prefix. If you use special characters, avoid name conflicts.

For COBOL and PL/I, if the name is a DBCS string, DCLGEN generates
DBCS equivalents of the suffix numbers. For C, lowercase characters you
enter in this field do not fold to uppercase.

If you leave this field blank, the field names are the same as the column
names in the table or view.

10 DELIMIT DBCS
Tells DCLGEN whether to delimit DBCS table names and column names in
the table declaration. Use:

YES to enclose the DBCS table and column names with SQL delimiters.
NO to not delimit the DBCS table and column names.

11 COLUMN SUFFIX
Tells DCLGEN whether to form field names by attaching the column name
as a suffix to the value you specify in FIELD NAME PREFIX. For example,
if you specify YES, the field name prefix is NEW, and the column name is
EMPNO, the field name is NEWEMPNO.

If you specify YES, you must also enter a value in FIELD NAME PREFIX.
If you do not enter a field name prefix, DCLGEN issues a warning
message and uses the column names as the field names.

The default is NO, which does not use the column name as a suffix and
allows the value in FIELD NAME PREFIX to control the field names, if
specified.

12 INDICATOR VARS
Tells DCLGEN whether to generate an array of indicator variables for the
host variable structure.

If you specify YES, the array name is the table name with a prefix of I (or
DBCS letter <I> if the table name consists solely of double-byte characters).
The form of the data declaration depends on the language:

For a C program: short int Itable-name[n];
For a COBOL program: 01 Itable-name PIC S9(4) USAGE COMP OCCURS
n TIMES.
For a PL/I program: DCL Itable-name(n) BIN FIXED(15);

134 Application Programming and SQL Guide



n is the number of columns in the table. For example, suppose you define
the following table:
CREATE TABLE HASNULLS (CHARCOL1 CHAR(1), CHARCOL2 CHAR(1));

You request an array of indicator variables for a COBOL program.
DCLGEN might generate the following host variable declaration:
01 DCLHASNULLS.

10 CHARCOL1 PIC X(1).
10 CHARCOL2 PIC X(1).

01 IHASNULLS PIC S9(4) USAGE COMP OCCURS 2 TIMES.

The default is NO, which does not generate an indicator variable array.

13 ADDITIONAL OPTIONS
Indicates whether to display the panel for additional DCLGEN options.
The default is YES.

If you specified YES in the ADDITIONAL OPTIONS field, the ADDITIONAL
DCLGEN OPTIONS panel is displayed, as shown in Figure 24.

Fill in the ADDITIONAL DCLGEN OPTIONS panel as follows:

1 RIGHT MARGIN
Specifies the break point for statement tokens that must be wrapped to one
or more subsequent records. You can specify column 72 or column 80.

The default is 72.

2 FOR BIT DATA
Specifies whether DCLGEN is to generate a DECLARE VARIABLE
statement of SQL variables for columns that are declared as FOR BIT
DATA. This statement is required in DB2 applications that meet all of the
following criteria:
v are written in COBOL
v have host variables for FOR BIT DATA columns
v are prepared using the SQLCCSID option of the integrated DB2

coprocessor.

The choices are YES and NO. The default is NO.

If the table or view does not have FOR BIT DATA columns, DCLGEN does
not generate this statement.

DCLGEN generates a table or column name in the DECLARE statement as a
non-delimited identifier unless at least one of the following conditions is true:
v The name contains special characters and is not a DBCS string.
v The name is a DBCS string, and you have requested delimited DBCS names.

DSNEDP02 ADDITIONAL DCLGEN OPTIONS SSID: DSN
===>

Enter options as desired:
1 RIGHT MARGIN .... ===> 72 (Enter 72 or 80)

2 FOR BIT DATA .... ===> NO (Enter YES to declare SQL variables for
FOR BIT DATA columns)

PRESS: ENTER to process END to exit HELP for more information

Figure 24. ADDITIONAL DCLGEN OPTIONS panel

Chapter 8. Generating declarations for your tables using DCLGEN 135

#
#
#
#
#
#
#
#
#
#
##
#

#
#
#

#
#

#

#
#
#

#

#
#
#
#
#

#

#

#
#

#

#
#



If you are using an SQL reserved word as an identifier, you must edit the
DCLGEN output in order to add the appropriate SQL delimiters.

DCLGEN produces output that is intended to meet the needs of most users, but
occasionally, you will need to edit the DCLGEN output to work in your specific
case. For example, DCLGEN is unable to determine whether a column that is
defined as NOT NULL also contains the DEFAULT clause, so you must edit the
DCLGEN output to add the DEFAULT clause to the appropriate column
definitions.

Including the data declarations in your program
Use the following SQL INCLUDE statement to place the generated table
declaration and COBOL record description in your source program:
EXEC SQL

INCLUDE member-name
END-EXEC.

For example, to include a description for the table DSN8810.EMP, code:
EXEC SQL

INCLUDE DECEMP
END-EXEC.

In this example, DECEMP is a name of a member of a partitioned data set that
contains the table declaration and a corresponding COBOL record description of
the table DSN8810.EMP. (A COBOL record description is a two-level host structure
that corresponds to the columns of a table's row. For information on host
structures, see Chapter 9, “Embedding SQL statements in host languages,” on page
143.) To get a current description of the table, use DCLGEN to generate the table's
declaration and store it as member DECEMP in a library (usually a partitioned
data set) just before you precompile the program.

DCLGEN support of C, COBOL, and PL/I languages
DCLGEN derives variable names from the source in the database. Table 10 lists the
type declarations that DCLGEN produces for C, COBOL, and PL/I based on the
corresponding SQL data types that are contained in the source tables. In Table 10,
var represents variable names that DCLGEN provides.

Table 10. Declarations generated by DCLGEN

SQL data type1 C COBOL PL/I

SMALLINT short int PIC S9(4) USAGE COMP BIN FIXED(15)

INTEGER long int PIC S9(9) USAGE COMP BIN FIXED(31)

DECIMAL(p,s) or
NUMERIC(p,s)

decimal(p,s)2 PIC S9(p-s)V9(s) USAGE COMP-3 DEC FIXED(p,s)

If p>15, the PL/I
compiler must support
this precision, or a
warning is generated.

REAL or
FLOAT(n) 1 <= n
<= 21

float USAGE COMP-1 BIN FLOAT(n)

136 Application Programming and SQL Guide

|
|
|



Table 10. Declarations generated by DCLGEN (continued)

SQL data type1 C COBOL PL/I

DOUBLE
PRECISION,
DOUBLE, or
FLOAT(n)

double USAGE COMP-2 BIN FLOAT(n)

CHAR(1) char PIC X(1) CHAR(1)

CHAR(n) char var [n+1] PIC X(n) CHAR(n)

VARCHAR(n) struct
{short int var_len;
char var_data[n];
} var;

10 var.
49 var_LEN PIC 9(4)

USAGE COMP.
49 var_TEXT PIC X(n).

CHAR(n) VAR

CLOB(n)3 SQL TYPE IS CLOB_LOCATOR USAGE SQL TYPE IS CLOB-LOCATOR SQL TYPE IS
CLOB_LOCATOR

GRAPHIC(1) sqldbchar PIC G(1) GRAPHIC(1)

GRAPHIC(n)

n > 1

sqldbchar var[n+1]; PIC G(n) USAGE
DISPLAY-1.4

or
PIC N(n).4

GRAPHIC(n)

VARGRAPHIC(n) struct VARGRAPH
{short len;
sqldbchar data[n];
} var;

10 var.
49 var_LEN PIC 9(4)

USAGE COMP.
49 var_TEXT PIC G(n)

USAGE DISPLAY-1.4

or
10 var.

49 var_LEN PIC 9(4)
USAGE COMP.

49 var_TEXT PIC N(n).4

GRAPHIC(n) VAR

DBCLOB(n)5 SQL TYPE IS DBCLOB_LOCATOR USAGE SQL TYPE IS DBCLOB-LOCATOR SQL TYPE IS
DBCLOB_LOCATOR

BLOB(n)5 SQL TYPE IS BLOB_LOCATOR USAGE SQL TYPE IS BLOB-LOCATOR SQL TYPE IS
BLOB_LOCATOR

DATE char var[11]5 PIC X(10)5 CHAR(10)5

TIME char var[9]6 PIC X(8)6 CHAR(8)6

TIMESTAMP char var[27] PIC X(26) CHAR(26)

ROWID SQL TYPE IS ROWID USAGE SQL TYPE IS ROWID SQL TYPE IS ROWID

Notes:

1. For a distinct type, DCLGEN generates the host language equivalent of the source data type.

2. If your C compiler does not support the decimal data type, edit your DCLGEN output, and replace the decimal
data declarations with declarations of type double.

3. For a BLOB, CLOB, or DBCLOB data type, DCLGEN generates a LOB locator.

4. DCLGEN chooses the format based on the character you specify as the DBCS symbol on the COBOL Defaults
panel.

5. This declaration is used unless a date installation exit routine exists for formatting dates, in which case the length
is that specified for the LOCAL DATE LENGTH installation option.

6. This declaration is used unless a time installation exit routine exists for formatting times, in which case the length
is that specified for the LOCAL TIME LENGTH installation option.

For more details about the DCLGEN subcommand, see Part 3 of DB2 Command
Reference.

Chapter 8. Generating declarations for your tables using DCLGEN 137

|

|

|



Example: Adding a table declaration and host-variable structure to a
library

This example adds an SQL table declaration and a corresponding host-variable
structure to a library. This example is based on the following scenario:
v The library name is prefix.TEMP.COBOL.
v The member is a new member named VPHONE.
v The table is a local table named DSN8810.VPHONE.
v The host-variable structure is for COBOL.
v The structure receives the default name DCLVPHONE.

Information that you must enter is in bold-faced type.

Step 1. Specify COBOL as the host language
Select option D on the ISPF/PDF menu to display the DB2I Defaults panel.

Specify IBMCOB as the application language, as shown in Figure 25, and press
Enter.

The COBOL Defaults panel is then displayed, as shown in Figure 26. Fill in the
COBOL Defaults panel as necessary. Press Enter to save the new defaults, if any,
and return to the DB2I Primary Option menu.

DSNEOP01 DB2I DEFAULTS
COMMAND ===>_

Change defaults as desired:

1 DB2 NAME ............. ===> DSN (Subsystem identifier)
2 DB2 CONNECTION RETRIES ===> 0 (How many retries for DB2 connection)
3 APPLICATION LANGUAGE ===> IBMCOB (ASM, C, CPP, IBMCOB, FORTRAN, PLI)
4 LINES/PAGE OF LISTING ===> 80 (A number from 5 to 999)
5 MESSAGE LEVEL ........ ===> I (Information, Warning, Error, Severe)
6 SQL STRING DELIMITER ===> DEFAULT (DEFAULT, ’ or ")
7 DECIMAL POINT ........ ===> . (. or ,)
8 STOP IF RETURN CODE >= ===> 8 (Lowest terminating return code)
9 NUMBER OF ROWS ===> 20 (For ISPF Tables)
10 CHANGE HELP BOOK NAMES?===> NO (YES to change HELP data set names)
11 DB2I JOB STATEMENT: (Optional if your site has a SUBMIT exit)

===> //USRT001A JOB (ACCOUNT),’NAME’
===> //*
===> //*
===> //*

PRESS: ENTER to process END to cancel HELP for more information

Figure 25. DB2I defaults panel—changing the application language

DSNEOP02 COBOL DEFAULTS
COMMAND ===>_

Change defaults as desired:

1 COBOL STRING DELIMITER ===> (DEFAULT, ’ or ")
2 DBCS SYMBOL FOR DCLGEN ===> (G/N - Character in PIC clause)

Figure 26. The COBOL defaults panel. Shown only if the field APPLICATION LANGUAGE on
the DB2I Defaults panel is IBMCOB.

138 Application Programming and SQL Guide



Step 2. Create the table declaration and host structure
Select the DCLGEN option on the DB2I Primary Option menu, and press Enter to
display the DCLGEN panel.

Fill in the fields as shown in Figure 27, and then press Enter.

If the operation succeeds, a message is displayed at the top of your screen, as
shown in Figure 28.

DB2 again displays the DCLGEN screen, as shown in Figure 29 on page 140. Press
Enter to return to the DB2I Primary Option menu.

DSNEDP01 DCLGEN SSID: DSN
===>

Enter table name for which declarations are required:
1 SOURCE TABLE NAME ===> DSN8810.VPHONE

2 TABLE OWNER ..... ===>

3 AT LOCATION ..... ===> (Optional)
Enter destination data set: (Can be sequential or partitioned)
4 DATA SET NAME ... ===> TEMP(VPHONEC)
5 DATA SET PASSWORD ===> (If password protected)
Enter options as desired:
6 ACTION .......... ===> ADD (ADD new or REPLACE old declaration)
7 COLUMN LABEL .... ===> NO (Enter YES for column label)
8 STRUCTURE NAME .. ===> (Optional)
9 FIELD NAME PREFIX ===> (Optional)
10 DELIMIT DBCS .... ===> YES (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)
12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)
13 ADDITIONAL OPTIONS===> NO (Enter YES to change additional options)

PRESS: ENTER to process END to exit HELP for more information DSNEDP01

Figure 27. DCLGEN panel—selecting source table and destination data set

DSNE905I EXECUTION COMPLETE, MEMBER VPHONEC ADDED
***

Figure 28. Successful completion message

Chapter 8. Generating declarations for your tables using DCLGEN 139

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#



Step 3. Examine the results
To browse or edit the results, exit from DB2I, and select either the browse or the
edit option from the ISPF/PDF menu to view the results.

For this example, the data set to edit is prefix.TEMP.COBOL(VPHONEC), which is
shown in Figure 30 on page 141.

DSNEDP01 DCLGEN SSID: DSN
===>

Enter table name for which declarations are required:
1 SOURCE TABLE NAME ===> DSN8810.VPHONE

2 TABLE OWNER ..... ===>

3 AT LOCATION ..... ===> (Optional)
Enter destination data set: (Can be sequential or partitioned)
4 DATA SET NAME ... ===> TEMP(VPHONEC)
5 DATA SET PASSWORD ===> (If password protected)
Enter options as desired:
6 ACTION .......... ===> ADD (ADD new or REPLACE old declaration)
7 COLUMN LABEL .... ===> NO (Enter YES for column label)
8 STRUCTURE NAME .. ===> (Optional)
9 FIELD NAME PREFIX ===> (Optional)
10 DELIMIT DBCS .... ===> YES (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)
12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)
13 ADDITIONAL OPTIONS===> NO (Enter YES to change additional options)

PRESS: ENTER to process END to exit HELP for more information DSNEDP01

Figure 29. DCLGEN panel—displaying system and user return codes

140 Application Programming and SQL Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#



***** DCLGEN TABLE(DSN8810.VPHONE) ***
***** LIBRARY(SYSADM.TEMP.COBOL(VPHONEC)) ***
***** QUOTE ***
***** ... IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS ***

EXEC SQL DECLARE DSN8810.VPHONE TABLE
( LASTNAME VARCHAR(15) NOT NULL,

FIRSTNAME VARCHAR(12) NOT NULL,
MIDDLEINITIAL CHAR(1) NOT NULL,
PHONENUMBER VARCHAR(4) NOT NULL,
EMPLOYEENUMBER CHAR(6) NOT NULL,
DEPTNUMBER CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL

) END-EXEC.
***** COBOL DECLARATION FOR TABLE DSN8810.VPHONE ******

01 DCLVPHONE.
10 LASTNAME.

49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 FIRSTNAME.
49 FIRSTNAME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNAME-TEXT PIC X(12).

10 MIDDLEINITIAL PIC X(1).
10 PHONENUMBER.

49 PHONENUMBER-LEN PIC S9(4) USAGE COMP.
49 PHONENUMBER-TEXT PIC X(4).

10 EMPLOYEENUMBER PIC X(6).
10 DEPTNUMBER PIC X(3).
10 DEPTNAME.

49 DEPTNAME-LEN PIC S9(4) USAGE COMP.
49 DEPTNAME-TEXT PIC X(36).

***** THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 7 ******

Figure 30. DCLGEN results displayed in edit mode

Chapter 8. Generating declarations for your tables using DCLGEN 141



142 Application Programming and SQL Guide



Chapter 9. Embedding SQL statements in host languages

This chapter provides detailed information about using each of the following
languages to write embedded SQL application programs:
v “Coding SQL statements in an assembler application”
v “Coding SQL statements in a C or C++ application” on page 158
v “Coding SQL statements in a COBOL application” on page 186
v “Coding SQL statements in a Fortran application” on page 220
v “Coding SQL statements in a PL/I application” on page 230.
v “Coding SQL statements in a REXX application” on page 249.

For each language, this chapter provides unique instructions or details about:
v Defining the SQL communications area
v Defining SQL descriptor areas
v Embedding SQL statements
v Using host variables
v Declaring host variables
v Declaring host variable arrays for C or C++, COBOL, and PL/I
v Determining equivalent SQL data types
v Determining if SQL and host language data types are compatible
v Using indicator variables or host structures, depending on the language
v Handling SQL error return codes

For information about reading the syntax diagrams in this chapter, see “How to
read the syntax diagrams” on page xxii.

For information about writing embedded SQL application programs in Java, see
DB2 Application Programming Guide and Reference for Java.

Coding SQL statements in an assembler application
This section helps you with the programming techniques that are unique to coding
SQL statements within an assembler program.

Defining the SQL communications area
An assembler program that contains SQL statements must include one or both of
the following host variables:
v An SQLCODE variable, declared as a fullword integer
v An SQLSTATE variable, declared as a character string of length 5 (CL5)

Alternatively, you can include an SQLCA, which contains the SQLCODE and
SQLSTATE variables.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these values to determine whether the last SQL statement
was successful. All SQL statements in the program must be within the scope of the
declaration of the SQLCODE and SQLSTATE variables.

Whether you define the SQLCODE or SQLSTATE variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to the SQL standard, or STDSQL(NO) to conform to DB2 rules.

© Copyright IBM Corp. 1983, 2012 143



If you specify STDSQL(YES)
When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

If you declare an SQLSTATE variable, it must not be an element of a structure. You
must declare the host variables SQLCODE and SQLSTATE within a BEGIN
DECLARE SECTION and END DECLARE SECTION statement in your program
declarations.

If you specify STDSQL(NO)
When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in an assembler program, either directly or by using the
SQL INCLUDE statement. The SQL INCLUDE statement requests a standard
SQLCA declaration:
EXEC SQL INCLUDE SQLCA

If your program is reentrant, you must include the SQLCA within a unique data
area that is acquired for your task (a DSECT). For example, at the beginning of
your program, specify:
PROGAREA DSECT

EXEC SQL INCLUDE SQLCA

As an alternative, you can create a separate storage area for the SQLCA and
provide addressability to that area.

See Chapter 5 of DB2 SQL Reference for more information about the INCLUDE
statement and Appendix D of DB2 SQL Reference for a complete description of
SQLCA fields.

Defining SQL descriptor areas
The following statements require an SQLDA:
v CALL ... USING DESCRIPTOR descriptor-name
v DESCRIBE statement-name INTO descriptor-name
v DESCRIBE CURSOR host-variable INTO descriptor-name
v DESCRIBE INPUT statement-name INTO descriptor-name
v DESCRIBE PROCEDURE host-variable INTO descriptor-name
v DESCRIBE TABLE host-variable INTO descriptor-name
v EXECUTE ... USING DESCRIPTOR descriptor-name
v FETCH ... INTO DESCRIPTOR descriptor-name
v OPEN ... USING DESCRIPTOR descriptor-name
v PREPARE ... INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA in a program, and
an SQLDA can have any valid name. You can code an SQLDA in an assembler
program, either directly or by using the SQL INCLUDE statement. The SQL
INCLUDE statement requests a standard SQLDA declaration:
EXEC SQL INCLUDE SQLDA

You must place SQLDA declarations before the first SQL statement that references
the data descriptor, unless you use the precompiler option TWOPASS. See Chapter
5 of DB2 SQL Reference for more information about the INCLUDE statement and
Appendix E of DB2 SQL Reference for a complete description of SQLDA fields.

Assembler

144 Application Programming and SQL Guide

#



Embedding SQL statements
You can code SQL statements in an assembler program wherever you can use
executable statements.

Each SQL statement in an assembler program must begin with EXEC SQL. The
EXEC and SQL keywords must appear on one line, but the remainder of the
statement can appear on subsequent lines.

You might code an UPDATE statement in an assembler program as follows:
EXEC SQL UPDATE DSN8810.DEPT X

SET MGRNO = :MGRNUM X
WHERE DEPTNO = :INTDEPT

Multiple-row FETCH statements: You can use only the FETCH ... INTO
DESCRIPTOR form of the multiple-row FETCH statement in an assembler
program. The DB2 precompiler does not recognize declarations of host variable
arrays for an assembler program.

Comments: You cannot include assembler comments in SQL statements. However,
you can include SQL comments in any embedded SQL statement.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for assembler statements, except that you must specify EXEC
SQL within one line. Any part of the statement that does not fit on one line can
appear on subsequent lines, beginning at the continuation margin (column 16, the
default). Every line of the statement, except the last, must have a continuation
character (a non-blank character) immediately after the right margin in column 72.

Declaring tables and views: Your assembler program should include a DECLARE
statement to describe each table and view the program accesses.

Including code: To include SQL statements or assembler host variable declaration
statements from a member of a partitioned data set, place the following SQL
statement in the source code where you want to include the statements:

EXEC SQL INCLUDE member-name

You cannot nest SQL INCLUDE statements.

Margins: The precompiler option MARGINS allows you to set a left margin, a right
margin, and a continuation margin. The default values for these margins are
columns 1, 71, and 16, respectively. If EXEC SQL starts before the specified left
margin, the DB2 precompiler does not recognize the SQL statement. If you use the
default margins, you can place an SQL statement anywhere between columns 2
and 71.

Names: You can use any valid assembler name for a host variable. However, do
not use external entry names or access plan names that begin with 'DSN' or host
variable names that begin with ’SQL’. These names are reserved for DB2.

The first character of a host variable that is used in embedded SQL cannot be an
underscore. However, you can use an underscore as the first character in a symbol
that is not used in embedded SQL.

Assembler

Chapter 9. Embedding SQL statements in host languages 145

|
|
|
|

|
|



Statement labels: You can prefix an SQL statement with a label. The first line of an
SQL statement can use a label beginning in the left margin (column 1). If you do
not use a label, leave column 1 blank.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER
statement must be a label in the assembler source code and must be within the
scope of the SQL statements that WHENEVER affects.

Special assembler considerations: The following considerations apply to programs
written in assembler:
v To allow for reentrant programs, the precompiler puts all the variables and

structures it generates within a DSECT called SQLDSECT, and it generates an
assembler symbol called SQLDLEN. SQLDLEN contains the length of the
DSECT. Your program must allocate an area of the size indicated by SQLDLEN,
initialize it, and provide addressability to it as the DSECT SQLDSECT. The
precompiler does not generate code to allocate the storage for SQLDSECT; the
application program must allocate the storage.

CICS
An example of code to support reentrant programs, running under CICS,
follows:
DFHEISTG DSECT

DFHEISTG
EXEC SQL INCLUDE SQLCA

*
DS 0F

SQDWSREG EQU R7
SQDWSTOR DS (SQLDLEN)C RESERVE STORAGE TO BE USED FOR SQLDSECT

...

XXPROGRM DFHEIENT CODEREG=R12,EIBREG=R11,DATAREG=R13
*
*
* SQL WORKING STORAGE

LA SQDWSREG,SQDWSTOR GET ADDRESS OF SQLDSECT
USING SQLDSECT,SQDWSREG AND TELL ASSEMBLER ABOUT IT

*

In this example, the actual storage allocation is done by the DFHEIENT
macro.

Assembler

146 Application Programming and SQL Guide

#
#
#
#
#
#
#
#

#
#
#

#
#
#
#
#
#
#
####
#
#
#
#
#
#
#
#

#
####



TSO
The sample program in prefix.SDSNSAMP(DSNTIAD) contains an example
of how to acquire storage for the SQLDSECT in a program that runs in a
TSO environment. The following example code contains pieces from
prefix.SDSNSAMP(DSNTIAD) with explanations in the comments.
DSNTIAD CSECT CONTROL SECTION NAME

SAVE (14,12) ANY SAVE SEQUENCE
LR R12,R15 CODE ADDRESSABILITY
USING DSNTIAD,R12 TELL THE ASSEMBLER
LR R7,R1 SAVE THE PARM POINTER

*
* Allocate storage of size PRGSIZ1+SQLDSIZ, where:
* - PRGSIZ1 is the size of the DSNTIAD program area
* - SQLDSIZ is the size of the SQLDSECT, and declared
* when the DB2 precompiler includes the SQLDSECT
*

L R6,PRGSIZ1 GET SPACE FOR USER PROGRAM
A R6,SQLDSIZ GET SPACE FOR SQLDSECT
GETMAIN R,LV=(6) GET STORAGE FOR PROGRAM VARIABLES
LR R10,R1 POINT TO IT

*
* Initialize the storage
*

LR R2,R10 POINT TO THE FIELD
LR R3,R6 GET ITS LENGTH
SR R4,R4 CLEAR THE INPUT ADDRESS
SR R5,R5 CLEAR THE INPUT LENGTH
MVCL R2,R4 CLEAR OUT THE FIELD

*
* Map the storage for DSNTIAD program area
*

ST R13,FOUR(R10) CHAIN THE SAVEAREA PTRS
ST R10,EIGHT(R13) CHAIN SAVEAREA FORWARD
LR R13,R10 POINT TO THE SAVEAREA
USING PRGAREA1,R13 SET ADDRESSABILITY

*
* Map the storage for the SQLDSECT
*

LR R9,R13 POINT TO THE PROGAREA
A R9,PRGSIZ1 THEN PAST TO THE SQLDSECT
USING SQLDSECT,R9 SET ADDRESSABILITY

...
LTORG

**********************************************************************
* *
* DECLARE VARIABLES, WORK AREAS *
* *
**********************************************************************
PRGAREA1 DSECT WORKING STORAGE FOR THE PROGRAM
...

DS 0D
PRGSIZE1 EQU *-PRGAREA1 DYNAMIC WORKAREA SIZE
...
DSNTIAD CSECT RETURN TO CSECT FOR CONSTANT
PRGSIZ1 DC A(PRGSIZE1) SIZE OF PROGRAM WORKING STORAGE
CA DSECT

EXEC SQL INCLUDE SQLCA
...

v DB2 does not process set symbols in SQL statements.
v Generated code can include more than two continuations per comment.

Assembler

Chapter 9. Embedding SQL statements in host languages 147

#

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
####

#



v Generated code uses literal constants (for example, =F’-84’), so an LTORG
statement might be necessary.

v Generated code uses registers 0, 1, 14, and 15. Register 13 points to a save area
that the called program uses. Register 15 does not contain a return code after a
call that is generated by an SQL statement.

CICS
A CICS application program uses the DFHEIENT macro to generate the
entry point code. When using this macro, consider the following:
– If you use the default DATAREG in the DFHEIENT macro, register 13

points to the save area.
– If you use any other DATAREG in the DFHEIENT macro, you must

provide addressability to a save area.
For example, to use SAVED, you can code instructions to save, load, and
restore register 13 around each SQL statement as in the following
example.
ST 13,SAVER13 SAVE REGISTER 13
LA 13,SAVED POINT TO SAVE AREA
EXEC SQL . . .
L 13,SAVER13 RESTORE REGISTER 13

v If you have an addressability error in precompiler-generated code because of
input or output host variables in an SQL statement, check to make sure that you
have enough base registers.

v Do not put CICS translator options in the assembly source code. Instead, pass
the options to the translator by using the PARM field.

Using host variables
You must explicitly declare each host variable before its first use in an SQL
statement if you specify the precompiler option ONEPASS. If you specify the
precompiler option TWOPASS, you must declare the host variable before its use in
the statement DECLARE CURSOR.

You can precede the assembler statements that define host variables with the
statement BEGIN DECLARE SECTION, and follow the assembler statements with
the statement END DECLARE SECTION. You must use the statements BEGIN
DECLARE SECTION and END DECLARE SECTION when you use the
precompiler option STDSQL(YES).

You can declare host variables in normal assembler style (DC or DS), depending on
the data type and the limitations on that data type. You can specify a value on DC
or DS declarations (for example, DC H’5’). The DB2 precompiler examines only
packed decimal declarations.

A colon (:) must precede all host variables in an SQL statement.

An SQL statement that uses a host variable must be within the scope of the
statement that declares the variable.

Declaring host variables
Only some of the valid assembler declarations are valid host variable declarations.
If the declaration for a host variable is not valid, any SQL statement that references
the variable might result in the message UNDECLARED HOST VARIABLE.

Assembler

148 Application Programming and SQL Guide



Numeric host variables: Figure 31 shows the syntax for declarations of numeric
host variables. The numeric value specifies the scale of the packed decimal variable.
If value does not include a decimal point, the scale is 0.

For floating-point data types (E, EH, EB, D, DH, and DB), DB2 uses the FLOAT
precompiler option to determine whether the host variable is in IEEE binary
floating-point or System/390® hexadecimal floating-point format. If the
precompiler option is FLOAT(S390), you need to define your floating-point host
variables as E, EH, D, or DH. If the precompiler option is FLOAT(IEEE), you need
to define your floating-point host variables as EB or DB. DB2 converts all
floating-point input data to System/390 hexadecimal floating-point before storing
it.

Character host variables: The three valid forms for character host variables are:
v Fixed-length strings
v Varying-length strings
v CLOBs

The following figures show the syntax for forms other than CLOBs. See Figure 38
on page 151 for the syntax of CLOBs.

Figure 32 shows the syntax for declarations of fixed-length character strings.

Figure 33 on page 150 shows the syntax for declarations of varying-length
character strings.

�� variable-name DC
DS 1

H
L2

F
L4

P 'value'
Ln

E
L4

EH
L4

EB
L4

D
L8

DH
L8

DB
L8

��

Figure 31. Numeric host variables

�� variable-name DC C
DS 1 Ln

��

Figure 32. Fixed-length character strings

Assembler

Chapter 9. Embedding SQL statements in host languages 149

|
|

|



Graphic host variables: The three valid forms for graphic host variables are:
v Fixed-length strings
v Varying-length strings
v DBCLOBs

The following figures show the syntax for forms other than DBCLOBs. See
Figure 38 on page 151 for the syntax of DBCLOBs. In the syntax diagrams, value
denotes one or more DBCS characters, and the symbols < and > represent shift-out
and shift-in characters.

Figure 34 shows the syntax for declarations of fixed-length graphic strings.

Figure 35 shows the syntax for declarations of varying-length graphic strings.

Result set locators: Figure 36 shows the syntax for declarations of result set
locators. See Chapter 25, “Using stored procedures for client/server processing,” on
page 631 for a discussion of how to use these host variables.

Table Locators: Figure 37 shows the syntax for declarations of table locators. See
“Accessing transition tables in a user-defined function or stored procedure” on
page 345 for a discussion of how to use these host variables.

�� variable-name DC H ,
DS 1 L2 1

CLn ��

Figure 33. Varying-length character strings

�� variable-name DC G
DS Ln

'<value>'
Ln'<value>'

��

Figure 34. Fixed-length graphic strings

�� variable-name DS H , GLn
DC L2 'm' '<value>'

��

Figure 35. Varying-length graphic strings

�� variable-name DC F
DS 1 L4

��

Figure 36. Result set locators

�� variable-name SQL TYPE IS TABLE LIKE table-name AS LOCATOR ��

Figure 37. Table locators

Assembler

150 Application Programming and SQL Guide



LOB variables and locators: Figure 38 shows the syntax for declarations of BLOB,
CLOB, and DBCLOB host variables and locators. See Chapter 14, “Programming
for large objects,” on page 299 for a discussion of how to use these host variables.

If you specify the length of the LOB in terms of KB, MB, or GB, you must leave no
spaces between the length and K, M, or G.

ROWIDs: Figure 39 shows the syntax for declarations of ROWID host variables.
See Chapter 14, “Programming for large objects,” on page 299 for a discussion of
how to use these host variables.

Determining equivalent SQL and assembler data types
Table 11 describes the SQL data type, and base SQLTYPE and SQLLEN values, that
the precompiler uses for the host variables it finds in SQL statements. If a host
variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE
plus 1.

Table 11. SQL data types the precompiler uses for assembler declarations

Assembler data type
SQLTYPE of
host variable

SQLLEN of
host variable SQL data type

DS HL2 500 2 SMALLINT

DS FL4 496 4 INTEGER

DS P’value’
DS PLn’value’ or
DS PLn
1<=n<=16

484 p in byte 1, s in
byte 2

DECIMAL(p,s)

See the description for
DECIMAL(p,s) in Table 12 on
page 153.

DS EL4
DS EHL4
DS EBL4

480 4 REAL or FLOAT (n)
1<=n<=21

DS DL8
DS DHL8
DS DBL8

480 8 DOUBLE PRECISION,
or FLOAT (n)
22<=n<=53

DS CLn
1<=n<=255

452 n CHAR(n)

�� variable-name SQL TYPE IS BINARY LARGE OBJECT length
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

��

Figure 38. LOB variables and locators

�� variable-name SQL TYPE IS ROWID ��

Figure 39. ROWID variables

Assembler

Chapter 9. Embedding SQL statements in host languages 151



Table 11. SQL data types the precompiler uses for assembler declarations (continued)

Assembler data type
SQLTYPE of
host variable

SQLLEN of
host variable SQL data type

DS HL2,CLn
1<=n<=255

448 n VARCHAR(n)

DS HL2,CLn
n>255

456 n VARCHAR(n)

DS GLm
2<=m<=2541

468 n GRAPHIC(n)2

DS HL2,GLm
2<=m<=2541

464 n VARGRAPHIC(n)2

DS HL2,GLm
m>2541

472 n VARGRAPHIC(n)2

DS FL4 972 4 Result set locator2

SQL TYPE IS
TABLE LIKE
table-name
AS LOCATOR

976 4 Table locator2

SQL TYPE IS
BLOB_LOCATOR

960 4 BLOB locator2

SQL TYPE IS
CLOB_LOCATOR

964 4 CLOB locator3

SQL TYPE IS
DBCLOB_LOCATOR

968 4 DBCLOB locator3

SQL TYPE IS
BLOB(n)
1≤n≤2147483647

404 n BLOB(n)

SQL TYPE IS
CLOB(n)
1≤n≤2147483647

408 n CLOB(n)

SQL TYPE IS
DBCLOB(n)
1≤n≤10737418232

412 n DBCLOB(n)2

SQL TYPE IS ROWID 904 40 ROWID

Notes:

1. m is the number of bytes.

2. n is the number of double-byte characters.

3. This data type cannot be used as a column type.

Table 12 on page 153 helps you define host variables that receive output from the
database. You can use Table 12 on page 153 to determine the assembler data type
that is equivalent to a given SQL data type. For example, if you retrieve
TIMESTAMP data, you can use the table to define a suitable host variable in the
program that receives the data value.

Table 12 on page 153 shows direct conversions between DB2 data types and host
data types. However, a number of DB2 data types are compatible. When you do
assignments or comparisons of data that have compatible data types, DB2 does
conversions between those compatible data types. See Table 1 on page 5 for
information about compatible data types.

Assembler

152 Application Programming and SQL Guide



Table 12. SQL data types mapped to typical assembler declarations

SQL data type Assembler equivalent Notes

SMALLINT DS HL2

INTEGER DS F

DECIMAL(p,s) or
NUMERIC(p,s)

DS P'value'
DS PLn'value'
DS PLn

p is precision; s is scale. 1<=p<=31 and
0<=s<=p. 1<=n<=16. value is a literal value
that includes a decimal point. You must
use Ln, value, or both. Using only value is
recommended.

Precision: If you use Ln, it is 2n-1;
otherwise, it is the number of digits in
value. Scale: If you use value, it is the
number of digits to the right of the
decimal point; otherwise, it is 0.

For efficient use of indexes: Use value. If
p is even, do not use Ln and be sure the
precision of value is p and the scale of
value is s. If p is odd, you can use Ln
(although it is not advised), but you must
choose n so that 2n-1=p, and value so that
the scale is s. Include a decimal point in
value, even when the scale of value is 0.

REAL or FLOAT(n) DS EL4
DS EHL4
DS EBL41

1<=n<=21

DOUBLE
PRECISION,
DOUBLE, or
FLOAT(n)

DS DL8
DS DHL8
DS DBL81

22<=n<=53

CHAR(n) DS CLn 1<=n<=255

VARCHAR(n) DS HL2,CLn

GRAPHIC(n) DS GLm m is expressed in bytes. n is the number
of double-byte characters. 1<=n<=127

VARGRAPHIC(n) DS HL2,GLx
DS HL2'm',GLx'<value>'

x and m are expressed in bytes. n is the
number of double-byte characters. < and
> represent shift-out and shift-in
characters.

DATE DS CLn If you are using a date exit routine, n is
determined by that routine; otherwise, n
must be at least 10.

TIME DS CLn If you are using a time exit routine, n is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP DS CLn n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, truncation occurs on the
microseconds part.

Result set locator DS F Use this data type only to receive result
sets. Do not use this data type as a
column type.

Assembler

Chapter 9. Embedding SQL statements in host languages 153



Table 12. SQL data types mapped to typical assembler declarations (continued)

SQL data type Assembler equivalent Notes

Table locator SQL TYPE IS
TABLE LIKE
table-name
AS LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator SQL TYPE IS
BLOB_LOCATOR

Use this data type only to manipulate
data in BLOB columns. Do not use this
data type as a column type.

CLOB locator SQL TYPE IS
CLOB_LOCATOR

Use this data type only to manipulate
data in CLOB columns. Do not use this
data type as a column type.

DBCLOB locator SQL TYPE IS
DBCLOB_LOCATOR

Use this data type only to manipulate
data in DBCLOB columns. Do not use this
data type as a column type.

BLOB(n) SQL TYPE IS
BLOB(n)

1≤n≤2147483647

CLOB(n) SQL TYPE IS
CLOB(n)

1≤n≤2147483647

DBCLOB(n) SQL TYPE IS
DBCLOB(n)

n is the number of double-byte characters.
1≤n≤1073741823

ROWID SQL TYPE IS ROWID

Notes:

1. IEEE floating-point host variables are not supported in user-defined functions and stored
procedures.

Notes on assembler variable declaration and usage
You should be aware of the following considerations when you declare assembler
variables.

Character host variables: If you declare a host variable as a character string
without a length, for example DC C ’ABCD’, DB2 interprets it as length 1. To get
the correct length, give a length attribute (for example, DC CL4’ABCD’).

Floating-point host variables: All floating-point data is stored in DB2 in
System/390 hexadecimal floating-point format. However, your host variable data
can be in System/390 hexadecimal floating-point format or IEEE binary
floating-point format. DB2 uses the FLOAT precompiler option to determine
whether your floating-point host variables are in IEEE binary floating-point format
or System/390 hexadecimal floating-point format. DB2 does no checking to
determine whether the host variable declarations or format of the host variable
contents match the precompiler option. Therefore, you need to ensure that your
floating-point host variable types and contents match the precompiler option.

Special purpose assembler data types: The locator data types are assembler
language data types and SQL data types. You cannot use locators as column types.
For information about how to use these data types, see the following sections:

Table locator “Accessing transition tables in a user-defined function or stored
procedure” on page 345

LOB locators Chapter 14, “Programming for large objects,” on page 299

Assembler

154 Application Programming and SQL Guide

|
|

|



Overflow: Be careful of overflow. For example, suppose you retrieve an INTEGER
column value into a DS H host variable, and the column value is larger than 32767.
You get an overflow warning or an error, depending on whether you provided an
indicator variable.

Truncation: Be careful of truncation. For example, if you retrieve an 80-character
CHAR column value into a host variable declared as DS CL70, the rightmost ten
characters of the retrieved string are truncated. If you retrieve a floating-point or
decimal column value into a host variable declared as DS F, it removes any
fractional part of the value.

Determining compatibility of SQL and assembler data types
Assembler host variables used in SQL statements must be type compatible with the
columns with which you intend to use them.
v Numeric data types are compatible with each other: A SMALLINT, INTEGER,

DECIMAL, or FLOAT column is compatible with a numeric assembler host
variable.

v Character data types are compatible with each other: A CHAR, VARCHAR, or
CLOB column is compatible with a fixed-length or varying-length assembler
character host variable.

v Character data types are partially compatible with CLOB locators. You can
perform the following assignments:
– Assign a value in a CLOB locator to a CHAR or VARCHAR column
– Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a

CLOB locator host variable.
– Assign a CHAR or VARCHAR output parameter from a user-defined function

or stored procedure to a CLOB locator host variable.
– Use a SET assignment statement to assign a CHAR or VARCHAR transition

variable to a CLOB locator host variable.
– Use a VALUES INTO statement to assign a CHAR or VARCHAR function

parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

v Graphic data types are compatible with each other: A GRAPHIC,
VARGRAPHIC, or DBCLOB column is compatible with a fixed-length or
varying-length assembler graphic character host variable.

v Graphic data types are partially compatible with DBCLOB locators. You can
perform the following assignments:
– Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC

column
– Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC

column to a DBCLOB locator host variable.
– Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined

function or stored procedure to a DBCLOB locator host variable.
– Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC

transition variable to a DBCLOB locator host variable.
– Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC

function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC
or VARGRAPHIC column to a DBCLOB locator host variable.

Assembler

Chapter 9. Embedding SQL statements in host languages 155



v Datetime data types are compatible with character host variables. A DATE,
TIME, or TIMESTAMP column is compatible with a fixed-length or
varying-length assembler character host variable.

v A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

v The ROWID column is compatible only with a ROWID host variable.
v A host variable is compatible with a distinct type if the host variable type is

compatible with the source type of the distinct type. For information about
assigning and comparing distinct types, see Chapter 16, “Creating and using
distinct types,” on page 367.

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.

Using indicator variables
An indicator variable is a 2-byte integer (DS HL2). If you provide an indicator
variable for the variable X, when DB2 retrieves a null value for X, it puts a
negative value in the indicator variable and does not update X. Your program
should check the indicator variable before using X. If the indicator variable is
negative, you know that X is null and any value you find in X is irrelevant.

When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X.

You declare indicator variables in the same way as host variables. You can mix the
declarations of the two types of variables in any way that seems appropriate. For
more information about indicator variables, see “Using indicator variables with
host variables” on page 83 or Chapter 2 of DB2 SQL Reference.

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:

EXEC SQL FETCH CLS_CURSOR INTO :CLSCD, X
:DAY :DAYIND, X
:BGN :BGNIND, X
:END :ENDIND

You can declare variables as follows:
CLSCD DS CL7
DAY DS HL2
BGN DS CL8
END DS CL8
DAYIND DS HL2 INDICATOR VARIABLE FOR DAY
BGNIND DS HL2 INDICATOR VARIABLE FOR BGN
ENDIND DS HL2 INDICATOR VARIABLE FOR END

Figure 40 shows the syntax for declarations of indicator host variables.

�� variable-name DC H
DS 1 L2

��

Figure 40. Indicator variable

Assembler

156 Application Programming and SQL Guide



Handling SQL error return codes
You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information about the behavior of DSNTIAR, see
“Calling DSNTIAR to display SQLCA fields” on page 98.

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “The GET DIAGNOSTICS statement” on page 94.

DSNTIAR syntax
CALL DSNTIAR,(sqlca, message, lrecl),MF=(E,PARM)

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, defined as a varying-length string, in which DSNTIAR places
the message text. The first halfword contains the length of the remaining area;
its minimum value is 240.

The output lines of text, each line being the length specified in lrecl, are put
into this area. For example, you could specify the format of the output area as:
LINES EQU 10
LRECL EQU 132

...
MSGLRECL DC AL4(LRECL)
MESSAGE DS H,CL(LINES*LRECL)

ORG MESSAGE
MESSAGEL DC AL2(LINES*LRECL)
MESSAGE1 DS CL(LRECL) text line 1
MESSAGE2 DS CL(LRECL) text line 2

...
MESSAGEn DS CL(LRECL) text line n

...
CALL DSNTIAR,(SQLCA,MESSAGE,MSGLRECL),MF=(E,PARM)

where MESSAGE is the name of the message output area, LINES is the
number of lines in the message output area, and LRECL is the length of each
line.

lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

The expression MF=(E,PARM) is an z/OS macro parameter that indicates dynamic
execution. PARM is the name of a data area that contains a list of pointers to the
call parameters of DSNTIAR.

Assembler

Chapter 9. Embedding SQL statements in host languages 157

|
|
|
|
|

#
#
####
#
#
#
#
#
#
####
#
####
#



See Appendix B, “Sample applications,” on page 1015 for instructions on how to
access and print the source code for the sample program.

CICS
If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following
syntax:
CALL DSNTIAC,(eib,commarea,sqlca,msg,lrecl),MF=(E,PARM)

DSNTIAC has extra parameters, which you must use for calls to routines that
use CICS commands.

eib EXEC interface block

commarea communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the
same as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the
SQLCA in the same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC,
you must also define them in the CSD. For an example of CSD entry
generation statements for use with DSNTIAC, see member DSN8FRDO in the
data set prefix.SDSNSAMP.

The assembler source code for DSNTIAC and job DSNTEJ5A, which
assembles and link-edits DSNTIAC, are also in the data set prefix.SDSNSAMP.

Macros for assembler applications
Data set DSN810.SDSNMACS contains all DB2 macros that are available for use.

Coding SQL statements in a C or C++ application
This section helps you with the programming techniques that are unique to coding
SQL statements within a C or C++ program. Throughout this book, C is used to
represent either C or C++, except where noted otherwise.

Defining the SQL communication area
A C program that contains SQL statements must include one or both of the
following host variables:
v An SQLCODE variable, declared as long integer. For example:

long SQLCODE;

v An SQLSTATE variable, declared as a character array of length 6. For example:
char SQLSTATE[6];

Alternatively, you can include an SQLCA, which contains the SQLCODE and
SQLSTATE variables.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these values to determine whether the last SQL statement
was successful. All SQL statements in the program must be within the scope of the
declaration of the SQLCODE and SQLSTATE variables.

Assembler

158 Application Programming and SQL Guide



Whether you define the SQLCODE or SQLSTATE variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to SQL standard, or STDSQL(NO) to conform to DB2 rules.

If you specify STDSQL(YES)
When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

If you declare an SQLSTATE variable, it must not be an element of a structure. You
must declare the host variables SQLCODE and SQLSTATE within the BEGIN
DECLARE SECTION and END DECLARE SECTION statements in your program
declarations.

If you specify STDSQL(NO)
When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in a C program, either directly or by using the SQL
INCLUDE statement. The SQL INCLUDE statement requests a standard SQLCA
declaration:
EXEC SQL INCLUDE SQLCA;

A standard declaration includes both a structure definition and a static data area
named 'sqlca'. See Chapter 5 of DB2 SQL Reference for more information about the
INCLUDE statement and Appendix D of DB2 SQL Reference for a complete
description of SQLCA fields.

Defining SQL descriptor areas
The following statements require an SQLDA:
v CALL ... USING DESCRIPTOR descriptor-name
v DESCRIBE statement-name INTO descriptor-name
v DESCRIBE CURSOR host-variable INTO descriptor-name
v DESCRIBE INPUT statement-name INTO descriptor-name
v DESCRIBE PROCEDURE host-variable INTO descriptor-name
v DESCRIBE TABLE host-variable INTO descriptor-name
v EXECUTE ... USING DESCRIPTOR descriptor-name
v FETCH ... INTO DESCRIPTOR descriptor-name
v OPEN ... USING DESCRIPTOR descriptor-name
v PREPARE ... INTO descriptor-name

Unlike the SQLCA, more than one SQLDA can exist in a program, and an SQLDA
can have any valid name. You can code an SQLDA in a C program, either directly
or by using the SQL INCLUDE statement. The SQL INCLUDE statement requests a
standard SQLDA declaration:
EXEC SQL INCLUDE SQLDA;

A standard declaration includes only a structure definition with the name 'sqlda'.
See Chapter 5 of DB2 SQL Reference for more information about the INCLUDE
statement and Appendix E of DB2 SQL Reference for a complete description of
SQLDA fields.

You must place SQLDA declarations before the first SQL statement that references
the data descriptor, unless you use the precompiler option TWOPASS. You can
place an SQLDA declaration wherever C allows a structure definition. Normal C
scoping rules apply.

C

Chapter 9. Embedding SQL statements in host languages 159

#



Embedding SQL statements
You can code SQL statements in a C program wherever you can use executable
statements.

Each SQL statement in a C program must begin with EXEC SQL and end with a
semicolon (;). The EXEC and SQL keywords must appear on one line, but the
remainder of the statement can appear on subsequent lines.

In general, because C is case sensitive, use uppercase letters to enter all SQL
keywords. However, if you use the FOLD precompiler suboption, DB2 folds
lowercase letters in SBCS SQL ordinary identifiers to uppercase. For information
about host language precompiler options, see Table 64 on page 485.

You must keep the case of host variable names consistent throughout the program.
For example, if a host variable name is lowercase in its declaration, it must be
lowercase in all SQL statements. You might code an UPDATE statement in a C
program as follows:
EXEC SQL

UPDATE DSN8810.DEPT
SET MGRNO = :mgr_num
WHERE DEPTNO = :int_dept;

Comments: You can include C comments (/* ... */) within SQL statements
wherever you can use a blank, except between the keywords EXEC and SQL. You
can use single-line comments (starting with //) in C language statements, but not
in embedded SQL. You cannot nest comments.

To include DBCS characters in comments, you must delimit the characters by a
shift-out and shift-in control character; the first shift-in character in the DBCS
string signals the end of the DBCS string. You can include SQL comments in any
embedded SQL statement.

Continuation for SQL statements: You can use a backslash to continue a
character-string constant or delimited identifier on the following line.

Declaring tables and views: Your C program should use the DECLARE TABLE
statement to describe each table and view the program accesses. You can use the
DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements. For more information, see Chapter 8, “Generating declarations for your
tables using DCLGEN,” on page 131.

Including code: To include SQL statements or C host variable declarations from a
member of a partitioned data set, add the following SQL statement to the source
code where you want to include the statements:
EXEC SQL INCLUDE member-name;

You cannot nest SQL INCLUDE statements. Do not use C #include statements to
include SQL statements or C host variable declarations.

Margins: Code SQL statements in columns 1 through 72, unless you specify other
margins to the DB2 precompiler. If EXEC SQL is not within the specified margins,
the DB2 precompiler does not recognize the SQL statement.

Names: You can use any valid C name for a host variable, subject to the following
restrictions:

C

160 Application Programming and SQL Guide

|
|



v Do not use DBCS characters.
v Do not use external entry names or access plan names that begin with ’DSN’,

and do not use host variable names that begin with ’SQL’ (in any combination of
uppercase or lowercase letters). These names are reserved for DB2.

Nulls and NULs: C and SQL differ in the way they use the word null. The C
language has a null character (NUL), a null pointer (NULL), and a null statement
(just a semicolon). The C NUL is a single character that compares equal to 0. The C
NULL is a special reserved pointer value that does not point to any valid data
object. The SQL null value is a special value that is distinct from all non-null
values and denotes the absence of a (nonnull) value. In this chapter, NUL is the
null character in C and NULL is the SQL null value.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can precede SQL statements with a label.

Trigraph characters: Some characters from the C character set are not available on
all keyboards. You can enter these characters into a C source program using a
sequence of three characters called a trigraph. The trigraph characters that DB2
supports are the same as those that the C compiler supports.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER
statement must be within the scope of any SQL statements that the statement
WHENEVER affects.

Special C considerations:

v Using the C/370™ multi-tasking facility, in which multiple tasks execute SQL
statements, causes unpredictable results.

v You must run the DB2 precompiler before running the C preprocessor.
v The DB2 precompiler does not support C preprocessor directives.
v If you use conditional compiler directives that contain C code, either place them

after the first C token in your application program, or include them in the C
program using the #include preprocessor directive.

Refer to the appropriate C documentation for more information about C
preprocessor directives.

Using host variables and host variable arrays
You must explicitly declare each host variable and each host variable array before
using them in an SQL statement if you specify the ONEPASS precompiler option.
If you use the precompiler option TWOPASS, you must declare each host variable
before using it in the DECLARE CURSOR statement.

Precede C statements that define the host variables and host variable arrays with
the BEGIN DECLARE SECTION statement, and follow the C statements with the
END DECLARE SECTION statement. You can have more than one host variable
declaration section in your program.

A colon (:) must precede all host variables and all host variable arrays in an SQL
statement.

C

Chapter 9. Embedding SQL statements in host languages 161

|

|
|
|
|

|
|
|
|

|
|



The names of host variables and host variable arrays must be unique within the
program, even if the variables and variable arrays are in different blocks, classes,
or procedures. You can qualify the names with a structure name to make them
unique.

An SQL statement that uses a host variable or host variable array must be within
the scope of the statement that declares that variable or array. You define host
variable arrays for use with multiple-row FETCH and INSERT statements.

Declaring host variables
Only some of the valid C declarations are valid host variable declarations. If the
declaration for a variable is not valid, any SQL statement that references the
variable might result in the message UNDECLARED HOST VARIABLE.

Numeric host variables: Figure 41 shows the syntax for declarations of numeric
host variables.

Character host variables: The four valid forms for character host variables are:
v Single-character form
v NUL-terminated character form
v VARCHAR structured form
v CLOBs

The following figures show the syntax for forms other than CLOBs. See Figure 50
on page 168 for the syntax of CLOBs.

Figure 42 on page 163 shows the syntax for declarations of single-character host
variables.

��
auto
extern
static

const
volatile

float
double

int
short

sqlint32
int

long
int

long long
decimal ( integer )

, integer

�

� �

,

variable-name
=expression

; ��

Figure 41. Numeric host variables

C

162 Application Programming and SQL Guide

||

##

|
|
|
|

|
|
|



Figure 43 shows the syntax for declarations of NUL-terminated character host
variables.

Notes:

1. On input, the string contained by the variable must be NUL-terminated.
2. On output, the string is NUL-terminated.
3. A NUL-terminated character host variable maps to a varying-length character

string (except for the NUL).

Figure 44 on page 164 shows the syntax for declarations of varying-length
character host variables that use the VARCHAR structured form.

�� �

,

char variable-name ;
auto const unsigned =expression
extern volatile
static

��

Figure 42. Single-character form

��
auto
extern
static

const
volatile

char
unsigned

�

� �

,

variable-name [ length ]
=expression

; ��

Figure 43. NUL-terminated character form

C

Chapter 9. Embedding SQL statements in host languages 163

#

#



Notes:

1. var-1 and var-2 must be simple variable references. You cannot use them as host
variables.

2. You can use the struct tag to define other data areas that you cannot use as
host variables.

Example: The following examples show valid and invalid declarations of the
VARCHAR structured form:
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable VARCHAR vstring */
struct VARCHAR {

short len;
char s[10];
} vstring;

/* invalid declaration of host variable VARCHAR wstring */
struct VARCHAR wstring;

Graphic host variables: The four valid forms for graphic host variables are:
v Single-graphic form
v NUL-terminated graphic form
v VARGRAPHIC structured form.
v DBCLOBs

You can use the C data type sqldbchar to define a host variable that inserts,
updates, deletes, and selects data from GRAPHIC or VARGRAPHIC columns.

The following figures show the syntax for forms other than DBCLOBs. See
Figure 50 on page 168 for the syntax of DBCLOBs.

Figure 45 on page 165 shows the syntax for declarations of single-graphic host
variables.

��
auto
extern
static

const
volatile

int
struct { short var-1 ;

tag
�

� char var-2 [ length ] ; }
unsigned

�

� �

,

variable-name ;
={expression, expression}

��

Figure 44. VARCHAR structured form

C

164 Application Programming and SQL Guide

#

|



The single-graphic form declares a fixed-length graphic string of length 1. You
cannot use array notation in variable-name.

Figure 46 shows the syntax for declarations of NUL-terminated graphic host
variables.

Notes:

1. length must be a decimal integer constant greater than 1 and not greater than
16352.

2. On input, the string in variable-name must be NUL-terminated.
3. On output, the string is NUL-terminated.
4. The NUL-terminated graphic form does not accept single-byte characters into

variable-name.

Figure 47 on page 166 shows the syntax for declarations of graphic host variables
that use the VARGRAPHIC structured form.

�� �

,

sqldbchar variable-name ;
auto const =expression
extern volatile
static

��

Figure 45. Single-graphic form

�� �

,

sqldbchar variable-name [ length ] ;
auto const =expression
extern volatile
static

��

Figure 46. Nul-terminated graphic form

C

Chapter 9. Embedding SQL statements in host languages 165

|#

|#



Notes:

1. length must be a decimal integer constant greater than 1 and not greater than
16352.

2. var-1 must be less than or equal to length.
3. var-1 and var-2 must be simple variable references. You cannot use them as host

variables.
4. You can use the struct tag to define other data areas that you cannot use as

host variables.

Example: The following examples show valid and invalid declarations of graphic
host variables that use the VARGRAPHIC structured form:
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable structured vgraph */
struct VARGRAPH {

short len;
sqldbchar d[10];
} vgraph;

/* invalid declaration of host variable structured wgraph */
struct VARGRAPH wgraph;

Result set locators: Figure 48 on page 167 shows the syntax for declarations of
result set locators. See Chapter 25, “Using stored procedures for client/server
processing,” on page 631 for a discussion of how to use these host variables.

��
auto
extern
static

const
volatile

int
struct { short var-1 ;

tag
�

� sqldbchar var-2 [ length ] ; } �

,

variable-name
={ expression, expression}

�

� ; ��

Figure 47. VARGRAPHIC structured form

C

166 Application Programming and SQL Guide

|#

|



Table Locators: Figure 49 shows the syntax for declarations of table locators. See
“Accessing transition tables in a user-defined function or stored procedure” on
page 345 for a discussion of how to use these host variables.

LOB Variables and Locators: Figure 50 on page 168 shows the syntax for
declarations of BLOB, CLOB, and DBCLOB host variables and locators. See
Chapter 14, “Programming for large objects,” on page 299 for a discussion of how
to use these host variables.

��
auto
extern
static
register

const
volatile

SQL TYPE IS RESULT_SET_LOCATOR VARYING �

� �

,

variable-name
= init-value

; ��

Figure 48. Result set locators

��
auto
extern
static
register

const
volatile

SQL TYPE IS TABLE LIKE table-name AS LOCATOR �

� �

,

variable-name
init-value

; ��

Figure 49. Table locators

C

Chapter 9. Embedding SQL statements in host languages 167

#

#



ROWIDs: Figure 51 shows the syntax for declarations of ROWID host variables.
See Chapter 14, “Programming for large objects,” on page 299 for a discussion of
how to use these host variables.

Declaring host variable arrays
Only some of the valid C declarations are valid host variable array declarations. If
the declaration for a variable array is not valid, then any SQL statement that
references the variable array might result in the message UNDECLARED HOST
VARIABLE ARRAY.

For both C and C++, you cannot specify the _packed attribute on the structure
declarations for varying-length character arrays, varying-length graphic arrays, or
LOB arrays that are to be used in multiple-row INSERT and FETCH statements. In
addition, the #pragma pack(1) directive cannot be in effect if you plan to use these
arrays in multiple-row statements.

Numeric host variable arrays: Figure 52 on page 169 shows the syntax for
declarations of numeric host variable arrays.

��
auto
extern
static
register

const
volatile

SQL TYPE IS �

� BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

�

,

variable-name
init-value

; ��

Figure 50. LOB variables and locators

�� variable-name SQL TYPE IS ROWID ;
auto const
extern volatile
static
register

��

Figure 51. ROWID variables

C

168 Application Programming and SQL Guide

#

#

|

|
|
|
|

#
#
#
#
#

|
|
|



Note:

1. dimension must be an integer constant between 1 and 32767.

Example: The following example shows a declaration of a numeric host variable
array:
EXEC SQL BEGIN DECLARE SECTION;

/* declaration of numeric host variable array */
long serial_num[10];
...

EXEC SQL END DECLARE SECTION;

Character host variable arrays: The three valid forms for character host variable
arrays are:
v NUL-terminated character form
v VARCHAR structured form
v CLOBs

The following figures show the syntax for forms other than CLOBs. See Figure 57
on page 173 for the syntax of CLOBs.

Figure 53 on page 170 shows the syntax for declarations of NUL-terminated
character host variable arrays.

��
auto
extern
static

const
volatile

unsigned
float
double

int
long
short

int
long long
decimal ( integer )

, integer

�

� �

�

,

variable-name [ dimension ]
,

= { expression }

; ��

Figure 52. Numeric host variable arrays

C

Chapter 9. Embedding SQL statements in host languages 169

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||||||

|
||
|

|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|



Notes:

1. On input, the strings contained in the variable arrays must be NUL-terminated.
2. On output, the strings are NUL-terminated.
3. The strings in a NUL-terminated character host variable array map to

varying-length character strings (except for the NUL).
4. dimension must be an integer constant between 1 and 32767.

Figure 54 shows the syntax for declarations of varying-length character host
variable arrays that use the VARCHAR structured form.

Notes:

1. var-1 must be a simple variable reference, and var-2 must be a variable array
reference.

2. You can use the struct tag to define other data areas, which you cannot use as
host variable arrays.

3. dimension must be an integer constant between 1 and 32767.

��
auto
extern
static

const
volatile

char
unsigned

�

� �

�

,

variable-name [ dimension ] [ length ] ;
,

= { expression }

��

Figure 53. NUL-terminated character form

��
auto
extern
static

const
volatile

int
struct { short var-1 ; �

� char var-2 [ length ] ; }
unsigned

�

� �

�

,

variable-name [ dimension ] ;
,

= { expression }

��

Figure 54. VARCHAR structured form

C

170 Application Programming and SQL Guide

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||||||

|
||
|

|||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||

|
||
|

|

|

|

|
|

|

|
|
|

|

|
|

|
|

|



Example: The following examples show valid and invalid declarations of
VARCHAR host variable arrays:
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of VARCHAR host variable array */
struct VARCHAR {

short len;
char s[18];
} name[10];

/* invalid declaration of VARCHAR host variable array */
struct VARCHAR name[10];

Graphic host variable arrays: The two valid forms for graphic host variable arrays
are:
v NUL-terminated graphic form
v VARGRAPHIC structured form.

You can use the C data type sqldbchar to define a host variable array that inserts,
updates, deletes, and selects data from GRAPHIC or VARGRAPHIC columns.

Figure 55 shows the syntax for declarations of NUL-terminated graphic host
variable arrays.

Notes:

1. length must be a decimal integer constant greater than 1 and not greater than
16352.

2. On input, the strings contained in the variable arrays must be NUL-terminated.
3. On output, the string is NUL-terminated.
4. The NUL-terminated graphic form does not accept single-byte characters into

the variable array.
5. dimension must be an integer constant between 1 and 32767.

Figure 56 on page 172 shows the syntax for declarations of graphic host variable
arrays that use the VARGRAPHIC structured form.

��
auto
extern
static

const
volatile

sqldbchar
unsigned

�

� �

�

,

variable-name [ dimension ] [ length ] ;
,

= { expression }

��

Figure 55. NUL-terminated graphic form

C

Chapter 9. Embedding SQL statements in host languages 171

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||||||

|
||
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|

|

|

|
|

|

|
|
|



Notes:

1. length must be a decimal integer constant greater than 1 and not greater than
16352.

2. var-1 must be a simple variable reference, and var-2 must be a variable array
reference.

3. You can use the struct tag to define other data areas, which you cannot use as
host variable arrays.

4. dimension must be an integer constant between 1 and 32767.

Example: The following examples show valid and invalid declarations of graphic
host variable arrays that use the VARGRAPHIC structured form:
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable array vgraph */
struct VARGRAPH {

short len;
sqldbchar d[10];
} vgraph[20];

/* invalid declaration of host variable array vgraph */
struct VARGRAPH vgraph[20];

LOB variable arrays and locators: Figure 57 on page 173 shows the syntax for
declarations of BLOB, CLOB, and DBCLOB host variable arrays and locators. See
Chapter 14, “Programming for large objects,” on page 299 for a discussion of how
to use LOB variables.

��
auto
extern
static

const
volatile

int
struct { short var-1 ; �

� sqldbchar var-2 [ length ] ; }
unsigned

�

� �

�

,

variable-name [ dimension ] ;
,

= { expression }

��

Figure 56. VARGRAPHIC structured form

C

172 Application Programming and SQL Guide

|||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||

|
||
|

|

|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|



Note:

1. dimension must be an integer constant between 1 and 32767.

ROWIDs: Figure 58 shows the syntax for declarations of ROWID variable arrays.
See Chapter 14, “Programming for large objects,” on page 299 for a discussion of
how to use these host variable arrays.

Note:

1. dimension must be an integer constant between 1 and 32767.

Using host structures
A C host structure contains an ordered group of data fields. For example:

��
auto
extern
static
register

const
volatile

SQL TYPE IS �

� BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

�

� �

�

,

variable-name [ dimension ] ;
,

= { expression }

��

Figure 57. LOB variable arrays and locators

�� �

,

SQL TYPE IS ROWID variable-name [ dimension ] ;
auto const
extern volatile
static
register

��

Figure 58. ROWID variable arrays

C

Chapter 9. Embedding SQL statements in host languages 173

|||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||

|
||
|

||||||||||||||||||||||||||||||||||||||||||||||||

|
||
|

|

|

|
|
|
|

|

|



struct {char c1[3];
struct {short len;

char data[5];
}c2;

char c3[2];
}target;

In this example, target is the name of a host structure consisting of the c1, c2, and
c3 fields. c1 and c3 are character arrays, and c2 is the host variable equivalent to
the SQL VARCHAR data type. The target host structure can be part of another host
structure but must be the deepest level of the nested structure.

Figure 59 shows the syntax for declarations of host structures.

Figure 60 on page 175 shows the syntax for VARCHAR structures that are used
within declarations of host structures.

��
auto
extern
static

const
volatile

struct {
packed tag

�

� � float var-1 ;
double

int
short

sqlint32
int

long
int

long long
decimal ( integer )

, integer
varchar structure
vargraphic structure
SQL TYPE IS ROWID
LOB data type

char var-2 ;
unsigned [ length ]

sqldbchar var-5 ;
[ length ]

} �

� variable-name ;
=expression

��

Figure 59. Host structures

C

174 Application Programming and SQL Guide

|||

##



Figure 61 shows the syntax for VARGRAPHIC structures that are used within
declarations of host structures.

Figure 62 shows the syntax for LOB data types that are used within declarations of
host structures.

Determining equivalent SQL and C data types
Table 13 describes the SQL data type, and base SQLTYPE and SQLLEN values, that
the precompiler uses for the host variables it finds in SQL statements. If a host
variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE
plus 1.

Table 13. SQL data types the precompiler uses for C declarations

C data type
SQLTYPE of host
variable

SQLLEN of host
variable SQL data type

short int 500 2 SMALLINT

long int 496 4 INTEGER

long long 484 19 in byte 1, 0 in
byte 2

4

decimal(p,s)1 484 p in byte 1, s in
byte 2

DECIMAL(p,s)1

��
int

struct { short var-3 ;
tag signed

�

� char var-4 [ length ] ; }
unsigned

��

Figure 60. VARCHAR-structure

��
int

struct { short var-6 ; sqldbchar var-7 [ length ] ; }
tag signed

��

Figure 61. VARGRAPHIC-structure

�� SQL TYPE IS BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

��

Figure 62. LOB data type

C

Chapter 9. Embedding SQL statements in host languages 175

|

|



Table 13. SQL data types the precompiler uses for C declarations (continued)

C data type
SQLTYPE of host
variable

SQLLEN of host
variable SQL data type

float 480 4 FLOAT (single
precision)

double 480 8 FLOAT (double
precision)

Single-character form 452 1 CHAR(1)

NUL-terminated
character form

460 n VARCHAR (n-1)

VARCHAR structured
form 1<=n<=255

448 n VARCHAR(n)

VARCHAR structured
form
n>255

456 n VARCHAR(n)

Single-graphic form 468 1 GRAPHIC(1)

NUL-terminated
graphic form
(sqldbchar)

400 n VARGRAPHIC (n-1)

VARGRAPHIC
structured form
1<=n<128

464 n VARGRAPHIC(n)

VARGRAPHIC
structured form
n>127

472 n VARGRAPHIC(n)

SQL TYPE IS
RESULT_SET
_LOCATOR

972 4 Result set locator2

SQL TYPE IS
TABLE LIKE
table-name
AS LOCATOR

976 4 Table locator2

SQL TYPE IS
BLOB_LOCATOR

960 4 BLOB locator2

SQL TYPE IS
CLOB_LOCATOR

964 4 CLOB locator2

SQL TYPE IS
DBCLOB_LOCATOR

968 4 DBCLOB locator2

SQL TYPE IS
BLOB(n)
1≤n≤2147483647

404 n BLOB(n)

SQL TYPE IS
CLOB(n)
1≤n≤2147483647

408 n CLOB(n)

SQL TYPE IS
DBCLOB(n)
1≤n≤1073741823

412 n DBCLOB(n)3

SQL TYPE IS ROWID 904 40 ROWID

C

176 Application Programming and SQL Guide

|



Table 13. SQL data types the precompiler uses for C declarations (continued)

C data type
SQLTYPE of host
variable

SQLLEN of host
variable SQL data type

Notes:

1. p is the precision; in SQL terminology, this the total number of digits. In C, this is called
the size.

s is the scale; in SQL terminology, this is the number of digits to the right of the decimal
point. In C, this is called the precision.

C++ does not support the decimal data type.

2. Do not use this data type as a column type.

3. n is the number of double-byte characters.

4. No exact equivalent. Use DECIMAL(19,0).

Table 14 helps you define host variables that receive output from the database. You
can use the table to determine the C data type that is equivalent to a given SQL
data type. For example, if you retrieve TIMESTAMP data, you can use the table to
define a suitable host variable in the program that receives the data value.

Table 14 shows direct conversions between DB2 data types and host data types.
However, a number of DB2 data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 does conversions
between those compatible data types. See Table 1 on page 5 for information about
compatible data types.

Table 14. SQL data types mapped to typical C declarations

SQL data type C data type Notes

SMALLINT short int

INTEGER long int

DECIMAL(p,s) or
NUMERIC(p,s)

decimal You can use the double data type if your
C compiler does not have a decimal data
type; however, double is not an exact
equivalent.

REAL or FLOAT(n) float 1<=n<=21

DOUBLE PRECISION or
FLOAT(n)

double 22<=n<=53

CHAR(1) single-character form

CHAR(n) no exact equivalent If n>1, use NUL-terminated character form

VARCHAR(n) NUL-terminated character form If data can contain character NULs (\0),
use VARCHAR structured form. Allow at
least n+1 to accommodate the
NUL-terminator.

VARCHAR structured form

GRAPHIC(1) single-graphic form

GRAPHIC(n) no exact equivalent If n>1, use NUL-terminated graphic form.
n is the number of double-byte characters.

C

Chapter 9. Embedding SQL statements in host languages 177

|



Table 14. SQL data types mapped to typical C declarations (continued)

SQL data type C data type Notes

VARGRAPHIC(n) NUL-terminated graphic form If data can contain graphic NUL values
(\0\0), use VARGRAPHIC structured
form. Allow at least n+1 to accommodate
the NUL-terminator. n is the number of
double-byte characters.

VARGRAPHIC structured form n is the number of double-byte characters.

DATE NUL-terminated character form If you are using a date exit routine, that
routine determines the length. Otherwise,
allow at least 11 characters to
accommodate the NUL-terminator.

VARCHAR structured form If you are using a date exit routine, that
routine determines the length. Otherwise,
allow at least 10 characters.

TIME NUL-terminated character form If you are using a time exit routine, the
length is determined by that routine.
Otherwise, the length must be at least 7;
to include seconds, the length must be at
least 9 to accommodate the
NUL-terminator.

VARCHAR structured form If you are using a time exit routine, the
length is determined by that routine.
Otherwise, the length must be at least 6;
to include seconds, the length must be at
least 8.

TIMESTAMP NUL-terminated character form The length must be at least 20. To include
microseconds, the length must be 27. If the
length is less than 27, truncation occurs on
the microseconds part.

VARCHAR structured form The length must be at least 19. To include
microseconds, the length must be 26. If the
length is less than 26, truncation occurs on
the microseconds part.

Result set locator SQL TYPE IS RESULT_SET_LOCATOR Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS TABLE LIKE table-name AS
LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator SQL TYPE IS DBCLOB_LOCATOR Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

BLOB(n) SQL TYPE IS BLOB(n) 1≤n≤2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1≤n≤2147483647

C

178 Application Programming and SQL Guide



Table 14. SQL data types mapped to typical C declarations (continued)

SQL data type C data type Notes

DBCLOB(n SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1≤n≤1073741823

ROWID SQL TYPE IS ROWID

Notes on C variable declaration and usage
You should be aware of the following considerations when you declare C variables.

C data types with no SQL equivalent: C supports some data types and storage
classes with no SQL equivalents, for example, register storage class, typedef, and
long long, .

SQL data types with no C equivalent: If your C compiler does not have a decimal
data type, no exact equivalent exists for the SQL DECIMAL data type. In this case,
to hold the value of such a variable, you can use:
v An integer or floating-point variable, which converts the value. If you choose

integer, you will lose the fractional part of the number. If the decimal number
can exceed the maximum value for an integer, or if you want to preserve a
fractional value, you can use floating-point numbers. Floating-point numbers are
approximations of real numbers. Therefore, when you assign a decimal number
to a floating-point variable, the result might be different from the original
number.

v A character-string host variable. Use the CHAR function to get a string
representation of a decimal number.

v The DECIMAL function to explicitly convert a value to a decimal data type, as
in this example:
long duration=10100; /* 1 year and 1 month */
char result_dt[11];

EXEC SQL SELECT START_DATE + DECIMAL(:duration,8,0)
INTO :result_dt FROM TABLE1;

Floating-point host variables: All floating-point data is stored in DB2 in
System/390 hexadecimal floating-point format. However, your host variable data
can be in System/390 hexadecimal floating-point format or IEEE binary
floating-point format. DB2 uses the FLOAT precompiler option to determine
whether your floating-point host variables are in IEEE binary floating-point or
System/390 hexadecimal floating-point format. DB2 does no checking to determine
whether the contents of a host variable match the precompiler option. Therefore,
you need to ensure that your floating-point data format matches the precompiler
option.

Graphic host variables in user-defined function: The SQLUDF file, which is in data
set DSN810.SDSNC.H, contains many data declarations for C language
user-defined functions. SQLUDF contains the typedef sqldbchar, which you should
use instead of wchar_t. Using sqldbchar lets you manipulate DBCS and Unicode
UTF-16 data in the same format in which it is stored in DB2. Using sqldbchar also
makes applications easier to port to other DB2 platforms.

Special Purpose C Data Types: The locator data types are C data types and SQL
data types. You cannot use locators as column types. For information about how to
use these data types, see the following sections:

C

Chapter 9. Embedding SQL statements in host languages 179

#
#
|

|
|

|
|

|



Result set locator
Chapter 25, “Using stored procedures for client/server processing,”
on page 631

Table locator “Accessing transition tables in a user-defined function or stored
procedure” on page 345

LOB locators Chapter 14, “Programming for large objects,” on page 299

String host variables: If you assign a string of length n to a NUL-terminated
variable with a length that is:
v Less than or equal to n, DB2 inserts the characters into the host variable up to a

length of (n-1), and appends a NUL at the end of the string. DB2 sets
SQLWARN[1] to W and any indicator variable you provide to the original length
of the source string.

v Equal to n+1, DB2 inserts the characters into the host variable and appends a
NUL at the end of the string.

v Greater than n+1, the rules depend on whether the source string is a value of a
fixed-length string column or a varying-length string column. If the source is a
fixed-length string, DB2 pads it with blanks on assignment to the
NUL-terminated variable depending on whether the precompiler option
PADNTSTR is specified. If the source is a varying-length string, DB2 assigns it to
the first n bytes of the variable and appends a NUL at the end of the string. For
information about host language precompiler options, see Table 64 on page 485.

PREPARE or DESCRIBE statements: You cannot use a host variable that is of the
NUL-terminated form in either a PREPARE or DESCRIBE statement when you use
the DB2 precompiler. However, if you use the DB2 coprocessor for either C or C++,
you can use host variables of the NUL-terminated form in PREPARE, DESCRIBE,
and EXECUTE IMMEDIATE statements.

L-literals: DB2 tolerates L-literals in C application programs. DB2 allows properly
formed L-literals, although it does not check for all the restrictions that the C
compiler imposes on the L-literal. You can use DB2 graphic string constants in SQL
statements to work with the L-literal. Do not use L-literals in SQL statements.

Overflow: Be careful of overflow. For example, suppose you retrieve an INTEGER
column value into a short integer host variable and the column value is larger than
32767. You get an overflow warning or an error, depending on whether you
provide an indicator variable.

Truncation: Be careful of truncation. Ensure that the host variable you declare can
contain the data and a NUL terminator, if needed. Retrieving a floating-point or
decimal column value into a long integer host variable removes any fractional part
of the value.

Notes on syntax differences for constants
You should be aware of the following syntax differences for constants.

Decimal constants versus real constants: In C, a string of digits with a decimal
point is interpreted as a real constant. In an SQL statement, such a string is
interpreted as a decimal constant. You must use exponential notation when
specifying a real (that is, floating-point) constant in an SQL statement.

C

180 Application Programming and SQL Guide

|
|
|
|
|
|
|

#
|
|
|
|



In C, a real (floating-point) constant can have a suffix of f or F to show a data type
of float or a suffix of l or L to show a type of long double. A floating-point constant
in an SQL statement must not use these suffixes.

Integer constants: In C, you can provide integer constants in hexadecimal form if
the first two characters are 0x or 0X. You cannot use this form in an SQL statement.

In C, an integer constant can have a suffix of u or U to show that it is an unsigned
integer. An integer constant can have a suffix of l or L to show a long integer. You
cannot use these suffixes in SQL statements.

Character and string constants: In C, character constants and string constants can
use escape sequences. You cannot use the escape sequences in SQL statements.
Apostrophes and quotes have different meanings in C and SQL. In C, you can use
double quotes to delimit string constants, and apostrophes to delimit character
constants. The following examples illustrate the use of quotes and apostrophes in
C.

Quotes
printf( "%d lines read. \n", num_lines);
Apostrophes
#define NUL ’\0’

In SQL, you can use double quotes to delimit identifiers and apostrophes to
delimit string constants. The following examples illustrate the use of apostrophes
and quotes in SQL.

Quotes
SELECT "COL#1" FROM TBL1;
Apostrophes
SELECT COL1 FROM TBL1 WHERE COL2 = ’BELL’;

Character data in SQL is distinct from integer data. Character data in C is a
subtype of integer data.

Determining compatibility of SQL and C data types
C host variables used in SQL statements must be type compatible with the
columns with which you intend to use them:
v Numeric data types are compatible with each other. A SMALLINT, INTEGER,

DECIMAL, or FLOAT column is compatible with any C host variable that is
defined as type short int, long int, decimal, float, or double.

v Character data types are compatible with each other. A CHAR, VARCHAR, or
CLOB column is compatible with a single-character, NUL-terminated, or
VARCHAR structured form of a C character host variable.

v Character data types are partially compatible with CLOB locators. You can
perform the following assignments:
– Assign a value in a CLOB locator to a CHAR or VARCHAR column
– Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a

CLOB locator host variable.
– Assign a CHAR or VARCHAR output parameter from a user-defined function

or stored procedure to a CLOB locator host variable.
– Use a SET assignment statement to assign a CHAR or VARCHAR transition

variable to a CLOB locator host variable.
– Use a VALUES INTO statement to assign a CHAR or VARCHAR function

parameter to a CLOB locator host variable.

C

Chapter 9. Embedding SQL statements in host languages 181



However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

v Graphic data types are compatible with each other. A GRAPHIC, VARGRAPHIC,
or DBCLOB column is compatible with a single character, NUL-terminated, or
VARGRAPHIC structured form of a C graphic host variable.

v Graphic data types are partially compatible with DBCLOB locators. You can
perform the following assignments:
– Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC

column
– Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC

column to a DBCLOB locator host variable.
– Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined

function or stored procedure to a DBCLOB locator host variable.
– Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC

transition variable to a DBCLOB locator host variable.
– Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC

function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC
or VARGRAPHIC column to a DBCLOB locator host variable.

v Datetime data types are compatible with character host variable. A DATE, TIME,
or TIMESTAMP column is compatible with a single-character, NUL-terminated,
or VARCHAR structured form of a C character host variable.

v A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

v The ROWID column is compatible only with a ROWID host variable.
v A host variable is compatible with a distinct type if the host variable type is

compatible with the source type of the distinct type. For information about
assigning and comparing distinct types, see Chapter 16, “Creating and using
distinct types,” on page 367.

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.

Varying-length strings: For varying-length BIT data, use the VARCHAR structured
form. Some C string manipulation functions process NUL-terminated strings and
other functions process strings that are not NUL-terminated. The C string
manipulation functions that process NUL-terminated strings cannot handle bit data
because these functions might misinterpret a NUL character to be a
NUL-terminator.

Using indicator variables and indicator variable arrays
An indicator variable is a 2-byte integer (short int). An indicator variable array is
an array of 2-byte integers (short int). You use indicator variables and indicator
variable arrays in similar ways.

Using indicator variables: If you provide an indicator variable for the variable X,
when DB2 retrieves a null value for X, it puts a negative value in the indicator
variable and does not update X. Your program should check the indicator variable
before using X. If the indicator variable is negative, you know that X is null and
any value you find in X is irrelevant.

C

182 Application Programming and SQL Guide

|
|
|



When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X. For more information about
indicator variables, see “Using indicator variables with host variables” on page 83.

Using indicator variable arrays: When you retrieve data into a host variable array,
if a value in its indicator array is negative, you can disregard the contents of the
corresponding element in the host variable array. For more information about
indicator variable arrays, see “Using indicator variable arrays with host variable
arrays” on page 87.

Declaring indicator variables: You declare indicator variables in the same way as
host variables. You can mix the declarations of the two types of variables in any
way that seems appropriate.

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:
EXEC SQL FETCH CLS_CURSOR INTO :ClsCd,

:Day :DayInd,
:Bgn :BgnInd,
:End :EndInd;

You can declare variables as follows:
EXEC SQL BEGIN DECLARE SECTION;
char ClsCd[8];
char Bgn[9];
char End[9];
short Day, DayInd, BgnInd, EndInd;
EXEC SQL END DECLARE SECTION;

Figure 63 shows the syntax for declarations of an indicator variable.

Declaring indicator variable arrays: Figure 64 on page 184 shows the syntax for
declarations of an indicator array or a host structure indicator array.

��
auto
extern
static

const
volatile

int
short

signed

�

,

variable-name
= expression

; ��

Figure 63. Indicator variable

C

Chapter 9. Embedding SQL statements in host languages 183

#

|
|
|
|
|

|



Note: The dimension must be an integer constant between 1 and 32767.

Handling SQL error return codes
You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information about the behavior of DSNTIAR, see
“Calling DSNTIAR to display SQLCA fields” on page 98.

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “The GET DIAGNOSTICS statement” on page 94.

DSNTIAR syntax
rc = dsntiar(&sqlca, &message, &lrecl);

The DSNTIAR parameters have the following meanings:

&sqlca
An SQL communication area.

&message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in &lrecl, are put
into this area. For example, you could specify the format of the output area as:
#define data_len 132
#define data_dim 10
struct error_struct {

short int error_len;
char error_text[data_dim][data_len];
} error_message = {data_dim * data_len};...

rc = dsntiar(&sqlca, &error_message, &data_len);

��
auto
extern
static

const
volatile

int
short

signed
�

� �

,

variable-name [ dimension ]
= expression

; ��

Figure 64. Host structure indicator array

C

184 Application Programming and SQL Guide

|
|
|
|
|



where error_message is the name of the message output area, data_dim is the
number of lines in the message output area, and data_len is the length of each
line.

&lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

To inform your compiler that DSNTIAR is an assembler language program, include
one of the following statements in your application.

For C, include:
#pragma linkage (dsntiar,OS)

For C++, include a statement similar to this:
extern "OS" short int dsntiar(struct sqlca *sqlca,

struct error_struct *error_message,
int *data_len);

Examples of calling DSNTIAR from an application appear in the DB2 sample C
program DSN8BD3 and in the sample C++ program DSN8BE3. Both are in the
library DSN8810.SDSNSAMP. See Appendix B, “Sample applications,” on page
1015 for instructions on how to access and print the source code for the sample
programs.

CICS
If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following
syntax:
rc = DSNTIAC(&eib, &commarea, &sqlca, &message, &lrecl);

DSNTIAC has extra parameters, which you must use for calls to routines that
use CICS commands.

&eib EXEC interface block

&commarea
communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the
same as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the
SQLCA in the same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC,
you must also define them in the CSD. For an example of CSD entry
generation statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which
assembles and link-edits DSNTIAC, are in the data set prefix.SDSNSAMP.

C

Chapter 9. Embedding SQL statements in host languages 185



Coding considerations for C and C++
Using C++ data types as host variables: When you code SQL statements in a C++
program, you can use class members as host variables. Class members used as host
variables are accessible to any SQL statement within the class. However, you
cannot use class objects as host variables.

Coding SQL statements in a COBOL application
This section helps you with the programming techniques that are unique to coding
SQL statements within a COBOL program.

See DB2 Program Directory for a list of the supported versions of COBOL.

Defining the SQL communication area
A COBOL program that contains SQL statements must include one or both of the
following host variables:
v An SQLCODE variable declared as PIC S9(9) BINARY, PIC S9(9) COMP-4, PIC

S9(9) COMP-5, or PICTURE S9(9) COMP
v An SQLSTATE variable declared as PICTURE X(5)

Alternatively, you can include an SQLCA, which contains the SQLCODE and
SQLSTATE variables.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these values to determine whether the last SQL statement
was successful. All SQL statements in the program must be within the scope of the
declaration of the SQLCODE and SQLSTATE variables.

Whether you define the SQLCODE or SQLSTATE variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to SQL standard, or STDSQL(NO) to conform to DB2 rules.

If you specify STDSQL(YES)
When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

When you use the precompiler option STDSQL(YES), you must declare an
SQLCODE variable. DB2 declares an SQLCA area for you in the
WORKING-STORAGE SECTION. DB2 controls the structure and location of the
SQLCA.

If you declare an SQLSTATE variable, it must not be an element of a structure. You
must declare the SQLCODE and SQLSTATE variables within the BEGIN DECLARE
SECTION and END DECLARE SECTION statements in your program declarations.

If you specify STDSQL(NO)
When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in a COBOL program either directly or by using the SQL
INCLUDE statement. The SQL INCLUDE statement requests a standard SQLCA
declaration:
EXEC SQL INCLUDE SQLCA END-EXEC.

You can specify INCLUDE SQLCA or a declaration for SQLCODE wherever you
can specify a 77 level or a record description entry in the WORKING-STORAGE

C

186 Application Programming and SQL Guide

#



SECTION. You can declare a stand-alone SQLCODE variable in either the
WORKING-STORAGE SECTION or LINKAGE SECTION.

See Chapter 5 of DB2 SQL Reference for more information about the INCLUDE
statement and Appendix D of DB2 SQL Reference for a complete description of
SQLCA fields.

Defining SQL descriptor areas
The following statements require an SQLDA:
v CALL ... USING DESCRIPTOR descriptor-name
v DESCRIBE statement-name INTO descriptor-name
v DESCRIBE CURSOR host-variable INTO descriptor-name
v DESCRIBE INPUT statement-name INTO descriptor-name
v DESCRIBE PROCEDURE host-variable INTO descriptor-name
v DESCRIBE TABLE host-variable INTO descriptor-name
v EXECUTE ... USING DESCRIPTOR descriptor-name
v FETCH ... INTO DESCRIPTOR descriptor-name
v OPEN ... USING DESCRIPTOR descriptor-name
v PREPARE ... INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA, and an SQLDA
can have any valid name. The SQL INCLUDE statement does not provide an
SQLDA mapping for COBOL. You can define the SQLDA using one of the
following two methods:
v For COBOL programs compiled with any compiler, you can code the SQLDA

declarations in your program. For more information, see “Using dynamic SQL in
COBOL” on page 629. You must place SQLDA declarations in the
WORKING-STORAGE SECTION or LINKAGE SECTION of your program,
wherever you can specify a record description entry in that section.

v For COBOL programs compiled with any compiler, you can call a subroutine
(written in C, PL/I, or assembler language) that uses the INCLUDE SQLDA
statement to define the SQLDA. The subroutine can also include SQL statements
for any dynamic SQL functions you need. For more information on using
dynamic SQL, see Chapter 24, “Coding dynamic SQL in application programs,”
on page 595.

You must place SQLDA declarations before the first SQL statement that references
the data descriptor. An SQL statement that uses a host variable must be within the
scope of the statement that declares the variable.

Embedding SQL statements
You can code SQL statements in the COBOL program sections shown in Table 15.

Table 15. Allowable SQL statements for COBOL program sections

SQL statement Program section

BEGIN DECLARE SECTION
END DECLARE SECTION

WORKING-STORAGE SECTION or LINKAGE
SECTION

INCLUDE SQLCA WORKING-STORAGE SECTION or LINKAGE
SECTION

INCLUDE text-file-name PROCEDURE DIVISION or DATA DIVISION1

DECLARE TABLE
DECLARE CURSOR

DATA DIVISION or PROCEDURE DIVISION

Other PROCEDURE DIVISION

COBOL

Chapter 9. Embedding SQL statements in host languages 187

#



Table 15. Allowable SQL statements for COBOL program sections (continued)

SQL statement Program section

Notes:

1. When including host variable declarations, the INCLUDE statement must be in the
WORKING-STORAGE SECTION or the LINKAGE SECTION.

You cannot put SQL statements in the DECLARATIVES section of a COBOL
program.

Each SQL statement in a COBOL program must begin with EXEC SQL and end
with END-EXEC. If the SQL statement appears between two COBOL statements,
the period is optional and might not be appropriate. If the statement appears in an
IF...THEN set of COBOL statements, omit the ending period to avoid inadvertently
ending the IF statement. The EXEC and SQL keywords must appear on one line,
but the remainder of the statement can appear on subsequent lines.

You might code an UPDATE statement in a COBOL program as follows:
EXEC SQL

UPDATE DSN8810.DEPT
SET MGRNO = :MGR-NUM
WHERE DEPTNO = :INT-DEPT

END-EXEC.

Comments: You can include COBOL comment lines (* in column 7) in SQL
statements wherever you can use a blank, except between the keywords EXEC and
SQL. The precompiler also treats COBOL debugging and page-eject lines (/ in
column 7) as comment lines. For an SQL INCLUDE statement, DB2 treats any text
that follows the period after END-EXEC, and on the same line as END-EXEC, as a
comment.

In addition, you can include SQL comments in any embedded SQL statement.

Debugging lines: The precompiler ignores the 'D' in column 7 on debugging lines
and treats it as a blank.

Continuation for SQL statements: The rules for continuing a character string
constant from one line to the next in an SQL statement embedded in a COBOL
program are the same as those for continuing a non-numeric literal in COBOL.
However, you can use either a quote or an apostrophe as the first nonblank
character in area B of the continuation line. The same rule applies for the
continuation of delimited identifiers and does not depend on the string delimiter
option.

To conform with SQL standard, delimit a character string constant with an
apostrophe, and use a quote as the first nonblank character in area B of the
continuation line for a character string constant.

COPY: Do not use a COBOL COPY statement within host variable declarations
because the DB2 precompiler will not evaluate the statement.

Declaring tables and views: Your COBOL program should include the statement
DECLARE TABLE to describe each table and view the program accesses. You can
use the DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE

COBOL

188 Application Programming and SQL Guide

#
#
#
#
#
#

|

#
#

#
#



statements. You should include the DCLGEN members in the DATA DIVISION.
For more information, see Chapter 8, “Generating declarations for your tables
using DCLGEN,” on page 131.

Dynamic SQL in a COBOL program: In general, COBOL programs can easily
handle dynamic SQL statements. COBOL programs can handle SELECT statements
if the data types and the number of fields returned are fixed. If you want to use
variable-list SELECT statements, use an SQLDA. See “Defining SQL descriptor
areas” on page 187 for more information on SQLDA.

Including code: To include SQL statements or COBOL host variable declarations
from a member of a partitioned data set, use the following SQL statement in the
source code where you want to include the statements:
EXEC SQL INCLUDE member-name END-EXEC.

If you are using the DB2 precompiler, you cannot nest SQL INCLUDE statements.
In this case, do not use COBOL verbs to include SQL statements or host variable
declarations, and do not use the SQL INCLUDE statement to include CICS
preprocessor related code. In general, if you are using the DB2 precompiler, use the
SQL INCLUDE statement only for SQL-related coding. If you are using the COBOL
SQL coprocessor, none of these restrictions apply.

Use the 'EXEC SQL' and 'END-EXEC' keyword pair to include SQL statements
only. COBOL statements, such as COPY or REPLACE, are not allowed.

Margins: You must code EXEC SQL in columns 12 through 72. Otherwise the DB2
precompiler does not recognize the SQL statement. Continued lines of an SQL
statement can be in columns 8 through 72 when using the DB2 precompiler and
columns 12 through 72 when using the DB2 coprocessor.

Names: You can use any valid COBOL name for a host variable. Do not use
external entry names or access plan names that begin with ’DSN’, and do not use
host variable names that begin with ’SQL’. These names are reserved for DB2.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can precede executable SQL statements in the PROCEDURE
DIVISION with a paragraph name, if you wish.

WHENEVER statement: The target for the GOTO clause in an SQL statement
WHENEVER must be a section name or unqualified paragraph name in the
PROCEDURE DIVISION.

Special COBOL considerations: The following considerations apply to programs
written in COBOL:
v In a COBOL program that uses elements in a multi-level structure as host

variable names, the DB2 precompiler generates the lowest two-level names.
v Using the COBOL compiler options DYNAM and NODYNAM depends on the

operating environment.

COBOL

Chapter 9. Embedding SQL statements in host languages 189

#
#

#
#
#
#



TSO and IMS
You can specify the option DYNAM when compiling a COBOL program.
By specifying DYNAM, the COBOL application loads and branches to
DSNHLI. If you specify NODYNAM, the COBOL application branches to
DSNHLI, and DSNELI/DFSLI00 must be link-edited into the application
load module.

IMS and DB2 share a common alias name, DSNHLI, for the language
interface module. You must do the following when you concatenate your
libraries:
– If you use IMS, be sure to concatenate the IMS library first so that the

application program loads the correct IMS version of DSNHLI.
– If you run your application program only under DB2be sure to

concatenate the DB2 library first.

CICS and CAF
You must specify the NODYNAM option when you compile a COBOL
program that either includes CICS statements or is translated by a separate
CICS translator or the integrated CICS translator. In these cases, you cannot
specify the DYNAM option. If your CICS program has a subroutine that is
not translated by a separate CICS translator or the integrated CICS
translator but contains SQL statements, you can specify the DYNAM
option. However, in this case, you must concatenate the CICS libraries
before the DB2 libraries.

You can compile COBOL stored procedures with either the DYNAM option
or the NODYNAM option. If you use DYNAM, ensure that the correct DB2
language interface module is loaded dynamically by performing one of the
following actions:
– Use the ATTACH(RRSAF) precompiler option.
– Copy the DSNRLI module into a load library that is concatenated in

front of the DB2 libraries. Use the member name DSNHLI.

v To avoid truncating numeric values, use either of the following methods:
– Use the COMP-5 data type for binary integer host variables.
– Specify the COBOL compiler option:

- TRUNC(OPT) if you are certain that the data being moved to each binary
variable by the application does not have a larger precision than is defined
in the PICTURE clause of the binary variable.

- TRUNC(BIN) if the precision of data being moved to each binary variable
might exceed the value in the PICTURE clause.

DB2 assigns values to binary integer host variables as if you had specified the
COBOL compiler option TRUNC(BIN) or used the COMP-5 data type.

v If a COBOL program contains several entry points or is called several times, the
USING clause of the entry statement that executes before the first SQL statement
executes must contain the SQLCA and all linkage section entries that any SQL
statement uses as host variables.

v If you use the DB2 precompiler, the REPLACE statement has no effect on SQL
statements. It affects only the COBOL statements that the precompiler generates.

COBOL

190 Application Programming and SQL Guide

#
#
#
#
#
#
#
#

#
#
#
#

#

#
#

|
|



If you use the DB2 coprocessor, the REPLACE statement replaces text strings in
SQL statements as well as in generated COBOL statements.

v If you use the DB2 precompiler, no compiler directives should appear between
the PROCEDURE DIVISION and the DECLARATIVES statement.

v Do not use COBOL figurative constants (such as ZERO and SPACE), symbolic
characters, reference modification, and subscripts within SQL statements.

v Observe the rules in Chapter 2 of DB2 SQL Reference when you name SQL
identifiers. However, for COBOL only, the names of SQL identifiers can follow
the rules for naming COBOL words, if the names do not exceed the allowable
length for the DB2 object. For example, the name 1ST-TIME is a valid cursor
name because it is a valid COBOL word, but the name 1_TIME is not valid
because it is not a valid SQL identifier or a valid COBOL word.

v Observe these rules for hyphens:
– Surround hyphens used as subtraction operators with spaces. DB2 usually

interprets a hyphen with no spaces around it as part of a host variable name.
– You can use hyphens in SQL identifiers under either of the following

circumstances:
- The application program is a local application that runs on DB2 UDB for

OS/390 Version 6 or later.
- The application program accesses remote sites, and the local site and

remote sites are DB2 UDB for OS/390 Version 6 or later.
v If you include an SQL statement in a COBOL PERFORM ... THRU paragraph and

also specify the SQL statement WHENEVER ... GO, the COBOL compiler returns
the warning message IGYOP3094. That message might indicate a problem. This
usage is not recommended.

v If you are using the DB2 precompiler and COBOL, the following additional
restrictions apply:
– All SQL statements and any host variables they reference must be within the

first program when using nested programs or batch compilation.
– DB2 COBOL programs must have a DATA DIVISION and a PROCEDURE

DIVISION. Both divisions and the WORKING-STORAGE section must be
present in programs that contain SQL statements.

If your program uses parameters that are defined in LINKAGE SECTION as host
variables to DB2 and the address of the input parameter might change on
subsequent invocations of your program, your program must reset the variable
SQL-INIT-FLAG. This flag is generated by the DB2 precompiler. Resetting this flag
indicates that the storage must initialize when the next SQL statement executes. To
reset the flag, insert the statement MOVE ZERO TO SQL-INIT-FLAG in the called
program's PROCEDURE DIVISION, ahead of any executable SQL statements that
use the host variables.

If you use the COBOL DB2 coprocessor, the called program does not need to reset
SQL-INIT-FLAG.

Using host variables and host variable arrays
You must explicitly declare all host variables and host variable arrays used in SQL
statements in the WORKING-STORAGE SECTION or LINKAGE SECTION of your
program's DATA DIVISION. You must explicitly declare each host variable and
host variable array before using them in an SQL statement.

COBOL

Chapter 9. Embedding SQL statements in host languages 191

#
#

|
|

#
#
#
#
#
#

#
#
#
#
#
#
#
#

#
#

|

|
|
|
|



You can precede COBOL statements that define the host variables and host
variable arrays with the statement BEGIN DECLARE SECTION, and follow the
statements with the statement END DECLARE SECTION. You must use the
statements BEGIN DECLARE SECTION and END DECLARE SECTION when you
use the precompiler option STDSQL(YES).

A colon (:) must precede all host variables and all host variable arrays in an SQL
statement.

The names of host variables and host variable arrays should be unique within the
source data set or member, even if the variables and variable arrays are in different
blocks, classes, or procedures. You can qualify the names with a structure name to
make them unique.

An SQL statement that uses a host variable or host variable array must be within
the scope of the statement that declares that variable or array. You define host
variable arrays for use with multiple-row FETCH and INSERT statements.

You can specify OCCURS when defining an indicator structure, a host variable
array, or an indicator variable array. You cannot specify OCCURS for any other
type of host variable.

Declaring host variables
Only some of the valid COBOL declarations are valid host variable declarations. If
the declaration for a variable is not valid, then any SQL statement that references
the variable might result in the message UNDECLARED HOST VARIABLE.

Numeric host variables: The three valid forms of numeric host variables are:
v Floating-point numbers
v Integers and small integers
v Decimal numbers

Figure 65 shows the syntax for declarations of floating-point or real host variables.

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. COMPUTATIONAL-1 and COMP-1 are equivalent.
3. COMPUTATIONAL-2 and COMP-2 are equivalent.

Figure 66 on page 193 shows the syntax for declarations of integer and small
integer host variables.

�� 01
77
level-1

variable-name
IS

USAGE

COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2

�

�
IS

VALUE numeric-constant

. ��

Figure 65. Floating-point host variables

COBOL

192 Application Programming and SQL Guide

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|



Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,

COMPUTATIONAL-4, and COMP-4 are equivalent.
3. COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary

integer data types if you compile the other data types with TRUNC(BIN).
4. Any specification for scale is ignored.

Figure 67 shows the syntax for declarations of decimal host variables.

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The

picture-string that is that is associated with these types must have the form
S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9) or S9(i)V.

�� 01
77
level-1

variable-name PICTURE
PIC

IS
S9(4)
S9999
S9(9)
S999999999

IS
USAGE

�

� BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

IS
VALUE numeric-constant

. ��

Figure 66. Integer and small integer host variables

�� 01
77
level-1

variable-name PICTURE
PIC

IS
picture-string

IS
USAGE

�

� PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

IS CHARACTER
DISPLAY SIGN LEADING SEPARATE
NATIONAL

�

�
IS

VALUE numeric-constant

. ��

Figure 67. Decimal host variables

COBOL

Chapter 9. Embedding SQL statements in host languages 193

##



3. The picture-string that is associated with SIGN LEADING SEPARATE must have
the form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9 or S9...9V with i
instances of 9).

Character host variables: The three valid forms of character host variables are:
v Fixed-length strings
v Varying-length strings
v CLOBs

The following figures show the syntax for forms other than CLOBs. See Figure 74
on page 198 for the syntax of CLOBs.

Figure 68 shows the syntax for declarations of fixed-length character host variables.

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. The picture-string that is associated with these forms must be X(m) (or XX...X,

with m instances of X), with 1 <= m <= 32767 for fixed-length strings. However,
the maximum length of the CHAR data type (fixed-length character string) in
DB2 is 255 bytes.

Figure 69 on page 195 shows the syntax for declarations of varying-length
character host variables.

�� 01
77
level-1

variable-name PICTURE
PIC

IS
picture-string �

�
DISPLAY

IS
USAGE

IS
VALUE character-constant

. ��

Figure 68. Fixed-length character strings

COBOL

194 Application Programming and SQL Guide

|
|
|
|



Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. DB2 uses the full length of the S9(4) BINARY variable even though COBOL

with TRUNC(STD) only recognizes values up to 9999. This can cause data
truncation errors when COBOL statements execute and might effectively limit
the maximum length of variable-length character strings to 9999. Consider
using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data
truncation.

3. For fixed-length strings, the picture-string must be X(m) (or XX...X, with m
instances of X), with 1 <= m <= 32767; for other strings, m cannot be greater
than the maximum size of a varying-length character string.

4. You cannot directly reference var-1 and var-2 as host variables.
5. You cannot use an intervening REDEFINE at level 49.

Graphic character host variables: The three valid forms for graphic character host
variables are:
v Fixed-length strings
v Varying-length strings
v DBCLOBs

The following figures show the syntax for forms other than DBCLOBs. See
Figure 74 on page 198 for the syntax of DBCLOBs.

�� 01 variable-name .
level-1

��

�� 49 var-1 PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE numeric-constant

. ��

�� 49 var-2 PICTURE
PIC

IS
picture-string

DISPLAY
IS

USAGE

�

�
IS

VALUE character-constant

. ��

Figure 69. Varying-length character strings

COBOL

Chapter 9. Embedding SQL statements in host languages 195



Figure 70 shows the syntax for declarations of fixed-length graphic host variables.

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of

GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

3. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the DB2 coprocessor.

Figure 71 on page 197 shows the syntax for declarations of varying-length graphic
host variables.

�� 01
77
level-1

variable-name PICTURE
PIC

IS
picture-string �

� DISPLAY-1
IS NATIONAL IS

USAGE VALUE graphic-constant

. ��

Figure 70. Fixed-length graphic strings

COBOL

196 Application Programming and SQL Guide

#
#
#



Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. DB2 uses the full length of the S9(4) BINARY variable even though COBOL

with TRUNC(STD) only recognizes values up to 9999. This can cause data
truncation errors when COBOL statements execute and might effectively limit
the maximum length of variable-length character strings to 9999. Consider
using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data
truncation.

3. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of
GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

4. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the DB2 coprocessor.

5. You cannot directly reference var-1 and var-2 as host variables.

Result set locators: Figure 72 on page 198 shows the syntax for declarations of
result set locators. See Chapter 25, “Using stored procedures for client/server
processing,” on page 631 for a discussion of how to use these host variables.

�� 01 variable-name .
level-1

��

�� 49 var-1 PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE numeric-constant

. ��

�� 49 var-2 PICTURE
PIC

IS
picture-string

IS
USAGE

DISPLAY-1
NATIONAL

�

�
IS

VALUE graphic-constant

. ��

Figure 71. Varying-length graphic strings

COBOL

Chapter 9. Embedding SQL statements in host languages 197

#
#
#



Table Locators: Figure 73 shows the syntax for declarations of table locators. See
“Accessing transition tables in a user-defined function or stored procedure” on
page 345 for a discussion of how to use these host variables.

Note: level-1 indicates a COBOL level between 2 and 48.

LOB Variables and Locators: Figure 74 shows the syntax for declarations of BLOB,
CLOB, and DBCLOB host variables and locators. See Chapter 14, “Programming
for large objects,” on page 299 for a discussion of how to use these host variables.

Note: level-1 indicates a COBOL level between 2 and 48.

ROWIDs: Figure 75 shows the syntax for declarations of ROWID host variables.
See Chapter 14, “Programming for large objects,” on page 299 for a discussion of
how to use these host variables.

Note: level-1 indicates a COBOL level between 2 and 48.

�� 01 variable-name SQL TYPE IS RESULT-SET-LOCATOR VARYING .
IS

USAGE

��

Figure 72. Result set locators

�� 01 variable-name SQL TYPE IS TABLE LIKE table-name AS LOCATOR .
level-1 IS

USAGE

��

Figure 73. Table locators

�� 01 variable-name
level-1 IS

USAGE

SQL TYPE IS �

� BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR

. ��

Figure 74. LOB variables and locators

�� 01 variable-name SQL TYPE IS ROWID .
level-1 IS

USAGE

��

Figure 75. ROWID variables

COBOL

198 Application Programming and SQL Guide



Declaring host variable arrays
Only some of the valid COBOL declarations are valid host variable array
declarations. If the declaration for a variable array is not valid, any SQL statement
that references the variable array might result in the message UNDECLARED
HOST VARIABLE ARRAY.

Numeric host variable arrays: The three valid forms of numeric host variable
arrays are:
v Floating-point numbers
v Integers and small integers
v Decimal numbers

Figure 76 shows the syntax for declarations of floating-point host variable arrays.

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. COMPUTATIONAL-1 and COMP-1 are equivalent.
3. COMPUTATIONAL-2 and COMP-2 are equivalent.
4. dimension must be an integer constant between 1 and 32767.

Figure 77 shows the syntax for declarations of integer and small integer host
variable arrays.

Notes:

�� level-1 variable-name
IS

USAGE

COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2

OCCURS dimension
TIMES

�

�
IS

VALUE numeric-constant

. ��

Figure 76. Floating-point host variable arrays

�� level-1 variable-name PICTURE
PIC

IS
S9(4)
S9999
S9(9)
S999999999

IS
USAGE

�

� BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

OCCURS dimension
TIMES IS

VALUE numeric-constant

. ��

Figure 77. Integer and small integer host variable arrays

COBOL

Chapter 9. Embedding SQL statements in host languages 199

||||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||

|
||
|

||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||

|
||
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|
|
|

|



1. level-1 indicates a COBOL level between 2 and 48.
2. The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,

COMPUTATIONAL-4, and COMP-4 are equivalent.
3. COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary

integer data types if you compile the other data types with TRUNC(BIN).
4. Any specification for scale is ignored.
5. dimension must be an integer constant between 1 and 32767.

Figure 78 shows the syntax for declarations of decimal host variable arrays.

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The

picture-string that is associated with these types must have the form S9(i)V9(d)
(or S9...9V9...9, with i and d instances of 9) or S9(i)V.

3. The picture-string that is associated with SIGN LEADING SEPARATE must have
the form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9 or S9...9V with i
instances of 9).

4. dimension must be an integer constant between 1 and 32767.

Character host variable arrays: The three valid forms of character host variable
arrays are:
v Fixed-length character strings
v Varying-length character strings
v CLOBs

The following figures show the syntax for forms other than CLOBs. See Figure 83
on page 205 for the syntax of CLOBs.

Figure 79 on page 201 shows the syntax for declarations of fixed-length character
string arrays.

�� level-1 variable-name PICTURE
PIC

IS
picture-string

IS
USAGE

�

� PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

IS CHARACTER
DISPLAY SIGN LEADING SEPARATE
NATIONAL

�

� OCCURS dimension
TIMES IS

VALUE numeric-constant

. ��

Figure 78. Decimal host variable arrays

COBOL

200 Application Programming and SQL Guide

||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||#||#||
|

|
|||||||||||||||||||||||||||||

|
||
|

|

|
|

|
|

|

|

|
|

|

|

|
|
|

|
|
|

|

|
|
|
|
|

|
|

|
|
|



Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. The picture-string that is associated with these forms must be X(m) (or XX...X,

with m instances of X), with 1 <= m <= 32767 for fixed-length strings. However,
the maximum length of the CHAR data type (fixed-length character string) in
DB2 is 255 bytes.

3. dimension must be an integer constant between 1 and 32767.

Figure 80 on page 202 shows the syntax for declarations of varying-length
character string arrays.

�� level-1 variable-name PICTURE
PIC

IS
picture-string

DISPLAY
IS

USAGE

�

� OCCURS dimension
TIMES IS

VALUE character-constant

. ��

Figure 79. Fixed-length character string arrays

COBOL

Chapter 9. Embedding SQL statements in host languages 201

|||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||

|
||
|

|

|

|
|
|
|

|

|
|
|



Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. DB2 uses the full length of the S9(4) BINARY variable even though COBOL

with TRUNC(STD) recognizes only values up to 9999. This can cause data
truncation errors when COBOL statements execute and might effectively limit
the maximum length of variable-length character strings to 9999. Consider
using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data
truncation.

3. The picture-string that is associated with these forms must be X(m) (or XX...X,
with m instances of X), with 1 <= m <= 32767 for fixed-length strings; for other
strings, m cannot be greater than the maximum size of a varying-length
character string.

4. You cannot directly reference var-1 and var-2 as host variable arrays.
5. You cannot use an intervening REDEFINE at level 49.
6. dimension must be an integer constant between 1 and 32767.

Example: The following example shows declarations of a fixed-length character
array and a varying-length character array:
01 OUTPUT-VARS.

05 NAME OCCURS 10 TIMES.
49 NAME-LEN PIC S9(4) COMP-4 SYNC.
49 NAME-DATA PIC X(40).

05 SERIAL-NUMBER PIC S9(9) COMP-4 OCCURS 10 TIMES.

�� level-1 variable-name OCCURS dimension .
TIMES

��

�� 49 var-1 PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

� SYNCHRONIZED
SYNC IS

VALUE numeric-constant

. ��

�� 49 var-2 PICTURE
PIC

IS
picture-string

DISPLAY
IS

USAGE

�

�
IS

VALUE character-constant

. ��

Figure 80. Varying-length character string arrays

COBOL

202 Application Programming and SQL Guide

||||||||||||||||||||

|

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||

|

|||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||

|
||
|

|

|

|
|
|
|
|
|

|
|
|
|

|

|

|

|
|

|
|
|
|
|



Graphic character host variable arrays: The three valid forms for graphic character
host variable arrays are:
v Fixed-length strings
v Varying-length strings
v DBCLOBs

The following figures show the syntax for forms other than DBCLOBs. See
Figure 83 on page 205 for the syntax of DBCLOBs.

Figure 81 shows the syntax for declarations of fixed-length graphic string arrays.

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of

GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

3. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the DB2 coprocessor.

4. dimension must be an integer constant between 1 and 32767.

Figure 82 on page 204 shows the syntax for declarations of varying-length graphic
string arrays.

�� level-1 variable-name PICTURE
PIC

IS
picture-string

IS
USAGE DISPLAY-1

NATIONAL
�

� OCCURS dimension
TIMES

.
IS

VALUE graphic-constant

��

Figure 81. Fixed-length graphic string arrays

COBOL

Chapter 9. Embedding SQL statements in host languages 203

|||||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||

|
||
|

|
|
|
|
|

|
|

|
|

|

|

|
|
|

#
#
#

|

|
|
|



Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. DB2 uses the full length of the S9(4) BINARY variable even though COBOL

with TRUNC(STD) recognizes only values up to 9999. This can cause data
truncation errors when COBOL statements execute and might effectively limit
the maximum length of variable-length character strings to 9999. Consider
using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data
truncation.

3. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of
GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

4. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the DB2 coprocessor.

5. You cannot directly reference var-1 and var-2 as host variable arrays.
6. dimension must be an integer constant between 1 and 32767.

LOB variable arrays and locators: Figure 83 on page 205 shows the syntax for
declarations of BLOB, CLOB, and DBCLOB host variable arrays and locators. See
Chapter 14, “Programming for large objects,” on page 299 for a discussion of how
to use LOB variables.

�� level-1 variable-name OCCURS dimension .
TIMES

��

�� 49 var-1 PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

� SYNCHRONIZED
SYNC IS

VALUE numeric-constant

. ��

�� 49 var-2 PICTURE
PIC

IS IS
picture-string USAGE DISPLAY-1

NATIONAL
�

�
IS

VALUE graphic-constant

. ��

Figure 82. Varying-length graphic string arrays

COBOL

204 Application Programming and SQL Guide

||||||||||||||||||||

|

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||

|

|||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||

|
||
|

|

|

|
|
|
|
|
|

|
|
|

#
#
#

|

|

|
|
|
|
|



Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. dimension must be an integer constant between 1 and 32767.

ROWIDs: Figure 84 shows the syntax for declarations of ROWID variable arrays.
See Chapter 14, “Programming for large objects,” on page 299 for a discussion of
how to use these host variables.

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. dimension must be an integer constant between 1 and 32767.

Using host structures
A COBOL host structure is a named set of host variables defined in your program's
WORKING-STORAGE SECTION or LINKAGE SECTION. COBOL host structures
have a maximum of two levels, even though the host structure might occur within
a structure with multiple levels. However, you can declare a varying-length
character string, which must be level 49.

A host structure name can be a group name whose subordinate levels name
elementary data items. In the following example, B is the name of a host structure
consisting of the elementary items C1 and C2.
01 A

02 B
03 C1 PICTURE ...
03 C2 PICTURE ...

When you write an SQL statement using a qualified host variable name (perhaps
to identify a field within a structure), use the name of the structure followed by a
period and the name of the field. For example, specify B.C1 rather than C1 OF B or
C1 IN B.

�� level-1 variable-name
IS

USAGE

SQL TYPE IS �

� BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR

OCCURS dimension .
TIMES

��

Figure 83. LOB variable arrays and locators

�� level-1 variable-name SQL TYPE IS ROWID OCCURS dimension .
IS TIMES

USAGE

��

Figure 84. ROWID variable arrays

COBOL

Chapter 9. Embedding SQL statements in host languages 205

|||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||||||||||||||###|||||||||||||||

|
||
|

||||||||||||||||||||||||||||||||||

|
||
|

|

|

|

|
|
|
|

|

|

|



The precompiler does not recognize host variables or host structures on any
subordinate levels after one of these items:
v A COBOL item that must begin in area A
v Any SQL statement (except SQL INCLUDE)
v Any SQL statement within an included member

When the precompiler encounters one of the preceding items in a host structure, it
considers the structure to be complete.

Figure 85 shows the syntax for declarations of host structures.

Notes:

1. level-1 indicates a COBOL level between 1 and 47.
2. level-2 indicates a COBOL level between 2 and 48.
3. For elements within a structure, use any level 02 through 48 (rather than 01 or

77), up to a maximum of two levels.
4. Using a FILLER or optional FILLER item within a host structure declaration

can invalidate the whole structure.

Figure 86 shows the syntax for numeric-usage items that are used within
declarations of host structures.

�� level-1 variable-name . �

� � level-2 var-1 numeric-usage .
IS

PICTURE integer-decimal-usage .
PIC picture-string

char-inner-variable .
varchar-inner-variables
vargraphic-inner-variables

SQL TYPE IS ROWID .
IS

USAGE
SQL TYPE IS TABLE LIKE table-name AS LOCATOR .

IS
USAGE

LOB data type .
IS

USAGE

��

Figure 85. Host structures in COBOL

�� COMPUTATIONAL-1
IS COMP-1 IS

USAGE COMPUTATIONAL-2 VALUE constant
COMP-2

��

Figure 86. Numeric-usage

COBOL

206 Application Programming and SQL Guide



Figure 87 shows the syntax for integer and decimal usage items that are used
within declarations of host structures.

Figure 88 shows the syntax for CHAR inner variables that are used within
declarations of host structures.

Figure 89 on page 208 shows the syntax for VARCHAR inner variables that are
used within declarations of host structures.

��
IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP
PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

IS
DISPLAY SIGN LEADING SEPARATE
NATIONAL CHARACTER

�

�
IS

VALUE constant

��

Figure 87. Integer-decimal-usage

�� PICTURE
PIC

IS
picture-string

DISPLAY
IS

USAGE

�

�
IS

VALUE constant

��

Figure 88. CHAR-inner-variable

COBOL

Chapter 9. Embedding SQL statements in host languages 207

##



Figure 90 on page 209 shows the syntax for VARGRAPHIC inner variables that are
used within declarations of host structures.

�� 49 var-2 PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE numeric-constant

. ��

�� 49 var-3 PICTURE
PIC

IS
picture-string

DISPLAY
IS

USAGE

�

�
IS

VALUE character-constant

. ��

Figure 89. VARCHAR-inner-variables

COBOL

208 Application Programming and SQL Guide



Notes:

1. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of
GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

2. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the DB2 coprocessor.

Figure 91 shows the syntax for LOB variables and locators that are used within
declarations of host structures.

�� 49 var-4 PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE numeric-constant

. ��

�� 49 var-5 PICTURE
PIC

IS
picture-string

IS
USAGE

DISPLAY-1
NATIONAL

�

�
IS

VALUE graphic-constant

. ��

Figure 90. VARGRAPHIC-inner-variables

�� SQL TYPE IS BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR

��

Figure 91. LOB variables and locators

COBOL

Chapter 9. Embedding SQL statements in host languages 209

#
#
#



Determining equivalent SQL and COBOL data types
Table 16 describes the SQL data type, and base SQLTYPE and SQLLEN values, that
the precompiler uses for the host variables it finds in SQL statements. If a host
variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE
plus 1.

Table 16. SQL data types the precompiler uses for COBOL declarations

COBOL data type
SQLTYPE of host
variable SQLLEN of host variable SQL data type

COMP-1 480 4 REAL or FLOAT(n) 1<=n<=21

COMP-2 480 8 DOUBLE PRECISION, or
FLOAT(n) 22<=n<=53

S9(i)V9(d) COMP-3 or S9(i)V9(d)
PACKED-DECIMAL

484 i+d in byte 1, d in byte 2 DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(i)V9(d) DISPLAY SIGN
LEADING SEPARATE

504 i+d in byte 1, d in byte 2 No exact equivalent. Use
DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(i)V9(d) NATIONAL SIGN
LEADING SEPARATE

504 i+d in byte 1, d in byte 2 No exact equivalent. Use
DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(4) COMP-4, S9(4) COMP-5,
S9(4) COMP, or S9(4) BINARY

500 2 SMALLINT

S9(9) COMP-4, S9(9) COMP-5,
S9(9) COMP, or S9(9) BINARY

496 4 INTEGER

Fixed-length character data 452 n CHAR(n)

Varying-length character data
1<=n<=255

448 n VARCHAR(n)

Varying-length character data
m>255

456 m VARCHAR(m)

Fixed-length graphic data 468 m GRAPHIC(m)

Varying-length graphic data
1<=m<=127

464 m VARGRAPHIC(m)

Varying-length graphic data
m>127

472 m VARGRAPHIC(m)

SQL TYPE IS
RESULT-SET-LOCATOR

972 4 Result set locator1

SQL TYPE IS TABLE LIKE
table-name AS LOCATOR

976 4 Table locator1

SQL TYPE IS BLOB-LOCATOR 960 4 BLOB locator1

SQL TYPE IS CLOB-LOCATOR 964 4 CLOB locator1

USAGE IS SQL TYPE IS
DBCLOB-LOCATOR

968 4 DBCLOB locator1

USAGE IS SQL TYPE IS
BLOB(n) 1≤n≤2147483647

404 n BLOB(n)

USAGE IS SQL TYPE IS
CLOB(n) 1≤n≤2147483647

408 n CLOB(n)

USAGE IS SQL TYPE IS
DBCLOB(m) 1≤m≤10737418232

412 n DBCLOB(m)2

SQL TYPE IS ROWID 904 40 ROWID

COBOL

210 Application Programming and SQL Guide

#
#
###
#
#



Table 16. SQL data types the precompiler uses for COBOL declarations (continued)

COBOL data type
SQLTYPE of host
variable SQLLEN of host variable SQL data type

Notes:

1. Do not use this data type as a column type.

2. m is the number of double-byte characters.

Table 17 helps you define host variables that receive output from the database. You
can use the table to determine the COBOL data type that is equivalent to a given
SQL data type. For example, if you retrieve TIMESTAMP data, you can use the
table to define a suitable host variable in the program that receives the data value.

Table 17 shows direct conversions between DB2 data types and host data types.
However, a number of DB2 data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 does conversions
between those compatible data types. See Table 1 on page 5 for information on
compatible data types.

Table 17. SQL data types mapped to typical COBOL declarations

SQL data type COBOL data type Notes

SMALLINT S9(4) COMP-4,
S9(4) COMP-5,
S9(4) COMP,
or S9(4) BINARY

INTEGER S9(9) COMP-4,
S9(9) COMP-5,
S9(9) COMP,
or S9(9) BINARY

DECIMAL(p,s) or
NUMERIC(p,s)

S9(p-s)V9(s) COMP-3 or
S9(p-s)V9(s)
PACKED-DECIMAL
DISPLAY SIGN
LEADING SEPARATE
NATIONAL SIGN
LEADING SEPARATE

p is precision; s is scale. 0<=s<=p<=31. If
s=0, use S9(p)V or S9(p). If s=p, use SV9(s).
If the COBOL compiler does not support
31–digit decimal numbers, no exact
equivalent exists. Use COMP-2.

REAL or FLOAT (n) COMP-1 1<=n<=21

DOUBLE PRECISION,
DOUBLE or FLOAT (n)

COMP-2 22<=n<=53

CHAR(n) Fixed-length character string. For example,

01 VAR-NAME PIC X(n).

1<=n<=255

VARCHAR(n) Varying-length character string. For
example,

01 VAR-NAME.
49 VAR-LEN PIC S9(4)

USAGE BINARY.
49 VAR-TEXT PIC X(n).

The inner variables must have a level of
49.

GRAPHIC(n) Fixed-length graphic string. For example,

01 VAR-NAME PIC G(n)
USAGE IS DISPLAY-1.

n refers to the number of double-byte
characters, not to the number of bytes.
1<=n<=127

COBOL

Chapter 9. Embedding SQL statements in host languages 211

#
#



Table 17. SQL data types mapped to typical COBOL declarations (continued)

SQL data type COBOL data type Notes

VARGRAPHIC(n) Varying-length graphic string. For
example,

01 VAR-NAME.
49 VAR-LEN PIC S9(4)

USAGE BINARY.
49 VAR-TEXT PIC G(n)

USAGE IS DISPLAY-1.

n refers to the number of double-byte
characters, not to the number of bytes.

The inner variables must have a level of
49.

DATE Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

If you are using a date exit routine, n is
determined by that routine. Otherwise, n
must be at least 10.

TIME Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

If you are using a time exit routine, n is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP Fixed-length character string of length of
length n. For example,

01 VAR-NAME PIC X(n).

n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, truncation occurs on the
microseconds part.

Result set locator SQL TYPE IS
RESULT-SET-LOCATOR

Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS
TABLE LIKE
table-name
AS LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator USAGE IS SQL TYPE IS
BLOB-LOCATOR

Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator USAGE IS SQL TYPE IS
CLOB-LOCATOR

Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator USAGE IS SQL TYPE IS
DBCLOB-LOCATOR

Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

BLOB(n) USAGE IS SQL TYPE IS
BLOB(n)

1≤n≤2147483647

CLOB(n) USAGE IS SQL TYPE IS
CLOB(n)

1≤n≤2147483647

DBCLOB(n) USAGE IS SQL TYPE IS
DBCLOB(n)

n is the number of double-byte characters.
1≤n≤1073741823

ROWID SQL TYPE IS ROWID

Notes on COBOL variable declaration and usage
You should be aware of the following considerations when you declare COBOL
host variables.

Controlling the CCSID: IBM Enterprise COBOL for z/OS Version 3 Release 2 or
later, and the DB2 coprocessor for the COBOL compiler, support:
v The NATIONAL data type that is used for declaring Unicode values in the

UTF-16 format (that is, CCSID 1200)

COBOL

212 Application Programming and SQL Guide

#
#

#
#



v The COBOL CODEPAGE compiler option that is used to specify the default
EBCDIC CCSID of character data items

You can use the NATIONAL data type and the CODEPAGE compiler option to
control the CCSID of the character host variables in your application.

For example, if you declare the host variable HV1 as USAGE NATIONAL, then
DB2 handles HV1 as if you had used this DECLARE VARIABLE statement:
DECLARE :HV1 VARIABLE CCSID 1200

In addition, the COBOL DB2 coprocessor uses the CCSID that is specified in the
CODEPAGE compiler option to indicate that all host variables of character data
type, other than NATIONAL, are specified with that CCSID unless they are
explicitly overridden by a DECLARE VARIABLE statement.

Example: Assume that the COBOL CODEPAGE compiler option is specified as
CODEPAGE(1234). The following code shows how you can control the CCSID:
DATA DIVISION.

01 HV1 PIC N(10) USAGE NATIONAL.
01 HV2 PIC X(20) USAGE DISPLAY.
01 HV3 PIC X(30) USAGE DISPLAY.
...
EXEC SQL

DECLARE :HV3 VARIABLE CCSID 1047
END-EXEC.
...

PROCEDURE DIVISION.
...
EXEC SQL

SELECT C1, C2, C3 INTO :HV1, :HV2, :HV3 FROM T1
END-EXEC.

The CCSID for each of these host variables is:

HV1 1200

HV2 1234

HV3 1047

SQL data types with no COBOL equivalent: If you are using a COBOL compiler
that does not support decimal numbers of more than 18 digits, use one of the
following data types to hold values of greater than 18 digits:
v A decimal variable with a precision less than or equal to 18, if the actual data

values fit. If you retrieve a decimal value into a decimal variable with a scale
that is less than the source column in the database, the fractional part of the
value might be truncated.

v An integer or a floating-point variable, which converts the value. If you choose
integer, you lose the fractional part of the number. If the decimal number might
exceed the maximum value for an integer, or if you want to preserve a fractional
value, you can use floating-point numbers. Floating-point numbers are
approximations of real numbers. Therefore, when you assign a decimal number
to a floating-point variable, the result might be different from the original
number.

v A character-string host variable. Use the CHAR function to retrieve a decimal
value into it.

COBOL

Chapter 9. Embedding SQL statements in host languages 213

#
#

#
#

#
#

#

#
#
#
#



Special purpose COBOL data types: The locator data types are COBOL data
types and SQL data types. You cannot use locators as column types. For
information on how to use these data types, see the following sections:

Result set locator
Chapter 25, “Using stored procedures for client/server processing,”
on page 631

Table locator “Accessing transition tables in a user-defined function or stored
procedure” on page 345

LOB locators Chapter 14, “Programming for large objects,” on page 299

Level 77 data description entries: One or more REDEFINES entries can follow
any level 77 data description entry. However, you cannot use the names in these
entries in SQL statements. Entries with the name FILLER are ignored.

SMALLINT and INTEGER data types: In COBOL, you declare the SMALLINT
and INTEGER data types as a number of decimal digits. DB2 uses the full size of
the integers (in a way that is similar to processing with the TRUNC(BIN) compiler
option) and can place larger values in the host variable than would be allowed in
the specified number of digits in the COBOL declaration. If you compile with
TRUNC(OPT) or TRUNC(STD), ensure that the size of numbers in your application
is within the declared number of digits.

For small integers that can exceed 9999, use S9(4) COMP-5 or compile with
TRUNC(BIN). For large integers that can exceed 999 999 999, use S9(10) COMP-3 to
obtain the decimal data type. If you use COBOL for integers that exceed the
COBOL PICTURE, specify the column as decimal to ensure that the data types
match and perform well.

Overflow: Be careful of overflow. For example, suppose you retrieve an INTEGER
column value into a PICTURE S9(4) host variable and the column value is larger
than 32767 or smaller than -32768. You get an overflow warning or an error,
depending on whether you specify an indicator variable.

VARCHAR and VARGRAPHIC data types: If your varying-length character host
variables receive values whose length is greater than 9999 characters, compile the
applications in which you use those host variables with the option TRUNC(BIN).
TRUNC(BIN) lets the length field for the character string receive a value of up to
32767.

Truncation: Be careful of truncation. For example, if you retrieve an 80-character
CHAR column value into a PICTURE X(70) host variable, the rightmost 10
characters of the retrieved string are truncated. Retrieving a double precision
floating-point or decimal column value into a PIC S9(8) COMP host variable
removes any fractional part of the value.

Similarly, retrieving a column value with DECIMAL data type into a COBOL
decimal variable with a lower precision might truncate the value.

Determining compatibility of SQL and COBOL data types
COBOL host variables that are used in SQL statements must be type compatible
with the columns with which you intend to use them:
v Numeric data types are compatible with each other. See Table 17 on page 211 for

the COBOL data types that are compatible with the SQL data types SMALLINT,
INTEGER, DECIMAL, REAL, and DOUBLE PRECISION.

COBOL

214 Application Programming and SQL Guide



v Character data types are compatible with each other. A CHAR, VARCHAR, or
CLOB column is compatible with a fixed-length or varying-length COBOL
character host variable.

v Character data types are partially compatible with CLOB locators. You can
perform the following assignments:
– Assign a value in a CLOB locator to a CHAR or VARCHAR column
– Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a

CLOB locator host variable.
– Assign a CHAR or VARCHAR output parameter from a user-defined function

or stored procedure to a CLOB locator host variable.
– Use a SET assignment statement to assign a CHAR or VARCHAR transition

variable to a CLOB locator host variable.
– Use a VALUES INTO statement to assign a CHAR or VARCHAR function

parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

v Graphic data types are compatible with each other. A GRAPHIC, VARGRAPHIC,
or DBCLOB column is compatible with a fixed-length or varying-length COBOL
graphic string host variable.

v Graphic data types are partially compatible with DBCLOB locators. You can
perform the following assignments:
– Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC

column
– Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC

column to a DBCLOB locator host variable.
– Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined

function or stored procedure to a DBCLOB locator host variable.
– Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC

transition variable to a DBCLOB locator host variable.
– Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC

function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC
or VARGRAPHIC column to a DBCLOB locator host variable.

v Datetime data types are compatible with character host variables. A DATE,
TIME, or TIMESTAMP column is compatible with a fixed-length or varying
length COBOL character host variable.

v A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

v The ROWID column is compatible only with a ROWID host variable.
v A host variable is compatible with a distinct type if the host variable type is

compatible with the source type of the distinct type. For information on
assigning and comparing distinct types, see Chapter 16, “Creating and using
distinct types,” on page 367.

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.

COBOL

Chapter 9. Embedding SQL statements in host languages 215



Using indicator variables and indicator variable arrays
An indicator variable is a 2-byte integer (PIC S9(4) USAGE BINARY). An indicator
variable array is an array of 2-byte integers (PIC S9(4) USAGE BINARY). You use
indicator variables and indicator variable arrays in similar ways.

Using indicator variables: If you provide an indicator variable for the variable X,
when DB2 retrieves a null value for X, it puts a negative value in the indicator
variable and does not update X. Your program should check the indicator variable
before using X. If the indicator variable is negative, you know that X is null and
any value you find in X is irrelevant.

When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X. For more information about
indicator variables, see “Using indicator variables with host variables” on page 83.

Using indicator variable arrays: When you retrieve data into a host variable array,
if a value in its indicator array is negative, you can disregard the contents of the
corresponding element in the host variable array. For more information about
indicator variable arrays, see “Using indicator variable arrays with host variable
arrays” on page 87.

Declaring indicator variables: You declare indicator variables in the same way as
host variables. You can mix the declarations of the two types of variables in any
way that seems appropriate. You can define indicator variables as scalar variables
or as array elements in a structure form or as an array variable using a single level
OCCURS clause.

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:
EXEC SQL FETCH CLS_CURSOR INTO :CLS-CD,

:DAY :DAY-IND,
:BGN :BGN-IND,
:END :END-IND

END-EXEC.

You can declare the variables as follows:
77 CLS-CD PIC X(7).
77 DAY PIC S9(4) BINARY.
77 BGN PIC X(8).
77 END PIC X(8).
77 DAY-IND PIC S9(4) BINARY.
77 BGN-IND PIC S9(4) BINARY.
77 END-IND PIC S9(4) BINARY.

Figure 92 on page 217 shows the syntax for declarations of indicator variables.

COBOL

216 Application Programming and SQL Guide

|
|
|

|
|
|
|
|



Declaring indicator variable arrays: Figure 93 shows the syntax for valid indicator
array declarations.

Notes:

1. level-1 must be an integer between 2 and 48.
2. dimension must be an integer constant between 1 and 32767.

Handling SQL error return codes
You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information on the behavior of DSNTIAR, see
“Calling DSNTIAR to display SQLCA fields” on page 98.

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “The GET DIAGNOSTICS statement” on page 94.

�� 01
77

variable-name PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE constant

. ��

Figure 92. Indicator variable

�� level-1 variable-name PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

�

� BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

OCCURS dimension
TIMES IS

VALUE constant

. ��

Figure 93. Host structure indicator array

COBOL

Chapter 9. Embedding SQL statements in host languages 217

|
|
|
|
|



DSNTIAR syntax
CALL 'DSNTIAR' USING sqlca message lrecl.

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in lrecl, are put
into this area. For example, you could specify the format of the output area as:
01 ERROR-MESSAGE.

02 ERROR-LEN PIC S9(4) COMP VALUE +1320.
02 ERROR-TEXT PIC X(132) OCCURS 10 TIMES

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +132....
CALL ’DSNTIAR’ USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

where ERROR-MESSAGE is the name of the message output area containing
10 lines of length 132 each, and ERROR-TEXT-LEN is the length of each line.

lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

An example of calling DSNTIAR from an application appears in the DB2 sample
assembler program DSN8BC3, which is contained in the library
DSN8810.SDSNSAMP. See Appendix B, “Sample applications,” on page 1015 for
instructions on how to access and print the source code for the sample program.

COBOL

218 Application Programming and SQL Guide



CICS
If you call DSNTIAR dynamically from a CICS COBOL application program,
be sure you do the following:
v Compile the COBOL application with the NODYNAM option.
v Define DSNTIAR in the CSD.

If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following
syntax:
CALL ’DSNTIAC’ USING eib commarea sqlca msg lrecl.

DSNTIAC has extra parameters, which you must use for calls to routines that
use CICS commands.

eib EXEC interface block

commarea communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the
same as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the
SQLCA in the same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC,
you must also define them in the CSD. For an example of CSD entry
generation statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which
assembles and link-edits DSNTIAC, are in the data set prefix.SDSNSAMP.

Coding considerations for object-oriented extensions in
COBOL

When you use object-oriented extensions in a COBOL application, be aware of the
following considerations:

Where to place SQL statements in your application: A COBOL source data set or
member can contain the following elements:
v Multiple programs
v Multiple class definitions, each of which contains multiple methods

You can put SQL statements in only the first program or class in the source data
set or member. However, you can put SQL statements in multiple methods within
a class. If an application consists of multiple data sets or members, each of the data
sets or members can contain SQL statements.

Where to place the SQLCA, SQLDA, and host variable declarations: You can put
the SQLCA, SQLDA, and SQL host variable declarations in the
WORKING-STORAGE SECTION of a program, class, or method. An SQLCA or
SQLDA in a class WORKING-STORAGE SECTION is global for all the methods of
the class. An SQLCA or SQLDA in a method WORKING-STORAGE SECTION is
local to that method only.

If a class and a method within the class both contain an SQLCA or SQLDA, the
method uses the SQLCA or SQLDA that is local.

COBOL

Chapter 9. Embedding SQL statements in host languages 219



Rules for host variables: You can declare COBOL variables that are used as host
variables in the WORKING-STORAGE SECTION or LINKAGE-SECTION of a
program, class, or method. You can also declare host variables in the
LOCAL-STORAGE SECTION of a method. The scope of a host variable is the
method, class, or program within which it is defined.

Coding SQL statements in a Fortran application
This section helps you with the programming techniques that are unique to coding
SQL statements within a Fortran program.

Defining the SQL communication area
A Fortran program that contains SQL statements must include one or both of the
following host variables:
v An SQLCOD variable declared as INTEGER*4
v An SQLSTA (or SQLSTATE) variable declared as CHARACTER*5

Alternatively, you can include an SQLCA, which contains the SQLCOD and
SQLSTA variables.

DB2 sets the SQLCOD and SQLSTA (or SQLSTATE) values after each SQL
statement executes. An application can check these values to determine whether
the last SQL statement was successful. All SQL statements in the program must be
within the scope of the declaration of the SQLCOD and SQLSTA (or SQLSTATE)
variables.

Whether you define the SQLCOD or SQLSTA variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to SQL standard, or STDSQL(NO) to conform to DB2 rules.

If you specify STDSQL(YES)
When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

If you declare an SQLSTA (or SQLSTATE) variable, it must not be an element of a
structure. You must declare the host variables SQLCOD and SQLSTA within the
BEGIN DECLARE SECTION and END DECLARE SECTION statements in your
program declarations.

If you specify STDSQL(NO)
When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in a Fortran program, either directly or by using the SQL
INCLUDE statement. The SQL INCLUDE statement requests a standard SQLCA
declaration:
EXEC SQL INCLUDE SQLCA

See Chapter 5 of DB2 SQL Reference for more information about the INCLUDE
statement and Appendix D of DB2 SQL Reference for a complete description of
SQLCA fields.

Defining SQL descriptor areas
The following statements require an SQLDA:
v CALL...USING DESCRIPTOR descriptor-name
v DESCRIBE statement-name INTO descriptor-name

COBOL

220 Application Programming and SQL Guide



v DESCRIBE CURSOR host-variable INTO descriptor-name
v DESCRIBE INPUT statement-name INTO descriptor-name
v DESCRIBE PROCEDURE host-variable INTO descriptor-name
v DESCRIBE TABLE host-variable INTO descriptor-name
v EXECUTE...USING DESCRIPTOR descriptor-name
v FETCH...INTO DESCRIPTOR descriptor-name
v OPEN...USING DESCRIPTOR descriptor-name
v PREPARE...INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA, and an SQLDA
can have any valid name. DB2 does not support the INCLUDE SQLDA statement
for Fortran programs. If present, an error message results.

A Fortran program can call a subroutine (written in C, PL/I or assembler
language) that uses the INCLUDE SQLDA statement to define the SQLDA and that
also includes the necessary SQL statements for the dynamic SQL functions you
want to perform. See Chapter 24, “Coding dynamic SQL in application programs,”
on page 595 for more information about dynamic SQL.

You must place SQLDA declarations before the first SQL statement that references
the data descriptor.

Embedding SQL statements
Fortran source statements must be fixed-length 80-byte records. The DB2
precompiler does not support free-form source input.

You can code SQL statements in a Fortran program wherever you can place
executable statements. If the SQL statement is within an IF statement, the
precompiler generates any necessary THEN and END IF statements.

Each SQL statement in a Fortran program must begin with EXEC SQL. The EXEC
and SQL keywords must appear on one line, but the remainder of the statement
can appear on subsequent lines.

You might code the UPDATE statement in a Fortran program as follows:
EXEC SQL
C UPDATE DSN8810.DEPT
C SET MGRNO = :MGRNUM
C WHERE DEPTNO = :INTDEPT

You cannot follow an SQL statement with another SQL statement or Fortran
statement on the same line.

Fortran does not require blanks to delimit words within a statement, but the SQL
language requires blanks. The rules for embedded SQL follow the rules for SQL
syntax, which require you to use one or more blanks as a delimiter.

Comments: You can include Fortran comment lines within embedded SQL
statements wherever you can use a blank, except between the keywords EXEC and
SQL. You can include SQL comments in any embedded SQL statement.

The DB2 precompiler does not support the exclamation point (!) as a comment
recognition character in Fortran programs.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for Fortran statements, except that you must specify EXEC

FORTRAN

Chapter 9. Embedding SQL statements in host languages 221

#

|



SQL on one line. The SQL examples in this section have Cs in the sixth column to
indicate that they are continuations of EXEC SQL.

Declaring tables and views: Your Fortran program should also include the
DECLARE TABLE statement to describe each table and view the program accesses.

Dynamic SQL in a Fortran program: In general, Fortran programs can easily
handle dynamic SQL statements. SELECT statements can be handled if the data
types and the number of returned fields are fixed. If you want to use variable-list
SELECT statements, you need to use an SQLDA, as described in “Defining SQL
descriptor areas” on page 220.

You can use a Fortran character variable in the statements PREPARE and
EXECUTE IMMEDIATE, even if it is fixed-length.

Including code: To include SQL statements or Fortran host variable declarations
from a member of a partitioned data set, use the following SQL statement in the
source code where you want to include the statements:
EXEC SQL INCLUDE member-name

You cannot nest SQL INCLUDE statements. You cannot use the Fortran INCLUDE
compiler directive to include SQL statements or Fortran host variable declarations.

Margins: Code the SQL statements between columns 7 through 72, inclusive. If
EXEC SQL starts before the specified left margin, the DB2 precompiler does not
recognize the SQL statement.

Names: You can use any valid Fortran name for a host variable. Do not use
external entry names that begin with ’DSN’ or host variable names that begin with
’SQL’. These names are reserved for DB2.

Do not use the word DEBUG, except when defining a Fortran DEBUG packet. Do
not use the words FUNCTION, IMPLICIT, PROGRAM, and SUBROUTINE to
define variables.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can specify statement numbers for SQL statements in
columns 1 to 5. However, during program preparation, a labeled SQL statement
generates a Fortran CONTINUE statement with that label before it generates the
code that executes the SQL statement. Therefore, a labeled SQL statement should
never be the last statement in a DO loop. In addition, you should not label SQL
statements (such as INCLUDE and BEGIN DECLARE SECTION) that occur before
the first executable SQL statement, because an error might occur.

WHENEVER statement: The target for the GOTO clause in the SQL WHENEVER
statement must be a label in the Fortran source code and must refer to a statement
in the same subprogram. The WHENEVER statement only applies to SQL
statements in the same subprogram.

Special Fortran considerations: The following considerations apply to programs
written in Fortran:
v You cannot use the @PROCESS statement in your source code. Instead, specify

the compiler options in the PARM field.

FORTRAN

222 Application Programming and SQL Guide



v You cannot use the SQL INCLUDE statement to include the following
statements: PROGRAM, SUBROUTINE, BLOCK, FUNCTION, or IMPLICIT.

DB2 supports Version 3 Release 1 (or later) of VS Fortran with the following
restrictions:
v The parallel option is not supported. Applications that contain SQL statements

must not use Fortran parallelism.
v You cannot use the byte data type within embedded SQL, because byte is not a

recognizable host data type.

Using host variables
You must explicitly declare each host variable that is used in SQL statements
before its first use. You cannot implicitly declare any host variables through default
typing or by using the IMPLICIT statement.

You can precede Fortran statements that define the host variables with a BEGIN
DECLARE SECTION statement and follow the statements with an END DECLARE
SECTION statement. You must use the BEGIN DECLARE SECTION and END
DECLARE SECTION statements when you use the precompiler option
STDSQL(YES).

A colon (:) must precede all host variables in an SQL statement.

The names of host variables should be unique within the program, even if the host
variables are in different blocks, functions, or subroutines.

When you declare a character host variable, you must not use an expression to
define the length of the character variable. You can use a character host variable
with an undefined length (for example, CHARACTER *(*)). The length of any such
variable is determined when its associated SQL statement executes.

An SQL statement that uses a host variable must be within the scope of the
statement that declares the variable.

Host variables must be scalar variables; they cannot be elements of vectors or
arrays (subscripted variables).

Be careful when calling subroutines that might change the attributes of a host
variable. Such alteration can cause an error while the program is running. See DB2
SQL Reference for more information.

Declaring host variables
Only some of the valid Fortran declarations are valid host variable declarations. If
the declaration for a variable is not valid, any SQL statement that references the
variable might result in the message UNDECLARED HOST VARIABLE.

Numeric host variables: Figure 94 on page 224 shows the syntax for declarations of
numeric host variables.

FORTRAN

Chapter 9. Embedding SQL statements in host languages 223



Character host variables: Figure 95 shows the syntax for declarations of character
host variables other than CLOBs. See Figure 97 for the syntax of CLOBs.

Result set locators: Figure 96 shows the syntax for declarations of result set
locators. See Chapter 25, “Using stored procedures for client/server processing,” on
page 631 for a discussion of how to use these host variables.

LOB Variables and Locators: Figure 97 shows the syntax for declarations of BLOB
and CLOB host variables and locators. See Chapter 14, “Programming for large
objects,” on page 299 for a discussion of how to use these host variables.

ROWIDs: Figure 98 on page 225 shows the syntax for declarations of ROWID
variables. See Chapter 14, “Programming for large objects,” on page 299 for a
discussion of how to use these host variables.

�� INTEGER*2
*4

INTEGER
*4

REAL
REAL*8
DOUBLE PRECISION

�

,

variable-name
/ numeric-constant /

��

Figure 94. Numeric host variables

�� �

,

CHARACTER variable-name
*n *n / character-constant /

��

Figure 95. Character host variables

�� �

,

SQL TYPE IS RESULT_SET_LOCATOR VARYING variable-name ��

Figure 96. Result set locators

�� SQL TYPE IS BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

BLOB_LOCATOR
CLOB_LOCATOR

variable-name ��

Figure 97. LOB variables and locators

FORTRAN

224 Application Programming and SQL Guide



Determining equivalent SQL and Fortran data types
Table 18 describes the SQL data type, and base SQLTYPE and SQLLEN values, that
the precompiler uses for the host variables it finds in SQL statements. If a host
variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE
plus 1.

Table 18. SQL data types the precompiler uses for Fortran declarations

Fortran data type
SQLTYPE of host
variable SQLLEN of host variable SQL data type

INTEGER*2 500 2 SMALLINT

INTEGER*4 496 4 INTEGER

REAL*4 480 4 FLOAT (single precision)

REAL*8 480 8 FLOAT (double precision)

CHARACTER*n 452 n CHAR(n)

SQL TYPE IS
RESULT_SET_LOCATOR

972 4 Result set locator. Do not use
this data type as a column type.

SQL TYPE IS BLOB_LOCATOR 960 4 BLOB locator. Do not use this
data type as a column type.

SQL TYPE IS CLOB_LOCATOR 964 4 CLOB locator. Do not use this
data type as a column type.

SQL TYPE IS BLOB(n)
1≤n≤2147483647

404 n BLOB(n)

SQL TYPE IS CLOB(n)
1≤n≤2147483647

408 n CLOB(n)

SQL TYPE IS ROWID 904 40 ROWID

Table 19 helps you define host variables that receive output from the database. You
can use the table to determine the Fortran data type that is equivalent to a given
SQL data type. For example, if you retrieve TIMESTAMP data, you can use the
table to define a suitable host variable in the program that receives the data value.

Table 19 shows direct conversions between DB2 data types and host data types.
However, a number of DB2 data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 does conversions
between those compatible data types. See Table 1 on page 5 for information on
compatible data types.

Table 19. SQL data types mapped to typical Fortran declarations

SQL data type Fortran equivalent Notes

SMALLINT INTEGER*2

INTEGER INTEGER*4

�� SQL TYPE IS ROWID variable-name ��

Figure 98. ROWID variables

FORTRAN

Chapter 9. Embedding SQL statements in host languages 225



Table 19. SQL data types mapped to typical Fortran declarations (continued)

SQL data type Fortran equivalent Notes

DECIMAL(p,s) or
NUMERIC(p,s)

no exact equivalent Use REAL*8

FLOAT(n) single precision REAL*4 1<=n<=21

FLOAT(n) double precision REAL*8 22<=n<=53

CHAR(n) CHARACTER*n 1<=n<=255

VARCHAR(n) no exact equivalent Use a character host variable that is large
enough to contain the largest expected
VARCHAR value.

GRAPHIC(n) not supported

VARGRAPHIC(n) not supported

DATE CHARACTER*n If you are using a date exit routine, n is
determined by that routine; otherwise, n
must be at least 10.

TIME CHARACTER*n If you are using a time exit routine, n is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP CHARACTER*n n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, truncation occurs on the
microseconds part.

Result set locator SQL TYPE IS RESULT_SET_LOCATOR Use this data type only for receiving result
sets. Do not use this data type as a
column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator not supported

BLOB(n) SQL TYPE IS BLOB(n) 1≤n≤2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1≤n≤2147483647

DBCLOB(n) not supported

ROWID SQL TYPE IS ROWID

Notes on Fortran variable declaration and usage
You should be aware of the following when you declare Fortran variables.

Fortran data types with no SQL equivalent: Fortran supports some data types
with no SQL equivalent (for example, REAL*16 and COMPLEX). In most cases,
you can use Fortran statements to convert between the unsupported data types
and the data types that SQL allows.

SQL data types with no Fortran equivalent: Fortran does not provide an
equivalent for the decimal data type. To hold the value of such a variable, you can
use:

FORTRAN

226 Application Programming and SQL Guide



v An integer or floating-point variable, which converts the value. If you choose
integer, however, you lose the fractional part of the number. If the decimal
number can exceed the maximum value for an integer or you want to preserve a
fractional value, you can use floating-point numbers. Floating-point numbers are
approximations of real numbers. When you assign a decimal number to a
floating-point variable, the result could be different from the original number.

v A character string host variable. Use the CHAR function to retrieve a decimal
value into it.

Special-purpose Fortran data types: The locator data types are Fortran data types
and SQL data types. You cannot use locators as column types. For information on
how to use these data types, see the following sections:

Result set locator
Chapter 25, “Using stored procedures for client/server processing,”
on page 631

LOB locators Chapter 14, “Programming for large objects,” on page 299

Overflow: Be careful of overflow. For example, if you retrieve an INTEGER column
value into a INTEGER*2 host variable and the column value is larger than 32767 or
-32768, you get an overflow warning or an error, depending on whether you
provided an indicator variable.

Truncation: Be careful of truncation. For example, if you retrieve an 80-character
CHAR column value into a CHARACTER*70 host variable, the rightmost ten
characters of the retrieved string are truncated.

Retrieving a double-precision floating-point or decimal column value into an
INTEGER*4 host variable removes any fractional value.

Processing Unicode data: Because Fortran does not support graphic data types,
Fortran applications can process only Unicode tables that use UTF-8 encoding.

Notes on syntax differences for constants
You should be aware of the following syntax differences for constants.

Real constants: Fortran interprets a string of digits with a decimal point to be a
real constant. An SQL statement interprets such a string to be a decimal constant.
Therefore, use exponent notation when specifying a real (that is, floating-point)
constant in an SQL statement.

Exponent indicators: In Fortran, a real (floating-point) constant having a length of
8 bytes uses a D as the exponent indicator (for example, 3.14159D+04). An 8-byte
floating-point constant in an SQL statement must use an E (for example,
3.14159E+04).

Determining compatibility of SQL and Fortran data types
Host variables must be type compatible with the column values with which you
intend to use them.
v Numeric data types are compatible with each other. For example, if a column

value is INTEGER, you must declare the host variable as INTEGER*2,
INTEGER*4, REAL, REAL*4, REAL*8, or DOUBLE PRECISION.

v Character data types are compatible with each other. A CHAR, VARCHAR, or
CLOB column is compatible with Fortran character host variable.

FORTRAN

Chapter 9. Embedding SQL statements in host languages 227



v Character data types are partially compatible with CLOB locators. You can
perform the following assignments:
– Assign a value in a CLOB locator to a CHAR or VARCHAR column
– Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a

CLOB locator host variable.
– Assign a CHAR or VARCHAR output parameter from a user-defined function

or stored procedure to a CLOB locator host variable.
– Use a SET assignment statement to assign a CHAR or VARCHAR transition

variable to a CLOB locator host variable.
– Use a VALUES INTO statement to assign a CHAR or VARCHAR function

parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

v Datetime data types are compatible with character host variables. A DATE,
TIME, or TIMESTAMP column is compatible with a Fortran character host
variable.

v A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

v The ROWID column is compatible only with a ROWID host variable.
v A host variable is compatible with a distinct type if the host variable type is

compatible with the source type of the distinct type. For information on
assigning and comparing distinct types, see Chapter 16, “Creating and using
distinct types,” on page 367.

Using indicator variables
An indicator variable is a 2-byte integer (INTEGER*2). If you provide an indicator
variable for the variable X, when DB2 retrieves a null value for X, it puts a
negative value in the indicator variable and does not update X. Your program
should check the indicator variable before using X. If the indicator variable is
negative, you know that X is null and any value you find in X is irrelevant.

When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X.

You declare indicator variables in the same way as host variables. You can mix the
declarations of the two types of variables in any way that seems appropriate. For
more information about indicator variables, see “Using indicator variables with
host variables” on page 83.

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:
EXEC SQL FETCH CLS_CURSOR INTO :CLSCD,
C :DAY :DAYIND,
C :BGN :BGNIND,
C :END :ENDIND

You can declare variables as follows:
CHARACTER*7 CLSCD
INTEGER*2 DAY
CHARACTER*8 BGN, END
INTEGER*2 DAYIND, BGNIND, ENDIND

FORTRAN

228 Application Programming and SQL Guide



Figure 99 shows the syntax for declarations of indicator variables.

Handling SQL error return codes
You can use the subroutine DSNTIR to convert an SQL return code into a text
message. DSNTIR builds a parameter list and calls DSNTIAR for you. DSNTIAR
takes data from the SQLCA, formats it into a message, and places the result in a
message output area that you provide in your application program. For concepts
and more information on the behavior of DSNTIAR, see “Calling DSNTIAR to
display SQLCA fields” on page 98.

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “The GET DIAGNOSTICS statement” on page 94.

DSNTIR syntax
CALL DSNTIR ( error-length, message, return-code )

The DSNTIR parameters have the following meanings:

error-length
The total length of the message output area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text are put into this area. For example, you could specify
the format of the output area as:
INTEGER ERRLEN /1320/
CHARACTER*132 ERRTXT(10)
INTEGER ICODE...
CALL DSNTIR ( ERRLEN, ERRTXT, ICODE )

where ERRLEN is the total length of the message output area, ERRTXT is the
name of the message output area, and ICODE is the return code.

return-code
Accepts a return code from DSNTIAR.

An example of calling DSNTIR (which then calls DSNTIAR) from an application
appears in the DB2 sample assembler program DSN8BF3, which is contained in the

�� �

,

INTEGER*2 variable-name
/ numeric-constant /

��

Figure 99. Indicator variable

FORTRAN

Chapter 9. Embedding SQL statements in host languages 229

|
|
|
|
|



library DSN8810.SDSNSAMP. See Appendix B, “Sample applications,” on page
1015 for instructions on how to access and print the source code for the sample
program.

Coding SQL statements in a PL/I application
This section helps you with the programming techniques that are unique to coding
SQL statements within a PL/I program.

Defining the SQL communication area
A PL/I program that contains SQL statements must include one or both of the
following host variables:
v An SQLCODE variable, declared as BIN FIXED (31)
v An SQLSTATE variable, declared as CHARACTER(5)

Alternatively, you can include an SQLCA, which contains the SQLCODE and
SQLSTATE variables.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these values to determine whether the last SQL statement
was successful. All SQL statements in the program must be within the scope of the
declaration of the SQLCODE and SQLSTATE variables.

Whether you define the SQLCODE or SQLSTATE variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to SQL standard, or STDSQL(NO) to conform to DB2 rules.

If you specify STDSQL(YES)
When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

If you declare an SQLSTATE variable, it must not be an element of a structure. You
must declare the host variables SQLCODE and SQLSTATE within the BEGIN
DECLARE SECTION and END DECLARE SECTION statements in your program
declarations.

If you specify STDSQL(NO)
When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in a PL/I program, either directly or by using the SQL
INCLUDE statement. The SQL INCLUDE statement requests a standard SQLCA
declaration:
EXEC SQL INCLUDE SQLCA;

See Chapter 5 of DB2 SQL Reference for more information about the INCLUDE
statement and Appendix D of DB2 SQL Reference for a complete description of
SQLCA fields.

Defining SQL descriptor areas
The following statements require an SQLDA:
v CALL ... USING DESCRIPTOR descriptor-name
v DESCRIBE statement-name INTO descriptor-name
v DESCRIBE CURSOR host-variable INTO descriptor-name
v DESCRIBE INPUT statement-name INTO descriptor-name
v DESCRIBE PROCEDURE host-variable INTO descriptor-name

FORTRAN

230 Application Programming and SQL Guide



v DESCRIBE TABLE host-variable INTO descriptor-name
v EXECUTE ... USING DESCRIPTOR descriptor-name
v FETCH ... INTO DESCRIPTOR descriptor-name
v OPEN ... USING DESCRIPTOR descriptor-name
v PREPARE ... INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA, and an SQLDA
can have any valid name. You can code an SQLDA in a PL/I program, either
directly or by using the SQL INCLUDE statement. Using the SQL INCLUDE
statement requests a standard SQLDA declaration:
EXEC SQL INCLUDE SQLDA;

You must declare an SQLDA before the first SQL statement that references that
data descriptor, unless you use the precompiler option TWOPASS. See Chapter 5 of
DB2 SQL Reference for more information about the INCLUDE statement and
Appendix E of DB2 SQL Reference for a complete description of SQLDA fields.

Embedding SQL statements
The first statement of the PL/I program must be the PROCEDURE statement with
OPTIONS(MAIN), unless the program is a stored procedure. A stored procedure
application can run as a subroutine. See Chapter 25, “Using stored procedures for
client/server processing,” on page 631 for more information.

You can code SQL statements in a PL/I program wherever you can use executable
statements.

Each SQL statement in a PL/I program must begin with EXEC SQL and end with
a semicolon (;). The EXEC and SQL keywords must appear must appear on one
line, but the remainder of the statement can appear on subsequent lines.

You might code an UPDATE statement in a PL/I program as follows:
EXEC SQL UPDATE DSN8810.DEPT

SET MGRNO = :MGR_NUM
WHERE DEPTNO = :INT_DEPT ;

Comments: You can include PL/I comments in embedded SQL statements
wherever you can use a blank, except between the keywords EXEC and SQL. You
can also include SQL comments in any SQL statement.

To include DBCS characters in comments, you must delimit the characters by a
shift-out and shift-in control character; the first shift-in character in the DBCS
string signals the end of the DBCS string.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for other PL/I statements, except that you must specify
EXEC SQL on one line.

Declaring tables and views: Your PL/I program should include a DECLARE
TABLE statement to describe each table and view the program accesses. You can
use the DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements. For more information, see Chapter 8, “Generating declarations for your
tables using DCLGEN,” on page 131.

Including code: You can use SQL statements or PL/I host variable declarations
from a member of a partitioned data set by using the following SQL statement in
the source code where you want to include the statements:

PL/I

Chapter 9. Embedding SQL statements in host languages 231

#

|
|



EXEC SQL INCLUDE member-name;

You cannot nest SQL INCLUDE statements. Do not use the PL/I %INCLUDE
statement to include SQL statements or host variable DCL statements. You must
use the PL/I preprocessor to resolve any %INCLUDE statements before you use
the DB2 precompiler. Do not use PL/I preprocessor directives within SQL
statements.

Margins: Code SQL statements in columns 2 through 72, unless you have specified
other margins to the DB2 precompiler. If EXEC SQL starts before the specified left
margin, the DB2 precompiler does not recognize the SQL statement.

Names: You can use any valid PL/I name for a host variable. Do not use external
entry names or access plan names that begin with ’DSN’, and do not use host
variable names that begin with ’SQL’. These names are reserved for DB2.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers. IEL0378I messages from the PL/I compiler identify
lines of code without sequence numbers. You can ignore these messages.

Statement labels: You can specify a statement label for executable SQL statements.
However, the INCLUDE text-file-name and END DECLARE SECTION statements
cannot have statement labels.

Whenever statement: The target for the GOTO clause in an SQL statement
WHENEVER must be a label in the PL/I source code and must be within the
scope of any SQL statements that WHENEVER affects.

Using double-byte character set (DBCS) characters: The following considerations
apply to using DBCS in PL/I programs with SQL statements:
v If you use DBCS in the PL/I source, DB2 rules for the following language

elements apply:
– Graphic strings
– Graphic string constants
– Host identifiers
– Mixed data in character strings
– MIXED DATA option

See Chapter 2 of DB2 SQL Reference for detailed information about these
language elements.

v The PL/I preprocessor transforms the format of DBCS constants. If you do not
want that transformation, run the DB2 precompiler before the preprocessor.

v If you use graphic string constants or mixed data in dynamically prepared SQL
statements, and if your application requires the PL/I Version 2 (or later)
compiler, the dynamically prepared statements must use the PL/I mixed
constant format.
– If you prepare the statement from a host variable, change the string

assignment to a PL/I mixed string.
– If you prepare the statement from a PL/I string, change that to a host

variable, and then change the string assignment to a PL/I mixed string.
Example:
SQLSTMT = ’SELECT <dbdb> FROM table-name’M;
EXEC SQL PREPARE STMT FROM :SQLSTMT;

PL/I

232 Application Programming and SQL Guide



For instructions on preparing SQL statements dynamically, see Chapter 24,
“Coding dynamic SQL in application programs,” on page 595.

v If you want a DBCS identifier to resemble a PL/I graphic string, you must use a
delimited identifier.

v If you include DBCS characters in comments, you must delimit the characters
with a shift-out and shift-in control character. The first shift-in character signals
the end of the DBCS string.

v You can declare host variable names that use DBCS characters in PL/I
application programs. The rules for using DBCS variable names in PL/I follow
existing rules for DBCS SQL ordinary identifiers, except for length. The
maximum length for a host variable is 128 Unicode bytes in DB2. See Chapter 2
of DB2 SQL Reference for the rules for DBCS SQL ordinary identifiers.
Restrictions:
– DBCS variable names must contain DBCS characters only. Mixing single-byte

character set (SBCS) characters with DBCS characters in a DBCS variable
name produces unpredictable results.

– A DBCS variable name cannot continue to the next line.
v The PL/I preprocessor changes non-Kanji DBCS characters into extended binary

coded decimal interchange code (EBCDIC) SBCS characters. To avoid this
change, use Kanji DBCS characters for DBCS variable names, or run the PL/I
compiler without the PL/I preprocessor.

Special PL/I considerations: The following considerations apply to programs
written in PL/I:
v When compiling a PL/I program that includes SQL statements, you must use

the PL/I compiler option CHARSET (60 EBCDIC).
v In unusual cases, the generated comments in PL/I can contain a semicolon. The

semicolon generates compiler message IEL0239I, which you can ignore.
v The generated code in a PL/I declaration can contain the ADDR function of a

field defined as character varying. This produces either message IBM105l l or
IBM1180l W, both of which you can ignore.

v The precompiler generated code in PL/I source can contain the NULL()
function. This produces message IEL0533I, which you can ignore unless you also
use NULL as a PL/I variable. If you use NULL as a PL/I variable in a DB2
application, you must also declare NULL as a built-in function (DCL NULL
BUILTIN;) to avoid PL/I compiler errors.

v The PL/I macro processor can generate SQL statements or host variable DCL
statements if you run the macro processor before running the DB2 precompiler.
If you use the PL/I macro processor, do not use the PL/I *PROCESS statement
in the source to pass options to the PL/I compiler. You can specify the needed
options on the COPTION parameter of the DSNH command or the option
PARM.PLI=options of the EXEC statement in the DSNHPLI procedure.

v Using the PL/I multitasking facility, in which multiple tasks execute SQL
statements, causes unpredictable results. See the RUN(DSN) command in Part 3
of DB2 Command Reference.

Using host variables and host variable arrays
You must explicitly declare all host variables and all host variable arrays before
their first use in SQL statements, unless you specify the precompiler option
TWOPASS. If you specify the precompiler option TWOPASS, you must declare a
host variable before its use in the statement DECLARE CURSOR.

PL/I

Chapter 9. Embedding SQL statements in host languages 233

#

|
|

|

|
|
|
|



You can precede PL/I statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement, and follow the statements
with the END DECLARE SECTION statement. You must use the BEGIN DECLARE
SECTION and END DECLARE SECTION statements when you use the
precompiler option STDSQL(YES).

A colon (:) must precede all host variables and host variable arrays in an SQL
statement, with the following exception. If the SQL statement meets the following
conditions, a host variable or host variable array in the SQL statement cannot be
preceded by a colon:
v The SQL statement is an EXECUTE IMMEDIATE or PREPARE statement.
v The SQL statement is in a program that also contains a DECLARE VARIABLE

statement.
v The host variable is part of a string expression, but the host variable is not the

only component of the string expression.

The names of host variables and host variable arrays should be unique within the
program, even if the variables and variable arrays are in different blocks or
procedures. You can qualify the names with a structure name to make them
unique.

An SQL statement that uses a host variable or host variable array must be within
the scope of the statement that declares that variable or array. You define host
variable arrays for use with multiple-row FETCH and multiple-row INSERT
statements.

Declaring host variables
Only some of the valid PL/I declarations are valid host variable declarations. The
precompiler uses the data attribute defaults that are specified in the PL/I
DEFAULT statement. If the declaration for a host variable is not valid, any SQL
statement that references the variable might result in the message UNDECLARED
HOST VARIABLE.

The precompiler uses only the names and data attributes of the variables; it ignores
the alignment, scope, and storage attributes. Even though the precompiler ignores
alignment, scope, and storage, if you ignore the restrictions on their use, you might
have problems compiling the PL/I source code that the precompiler generates.
These restrictions are as follows:
v A declaration with the EXTERNAL scope attribute and the STATIC storage

attribute must also have the INITIAL storage attribute.
v If you use the BASED storage attribute, you must follow it with a PL/I

element-locator-expression.
v Host variables can be STATIC, CONTROLLED, BASED, or AUTOMATIC storage

class, or options. However, CICS requires that programs be reentrant.

Numeric host variables: Figure 100 on page 235 shows the syntax for declarations
of numeric host variables.

PL/I

234 Application Programming and SQL Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|



Notes:

1. You can specify host variable attributes in any order that is acceptable to PL/I.
For example, BIN FIXED(31), BINARY FIXED(31), BIN(31) FIXED, and FIXED
BIN(31) are all acceptable.

2. You can specify a scale only for DECIMAL FIXED.

Character host variables: Figure 101 shows the syntax for declarations of character
host variables, other than CLOBs. See Figure 105 on page 236 for the syntax of
CLOBs.

Graphic host variables: Figure 102 shows the syntax for declarations of graphic
host variables, other than DBCLOBs. See Figure 105 on page 236 for the syntax of
DBCLOBs.

Result set locators: Figure 103 on page 236 shows the syntax for declarations of
result set locators. See Chapter 25, “Using stored procedures for client/server
processing,” on page 631 for a discussion of how to use these host variables.

�� DECLARE
DCL

�

variable-name
,

( variable-name )

BINARY
BIN
DECIMAL
DEC

�

� FIXED
( precision )

,scale
FLOAT ( precision )

Alignment and/or Scope and/or Storage
��

Figure 100. Numeric host variables

�� DECLARE
DCL

�

variable-name
,

( variable-name )

CHARACTER ( length )
CHAR VARYING

VAR

�

�
Alignment and/or Scope and/or Storage

��

Figure 101. Character host variables

�� DECLARE
DCL

�

variable-name
,

( variable-name )

GRAPHIC ( length )
VARYING
VAR

�

�
Alignment and/or Scope and/or Storage

��

Figure 102. Graphic host variables

PL/I

Chapter 9. Embedding SQL statements in host languages 235



Table locators: Figure 104 shows the syntax for declarations of table locators. See
“Accessing transition tables in a user-defined function or stored procedure” on
page 345 for a discussion of how to use these host variables.

LOB variables and locators: Figure 105 shows the syntax for declarations of BLOB,
CLOB, and DBCLOB host variables and locators. See Chapter 14, “Programming
for large objects,” on page 299 for a discussion of how to use these host variables.

A single PL/I declaration that contains a LOB variable declaration is limited to no
more than 1000 lines of source code.

Note: Variable attributes such as STATIC and AUTOMATIC are ignored if
specified on a LOB variable declaration.

ROWIDs: Figure 106 on page 237 shows the syntax for declarations of ROWID
host variables. See Chapter 14, “Programming for large objects,” on page 299 for a
discussion of how to use these host variables.

�� DECLARE
DCL

�

variable-name
,

( variable-name )

SQL TYPE IS RESULT_SET_LOCATOR VARYING �

�
Alignment and/or Scope and/or Storage

��

Figure 103. Result set locators

�� DCL
DECLARE

�

variable-name
,

( variable-name )

SQL TYPE IS TABLE LIKE table-name AS LOCATOR ��

Figure 104. Table locators

�� DCL
DECLARE

�

variable-name
,

( variable-name )

SQL TYPE IS �

� BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

��

Figure 105. LOB variables and locators

PL/I

236 Application Programming and SQL Guide



Declaring host variable arrays
Only some of the valid PL/I declarations are valid host variable array declarations.
The precompiler uses the data attribute defaults that are specified in the PL/I
DEFAULT statement. If the declaration for a variable array is not valid, then any
SQL statement that references the host variable array might result in the message
UNDECLARED HOST VARIABLE ARRAY.

The precompiler uses only the names and data attributes of the variable arrays; it
ignores the alignment, scope, and storage attributes. Even though the precompiler
ignores alignment, scope, and storage, if you ignore the restrictions on their use,
you might have problems compiling the PL/I source code that the precompiler
generates. These restrictions are as follows:
v A declaration with the EXTERNAL scope attribute and the STATIC storage

attribute must also have the INITIAL storage attribute.
v If you use the BASED storage attribute, you must follow it with a PL/I

element-locator-expression.
v Host variables can be STATIC, CONTROLLED, BASED, or AUTOMATIC storage

class or options. However, CICS requires that programs be reentrant.

Declaring host variable arrays: You must specify the ALIGNED attribute when
you declare varying-length character arrays or varying-length graphic arrays that
are to be used in multiple-row INSERT and FETCH statements.

Numeric host variable arrays: Figure 107 shows the syntax for declarations of
numeric host variable arrays.

�� DCL
DECLARE

�

variable-name
,

( variable-name )

SQL TYPE IS ROWID ��

Figure 106. ROWID variables

�� DECLARE
DCL

�

�

variable-name ( dimension )
,

( variable-name )
,

( variable-name ( dimension ) )

�

� BINARY FIXED
BIN ( precision )
DECIMAL ,scale
DEC FLOAT ( precision )

�

�
Alignment and/or Scope and/or Storage

��

Figure 107. Numeric host variable arrays

PL/I

Chapter 9. Embedding SQL statements in host languages 237

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||||||||||||
|

|
||||||||||||

|
||
|

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

#
#
#

|
|
|



Notes:

1. You can specify host variable array attributes in any order that is acceptable to
PL/I. For example, BIN FIXED(31), BINARY FIXED(31), BIN(31) FIXED, and
FIXED BIN(31) are all acceptable.

2. You can specify the scale for only DECIMAL FIXED.
3. dimension must be an integer constant between 1 and 32767.

Example: The following example shows a declaration of an indicator array:
DCL IND_ARRAY(100) BIN FIXED(15); /* DCL ARRAY of 100 indicator variables */

Character host variable arrays: Figure 108 shows the syntax for declarations of
character host variable arrays, other than CLOBs. See Figure 110 on page 239 for
the syntax of CLOBs.

Notes:

1. dimension must be an integer constant between 1 and 32767.

Example: The following example shows the declarations needed to retrieve 10
rows of the department number and name from the department table:
DCL DEPTNO(10) CHAR(3); /* Array of ten CHAR(3) variables */
DCL DEPTNAME(10) CHAR(29) VAR; /* Array of ten VARCHAR(29) variables */

Graphic host variable arrays: Figure 109 on page 239 shows the syntax for
declarations of graphic host variable arrays, other than DBCLOBs. See Figure 110
on page 239 for the syntax of DBCLOBs.

�� DECLARE
DCL

�

�

variable-name ( dimension )
,

( variable-name )
,

( variable-name ( dimension ) )

�

� CHARACTER ( length )
CHAR VARYING Alignment and/or Scope and/or Storage

VAR

��

Figure 108. Character host variable arrays

PL/I

238 Application Programming and SQL Guide

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|
||
|

|

|
|
|

|

|

|

|

|
|
|
|

|

|

|
|

|
|

|
|
|
|



Notes:

1. dimension must be an integer constant between 1 and 32767.

LOB variable arrays and locators: Figure 110 shows the syntax for declarations of
BLOB, CLOB, and DBCLOB host variable arrays and locators. See Chapter 14,
“Programming for large objects,” on page 299 for a discussion of how to use these
host variables.

Notes:

1. dimension must be an integer constant between 1 and 32767.

ROWIDs: Figure 111 on page 240 shows the syntax for declarations of ROWID
variable arrays. See Chapter 14, “Programming for large objects,” on page 299 for a
discussion of how to use these host variables.

�� DECLARE
DCL

�

�

variable-name ( dimension )
,

( variable-name )
,

( variable-name ( dimension ) )

�

� GRAPHIC ( length )
VARYING Alignment and/or Scope and/or Storage
VAR

��

Figure 109. Graphic host variable arrays

�� DCL
DECLARE

�

�

variable-name ( dimension )
,

( variable-name )
,

( variable-name ( dimension ) )

SQL TYPE IS �

� BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

��

Figure 110. LOB variable arrays and locators

PL/I

Chapter 9. Embedding SQL statements in host languages 239

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||

|
||
|

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

|
||
|

|

|

|
|
|
|
|

|

|

|
|
|
|



Notes:

1. dimension must be an integer constant between 1 and 32767.

Using host structures
A PL/I host structure name can be a structure name whose subordinate levels
name scalars. For example:
DCL 1 A,

2 B,
3 C1 CHAR(...),
3 C2 CHAR(...);

In this example, B is the name of a host structure consisting of the scalars C1 and
C2.

You can use the structure name as shorthand notation for a list of scalars. You can
qualify a host variable with a structure name (for example, STRUCTURE.FIELD).
Host structures are limited to two levels. You can think of a host structure for DB2
data as a named group of host variables.

You must terminate the host structure variable by ending the declaration with a
semicolon. For example:
DCL 1 A,

2 B CHAR,
2 (C, D) CHAR;

DCL (E, F) CHAR;

You can specify host variable attributes in any order that is acceptable to PL/I. For
example, BIN FIXED(31), BIN(31) FIXED, and FIXED BIN(31) are all acceptable.

Figure 112 on page 241 shows the syntax for declarations of host structures.

�� DCL
DECLARE

�

�

variable-name ( dimension )
,

( variable-name )
,

( variable-name ( dimension ) )

SQL TYPE IS ROWID ��

Figure 111. ROWID variable arrays

PL/I

240 Application Programming and SQL Guide

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

|
||
|

|

|



Figure 113 shows the syntax for data types that are used within declarations of
host structures.

Figure 114 shows the syntax for LOB data types that are used within declarations
of host structures.

Determining equivalent SQL and PL/I data types
Table 20 on page 242 describes the SQL data type, and base SQLTYPE and
SQLLEN values, that the precompiler uses for the host variables it finds in SQL
statements. If a host variable appears with an indicator variable, the SQLTYPE is
the base SQLTYPE plus 1.

�� DECLARE
DCL

level-1 variable-name ,
Scope and/or storage

�

� �

�

,

level-2 var-1 data-type-specification
,

( var-2 )

; ��

Figure 112. Host structures

�� BINARY FIXED
BIN ( precision )
DECIMAL , scale
DEC FLOAT

( precision )
CHARACTER
CHAR ( integer ) VARYING

VARY
GRAPHIC

( integer ) VARYING
VARY

SQL TYPE IS ROWID
LOB data type

��

Figure 113. Data type specification

�� SQL TYPE IS BINARY LARGE OBJECT ( length )
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

��

Figure 114. LOB data type

PL/I

Chapter 9. Embedding SQL statements in host languages 241



Table 20. SQL data types the precompiler uses for PL/I declarations

PL/I data type
SQLTYPE of host
variable SQLLEN of host variable SQL data type

BIN FIXED(n) 1<=n<=15 500 2 SMALLINT

BIN FIXED(n) 16<=n<=31 496 4 INTEGER

DEC FIXED(p,s) 0<=p<=31 and
0<=s<=p1

484 p in byte 1, s in byte 2 DECIMAL(p,s)

BIN FLOAT(p) 1<=p<=21 480 4 REAL or FLOAT(n) 1<=n<=21

BIN FLOAT(p) 22<=p<=53 480 8 DOUBLE PRECISION or
FLOAT(n) 22<=n<=53

DEC FLOAT(m) 1<=m<=6 480 4 FLOAT (single precision)

DEC FLOAT(m) 7<=m<=16 480 8 FLOAT (double precision)

CHAR(n) 452 n CHAR(n)

CHAR(n) VARYING 1<=n<=255 448 n VARCHAR(n)

CHAR(n) VARYING n>255 456 n VARCHAR(n)

GRAPHIC(n) 468 n GRAPHIC(n)

GRAPHIC(n) VARYING
1<=n<=127

464 n VARGRAPHIC(n)

GRAPHIC(n) VARYING n>127 472 n VARGRAPHIC(n)

SQL TYPE IS
RESULT_SET_LOCATOR

972 4 Result set locator2

SQL TYPE IS TABLE LIKE
table-name AS LOCATOR

976 4 Table locator2

SQL TYPE IS BLOB_LOCATOR 960 4 BLOB locator2

SQL TYPE IS CLOB_LOCATOR 964 4 CLOB locator2

SQL TYPE IS
DBCLOB_LOCATOR

968 4 DBCLOB locator2

SQL TYPE IS BLOB(n)
1≤n≤2147483647

404 n BLOB(n)

SQL TYPE IS CLOB(n)
1≤n≤2147483647

408 n CLOB(n)

SQL TYPE IS DBCLOB(n)
1≤n≤10737418233

412 n DBCLOB(n)3

SQL TYPE IS ROWID 904 40 ROWID

Notes:

1. If p=0, DB2 interprets it as DECIMAL(31). For example, DB2 interprets a PL/I data type of DEC FIXED(0,0) to be
DECIMAL(31,0), which equates to the SQL data type of DECIMAL(31,0).

2. Do not use this data type as a column type.

3. n is the number of double-byte characters.

Table 21 on page 243 helps you define host variables that receive output from the
database. You can use the table to determine the PL/I data type that is equivalent
to a given SQL data type. For example, if you retrieve TIMESTAMP data, you can
use the table to define a suitable host variable in the program that receives the
data value.

PL/I

242 Application Programming and SQL Guide



Table 21 shows direct conversions between DB2 data types and host data types.
However, a number of DB2 data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 does conversions
between those compatible data types. See Table 1 on page 5 for information on
compatible data types.

Table 21. SQL data types mapped to typical PL/I declarations

SQL data type PL/I equivalent Notes

SMALLINT BIN FIXED(n) 1<=n<=15

INTEGER BIN FIXED(n) 16<=n<=31

DECIMAL(p,s) or
NUMERIC(p,s)

If p<16: DEC FIXED(p) or DEC
FIXED(p,s)

p is precision; s is scale. 1<=p<=31 and
0<=s<=p

If p>15, the PL/I compiler must support
31-digit decimal variables.

REAL or FLOAT(n) BIN FLOAT(p) or DEC FLOAT(m) 1<=n<=21, 1<=p<=21, and 1<=m<=6

DOUBLE PRECISION,
DOUBLE, or FLOAT(n)

BIN FLOAT(p) or DEC FLOAT(m) 22<=n<=53, 22<=p<=53, and 7<=m<=16

CHAR(n) CHAR(n) 1<=n<=255

VARCHAR(n) CHAR(n) VAR

GRAPHIC(n) GRAPHIC(n) n refers to the number of double-byte
characters, not to the number of bytes.
1<=n<=127

VARGRAPHIC(n) GRAPHIC(n) VAR n refers to the number of double-byte
characters, not to the number of bytes.

DATE CHAR(n) If you are using a date exit routine, that
routine determines n; otherwise, n must be
at least 10.

TIME CHAR(n) If you are using a time exit routine, that
routine determines n. Otherwise, n must
be at least 6; to include seconds, n must be
at least 8.

TIMESTAMP CHAR(n) n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, the microseconds part is
truncated.

Result set locator SQL TYPE IS RESULT_SET_LOCATOR Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS TABLE LIKE table-name AS
LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator SQL TYPE IS DBCLOB_LOCATOR Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

PL/I

Chapter 9. Embedding SQL statements in host languages 243



Table 21. SQL data types mapped to typical PL/I declarations (continued)

SQL data type PL/I equivalent Notes

BLOB(n) SQL TYPE IS BLOB(n) 1≤n≤2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1≤n≤2147483647

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1≤n≤1073741823

ROWID SQL TYPE IS ROWID

Notes on PL/I variable declaration and usage
You should be aware of the following when you declare PL/I variables.

PL/I data types with no SQL equivalent: PL/I supports some data types with no
SQL equivalent (COMPLEX and BIT variables, for example). In most cases, you can
use PL/I statements to convert between the unsupported PL/I data types and the
data types that SQL supports.

SQL data types with no PL/I equivalent: If the PL/I compiler you are using does
not support a decimal data type with a precision greater than 15, use the following
types of variables for decimal data:
v Decimal variables with precision less than or equal to 15, if the actual data

values fit. If you retrieve a decimal value into a decimal variable with a scale
that is less than the source column in the database, the fractional part of the
value might truncate.

v An integer or a floating-point variable, which converts the value. If you choose
integer, you lose the fractional part of the number. If the decimal number can
exceed the maximum value for an integer or you want to preserve a fractional
value, you can use floating-point numbers. Floating-point numbers are
approximations of real numbers. When you assign a decimal number to a
floating- point variable, the result could be different from the original number.

v A character string host variable. Use the CHAR function to retrieve a decimal
value into it.

Floating-point host variables: All floating-point data is stored in DB2 in
System/390 hexadecimal floating-point format. However, your host variable data
can be in System/390 hexadecimal floating-point format or IEEE binary
floating-point format. DB2 uses the FLOAT precompiler option to determine
whether your floating-point host variables are in IEEE binary floating-point format
or System/390 hexadecimal floating-point format. DB2 does no checking to
determine whether the host variable declarations or format of the host variable
contents match the precompiler option. Therefore, you need to ensure that your
floating-point host variable types and contents match the precompiler option.

Special purpose PL/I data types: The locator data types are PL/I data types as well
as SQL data types. You cannot use locators as column types. For information on
how to use these data types, see the following sections:

Result set locator
Chapter 25, “Using stored procedures for client/server processing,”
on page 631

Table locator “Accessing transition tables in a user-defined function or stored
procedure” on page 345

LOB locators Chapter 14, “Programming for large objects,” on page 299

PL/I

244 Application Programming and SQL Guide

|
|

|
|



PL/I scoping rules: The precompiler does not support PL/I scoping rules.

Overflow: Be careful of overflow. For example, if you retrieve an INTEGER column
value into a BIN FIXED(15) host variable and the column value is larger than
32767 or smaller than -32768, you get an overflow warning or an error, depending
on whether you provided an indicator variable.

Truncation: Be careful of truncation. For example, if you retrieve an 80-character
CHAR column value into a CHAR(70) host variable, the rightmost ten characters
of the retrieved string are truncated.

Retrieving a double-precision floating-point or decimal column value into a BIN
FIXED(31) host variable removes any fractional part of the value.

Similarly, retrieving a column value with a DECIMAL data type into a PL/I
decimal variable with a lower precision might truncate the value.

Determining compatibility of SQL and PL/I data types
When you use PL/I host variables in SQL statements, the variables must be type
compatible with the columns with which you use them.
v Numeric data types are compatible with each other. A SMALLINT, INTEGER,

DECIMAL, or FLOAT column is compatible with a PL/I host variable of BIN
FIXED(15), BIN FIXED(31), DECIMAL(s,p), or BIN FLOAT(n), where n is from 1
to 53, or DEC FLOAT(m) where m is from 1 to 16.

v Character data types are compatible with each other. A CHAR, VARCHAR, or
CLOB column is compatible with a fixed-length or varying-length PL/I character
host variable.

v Character data types are partially compatible with CLOB locators. You can
perform the following assignments:
– Assign a value in a CLOB locator to a CHAR or VARCHAR column.
– Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a

CLOB locator host variable.
– Assign a CHAR or VARCHAR output parameter from a user-defined function

or stored procedure to a CLOB locator host variable.
– Use a SET assignment statement to assign a CHAR or VARCHAR transition

variable to a CLOB locator host variable.
– Use a VALUES INTO statement to assign a CHAR or VARCHAR function

parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

v Graphic data types are compatible with each other. A GRAPHIC, VARGRAPHIC,
or DBCLOB column is compatible with a fixed-length or varying-length PL/I
graphic character host variable.

v Graphic data types are partially compatible with DBCLOB locators. You can
perform the following assignments:
– Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC

column.
– Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC

column to a DBCLOB locator host variable.
– Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined

function or stored procedure to a DBCLOB locator host variable.

PL/I

Chapter 9. Embedding SQL statements in host languages 245



– Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC
transition variable to a DBCLOB locator host variable.

– Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC
function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC
or VARGRAPHIC column to a DBCLOB locator host variable.

v Datetime data types are compatible with character host variables. A DATE,
TIME, or TIMESTAMP column is compatible with a fixed-length or
varying-length PL/I character host variable.

v A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

v The ROWID column is compatible only with a ROWID host variable.
v A host variable is compatible with a distinct type if the host variable type is

compatible with the source type of the distinct type. For information on
assigning and comparing distinct types, see Chapter 16, “Creating and using
distinct types,” on page 367.

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.

Using indicator variables and indicator variable arrays
An indicator variable is a 2-byte integer (or an integer declared as BIN FIXED(15)).
An indicator variable array is an array of 2-byte integers. You use indicator
variables and indicator variable arrays in similar ways.

Using indicator variables: If you provide an indicator variable for the variable X,
when DB2 retrieves a null value for X, it puts a negative value in the indicator
variable and does not update X. Your program should check the indicator variable
before using X. If the indicator variable is negative, you know that X is null and
any value you find in X is irrelevant.

When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X.

Using indicator variable arrays: When you retrieve data into a host variable array,
if a value in its indicator array is negative, you can disregard the contents of the
corresponding element in the host variable array. For more information about
indicator variable arrays, see “Using indicator variable arrays with host variable
arrays” on page 87.

Declaring indicator variables: You declare indicator variables in the same way as
host variables. You can mix the declarations of the two types of variables in any
way that seems appropriate. For more information about indicator variables, see
“Using indicator variables with host variables” on page 83.

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:
EXEC SQL FETCH CLS_CURSOR INTO :CLS_CD,

:DAY :DAY_IND,
:BGN :BGN_IND,
:END :END_IND;

You can declare the variables as follows:

PL/I

246 Application Programming and SQL Guide

|
|

|
|
|
|
|



DCL CLS_CD CHAR(7);
DCL DAY BIN FIXED(15);
DCL BGN CHAR(8);
DCL END CHAR(8);
DCL (DAY_IND, BGN_IND, END_IND) BIN FIXED(15);

You can specify host variable attributes in any order that is acceptable to PL/I. For
example, BIN FIXED(31), BIN(31) FIXED, and FIXED BIN(31) are all acceptable.

Figure 115 shows the syntax for declarations of indicator variables.

Declaring indicator arrays: Figure 116 shows the syntax for declarations of
indicator arrays.

Notes:

1. dimension must be an integer constant between 1 and 32767.

Handling SQL error return codes
You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information on the behavior of DSNTIAR, see
“Calling DSNTIAR to display SQLCA fields” on page 98.

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “The GET DIAGNOSTICS statement” on page 94.

DSNTIAR syntax
CALL DSNTIAR ( sqlca, message, lrecl );

The DSNTIAR parameters have the following meanings:

�� DECLARE
DCL

�

,

( variable-name ) BINARY
BIN

FIXED(15) ; ��

Figure 115. Indicator variable

�� DECLARE
DCL

�

variable-name ( dimension )
,

( variable-name ( dimension ) )

BINARY
BIN

�

� FIXED(15) ;
Alignment and/or Scope and/or Storage

��

Figure 116. Indicator array

PL/I

Chapter 9. Embedding SQL statements in host languages 247

|
|
|
|
|



sqlca
An SQL communication area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in lrecl, are put
into this area. For example, you could specify the format of the output area as:
DCL DATA_LEN FIXED BIN(31) INIT(132);
DCL DATA_DIM FIXED BIN(31) INIT(10);
DCL 1 ERROR_MESSAGE AUTOMATIC,

3 ERROR_LEN FIXED BIN(15) UNAL INIT((DATA_LEN*DATA_DIM)),
3 ERROR_TEXT(DATA_DIM) CHAR(DATA_LEN);...

CALL DSNTIAR ( SQLCA, ERROR_MESSAGE, DATA_LEN );

where ERROR_MESSAGE is the name of the message output area, DATA_DIM
is the number of lines in the message output area, and DATA_LEN is the
length of each line.

lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

Because DSNTIAR is an assembler language program, you must include the
following directives in your PL/I application:
DCL DSNTIAR ENTRY OPTIONS (ASM,INTER,RETCODE);

An example of calling DSNTIAR from an application appears in the DB2 sample
assembler program DSN8BP3, contained in the library DSN8810.SDSNSAMP. See
Appendix B, “Sample applications,” on page 1015 for instructions on how to access
and print the source code for the sample program.

PL/I

248 Application Programming and SQL Guide



CICS
If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following
syntax:
CALL DSNTIAC (eib, commarea, sqlca, msg, lrecl);

DSNTIAC has extra parameters, which you must use for calls to routines that
use CICS commands.

eib EXEC interface block

commarea
communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the
same as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the
SQLCA in the same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC,
you must also define them in the CSD. For an example of CSD entry
generation statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which
assembles and link-edits DSNTIAC, are in the data set prefix.SDSNSAMP.

Coding SQL statements in a REXX application
This section helps you with the programming techniques that are unique to coding
SQL statements in a REXX procedure. For an example of a complete DB2 REXX
procedure, see “Sample DB2 REXX application” on page 1049.

Defining the SQL communication area
When DB2 prepares a REXX procedure that contains SQL statements, DB2
automatically includes an SQL communication area (SQLCA) in the procedure. The
REXX SQLCA differs from the SQLCA for other languages in the following ways:
v The REXX SQLCA consists of a set of separate variables, rather than a structure.

If you use the ADDRESS DSNREXX 'CONNECT' ssid syntax to connect to DB2, the
SQLCA variables are a set of simple variables.
If you connect to DB2 using the CALL SQLDBS 'ATTACH TO' syntax, the SQLCA
variables are compound variables that begin with the stem SQLCA.
See “Accessing the DB2 REXX Language Support application programming
interfaces” on page 250 for a discussion of the methods for connecting a REXX
application to DB2.

v You cannot use the INCLUDE SQLCA statement to include an SQLCA in a
REXX program.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these variable values to determine whether the last SQL
statement was successful.

PL/I

Chapter 9. Embedding SQL statements in host languages 249



See Appendix D of DB2 SQL Reference for information on the fields in the REXX
SQLCA.

Defining SQL descriptor areas
The following statements require an SQL descriptor area (SQLDA):
v CALL...USING DESCRIPTOR descriptor-name
v DESCRIBE statement-name INTO descriptor-name
v DESCRIBE CURSOR host-variable INTO descriptor-name
v DESCRIBE INPUT statement-name INTO descriptor-name
v DESCRIBE PROCEDURE host-variable INTO descriptor-name
v DESCRIBE TABLE host-variable INTO descriptor-name
v EXECUTE...USING DESCRIPTOR descriptor-name
v FETCH...INTO DESCRIPTOR descriptor-name
v OPEN...USING DESCRIPTOR descriptor-name
v PREPARE...INTO descriptor-name

A REXX procedure can contain more than one SQLDA. Each SQLDA consists of a
set of REXX variables with a common stem. The stem must be a REXX variable
name that contains no periods and is the same as the value of descriptor-name that
you specify when you use the SQLDA in an SQL statement. DB2 does not support
the INCLUDE SQLDA statement in REXX.

See Appendix E of DB2 SQL Reference for information on the fields in a REXX
SQLDA.

Accessing the DB2 REXX Language Support application
programming interfaces

DB2 REXX Language Support includes the following application programming
interfaces:

DSNREXX CONNECT

Identifies the REXX task as a connected user of the specified DB2 subsystem.
The DSNREXX plan resources are allocated by establishing an allied thread.

You should not confuse the DSNREXX CONNECT command with the DB2
SQL CONNECT statement.

You must execute the DSNREXX CONNECT command before your REXX
program can execute SQL statements. Do not use the DSNREXX CONNECT
command from a stored procedure.

A currently connected REXX task must be disconnected before switching to a
different DB2 subsystem.

The syntax of the DSNREXX CONNECT command is:

�� 'CONNECT' 'subsystem-ID'
ADDRESS DSNREXX REXX-variable

��

Notes:

1. CALL SQLDBS 'ATTACH TO' ssid is equivalent to ADDRESS DSNREXX 'CONNECT' ssid.

2. The REXX-variable or 'subsystem-ID' string may also be a single member name in a data sharing group or the
group attachment name.

REXX

250 Application Programming and SQL Guide

#####################

#

#

#

#
#

#
#

#

#

#
#

#
#

#
#
#

#
#

#
#



DSNREXX EXECSQL
Executes SQL statements in REXX procedures.

The syntax of the DSNREXX EXECSQL command is:

See “Embedding SQL statements in a REXX procedure” on page 252 for more
information.

DSNREXX DISCONNECT

Deallocates the DSNREXX plan and removes the REXX task as a connected
user of DB2.

You should execute the DSNREXX DISCONNECT command to release
resources that are held by DB2. Otherwise resources are not released until the
REXX task terminates.

Do not use the DSNREXX DISCONNECT command from a stored procedure.

The syntax of the DSNREXX DISCONNECT command is:

These application programming interfaces are available through the DSNREXX
host command environment. To make DSNREXX available to the application,
invoke the RXSUBCOM function. The syntax is:

The ADD function adds DSNREXX to the REXX host command environment table.
The DELETE function deletes DSNREXX from the REXX host command
environment table.

Figure 117 on page 252 shows an example of REXX code that makes DSNREXX
available to an application.

�� 'EXECSQL' "SQL-statement"
ADDRESS DSNREXX REXX-variable

��

Notes:

1. CALL 'SQLEXEC' "SQL-statement" is equivalent to ADDRESS DSNREXX 'EXECSQL' "SQL-statement".

2. 'EXECSQL' and "SQL-statement" can be enclosed in either single or double quotation marks.

�� 'DISCONNECT'
ADDRESS DSNREXX

��

Note: CALL SQLDBS 'DETACH' is equivalent to ADDRESS DSNREXX 'DISCONNECT'.

�� RXSUBCOM ( 'ADD' , 'DSNREXX' , 'DSNREXX' )
'DELETE'

��

REXX

Chapter 9. Embedding SQL statements in host languages 251

#############

#

#
#
#

#

#
#

#
#
#

#

#
#



Embedding SQL statements in a REXX procedure
DB2 REXX Language Support supports all dynamic SQL statements and the
following static SQL statements:
v CALL
v CLOSE
v CONNECT
v DECLARE CURSOR
v DESCRIBE prepared statement or table
v DESCRIBE CURSOR
v DESCRIBE INPUT
v DESCRIBE PROCEDURE
v EXECUTE
v EXECUTE IMMEDIATE
v FETCH
v OPEN
v PREPARE
v RELEASE connection
v SET CONNECTION
v SET CURRENT PACKAGE PATH
v SET CURRENT PACKAGESET
v SET host-variable = CURRENT DATE
v SET host-variable = CURRENT DEGREE
v SET host-variable = CURRENT MEMBER
v SET host-variable = CURRENT PACKAGESET
v SET host-variable = CURRENT PATH
v SET host-variable = CURRENT SERVER
v SET host-variable = CURRENT SQLID
v SET host-variable = CURRENT TIME
v SET host-variable = CURRENT TIMESTAMP
v SET host-variable = CURRENT TIMEZONE

Each SQL statement in a REXX procedure must begin with EXECSQL, in either
upper-, lower-, or mixed-case. One of the following items must follow EXECSQL:

'SUBCOM DSNREXX' /* HOST CMD ENV AVAILABLE? */
IF RC THEN /* IF NOT, MAKE IT AVAILABLE */

S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')
/* ADD HOST CMD ENVIRONMENT */

ADDRESS DSNREXX /* SEND ALL COMMANDS OTHER */
/* THAN REXX INSTRUCTIONS TO */
/* DSNREXX */
/* CALL CONNECT, EXECSQL, AND */
/* DISCONNECT INTERFACES */...

S_RC = RXSUBCOM('DELETE','DSNREXX','DSNREXX')
/* WHEN DONE WITH */
/* DSNREXX, REMOVE IT. */

Figure 117. Making DSNREXX available to an application

REXX

252 Application Programming and SQL Guide

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#



v An SQL statement enclosed in single or double quotation marks.
v A REXX variable that contains an SQL statement. The REXX variable must not

be preceded by a colon.

For example, you can use either of the following methods to execute the COMMIT
statement in a REXX procedure:
EXECSQL "COMMIT"

rexxvar="COMMIT"
EXECSQL rexxvar

The following dynamic statements must be executed using EXECUTE IMMEDIATE
or PREPARE and EXECUTE under DSNREXX:
v DECLARE GLOBAL TEMPORARY TABLE
v SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
v SET CURRENT REFRESH AGE
v SET SCHEMA

You cannot execute a SELECT, INSERT, UPDATE, or DELETE statement that
contains host variables. Instead, you must execute PREPARE on the statement,
with parameter markers substituted for the host variables, and then use the host
variables in an EXECUTE, OPEN, or FETCH statement. See “Using REXX host
variables and data types” on page 255 for more information.

An SQL statement follows rules that apply to REXX commands. The SQL statement
can optionally end with a semicolon and can be enclosed in single or double
quotation marks, as in the following example:
'EXECSQL COMMIT';

Comments: You cannot include REXX comments (/* ... */) or SQL comments (--)
within SQL statements. However, you can include REXX comments anywhere else
in the procedure.

Continuation for SQL statements: SQL statements that span lines follow REXX
rules for statement continuation. You can break the statement into several strings,
each of which fits on a line, and separate the strings with commas or with
concatenation operators followed by commas. For example, either of the following
statements is valid:
EXECSQL ,

"UPDATE DSN8810.DEPT" ,
"SET MGRNO = '000010'" ,
"WHERE DEPTNO = 'D11'"

"EXECSQL " || ,
" UPDATE DSN8810.DEPT " || ,
" SET MGRNO = '000010'" || ,
" WHERE DEPTNO = 'D11'"

Including code: The EXECSQL INCLUDE statement is not valid for REXX. You
therefore cannot include externally defined SQL statements in a procedure.

Margins: Like REXX commands, SQL statements can begin and end anywhere on a
line.

Names: You can use any valid REXX name that does not end with a period as a
host variable. However, host variable names should not begin with ’SQL’, ’RDI’,
’DSN’, ’RXSQL’, or ’QRW’. Variable names can be at most 64 bytes.

REXX

Chapter 9. Embedding SQL statements in host languages 253

#
#

#

#

#

#



Nulls: A REXX null value and an SQL null value are different. The REXX language
has a null string (a string of length 0) and a null clause (a clause that contains only
blanks and comments). The SQL null value is a special value that is distinct from
all nonnull values and denotes the absence of a value. Assigning a REXX null
value to a DB2 column does not make the column value null.

Statement labels: You can precede an SQL statement with a label, in the same way
that you label REXX commands.

Handling errors and warnings: DB2 does not support the SQL WHENEVER
statement in a REXX procedure. To handle SQL errors and warnings, use the
following methods:
v To test for SQL errors or warnings, test the SQLCODE or SQLSTATE value and

the SQLWARN. values after each EXECSQL call. This method does not detect
errors in the REXX interface to DB2.

v To test for SQL errors or warnings or errors or warnings from the REXX
interface to DB2, test the REXX RC variable after each EXECSQL call. Table 22
lists the values of the RC variable.
You can also use the REXX SIGNAL ON ERROR and SIGNAL ON FAILURE
keyword instructions to detect negative values of the RC variable and transfer
control to an error routine.

Table 22. REXX return codes after SQL statements

Return code Meaning

0 No SQL warning or error occurred.

+1 An SQL warning occurred.

-1 An SQL error occurred.

-3 The first token after ADDRESS DSNREXX is in error. For a description of
the tokens allowed, see “Accessing the DB2 REXX Language Support
application programming interfaces” on page 250.

Using cursors and statement names
In REXX SQL applications, you must use a predefined set of names for cursors or
prepared statements. The following names are valid for cursors and prepared
statements in REXX SQL applications:

c1 to c100
Cursor names for DECLARE CURSOR, OPEN, CLOSE, and FETCH statements.
By default, c1 to c100 are defined with the WITH RETURN clause, and c51 to
c100 are defined with the WITH HOLD clause. You can use the ATTRIBUTES
clause of the PREPARE statement to override these attributes or add additional
attributes. For example, you might want to add attributes to make your cursor
scrollable.

c101 to c200
Cursor names for ALLOCATE, DESCRIBE, FETCH, and CLOSE statements that
are used to retrieve result sets in a program that calls a stored procedure.

s1 to s100
Prepared statement names for DECLARE STATEMENT, PREPARE, DESCRIBE,
and EXECUTE statements.

Use only the predefined names for cursors and statements. When you associate a
cursor name with a statement name in a DECLARE CURSOR statement, the cursor

REXX

254 Application Programming and SQL Guide

|
|
|



name and the statement must have the same number. For example, if you declare
cursor c1, you need to declare it for statement s1:
EXECSQL 'DECLARE C1 CURSOR FOR S1'

Do not use any of the predefined names as host variables names.

Using REXX host variables and data types
You do not declare host variables in REXX. When you need a new variable, you
use it in a REXX command. When you use a REXX variable as a host variable in
an SQL statement, you must precede the variable with a colon.

A REXX host variable can be a simple or compound variable. DB2 REXX Language
Support evaluates compound variables before DB2 processes SQL statements that
contain the variables. In the following example, the host variable that is passed to
DB2 is :x.1.2:
a=1
b=2
EXECSQL 'OPEN C1 USING :x.a.b'

Determining equivalent SQL and REXX data types
All REXX data is string data. Therefore, when a REXX procedure assigns input
data to a table column, DB2 converts the data from a string type to the table
column type. When a REXX procedure assigns column data to an output variable,
DB2 converts the data from the column type to a string type.

When you assign input data to a DB2 table column, you can either let DB2
determine the type that your input data represents, or you can use an SQLDA to
tell DB2 the intended type of the input data.

Letting DB2 determine the input data type
You can let DB2 assign a data type to input data based on the format of the input
string. Table 23 shows the SQL data types that DB2 assigns to input data and the
corresponding formats for that data. The two SQLTYPE values that are listed for
each data type are the value for a column that does not accept null values and the
value for a column that accepts null values.

If you do not assign a value to a host variable before you assign the host variable
to a column, DB2 returns an error code.

Table 23. SQL input data types and REXX data formats

SQL data type
assigned by DB2

SQLTYPE for
data type REXX input data format

INTEGER 496/497 A string of numerics that does not contain a decimal point or exponent
identifier. The first character can be a plus (+) or minus (−) sign. The
number that is represented must be between -2147483647 and 2147483647,
inclusive.

DECIMAL(p,s) 484/485 One of the following formats:

v A string of numerics that contains a decimal point but no exponent
identifier. p represents the precision and s represents the scale of the
decimal number that the string represents. The first character can be a
plus (+) or minus (−) sign.

v A string of numerics that does not contain a decimal point or an
exponent identifier. The first character can be a plus (+) or minus (−)
sign. The number that is represented is less than -2147483647 or greater
than 2147483647.

REXX

Chapter 9. Embedding SQL statements in host languages 255



Table 23. SQL input data types and REXX data formats (continued)

SQL data type
assigned by DB2

SQLTYPE for
data type REXX input data format

FLOAT 480/481 A string that represents a number in scientific notation. The string consists
of a series of numerics followed by an exponent identifier (an E or e
followed by an optional plus (+) or minus (−) sign and a series of
numerics). The string can begin with a plus (+) or minus (−) sign.

VARCHAR(n) 448/449 One of the following formats:

v A string of length n, enclosed in single or double quotation marks.

v The character X or x, followed by a string enclosed in single or double
quotation marks. The string within the quotation marks has a length of
2*n bytes and is the hexadecimal representation of a string of n
characters.

v A string of length n that does not have a numeric or graphic format, and
does not satisfy either of the previous conditions.

VARGRAPHIC(n) 464/465 One of the following formats:

v The character G, g, N, or n, followed by a string enclosed in single or
double quotation marks. The string within the quotation marks begins
with a shift-out character (X'0E') and ends with a shift-in character
(X'0F'). Between the shift-out character and shift-in character are n
double-byte characters.

v The characters GX, Gx, gX, or gx, followed by a string enclosed in single
or double quotation marks. The string within the quotation marks has a
length of 4*n bytes and is the hexadecimal representation of a string of n
double-byte characters.

For example, when DB2 executes the following statements to update the MIDINIT
column of the EMP table, DB2 must determine a data type for HVMIDINIT:
SQLSTMT="UPDATE EMP" ,

"SET MIDINIT = ?" ,
"WHERE EMPNO = '000200'"

"EXECSQL PREPARE S100 FROM :SQLSTMT"
HVMIDINIT='H'
"EXECSQL EXECUTE S100 USING" ,

":HVMIDINIT"

Because the data that is assigned to HVMIDINIT has a format that fits a character
data type, DB2 REXX Language Support assigns a VARCHAR type to the input
data.

Ensuring that DB2 correctly interprets character input data
To ensure that DB2 REXX Language Support does not interpret character literals as
graphic or numeric literals, precede and follow character literals with a double
quotation mark, followed by a single quotation mark, followed by another double
quotation mark ("'").

Enclosing the string in apostrophes is not adequate because REXX removes the
apostrophes when it assigns a literal to a variable. For example, suppose that you
want to pass the value in host variable stringvar to DB2. The value that you want
to pass is the string ’100’. The first thing that you need to do is to assign the string
to the host variable. You might write a REXX command like this:
stringvar = '100'

REXX

256 Application Programming and SQL Guide



After the command executes, stringvar contains the characters 100 (without the
apostrophes). DB2 REXX Language Support then passes the numeric value 100 to
DB2, which is not what you intended.

However, suppose that you write the command like this:
stringvar = "'"100"'"

In this case, REXX assigns the string ’100’ to stringvar, including the single
quotation marks. DB2 REXX Language Support then passes the string ’100’ to DB2,
which is the desired result.

Passing the data type of an input variable to DB2
In some cases, you might want to determine the data type of input data for DB2.
For example, DB2 does not assign data types of SMALLINT, CHAR, or GRAPHIC
to input data. If you assign or compare this data to columns of type SMALLINT,
CHAR, or GRAPHIC, DB2 must do more work than if the data types of the input
data and columns match.

To indicate the data type of input data to DB2, use an SQLDA.

Example: Specifying CHAR: Suppose you want to tell DB2 that the data with
which you update the MIDINIT column of the EMP table is of type CHAR, rather
than VARCHAR. You need to set up an SQLDA that contains a description of a
CHAR column, and then prepare and execute the UPDATE statement using that
SQLDA:
INSQLDA.SQLD = 1 /* SQLDA contains one variable */
INSQLDA.1.SQLTYPE = 453 /* Type of the variable is CHAR, */

/* and the value can be null */
INSQLDA.1.SQLLEN = 1 /* Length of the variable is 1 */
INSQLDA.1.SQLDATA = 'H' /* Value in variable is H */
INSQLDA.1.SQLIND = 0 /* Input variable is not null */
SQLSTMT="UPDATE EMP" ,

"SET MIDINIT = ?" ,
"WHERE EMPNO = '000200'"

"EXECSQL PREPARE S100 FROM :SQLSTMT"
"EXECSQL EXECUTE S100 USING DESCRIPTOR :INSQLDA"

Example: Specifying DECIMAL with precision and scale: Suppose you want to tell
DB2 that the data is of type DECIMAL with precision and nonzero scale. You need
to set up an SQLDA that contains a description of a DECIMAL column:
INSQLDA.SQLD = 1 /* SQLDA contains one variable */
INSQLDA.1.SQLTYPE = 484 /* Type of variable is DECIMAL */
INSQLDA.1.SQLLEN.SQLPRECISION = 18 /* Precision of variable is 18 */
INSQLDA.1.SQLLEN.SQLSCALE = 8 /* Scale of variable is 8 */
INSQLDA.1.SQLDATA = 9876543210.87654321 /* Value in variable */

Retrieving data from DB2 tables
Although all output data is string data, you can determine the data type that the
data represents from its format and from the data type of the column from which
the data was retrieved. Table 24 gives the format for each type of output data.

Table 24. SQL output data types and REXX data formats

SQL data type REXX output data format

SMALLINT
INTEGER

A string of numerics that does not contain leading zeroes, a decimal point, or an exponent
identifier. If the string represents a negative number, it begins with a minus (−) sign. The
numeric value is between -2147483647 and 2147483647, inclusive.

REXX

Chapter 9. Embedding SQL statements in host languages 257



Table 24. SQL output data types and REXX data formats (continued)

SQL data type REXX output data format

DECIMAL(p,s) A string of numerics with one of the following formats:

v Contains a decimal point but not an exponent identifier. The string is padded with
zeroes to match the scale of the corresponding table column. If the value represents a
negative number, it begins with a minus (−) sign.

v Does not contain a decimal point or an exponent identifier. The numeric value is less
than -2147483647 or greater than 2147483647. If the value is negative, it begins with a
minus (−) sign.

FLOAT(n)
REAL
DOUBLE

A string that represents a number in scientific notation. The string consists of a numeric, a
decimal point, a series of numerics, and an exponent identifier. The exponent identifier is
an E followed by a minus (−) sign and a series of numerics if the number is between -1
and 1. Otherwise, the exponent identifier is an E followed by a series of numerics. If the
string represents a negative number, it begins with a minus (−) sign.

CHAR(n)
VARCHAR(n)

A character string of length n bytes. The string is not enclosed in single or double
quotation marks.

GRAPHIC(n)
VARGRAPHIC(n)

A string of length 2*n bytes. Each pair of bytes represents a double-byte character. This
string does not contain a leading G, is not enclosed in quotation marks, and does not
contain shift-out or shift-in characters.

Because you cannot use the SELECT INTO statement in a REXX procedure, to
retrieve data from a DB2 table you must prepare a SELECT statement, open a
cursor for the prepared statement, and then fetch rows into host variables or an
SQLDA using the cursor. The following example demonstrates how you can
retrieve data from a DB2 table using an SQLDA:
SQLSTMT= ,
'SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,' ,
' WORKDEPT, PHONENO, HIREDATE, JOB,' ,
' EDLEVEL, SEX, BIRTHDATE, SALARY,' ,
' BONUS, COMM' ,
' FROM EMP'
EXECSQL DECLARE C1 CURSOR FOR S1
EXECSQL PREPARE S1 INTO :OUTSQLDA FROM :SQLSTMT
EXECSQL OPEN C1
Do Until(SQLCODE ¬= 0)

EXECSQL FETCH C1 USING DESCRIPTOR :OUTSQLDA
If SQLCODE = 0 Then Do

Line = ''
Do I = 1 To OUTSQLDA.SQLD

Line = Line OUTSQLDA.I.SQLDATA
End I
Say Line
End

End

Using indicator variables
When you retrieve a null value from a column, DB2 puts a negative value in an
indicator variable to indicate that the data in the corresponding host variable is
null. When you pass a null value to DB2, you assign a negative value to an
indicator variable to indicate that the corresponding host variable has a null value.

The way that you use indicator variables for input host variables in REXX
procedures is slightly different from the way that you use indicator variables in
other languages. When you want to pass a null value to a DB2 column, in addition
to putting a negative value in an indicator variable, you also need to put a valid

REXX

258 Application Programming and SQL Guide



value in the corresponding host variable. For example, to set a value of
WORKDEPT in table EMP to null, use statements like these:
SQLSTMT="UPDATE EMP" ,

"SET WORKDEPT = ?"
HVWORKDEPT='000'
INDWORKDEPT=-1
"EXECSQL PREPARE S100 FROM :SQLSTMT"
"EXECSQL EXECUTE S100 USING :HVWORKDEPT :INDWORKDEPT"

After you retrieve data from a column that can contain null values, you should
always check the indicator variable that corresponds to the output host variable for
that column. If the indicator variable value is negative, the retrieved value is null,
so you can disregard the value in the host variable.

In the following program, the phone number for employee Haas is selected into
variable HVPhone. After the SELECT statement executes, if no phone number for
employee Haas is found, indicator variable INDPhone contains -1.
'SUBCOM DSNREXX'
IF RC THEN ,

S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')
ADDRESS DSNREXX
'CONNECT' 'DSN'
SQLSTMT = ,

"SELECT PHONENO FROM DSN8810.EMP WHERE LASTNAME='HAAS'"
"EXECSQL DECLARE C1 CURSOR FOR S1"
"EXECSQL PREPARE S1 FROM :SQLSTMT"
Say "SQLCODE from PREPARE is "SQLCODE
"EXECSQL OPEN C1"
Say "SQLCODE from OPEN is "SQLCODE
"EXECSQL FETCH C1 INTO :HVPhone :INDPhone"
Say "SQLCODE from FETCH is "SQLCODE
If INDPhone < 0 Then ,
Say 'Phone number for Haas is null.'
"EXECSQL CLOSE C1"
Say "SQLCODE from CLOSE is "SQLCODE
S_RC = RXSUBCOM('DELETE','DSNREXX','DSNREXX')

Setting the isolation level of SQL statements in a REXX
procedure

When you install DB2 REXX Language Support, you bind four packages for
accessing DB2, each with a different isolation level:

Package name Isolation level

DSNREXRR Repeatable read (RR)

DSNREXRS Read stability (RS)

DSNREXCS Cursor stability (CS)

DSNREXUR Uncommitted read (UR)

To change the isolation level for SQL statements in a REXX procedure, execute the
SET CURRENT PACKAGESET statement to select the package with the isolation
level you need. For example, to change the isolation level to cursor stability,
execute this SQL statement:
"EXECSQL SET CURRENT PACKAGESET='DSNREXCS'"

REXX

Chapter 9. Embedding SQL statements in host languages 259



REXX

260 Application Programming and SQL Guide



Chapter 10. Using constraints to maintain data integrity

When you modify DB2 tables, you need to ensure that the data is valid. DB2
provides two ways to help you maintain valid data: constraints and triggers.

Constraints are rules that limit the values that you can insert, delete, or update in a
table. There are two types of constraints:
v Check constraints determine the values that a column can contain. Check

constraints are discussed in “Using check constraints.”
v Referential constraints preserve relationships between tables. Referential

constraints are discussed in “Using referential constraints” on page 263. A
specific type of referential constraints, the informational referential constraint, is
discussed in “Using informational referential constraints” on page 269.

Triggers are a series of actions that are invoked when a table is updated. Triggers
are discussed in Chapter 12, “Using triggers for active data,” on page 279.

Using check constraints
Check constraints designate the values that specific columns of a base table can
contain, providing you a method of controlling the integrity of data entered into
tables. You can create tables with check constraints using the CREATE TABLE
statement, or you can add the constraints with the ALTER TABLE statement.
However, if the check integrity is compromised or cannot be guaranteed for a
table, the table space or partition that contains the table is placed in a check
pending state. Check integrity is the condition that exists when each row of a table
conforms to the check constraints defined on that table.

For example, you might want to make sure that no salary can be below 15000
dollars. To do this, you can create the following check constraint:
CREATE TABLE EMPSAL
(ID INTEGER NOT NULL,
SALARY INTEGER CHECK (SALARY >= 15000));

Using check constraints makes your programming task easier, because you do not
need to enforce those constraints within application programs or with a validation
routine. Define check constraints on one or more columns in a table when that
table is created or altered.

Check constraint considerations
The syntax of a check constraint is checked when the constraint is defined, but the
meaning of the constraint is not checked. The following examples show mistakes
that are not caught. Column C1 is defined as INTEGER NOT NULL.

Allowable but mistaken check constraints:

v A self-contradictory check constraint:
CHECK (C1 > 5 AND C1 < 2)

v Two check constraints that contradict each other:
CHECK (C1 > 5)
CHECK (C1 < 2)

v Two check constraints, one of which is redundant:

© Copyright IBM Corp. 1983, 2012 261



CHECK (C1 > 0)
CHECK (C1 >= 1)

v A check constraint that contradicts the column definition:
CHECK (C1 IS NULL)

v A check constraint that repeats the column definition:
CHECK (C1 IS NOT NULL)

A check constraint is not checked for consistency with other types of constraints.
For example, a column in a dependent table can have a referential constraint with
a delete rule of SET NULL. You can also define a check constraint that prohibits
nulls in the column. As a result, an attempt to delete a parent row fails, because
setting the dependent row to null violates the check constraint.

Similarly, a check constraint is not checked for consistency with a validation
routine, which is applied to a table before a check constraint. If the routine requires
a column to be greater than or equal to 10 and a check constraint requires the same
column to be less than 10, table inserts are not possible. Plans and packages do not
need to be rebound after check constraints are defined on or removed from a table.

When check constraints are enforced
After check constraints are defined on a table, any change must satisfy those
constraints if it is made by:
v The LOAD utility with the option ENFORCE CONSTRAINT
v An SQL INSERT statement
v An SQL UPDATE statement

A row satisfies a check constraint if its condition evaluates either to true or to
unknown. A condition can evaluate to unknown for a row if one of the named
columns contains the null value for that row.

Any constraint defined on columns of a base table applies to the views defined on
that base table.

When you use ALTER TABLE to add a check constraint to already populated
tables, the enforcement of the check constraint is determined by the value of the
CURRENT RULES special register as follows:
v If the value is STD, the check constraint is enforced immediately when it is

defined. If a row does not conform, the check constraint is not added to the
table and an error occurs.

v If the value is DB2, the check constraint is added to the table description but its
enforcement is deferred. Because there might be rows in the table that violate
the check constraint, the table is placed in CHECK-pending status.

How check constraints set CHECK-pending status
Maintaining check integrity requires enforcing check constraints on data in a table.
When check integrity is compromised or cannot be guaranteed, the table space or
partition that contains the table is placed in CHECK-pending status. The definition
of that status includes violations of check constraints as well as referential
constraints.

Table check violations place a table space or partition in CHECK-pending status
when any of these conditions exist:
v A check constraint is defined on a populated table using the ALTER TABLE

statement, and the value of the CURRENT RULES special register is DB2.

262 Application Programming and SQL Guide



v The LOAD utility is run with CONSTRAINTS NO, and check constraints are
defined on the table.

v CHECK DATA is run on a table that contains violations of check constraints.
v A point-in-time RECOVER introduces violations of check constraints.

Using referential constraints
A table can serve as the “master list” of all occurrences of an entity. In the sample
application, the employee table serves that purpose for employees; the numbers
that appear in that table are the only valid employee numbers. Likewise, the
department table provides a master list of all valid department numbers; the
project activity table provides a master list of activities performed for projects; and
so on.

Figure 118 shows the relationships that exist among the tables in the sample
application. Arrows point from parent tables to dependent tables.

When a table refers to an entity for which there is a master list, it should identify
an occurrence of the entity that actually appears in the master list; otherwise, either
the reference is invalid or the master list is incomplete. Referential constraints
enforce the relationship between a table and a master list.

Parent key columns
If every row in a table represents relationships for a unique entity, the table should
have one column or a set of columns that provides a unique identifier for the rows
of the table. This column (or set of columns) is called the parent key of the table. To
ensure that the parent key does not contain duplicate values, you must create a
unique index on the column or columns that constitute the parent key. Defining
the parent key is called entity integrity, because it requires each entity to have a
unique key.

CASCADE

CASCADE

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

SET
NULL

SET
NULL

DEPT

EMP

PROJ

ACT

PROJACT

EMPPROJACT

Figure 118. Relationships among tables in the sample application

Chapter 10. Using constraints to maintain data integrity 263



In some cases, using a timestamp as part of the key can be helpful, for example
when a table does not have a “natural” unique key or if arrival sequence is the
key.

Primary keys for some of the sample tables are:

Table Key Column
Employee table EMPNO
Department table DEPTNO
Project table PROJNO

Table 25 shows part of the project table which has the primary key column,
PROJNO.

Table 25. Part of the project table with the primary key column, PROJNO

PROJNO PROJNAME DEPTNO

MA2100 WELD LINE AUTOMATION D01

MA2110 W L PROGRAMMING D11

Table 26 shows part of the project activity table, which has a primary key that
contains more than one column. The primary key is a composite key, which consists
of the PRONNO, ACTNO, and ACSTDATE columns.

Table 26. Part of the Project activities table with a composite primary key

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 .50 1982-01-01 1982-07-01

AD3110 10 1.00 1982-01-01 1983-01-01

AD3111 60 .50 1982-03-15 1982-04-15

Defining a parent key and a unique index
The primary key of a table, if one exists, uniquely identifies each occurrence of an
entity about which the table contains information. The PRIMARY KEY clause of
the CREATE TABLE or ALTER TABLE statements identifies the column or columns
of the primary key. Each identified column must be defined as NOT NULL.

Another way to allow only unique values in a column is to create a table using the
UNIQUE clause of the CREATE TABLE or ALTER TABLE statement. Like the
PRIMARY KEY clause, specifying a UNIQUE clause prevents use of the table until
you create an index to enforce the uniqueness of the key. If you use the UNIQUE
clause in an ALTER TABLE statement, a unique index must already exist. For more
information about the UNIQUE clause, see Chapter 5 of DB2 SQL Reference.

A table that is to be a parent of dependent tables must have a primary or a unique
key—the foreign keys of the dependent tables refer to the primary or unique key.
Otherwise, a primary key is optional. Consider defining a primary key if each row
of your table does pertain to a unique occurrence of some entity. If you define a
primary key, an index must be created (the primary index) on the same set of
columns, in the same order as those columns. If you are defining referential
constraints for DB2 to enforce, read Chapter 10, “Using constraints to maintain
data integrity,” on page 261 before creating or altering any of the tables involved.

264 Application Programming and SQL Guide



A table can have no more than one primary key. A primary key obeys the same
restrictions as do index keys:
v The key can include no more than 64 columns.
v No column can be named twice.
v The sum of the column length attributes cannot be greater than 2000.

You define a list of columns as the primary key of a table with the PRIMARY KEY
clause in the CREATE TABLE statement.

To add a primary key to an existing table, use the PRIMARY KEY clause in an
ALTER TABLE statement. In this case, a unique index must already exist.

Incomplete definition
If a table is created with a primary key, its primary index is the first unique index
created on its primary key columns, with the same order of columns as the
primary key columns. The columns of the primary index can be in either
ascending or descending order. The table has an incomplete definition until you
create an index on the parent key. This incomplete definition status is recorded as a
P in the TABLESTATUS column of SYSIBM.SYSTABLES. Use of a table with an
incomplete definition is severely restricted: you can drop the table, create the
primary index, and drop or create other indexes; you cannot load the table, insert
data, retrieve data, update data, delete data, or create foreign keys that reference
the primary key.

Because of these restrictions, plan to create the primary index soon after creating
the table. For example, to create the primary index for the project activity table,
issue:
CREATE UNIQUE INDEX XPROJAC1

ON DSN8810.PROJACT (PROJNO, ACTNO, ACSTDATE);

Creating the primary index resets the incomplete definition status and its
associated restrictions. But if you drop the primary index, it reverts to incomplete
definition status; to reset the status, you must create the primary index or alter the
table to drop the primary key.

If the primary key is added later with ALTER TABLE, a unique index on the key
columns must already exist. If more than one unique index is on those columns,
DB2 chooses one arbitrarily to be the primary index.

Recommendations for defining primary keys
Consider the following items when you plan for primary keys:
v The theoretical model of a relational database suggests that every table should

have a primary key to uniquely identify the entities it describes. However, you
must weigh that model against the potential cost of index maintenance
overhead. DB2 does not require you to define a primary key for tables with no
dependents.

v Choose a primary key whose values will not change over time. Choosing a
primary key with persistent values enforces the good practice of having unique
identifiers that remain the same for the lifetime of the entity occurrence.

v A primary key column should not have default values unless the primary key is
a single TIMESTAMP column.

v Choose the minimum number of columns to ensure uniqueness of the primary
key.

Chapter 10. Using constraints to maintain data integrity 265



v A view that can be updated that is defined on a table with a primary key should
include all columns of the key. Although this is necessary only if the view is
used for inserts, the unique identification of rows can be useful if the view is
used for updates, deletes, or selects.

v Drop a primary key later if you change your database or application using SQL.

Defining a foreign key
You define a list of columns as a foreign key of a table with the FOREIGN KEY
clause in the CREATE TABLE statement.

A foreign key can refer to either a unique or a primary key of the parent table. If
the foreign key refers to a non-primary unique key, you must specify the column
names of the key explicitly. If the column names of the key are not specified
explicitly, the default is to refer to the column names of the primary key of the
parent table.

The column names you specify identify the columns of the parent key. The
privilege set must include the ALTER or the REFERENCES privilege on the
columns of the parent key. A unique index must exist on the parent key columns of
the parent table.

The relationship name
You can choose a constraint name for the relationship that is defined by a foreign
key. If you do not choose a name, DB2 generates one from the name of the first
column of the foreign key, in the same way that it generates the name of an
implicitly created table space.

For example, the names of the relationships in which the employee-to-project
activity table is a dependent would, by default, be recorded (in column RELNAME
of SYSIBM.SYSFOREIGNKEYS) as EMPNO and PROJNO. Figure 119 shows a
CREATE TABLE statement that specifies constraint names REPAPA and REPAE for
the foreign keys in the employee-to-project activity table.

The name is used in error messages, queries to the catalog, and DROP FOREIGN
KEY statements. Hence, you might want to choose one if you are experimenting
with your database design and have more than one foreign key beginning with the
same column (otherwise DB2 generates the name).

Indexes on foreign keys
Although not required, an index on a foreign key is strongly recommended if rows
of the parent table are often deleted. The validity of the delete statement, and its
possible effect on the dependent table, can be checked through the index.

CREATE TABLE DSN8810.EMPPROJACT
(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
CONSTRAINT REPAPA FOREIGN KEY (PROJNO, ACTNO)

REFERENCES DSN8810.PROJACT ON DELETE RESTRICT,
CONSTRAINT REPAE FOREIGN KEY (EMPNO)

REFERENCES DSN8810.EMP ON DELETE RESTRICT)
IN DATABASE DSN8D81A;

Figure 119. Specifying constraint names for foreign keys

266 Application Programming and SQL Guide



You can create an index on the columns of a foreign key in the same way you
create one on any other set of columns. Most often it is not a unique index. If you
do create a unique index on a foreign key, it introduces an additional constraint on
the values of the columns.

The index on the foreign key can be used on the dependent table for delete
operations on a parent table. For the index to qualify, the leading columns of the
index must be identical to and in the same order as all columns in the foreign key.
The index can include additional columns, but the leading columns match the
definition of the foreign key. Indexes that use expressions cannot be used for this
purpose.

A foreign key can also be the primary key; then the primary index is also a unique
index on the foreign key. In that case, every row of the parent table has at most
one dependent row. The dependent table might be used to hold information that
pertains to only a few of the occurrences of the entity described by the parent
table. For example, a dependent of the employee table might contain information
that applies only to employees working in a different country.

The primary key can share columns of the foreign key if the first n columns of the
foreign key are the same as the primary key's columns. Again, the primary index
serves as an index on the foreign key. In the sample project activity table, the
primary index (on PROJNO, ACTNO, ACSTDATE) serves as an index on the
foreign key on PROJNO. It does not serve as an index on the foreign key on
ACTNO, because ACTNO is not the first column of the index.

The FOREIGN KEY clause in ALTER TABLE
You can add a foreign key to an existing table; in fact, that is sometimes the only
way to proceed. To make a table self-referencing, you must add a foreign key after
creating it.

When a foreign key is added to a populated table, the table space is put into check
pending status.

Restrictions on cycles of dependent tables
A cycle is a set of two or more tables that can be ordered so that each is a
dependent of the one before it, and the first is a dependent of the last. Every table
in the cycle is a descendent of itself. In the sample application, the employee and
department tables are a cycle; each is a dependent of the other.

DB2 does not allow you to create a cycle in which a delete operation on a table
involves that same table. Enforcing that principle creates rules about adding a
foreign key to a table:
v In a cycle of two tables, neither delete rule can be CASCADE.
v In a cycle of more than two tables, two or more delete rules must not be

CASCADE. For example, in a cycle with three tables, two of the delete rules
must be other than CASCADE. This concept is illustrated in Figure 120 on page
268. The cycle on the left is valid because two or more of the delete rules are not
CASCADE. The cycle on the right is invalid because it contains two cascading
deletes.

Chapter 10. Using constraints to maintain data integrity 267

#
#
#
#
#
#

|
|
|



Alternatively, a delete operation on a self-referencing table must involve the same
table, and the delete rule there must be CASCADE or NO ACTION.

Recommendation: Avoid creating a cycle in which all the delete rules are
RESTRICT and none of the foreign keys allows nulls. If you do this, no row of any
of the tables can ever be deleted.

Maintaining referential integrity when using data encryption
If you use encrypted data in a referential constraint, the primary key of the parent
table and the foreign key of the dependent table must have the same encrypted
value. The encrypted value should be extracted from the parent table (the primary
key) and used for the dependent table (the foreign key). You can do this in one of
the following two ways:
v Use the FINAL TABLE (INSERT statement) clause on a SELECT statement.
v Use the ENCRYPT_TDES function to encrypt the foreign key using the same

password as the primary key. The encrypted value of the foreign key will be the
same as the encrypted value of the primary key.

The SET ENCRYPTION PASSWORD statement sets the password that will be used
for the ENCRYPT_TDES function. See DB2 SQL Reference for more information
about the SET ENCRYPTION PASSWORD statement and the ENCRYPT_TDES
statement.

Referential constraints on tables with multilevel security with
row-level granularity

The multilevel security check with row-level granularity is not enforced when DB2
is enforcing referential constraints. Although referential constraints cannot be used
for a security label column, referential constraints can be used on other columns in
the row. Referential constraints are enforced when the following situations occur:
v An INSERT statement is applied to a dependent table.
v An UPDATE statement is applied to a foreign key of a dependent table, or to the

parent key of a parent table.
v A DELETE statement is applied to a parent table. In addition to all referential

constraints being enforced, the DB2 system enforces all delete rules for all
dependent rows that are affected by the delete operation. If all referential
constraints and delete rules are not satisfied, the delete operation will not
succeed.

v The LOAD utility with the ENFORCE CONSTRAINTS option is run on a
dependent table.

v The CHECK DATA utility is run.

TABLE1 TABLE1

TABLE2

Valid
cycle

Invalid
cycle

TABLE3 TABLE3TABLE2

RESTRICT CASCADE CASCADE CASCADE

SET NULL SET NULL

Figure 120. Valid and invalid delete cycles

268 Application Programming and SQL Guide

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|

|

|
|
|
|

|

|
|

|
|
|
|
|

|
|

|



Refer to Part 3 (Volume 1) of DB2 Administration Guide for more information about
multilevel security with row-level granularity.

Using informational referential constraints
An informational referential constraint is a referential constraint that is not
enforced by DB2 during normal operations. DB2 ignores informational referential
constraints during insert, update, and delete operations. Some utilities ignore these
constraints; other utilities recognize them. For example, CHECK DATA and LOAD
ignore these constraints. QUIESCE TABLESPACESET recognizes these constraints
by quiescing all table spaces related to the specified table space.

You should use this type of referential constraint only when an application process
verifies the data in a referential integrity relationship. For example, when inserting
a row in a dependent table, the application should verify that a foreign key exists
as a primary or unique key in the parent table. To define an informational
referential constraint, use the NOT ENFORCED option of the referential constraint
definition in a CREATE TABLE or ALTER TABLE statement. For more information
about the NOT ENFORCED option, see Chapter 5 of DB2 SQL Reference.

Informational referential constraints are often useful, especially in a data
warehouse environment, for several reasons:
v To avoid the overhead of enforcement by DB2.

Typically, data in a data warehouse has been extracted and cleansed from other
sources. Referential integrity might already be guaranteed. In this situation,
enforcement by DB2 is unnecessary.

v To allow more queries to qualify for automatic query rewrite.
Automatic query rewrite is a process that examines a submitted query that
references source tables and, if appropriate, rewrites the query so that it executes
against a materialized query table that has been derived from those source
tables. This process uses informational referential constraints to determine
whether the query can use a materialized query table. Automatic query rewrite
results in a significant reduction in query run time, especially for
decision-support queries that operate over huge amounts of data. For more
information about materialized query tables and automatic query rewrite, see
Part 5 (Volume 2) of DB2 Administration Guide.

Chapter 10. Using constraints to maintain data integrity 269

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|



270 Application Programming and SQL Guide



Chapter 11. Using DB2-generated values as keys

This chapter discusses how to use DB2-generated values as keys in applications:
v “Using ROWID columns as keys”
v “Using identity columns as keys” on page 272
v “Using values obtained from sequence objects as keys” on page 275

The chapter describes the characteristics of values in ROWID and identity columns
and values that are obtained by referencing sequence objects. This chapter also
evaluates the ability of these DB2-generated values to serve as primary keys or
unique keys.

Using ROWID columns as keys
If you define a column in a table to have the ROWID data type, DB2 provides a
unique value for each row in the table only if you define the column as
GENERATED ALWAYS. The purpose of the value in the ROWID column is to
allow you to uniquely identify rows in the table.

You can use a ROWID column to write queries that navigate directly to a row,
which can be useful in situations where high performance is a requirement. This
direct navigation, without using an index or scanning the table space, is called
direct row access. In addition, a ROWID column is a requirement for tables that
contain LOB columns. This section discusses the use of a ROWID column in direct
row access.

Requirement: To use direct row access, you must use a retrieved ROWID value
before you commit. When your application commits, it releases its claim on the
table space. After the commit, a REORG on your table space might execute and
change the physical location of the rows.

Restriction: In general, you cannot use a ROWID column as a key that is to be
used as a single column value across multiple tables. The ROWID value for a
particular row in a table might change over time due to a REORG of the table
space. In particular, you cannot use a ROWID column as part of a parent key or
foreign key.

The value that you retrieve from a ROWID column is a varying-length character
value that is not monotonically ascending or descending (the value is not always
increasing or not always decreasing). Therefore, a ROWID column does not
provide suitable values for many types of entity keys, such as order numbers or
employee numbers.

Defining a ROWID column
You can define a ROWID column as either GENERATED BY DEFAULT or
GENERATED ALWAYS:
v If you define the column as GENERATED BY DEFAULT, you can insert a value.

DB2 provides a default value if you do not supply one. However, to be able to
insert an explicit value (by using the INSERT statement with the VALUES
clause), you must create a unique index on that column.

© Copyright IBM Corp. 1983, 2012 271

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|



v If you define the column as GENERATED ALWAYS (which is the default), DB2
always generates a unique value for the column. You cannot insert data into that
column. In this case, DB2 does not require an index to guarantee unique values.

For more information, see “Inserting data into a ROWID column” on page 30.

Direct row access
For some applications, you can use the value of a ROWID column to navigate
directly to a row. When you select a ROWID column, the value implicitly contains
the location of the retrieved row. If you use the value from the ROWID column in
the search condition of a subsequent query, DB2 can choose to navigate directly to
that row.

Example: Suppose that an EMPLOYEE table is defined in the following way:
CREATE TABLE EMPLOYEE

(EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
EMPNO SMALLINT,
NAME CHAR(30),
SALARY DECIMAL(7,2),
WORKDEPT SMALLINT);

The following code uses the SELECT from INSERT statement to retrieve the value
of the ROWID column from a new row that is inserted into the EMPLOYEE table.
This value is then used to reference that row for the update of the SALARY
column.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS ROWID hv_emp_rowid;
short hv_dept, hv_empno;
char hv_name[30];
decimal(7,2) hv_salary;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL

SELECT EMP_ROWID INTO :hv_emp_rowid
FROM FINAL TABLE (INSERT INTO EMPLOYEE

VALUES (DEFAULT, :hv_empno, :hv_name, :hv_salary, :hv_dept));
EXEC SQL

UPDATE EMPLOYEE
SET SALARY = SALARY + 1200
WHERE EMP_ROWID = :hv_emp_rowid;

EXEC SQL COMMIT;

For DB2 to be able to use direct row access for the update operation, the SELECT
from INSERT statement and the UPDATE statement must execute within the same
unit of work. If these statements execute in different units of work, the ROWID
value for the inserted row might change due to a REORG of the table space before
the update operation. For more information about predicates and direct row access,
see “Is direct row access possible? (PRIMARY_ACCESSTYPE = D)” on page 803.

Using identity columns as keys
If you define a column with the AS IDENTITY attribute, and with the
GENERATED ALWAYS and NO CYCLE attributes, DB2 automatically generates a
monotonically increasing or decreasing sequential number for the value of that
column when a new row is inserted into the table. However, for DB2 to guarantee
that the values of the identity column are unique, you should define a unique
index on that column.

272 Application Programming and SQL Guide

|
|
|

|

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|



You can use identity columns for primary keys that are typically unique sequential
numbers, for example, order numbers or employee numbers. By doing so, you can
avoid the concurrency problems that can result when an application generates its
own unique counter outside the database.

Recommendation: Set the values of the foreign keys in the dependent tables after
loading the parent table. If you use an identity column as a parent key in a
referential integrity structure, loading data into that structure could be quite
complicated. The values for the identity column are not known until the table is
loaded because the column is defined as GENERATED ALWAYS.

You might have gaps in identity column values for the following reasons:
v If other applications are inserting values into the same identity column
v If DB2 terminates abnormally before it assigns all the cached values
v If your application rolls back a transaction that inserts identity values

Defining an identity column
You can define an identity column as either GENERATED BY DEFAULT or
GENERATED ALWAYS:
v If you define the column as GENERATED BY DEFAULT, you can insert a value,

and DB2 provides a default value if you do not supply one. For identity
columns that are defined as GENERATED BY DEFAULT and NO CYCLE, only
the values that DB2 generates are unique among each other.

v If you define the column as GENERATED ALWAYS, DB2 always generates a
value for the column, and you cannot insert data into that column. If you want
the values to be unique, you must define the identity column with GENERATED
ALWAYS and NO CYCLE. In addition, to ensure that the values are unique,
define a unique index on that column.

For more information, see “Inserting data into an identity column” on page 30.

The values that DB2 generates for an identity column depend on how the column
is defined. The START WITH parameter determines the first value that DB2
generates. The values advance by the INCREMENT BY parameter in ascending or
descending order.

The MINVALUE and MAXVALUE parameters determine the minimum and
maximum values that DB2 generates. The CYCLE or NO CYCLE parameter
determines whether DB2 wraps values when it has generated all values between
the START WITH value and MAXVALUE if the values are ascending, or between
the START WITH value and MINVALUE if the values are descending.

Example: Suppose that table T1 is defined with GENERATED ALWAYS and
CYCLE:
CREATE TABLE T1

(CHARCOL1 CHAR(1),
IDENTCOL1 SMALLINT GENERATED ALWAYS AS IDENTITY

(START WITH -1,
INCREMENT BY 1,
CYCLE,
MINVALUE -3,
MAXVALUE 3));

Now suppose that you execute the following INSERT statement eight times:
INSERT INTO T1 (CHARCOL1) VALUES (’A’);

Chapter 11. Using DB2-generated values as keys 273

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|



When DB2 generates values for IDENTCOL1, it starts with -1 and increments by 1
until it reaches the MAXVALUE of 3 on the fifth INSERT. To generate the value for
the sixth INSERT, DB2 cycles back to MINVALUE, which is -3. T1 looks like this
after the eight INSERTs are executed:
CHARCOL1 IDENTCOL1
======== =========
A -1
A 0
A 1
A 2
A 3
A -3
A -2
A -1

The value of IDENTCOL1 for the eighth INSERT repeats the value of IDENTCOL1
for the first INSERT.

Parent keys and foreign keys
The SELECT from INSERT statement allows you to insert a row into a parent table
with its primary key defined as a DB2-generated identity column, and retrieve the
value of the primary or parent key. You can then use this generated value as a
foreign key in a dependent table. For information about the SELECT from INSERT
statement, see “Selecting values as you insert: SELECT FROM INSERT” on page
31.

In addition, you can use the IDENTITY_VAL_LOCAL function to return the most
recently assigned value for an identity column that was generated by an INSERT
with a VALUES clause within the current processing level. (A new level is initiated
when a trigger, function, or stored procedure is invoked.)

Example: Using SELECT from INSERT: Suppose that an EMPLOYEE table and a
DEPARTMENT table are defined in the following way:
CREATE TABLE EMPLOYEE

(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY
PRIMARY KEY NOT NULL,

NAME CHAR(30) NOT NULL,
SALARY DECIMAL(7,2) NOT NULL,
WORKDEPT SMALLINT);

CREATE TABLE DEPARTMENT
(DEPTNO SMALLINT NOT NULL PRIMARY KEY,
DEPTNAME VARCHAR(30),
MGRNO INTEGER NOT NULL,
CONSTRAINT REF_EMPNO FOREIGN KEY (MGRNO)

REFERENCES EMPLOYEE (EMPNO) ON DELETE RESTRICT);

ALTER TABLE EMPLOYEE ADD
CONSTRAINT REF_DEPTNO FOREIGN KEY (WORKDEPT)

REFERENCES DEPARTMENT (DEPTNO) ON DELETE SET NULL;

When you insert a new employee into the EMPLOYEE table, to retrieve the value
for the EMPNO column, you can use the following SELECT from INSERT
statement:
EXEC SQL

SELECT EMPNO INTO :hv_empno
FROM FINAL TABLE (INSERT INTO EMPLOYEE (NAME, SALARY, WORKDEPT)

VALUES (’New Employee’, 75000.00, 11));

274 Application Programming and SQL Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|



The SELECT statement returns the DB2-generated identity value for the EMPNO
column in the host variable :hv_empno.

You can then use the value in :hv_empno to update the MGRNO column in the
DEPARTMENT table with the new employee as the department manager:
EXEC SQL

UPDATE DEPARTMENT
SET MGRNO = :hv_empno
WHERE DEPTNO = 11;

Example: Using IDENTITY_VAL_LOCAL: The following INSERT and UPDATE
statements are equivalent to the INSERT and UPDATE statements of the previous
example:
INSERT INTO EMPLOYEE (NAME, SALARY, WORKDEPT)

VALUES (’New Employee’, 75000.00, 11);

UPDATE DEPARTMENT
SET MGRNO = IDENTITY_VAL_LOCAL()
WHERE DEPTNO = 11;

The INSERT statement and the IDENTITY_VAL_LOCAL function must be at the
same processing level.

Using values obtained from sequence objects as keys
A sequence is a user-defined object that generates a sequence of numeric values
according to the specification with which the sequence was created. The sequence
of numeric values is generated in a monotonically ascending or descending order.
Sequences, unlike identity columns, are not associated with tables. Applications
refer to a sequence object to get its current or next value. The relationship between
sequences and tables is controlled by the application, not by DB2.

Your application can reference a sequence object and coordinate the value as keys
across multiple rows and tables. However, a table column that gets its values from
a sequence object does not necessarily have unique values in that column. Even if
the sequence object has been defined with the NO CYCLE clause, some other
application might insert values into that table column other than values you obtain
by referencing that sequence object.

DB2 always generates sequence numbers in order of request. However, in a data
sharing group where the sequence values are cached by multiple DB2 members
simultaneously, the sequence value assignments might not be in numeric order.
Additionally, you might have gaps in sequence number values for the following
reasons:
v If DB2 terminates abnormally before it assigns all the cached values
v If your application rolls back a transaction that increments the sequence
v If the statement containing NEXT VALUE fails after it increments the sequence

Creating a sequence object
You create a sequence object with the CREATE SEQUENCE statement, alter it with
the ALTER SEQUENCE statement, and drop it with the DROP SEQUENCE
statement. You grant access to a sequence with the GRANT (privilege) ON
SEQUENCE statement, and revoke access to the sequence with the REVOKE
(privilege) ON SEQUENCE statement.

Chapter 11. Using DB2-generated values as keys 275

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|



The values that DB2 generates for a sequence depend on how the sequence is
created. The START WITH parameter determines the first value that DB2
generates. The values advance by the INCREMENT BY parameter in ascending or
descending order.

The MINVALUE and MAXVALUE parameters determine the minimum and
maximum values that DB2 generates. The CYCLE or NO CYCLE parameter
determines whether DB2 wraps values when it has generated all values between
the START WITH value and MAXVALUE if the values are ascending, or between
the START WITH value and MINVALUE if the values are descending.

Referencing a sequence object
You reference a sequence by using the NEXT VALUE expression or the PREVIOUS
VALUE expression, specifying the name of the sequence:
v A NEXT VALUE expression generates and returns the next value for the

specified sequence. If a query contains multiple instances of a NEXT VALUE
expression with the same sequence name, the sequence value increments only
once for that query. The ROLLBACK statement has no effect on values already
generated.

v A PREVIOUS VALUE expression returns the most recently generated value for
the specified sequence for a previous NEXT VALUE expression that specified the
same sequence within the current application process. The value of the
PREVIOUS VALUE expression persists until the next value is generated for the
sequence, the sequence is dropped, or the application session ends. The
COMMIT statement and the ROLLBACK statement have no effect on this value.

You can specify a NEXT VALUE or PREVIOUS VALUE expression in a SELECT
clause, within a VALUES clause of an INSERT statement, within the SET clause of
an UPDATE statement (with certain restrictions), or within a SET host-variable
statement. For more information about where you can use these expressions, see
DB2 SQL Reference.

Keys across multiple tables
You can use the same sequence number as a key value in two separate tables by
first generating the sequence value with a NEXT VALUE expression to insert the
first row in the first table. You can then reference this same sequence value with a
PREVIOUS VALUE expression to insert the other rows in the second table.

Example: Suppose that an ORDERS table and an ORDER_ITEMS table are defined
in the following way:
CREATE TABLE ORDERS

(ORDERNO INTEGER NOT NULL,
ORDER_DATE DATE DEFAULT,
CUSTNO SMALLINT
PRIMARY KEY (ORDERNO));

CREATE TABLE ORDER_ITEMS
(ORDERNO INTEGER NOT NULL,
PARTNO INTEGER NOT NULL,
QUANTITY SMALLINT NOT NULL,
PRIMARY KEY (ORDERNO,PARTNO),
CONSTRAINT REF_ORDERNO FOREIGN KEY (ORDERNO)

REFERENCES ORDERS (ORDERNO) ON DELETE CASCADE);

You create a sequence named ORDER_SEQ to use as key values for both the
ORDERS and ORDER_ITEMS tables:

276 Application Programming and SQL Guide

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|



CREATE SEQUENCE ORDER_SEQ AS INTEGER
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 20;

You can then use the same sequence number as a primary key value for the
ORDERS table and as part of the primary key value for the ORDER_ITEMS table:
INSERT INTO ORDERS (ORDERNO, CUSTNO)

VALUES (NEXT VALUE FOR ORDER_SEQ, 12345);

INSERT INTO ORDER_ITEMS (ORDERNO, PARTNO, QUANTITY)
VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 2);

The NEXT VALUE expression in the first INSERT statement generates a sequence
number value for the sequence object ORDER_SEQ. The PREVIOUS VALUE
expression in the second INSERT statement retrieves that same value because it
was the sequence number most recently generated for that sequence object within
the current application process.

Chapter 11. Using DB2-generated values as keys 277

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|



278 Application Programming and SQL Guide



Chapter 12. Using triggers for active data

Triggers are sets of SQL statements that execute when a certain event occurs in a
DB2 table. Like constraints, triggers can be used to control changes in DB2
databases. Triggers are more powerful, however, because they can monitor a
broader range of changes and perform a broader range of actions than constraints
can.

For example, a constraint can disallow an update to the salary column of the
employee table if the new value is over a certain amount. A trigger can monitor
the amount by which the salary changes, as well as the salary value. If the change
is above a certain amount, the trigger might substitute a valid value and call a
user-defined function to send a notice to an administrator about the invalid
update.

Triggers also move application logic intoDB2, which can result in faster application
development and easier maintenance. For example, you can write applications to
control salary changes in the employee table, but each application program that
changes the salary column must include logic to check those changes. A better
method is to define a trigger that controls changes to the salary column. Then DB2
does the checking for any application that modifies salaries.

This chapter presents the following information about triggers:
v “Example of creating and using a trigger”
v “Parts of a trigger” on page 281
v “Invoking stored procedures and user-defined functions from triggers” on page

287
v “Passing transition tables to user-defined functions and stored procedures” on

page 288
v “Trigger cascading” on page 288
v “Ordering of multiple triggers” on page 289
v “Interactions between triggers and referential constraints” on page 290
v “Interactions between triggers and tables that have multilevel security with

row-level granularity” on page 291
v “Creating triggers to obtain consistent results” on page 292

Example of creating and using a trigger
Triggers automatically execute a set of SQL statements whenever a specified event
occurs. These SQL statements can perform tasks such as validation and editing of
table changes, reading and modifying tables, or invoking functions or stored
procedures that perform operations both inside and outside DB2.

You create triggers using the CREATE TRIGGER statement. Figure 121 on page 280
shows an example of a CREATE TRIGGER statement.

© Copyright IBM Corp. 1983, 2012 279



The parts of this trigger are:

�1� Trigger name (REORDER)

�2� Trigger activation time (AFTER)

�3� Triggering event (UPDATE)

�4� Subject table name (PARTS)

�5� New transition variable correlation name (N_ROW)

�6� Granularity (FOR EACH ROW)

�7� Trigger condition (WHEN...)

�8� Trigger body (BEGIN ATOMIC...END;)

When you execute this CREATE TRIGGER statement, DB2 creates a trigger
package called REORDER and associates the trigger package with table PARTS.
DB2 records the timestamp when it creates the trigger. If you define other triggers
on the PARTS table, DB2 uses this timestamp to determine which trigger to
activate first. The trigger is now ready to use.

After DB2 updates columns ON_HAND or MAX_STOCKED in any row of table
PARTS, trigger REORDER is activated. The trigger calls a stored procedure called
ISSUE_SHIP_REQUEST if, after a row is updated, the quantity of parts on hand is
less than 10% of the maximum quantity stocked. In the trigger condition, the
qualifier N_ROW represents a value in a modified row after the triggering event.

When you no longer want to use trigger REORDER, you can delete the trigger by
executing the statement:
DROP TRIGGER REORDER;

Executing this statement drops trigger REORDER and its associated trigger
package named REORDER.

If you drop table PARTS, DB2 also drops trigger REORDER and its trigger
package.

�1�
CREATE TRIGGER REORDER

�2� �3� �4�
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

�5�
REFERENCING NEW AS N_ROW
�6�
FOR EACH ROW MODE DB2SQL
�7�
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
�8�
BEGIN ATOMIC
CALL ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

N_ROW.ON_HAND,
N_ROW.PARTNO);

END

Figure 121. Example of a trigger

280 Application Programming and SQL Guide



Parts of a trigger
This section gives you the information you need to code each of the trigger parts:
v “Trigger name”
v “Subject table”
v “Trigger activation time”
v “Triggering event”
v “Granularity” on page 282
v “Transition variables” on page 283
v “Transition tables” on page 284
v “Triggered action” on page 285

Trigger name
Use an ordinary identifier to name your trigger. You can use a qualifier or let DB2
determine the qualifier. When DB2 creates a trigger package for the trigger, it uses
the qualifier for the collection ID of the trigger package. DB2 uses these rules to
determine the qualifier:
v If you use static SQL to execute the CREATE TRIGGER statement, DB2 uses the

authorization ID in the bind option QUALIFIER for the plan or package that
contains the CREATE TRIGGER statement. If the bind command does not
include the QUALIFIER option, DB2 uses the owner of the package or plan.

v If you use dynamic SQL to execute the CREATE TRIGGER statement, DB2 uses
the authorization ID in special register CURRENT SQLID.

Subject table
When you perform an insert, update, or delete operation on this table, the trigger
is activated. You must name a local table in the CREATE TRIGGER statement. You
cannot define a trigger on a catalog table or on a view.

Trigger activation time
The two choices for trigger activation time are NO CASCADE BEFORE and
AFTER. NO CASCADE BEFORE means that the trigger is activated before DB2
makes any changes to the subject table, and that the triggered action does not
activate any other triggers. AFTER means that the trigger is activated after DB2
makes changes to the subject table and can activate other triggers. Triggers with an
activation time of NO CASCADE BEFORE are known as before triggers. Triggers
with an activation time of AFTER are known as after triggers.

Triggering event
Every trigger is associated with an event. A trigger is activated when the triggering
event occurs in the subject table. The triggering event is one of the following SQL
operations:
v INSERT
v UPDATE
v DELETE

A triggering event can also be an update or delete operation that occurs as the
result of a referential constraint with ON DELETE SET NULL or ON DELETE
CASCADE.

Chapter 12. Using triggers for active data 281



Triggers are not activated as the result of updates made to tables by DB2 utilities,
with the exception of the LOAD utility when it is specified with the RESUME YES
and SHRLEVEL CHANGE options. See DB2 Utility Guide and Reference for more
information about the LOAD utility.

When the triggering event for a trigger is an update operation, the trigger is called
an update trigger. Similarly, triggers for insert operations are called insert triggers,
and triggers for delete operations are called delete triggers.

The SQL statement that performs the triggering SQL operation is called the
triggering SQL statement. Each triggering event is associated with one subject table
and one SQL operation.

The following trigger is defined with an insert triggering event:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

If the triggering SQL operation is an update operation, the event can be associated
with specific columns of the subject table. In this case, the trigger is activated only
if the update operation updates any of the specified columns.

The following trigger, PAYROLL1, which invokes user-defined function named
PAYROLL_LOG, is activated only if an update operation is performed on the
SALARY or BONUS column of table PAYROLL:
CREATE TRIGGER PAYROLL1

AFTER UPDATE OF SALARY, BONUS ON PAYROLL
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

VALUES(PAYROLL_LOG(USER, ’UPDATE’, CURRENT TIME, CURRENT DATE));
END

Granularity
The triggering SQL statement might modify multiple rows in the table. The
granularity of the trigger determines whether the trigger is activated only once for
the triggering SQL statement or once for every row that the SQL statement
modifies. The granularity values are:
v FOR EACH ROW

The trigger is activated once for each row that DB2 modifies in the subject table.
If the triggering SQL statement modifies no rows, the trigger is not activated.
However, if the triggering SQL statement updates a value in a row to the same
value, the trigger is activated. For example, if an UPDATE trigger is defined on
table COMPANY_STATS, the following SQL statement will activate the trigger.
UPDATE COMPANY_STATS SET NBEMP = NBEMP;

v FOR EACH STATEMENT
The trigger is activated once when the triggering SQL statement executes. The
trigger is activated even if the triggering SQL statement modifies no rows.

Triggers with a granularity of FOR EACH ROW are known as row triggers.
Triggers with a granularity of FOR EACH STATEMENT are known as statement
triggers. Statement triggers can only be after triggers.

The following statement is an example of a row trigger:

282 Application Programming and SQL Guide



CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

Trigger NEW_HIRE is activated once for every row inserted into the employee
table.

Transition variables
When you code a row trigger, you might need to refer to the values of columns in
each updated row of the subject table. To do this, specify transition variables in the
REFERENCING clause of your CREATE TRIGGER statement. The two types of
transition variables are:
v Old transition variables, specified with the OLD transition-variable clause, capture

the values of columns before the triggering SQL statement updates them. You
can define old transition variables for update and delete triggers.

v New transition variables, specified with the NEW transition-variable clause,
capture the values of columns after the triggering SQL statement updates them.
You can define new transition variables for update and insert triggers.

The following example uses transition variables and invocations of the
IDENTITY_VAL_LOCAL function to access values that are assigned to identity
columns.

Suppose that you have created tables T and S, with the following definitions:
CREATE TABLE T

(ID SMALLINT GENERATED BY DEFAULT AS IDENTITY (START WITH 100),
C2 SMALLINT,
C3 SMALLINT,
C4 SMALLINT);

CREATE TABLE S
(ID SMALLINT GENERATED ALWAYS AS IDENTITY,
C1 SMALLINT);

Define a before insert trigger on T that uses the IDENTITY_VAL_LOCAL built-in
function to retrieve the current value of identity column ID, and uses transition
variables to update the other columns of T with the identity column value.
CREATE TRIGGER TR1

NO CASCADE BEFORE INSERT
ON T REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

SET N.C3 =N.ID;
SET N.C4 =IDENTITY_VAL_LOCAL();
SET N.ID =N.C2 *10;
SET N.C2 =IDENTITY_VAL_LOCAL();

END

Now suppose that you execute the following INSERT statement:
INSERT INTO S (C1) VALUES (5);

This statement inserts a row into S with a value of 5 for column C1 and a value of
1 for identity column ID. Next, suppose that you execute the following SQL
statement, which activates trigger TR1:
INSERT INTO T (C2)

VALUES (IDENTITY_VAL_LOCAL());

Chapter 12. Using triggers for active data 283



This insert statement, and the subsequent activation of trigger TR1, have the
following results:
v The INSERT statement obtains the most recent value that was assigned to an

identity column (1), and inserts that value into column C2 of table T. 1 is the
value that DB2 inserted into identity column ID of table S.

v When the INSERT statement executes, DB2 inserts the value 100 into identity
column ID column of C2.

v The first statement in the body of trigger TR1 inserts the value of transition
variable N.ID (100) into column C3. N.ID is the value that identity column ID
contains after the INSERT statement executes.

v The second statement in the body of trigger TR1 inserts the null value into
column C4. By definition, the result of the IDENTITY_VAL_LOCAL function in
the triggered action of a before insert trigger is the null value.

v The third statement in the body of trigger TR1 inserts 10 times the value of
transition variable N.C2 (10*1) into identity column ID of table T. N.C2 is the
value that column C2 contains after the INSERT is executed.

v The fourth statement in the body of trigger TR1 inserts the null value into
column C2. By definition, the result of the IDENTITY_VAL_LOCAL function in
the triggered action of a before insert trigger is the null value.

Transition tables
If you want to refer to the entire set of rows that a triggering SQL statement
modifies, rather than to individual rows, use a transition table. Like transition
variables, transition tables can appear in the REFERENCING clause of a CREATE
TRIGGER statement. Transition tables are valid for both row triggers and statement
triggers. The two types of transition tables are:
v Old transition tables, specified with the OLD TABLE transition-table-name clause,

capture the values of columns before the triggering SQL statement updates
them. You can define old transition tables for update and delete triggers.

v New transition tables, specified with the NEW TABLE transition-table-name
clause, capture the values of columns after the triggering SQL statement updates
them. You can define new transition variables for update and insert triggers.

The scope of old and new transition table names is the trigger body. If another
table exists that has the same name as a transition table, any unqualified reference
to that name in the trigger body points to the transition table. To reference the
other table in the trigger body, you must use the fully qualified table name.

The following example uses a new transition table to capture the set of rows that
are inserted into the INVOICE table:
CREATE TRIGGER LRG_ORDR

AFTER INSERT ON INVOICE
REFERENCING NEW TABLE AS N_TABLE
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

SELECT LARGE_ORDER_ALERT(CUST_NO,
TOTAL_PRICE, DELIVERY_DATE)
FROM N_TABLE WHERE TOTAL_PRICE > 10000;

END

The SELECT statement in LRG_ORDER causes user-defined function
LARGE_ORDER_ALERT to execute for each row in transition table N_TABLE that
satisfies the WHERE clause (TOTAL_PRICE > 10000).

284 Application Programming and SQL Guide



Triggered action
When a trigger is activated, a triggered action occurs. Every trigger has one
triggered action, which consists of a trigger condition and a trigger body.

Trigger condition
If you want the triggered action to occur only when certain conditions are true,
code a trigger condition. A trigger condition is similar to a predicate in a SELECT,
except that the trigger condition begins with WHEN, rather than WHERE. If you
do not include a trigger condition in your triggered action, the trigger body
executes every time the trigger is activated.

For a row trigger, DB2 evaluates the trigger condition once for each modified row
of the subject table. For a statement trigger, DB2 evaluates the trigger condition
once for each execution of the triggering SQL statement.

If the trigger condition of a before trigger has a fullselect, the fullselect cannot
reference the subject table.

The following example shows a trigger condition that causes the trigger body to
execute only when the number of ordered items is greater than the number of
available items:
CREATE TRIGGER CK_AVAIL

NO CASCADE BEFORE INSERT ON ORDERS
REFERENCING NEW AS NEW_ORDER
FOR EACH ROW MODE DB2SQL
WHEN (NEW_ORDER.QUANTITY >

(SELECT ON_HAND FROM PARTS
WHERE NEW_ORDER.PARTNO=PARTS.PARTNO))
BEGIN ATOMIC

VALUES(ORDER_ERROR(NEW_ORDER.PARTNO,
NEW_ORDER.QUANTITY));

END

Trigger body
In the trigger body, you code the SQL statements that you want to execute
whenever the trigger condition is true. If the trigger body consists of more than
one statement, it must begin with BEGIN ATOMIC and end with END. You cannot
include host variables or parameter markers in your trigger body. If the trigger
body contains a WHERE clause that references transition variables, the comparison
operator cannot be LIKE.

The statements you can use in a trigger body depend on the activation time of the
trigger. Table 27 summarizes which SQL statements you can use in which types of
triggers.

Table 27. Valid SQL statements for triggers and trigger activation times

SQL statement Valid before activation time Valid after activation time

fullselect Yes Yes

CALL Yes Yes

SIGNAL SQLSTATE Yes Yes

VALUES Yes Yes

SET transition-variable Yes No

INSERT No Yes

DELETE (searched) No Yes

Chapter 12. Using triggers for active data 285



Table 27. Valid SQL statements for triggers and trigger activation times (continued)

SQL statement Valid before activation time Valid after activation time

UPDATE (searched) No Yes

The following list provides more detailed information about SQL statements that
are valid in triggers:
v fullselect, CALL, and VALUES

Use a fullselect or the VALUES statement in a trigger body to conditionally or
unconditionally invoke a user-defined function. Use the CALL statement to
invoke a stored procedure. See “Invoking stored procedures and user-defined
functions from triggers” on page 287 for more information on invoking
user-defined functions and stored procedures from triggers.
A fullselect in the trigger body of a before trigger cannot reference the subject
table.

v SIGNAL SQLSTATE
Use the SIGNAL SQLSTATE statement in the trigger body to report an error
condition and back out any changes that are made by the trigger, as well as
actions that result from referential constraints on the subject table. When DB2
executes the SIGNAL SQLSTATE statement, it returns an SQLCA to the
application with SQLCODE -438. The SQLCA also includes the following values,
which you supply in the SIGNAL SQLSTATE statement:
– A 5-character value that DB2 uses as the SQLSTATE
– An error message that DB2 places in the SQLERRMC field

In the following example, the SIGNAL SQLSTATE statement causes DB2 to
return an SQLCA with SQLSTATE 75001 and terminate the salary update
operation if an employee’s salary increase is over 20%:
CREATE TRIGGER SAL_ADJ

BEFORE UPDATE OF SALARY ON EMP
REFERENCING OLD AS OLD_EMP
NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL
WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY * 1.20))
BEGIN ATOMIC

SIGNAL SQLSTATE ’75001’
(’Invalid Salary Increase - Exceeds 20%’);

END

v SET transition-variable

Because before triggers operate on rows of a table before those rows are
modified, you cannot perform operations in the body of a before trigger that
directly modify the subject table. You can, however, use the SET
transition-variable statement to modify the values in a row before those values go
into the table. For example, this trigger uses a new transition variable to fill in
today’s date for the new employee’s hire date:
CREATE TRIGGER HIREDATE

NO CASCADE BEFORE INSERT ON EMP
REFERENCING NEW AS NEW_VAR
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

SET NEW_VAR.HIRE_DATE = CURRENT_DATE;
END

v INSERT, DELETE (searched), and UPDATE (searched)

286 Application Programming and SQL Guide



Because you can include INSERT, DELETE (searched), and UPDATE (searched)
statements in your trigger body, execution of the trigger body might cause
activation of other triggers. See “Trigger cascading” on page 288 for more
information.

If any SQL statement in the trigger body fails during trigger execution, DB2 rolls
back all changes that are made by the triggering SQL statement and the triggered
SQL statements. However, if the trigger body executes actions that are outside of
DB2’s control or are not under the same commit coordination as the DB2
subsystem in which the trigger executes, DB2 cannot undo those actions. Examples
of external actions that are not under DB2’s control are:
v Performing updates that are not under RRS commit control
v Sending an electronic mail message

If the trigger executes external actions that are under the same commit
coordination as the DB2 subsystem under which the trigger executes, and an error
occurs during trigger execution, DB2 places the application process that issued the
triggering statement in a must-rollback state. The application must then execute a
rollback operation to roll back those external actions. Examples of external actions
that are under the same commit coordination as the triggering SQL operation are:
v Executing a distributed update operation
v From a user-defined function or stored procedure, executing an external action

that affects an external resource manager that is under RRS commit control.

Invoking stored procedures and user-defined functions from triggers
A trigger body can include only SQL statements and built-in functions. Therefore,
if you want the trigger to perform actions or use logic that is not available in SQL
statements or built-in functions, you need to write a user-defined function or
stored procedure and invoke that function or stored procedure from the trigger
body. Chapter 15, “Creating and using user-defined functions,” on page 311 and
Chapter 25, “Using stored procedures for client/server processing,” on page 631
contain detailed information on how to write and prepare user-defined functions
and stored procedures.

Because a before trigger must not modify any table, functions and procedures that
you invoke from a trigger cannot include INSERT, UPDATE, or DELETE
statements that modify the subject table.

To invoke a user-defined function from a trigger, code a SELECT statement or
VALUES statement. Use a SELECT statement to execute the function conditionally.
The number of times the user-defined function executes depends on the number of
rows in the result table of the SELECT statement. For example, in this trigger, the
SELECT statement causes user-defined function LARGE_ORDER_ALERT to
execute for each row in transition table N_TABLE with an order of more than
10000:
CREATE TRIGGER LRG_ORDR

AFTER INSERT ON INVOICE
REFERENCING NEW TABLE AS N_TABLE
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

SELECT LARGE_ORDER_ALERT(CUST_NO, TOTAL_PRICE, DELIVERY_DATE)
FROM N_TABLE WHERE TOTAL_PRICE > 10000;

END

Use the VALUES statement to execute a function unconditionally; that is, once for
each execution of a statement trigger or once for each row in a row trigger. In this

Chapter 12. Using triggers for active data 287



example, user-defined function PAYROLL_LOG executes every time an update
operation occurs that activates trigger PAYROLL1:
CREATE TRIGGER PAYROLL1

AFTER UPDATE ON PAYROLL
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

VALUES(PAYROLL_LOG(USER, ’UPDATE’,
CURRENT TIME, CURRENT DATE));

END

To invoke a stored procedure from a trigger, use a CALL statement. The
parameters of this stored procedure call must be literals, transition variables, table
locators, or expressions.

Passing transition tables to user-defined functions and stored
procedures

When you call a user-defined function or stored procedure from a trigger, you
might want to give the function or procedure access to the entire set of modified
rows. That is, you want to pass a pointer to the old or new transition table. You do
this using table locators.

Most of the code for using a table locator is in the function or stored procedure
that receives the locator. “Accessing transition tables in a user-defined function or
stored procedure” on page 345 explains how a function defines a table locator and
uses it to receive a transition table. To pass the transition table from a trigger,
specify the parameter TABLE transition-table-name when you invoke the function or
stored procedure. This causes DB2 to pass a table locator for the transition table to
the user-defined function or stored procedure. For example, this trigger passes a
table locator for a transition table NEWEMPS to stored procedure CHECKEMP:
CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

CALL CHECKEMP(TABLE NEWEMPS);
END

Trigger cascading
An SQL operation that a trigger performs might modify the subject table or other
tables with triggers, so DB2 also activates those triggers. A trigger that is activated
as the result of another trigger can be activated at the same level as the original
trigger or at a different level. Two triggers, A and B, are activated at different levels
if trigger B is activated after trigger A is activated and completes before trigger A
completes. If trigger B is activated after trigger A is activated and completes after
trigger A completes, then the triggers are at the same level.

For example, in these cases, trigger A and trigger B are activated at the same level:
v Table X has two triggers that are defined on it, A and B. A is a before trigger and

B is an after trigger. An update to table X causes both trigger A and trigger B to
activate.

v Trigger A updates table X, which has a referential constraint with table Y, which
has trigger B defined on it. The referential constraint causes table Y to be
updated, which activates trigger B.

In these cases, trigger A and trigger B are activated at different levels:

288 Application Programming and SQL Guide



v Trigger A is defined on table X, and trigger B is defined on table Y. Trigger B is
an update trigger. An update to table X activates trigger A, which contains an
UPDATE statement on table B in its trigger body. This UPDATE statement
activates trigger B.

v Trigger A calls a stored procedure. The stored procedure contains an INSERT
statement for table X, which has insert trigger B defined on it. When the INSERT
statement on table X executes, trigger B is activated.

When triggers are activated at different levels, it is called trigger cascading. Trigger
cascading can occur only for after triggers because DB2 does not support cascading
of before triggers.

To prevent the possibility of endless trigger cascading, DB2 supports only 16 levels
of cascading of triggers, stored procedures, and user-defined functions. If a trigger,
user-defined function, or stored procedure at the 17th level is activated, DB2
returns SQLCODE -724 and backs out all SQL changes in the 16 levels of
cascading. However, as with any other SQL error that occurs during trigger
execution, if any action occurs that is outside the control of DB2, that action is not
backed out.

You can write a monitor program that issues IFI READS requests to collect DB2
trace information about the levels of cascading of triggers, user-defined functions,
and stored procedures in your programs. See Appendixes (Volume 2) of DB2
Administration Guide for information on how to write a monitor program.

Ordering of multiple triggers
You can create multiple triggers for the same subject table, event, and activation
time. The order in which those triggers are activated is the order in which the
triggers were created. DB2 records the timestamp when each CREATE TRIGGER
statement executes. When an event occurs in a table that activates more than one
trigger, DB2 uses the stored timestamps to determine which trigger to activate first.

DB2 always activates all before triggers that are defined on a table before the after
triggers that are defined on that table, but within the set of before triggers, the
activation order is by timestamp, and within the set of after triggers, the activation
order is by timestamp.

In this example, triggers NEWHIRE1 and NEWHIRE2 have the same triggering
event (INSERT), the same subject table (EMP), and the same activation time
(AFTER). Suppose that the CREATE TRIGGER statement for NEWHIRE1 is run
before the CREATE TRIGGER statement for NEWHIRE2:
CREATE TRIGGER NEWHIRE1

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

CREATE TRIGGER NEWHIRE2
AFTER INSERT ON EMP
REFERENCING NEW AS N_EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE DEPTS SET NBEMP = NBEMP + 1
WHERE DEPT_ID = N_EMP.DEPT_ID;

END

Chapter 12. Using triggers for active data 289



When an insert operation occurs on table EMP, DB2 activates NEWHIRE1 first
because NEWHIRE1 was created first. Now suppose that someone drops and
recreates NEWHIRE1. NEWHIRE1 now has a later timestamp than NEWHIRE2, so
the next time an insert operation occurs on EMP, NEWHIRE2 is activated before
NEWHIRE1.

If two row triggers are defined for the same action, the trigger that was created
earlier is activated first for all affected rows. Then the second trigger is activated
for all affected rows. In the previous example, suppose that an INSERT statement
with a fullselect inserts 10 rows into table EMP. NEWHIRE1 is activated for all 10
rows, then NEWHIRE2 is activated for all 10 rows.

Interactions between triggers and referential constraints
When you create triggers, you need to understand the interactions among the
triggers and constraints on your tables and the effect that the order of processing
of those constraints and triggers can have on the results.

In general, the following steps occur when triggering SQL statement S1 performs
an insert, update, or delete operation on table T1:
1. DB2 determines the rows of T1 to modify. Call that set of rows M1. The

contents of M1 depend on the SQL operation:
v For a delete operation, all rows that satisfy the search condition of the

statement for a searched delete operation, or the current row for a positioned
delete operation

v For an insert operation, the row identified by the VALUES statement, or the
rows identified by the result table of a SELECT clause within the INSERT
statement

v For an update operation, all rows that satisfy the search condition of the
statement for a searched update operation, or the current row for a
positioned update operation

2. DB2 processes all before triggers that are defined on T1, in order of creation.
Each before trigger executes the triggered action once for each row in M1. If
M1 is empty, the triggered action does not execute.
If an error occurs when the triggered action executes, DB2 rolls back all
changes that are made by S1.

3. DB2 makes the changes that are specified in statement S1 to table T1.
If an error occurs, DB2 rolls back all changes that are made by S1.

4. If M1 is not empty, DB2 applies all the following constraints and checks that
are defined on table T1:
v Referential constraints
v Check constraints
v Checks that are due to updates of the table through views defined WITH

CHECK OPTION
Application of referential constraints with rules of DELETE CASCADE or
DELETE SET NULL are activated before delete triggers or before update
triggers on the dependent tables.
If any constraint is violated, DB2 rolls back all changes that are made by
constraint actions or by statement S1.

5. DB2 processes all after triggers that are defined on T1, and all after triggers on
tables that are modified as the result of referential constraint actions, in order of
creation.

290 Application Programming and SQL Guide



Each after row trigger executes the triggered action once for each row in M1. If
M1 is empty, the triggered action does not execute.
Each after statement trigger executes the triggered action once for each
execution of S1, even if M1 is empty.

If any triggered actions contain SQL insert, update, or delete operations, DB2
repeats steps 1 through 5 for each operation.

If an error occurs when the triggered action executes, or if a triggered action is at
the 17th level of trigger cascading, DB2 rolls back all changes that are made in step
5 and all previous steps.

For example, table DEPT is a parent table of EMP, with these conditions:
v The DEPTNO column of DEPT is the primary key.
v The WORKDEPT column of EMP is the foreign key.
v The constraint is ON DELETE SET NULL.

Suppose the following trigger is defined on EMP:
CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

VALUES(CHECKEMP(TABLE NEWEMPS));
END

Also suppose that an SQL statement deletes the row with department number E21
from DEPT. Because of the constraint, DB2 finds the rows in EMP with a
WORKDEPT value of E21 and sets WORKDEPT in those rows to null. This is
equivalent to an update operation on EMP, which has update trigger EMPRAISE.
Therefore, because EMPRAISE is an after trigger, EMPRAISE is activated after the
constraint action sets WORKDEPT values to null.

Interactions between triggers and tables that have multilevel security
with row-level granularity

If a subject table has a security label column, the column in the transition table or
transition variable that corresponds to the security label column in the subject table
does not inherit the security label attribute. This means that the multilevel security
check with row-level granularity is not enforced for the transition table or the
transition variable. If you add a security label column to a subject table using the
ALTER TABLE statement, the rules are the same as when you add any column to a
subject table because the column in the transition table or the transition variable
that corresponds to the security label column does not inherit the security label
attribute.

If the ID you are using does not have write-down privilege and you execute an
INSERT or UPDATE statement, the security label value of your ID is assigned to
the security label column for the rows that you are inserting or updating.

When a BEFORE trigger is activated, the value of the transition variable that
corresponds to the security label column is the security label of the ID if either of
the following conditions is true:
v The user does not have write-down privilege
v The value for the security label column is not specified

Chapter 12. Using triggers for active data 291

|

|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|



If the user does not have write-down privilege, and the trigger changes the
transition variable that corresponds to the security label column, the value of the
security label column is changed back to the security label value of the user before
the row is written to the page. Refer to Part 3 (Volume 1) of DB2 Administration
Guide for a discussion about multilevel security with row-level granularity.

Creating triggers to obtain consistent results
When you create triggers and write SQL statements that activate those triggers,
you need to ensure that executing those statements on the same set of data always
produces the same results. Two common reasons that you can get inconsistent
results are:
v Positioned UPDATE or DELETE statements that use uncorrelated subqueries

cause triggers to operate on a larger result table than you intended.
v DB2 does not always process rows in the same order, so triggers that propagate

rows of a table can generate different result tables at different times.

The following examples demonstrate these situations.

Example: Effect of an uncorrelated subquery on a triggered action: Suppose that
tables T1 and T2 look like this:
Table T1 Table T2

A1 B1
== ==
1 1
2 2

The following trigger is defined on T1:
CREATE TRIGGER TR1

AFTER UPDATE OF T1
FOR EACH ROW
MODE DB2SQL

BEGIN ATOMIC
DELETE FROM T2 WHERE B1 = 2;

END

Now suppose that an application executes the following statements to perform a
positioned update operation:
EXEC SQL BEGIN DECLARE SECTION;
long hv1;
EXEC SQL END DECLARE SECTION;...
EXEC SQL DECLARE C1 CURSOR FOR

SELECT A1 FROM T1
WHERE A1 IN (SELECT B1 FROM T2)
FOR UPDATE OF A1;...

EXEC SQL OPEN C1;...
while(SQLCODE>=0 && SQLCODE!=100)
{

EXEC SQL FETCH C1 INTO :hv1;
UPDATE T1 SET A1=5 WHERE CURRENT OF C1;

}

When DB2 executes the FETCH statement that positions cursor C1 for the first
time, DB2 evaluates the subselect, SELECT B1 FROM T2, to produce a result table
that contains the two rows of column T2:

292 Application Programming and SQL Guide

|
|
|
|
|



1
2

When DB2 executes the positioned UPDATE statement for the first time, trigger
TR1 is activated. When the body of trigger TR1 executes, the row with value 2 is
deleted from T2. However, because SELECT B1 FROM T2 is evaluated only once,
when the FETCH statement is executed again, DB2 finds the second row of T1,
even though the second row of T2 was deleted. The FETCH statement positions
the cursor to the second row of T1, and the second row of T1 is updated. The
update operation causes the trigger to be activated again, which causes DB2 to
attempt to delete the second row of T2, even though that row was already deleted.

To avoid processing of the second row after it should have been deleted, use a
correlated subquery in the cursor declaration:
DCL C1 CURSOR FOR

SELECT A1 FROM T1 X
WHERE EXISTS (SELECT B1 FROM T2 WHERE X.A1 = B1)
FOR UPDATE OF A1;

In this case, the subquery, SELECT B1 FROM T2 WHERE X.A1 = B1, is evaluated
for each FETCH statement. The first time that the FETCH statement executes, it
positions the cursor to the first row of T1. The positioned UPDATE operation
activates the trigger, which deletes the second row of T2. Therefore, when the
FETCH statement executes again, no row is selected, so no update operation or
triggered action occurs.

Example: Effect of row processing order on a triggered action: The following
example shows how the order of processing rows can change the outcome of an
after row trigger.

Suppose that tables T1, T2, and T3 look like this:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
1 (empty) (empty)
2

The following trigger is defined on T1:
CREATE TRIGGER TR1

AFTER UPDATE ON T1
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2SQL

BEGIN ATOMIC
INSERT INTO T2 VALUES(N.C1);
INSERT INTO T3 (SELECT B1 FROM T2);

END

Now suppose that a program executes the following UPDATE statement:
UPDATE T1 SET A1 = A1 + 1;

The contents of tables T2 and T3 after the UPDATE statement executes depend on
the order in which DB2 updates the rows of T1.

If DB2 updates the first row of T1 first, after the UPDATE statement and the
trigger execute for the first time, the values in the three tables are:

Chapter 12. Using triggers for active data 293



Table T1 Table T2 Table T3
A1 B1 C1
== == ==
2 2 2
2

After the second row of T1 is updated, the values in the three tables are:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
2 2 2
3 3 2

3

However, if DB2 updates the second row of T1 first, after the UPDATE statement
and the trigger execute for the first time, the values in the three tables are:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
1 3 3
3

After the first row of T1 is updated, the values in the three tables are:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
2 3 3
3 2 3

2

294 Application Programming and SQL Guide



Part 3. Using DB2 object-relational extensions
Chapter 13. Introduction to DB2 object-relational extensions . . . . . . . . . . . . . . . . . 297

Chapter 14. Programming for large objects . . . . . . . . . . . . . . . . . . . . . . . 299
Introduction to LOBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Declaring LOB host variables and LOB locators . . . . . . . . . . . . . . . . . . . . . . . 302
LOB materialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Using LOB locators to save storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Deferring evaluation of a LOB expression to improve performance . . . . . . . . . . . . . . . 307
Indicator variables and LOB locators . . . . . . . . . . . . . . . . . . . . . . . . . 309
Valid assignments for LOB locators . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Avoiding character conversion for LOB locators . . . . . . . . . . . . . . . . . . . . . . 310

Chapter 15. Creating and using user-defined functions . . . . . . . . . . . . . . . . . . . 311
Overview of user-defined function definition, implementation, and invocation . . . . . . . . . . . . 311

Example of creating and using a user-defined scalar function . . . . . . . . . . . . . . . . . 312
User-defined function samples shipped with DB2 . . . . . . . . . . . . . . . . . . . . . 313

Defining a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Components of a user-defined function definition . . . . . . . . . . . . . . . . . . . . . 314
Examples of user-defined function definitions . . . . . . . . . . . . . . . . . . . . . . 316

Implementing an external user-defined function . . . . . . . . . . . . . . . . . . . . . . . 318
Writing a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Restrictions on user-defined function programs . . . . . . . . . . . . . . . . . . . . . 319
Coding your user-defined function as a main program or as a subprogram. . . . . . . . . . . . 319
Parallelism considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Passing parameter values to and from a user-defined function . . . . . . . . . . . . . . . . 321
Examples of receiving parameters in a user-defined function . . . . . . . . . . . . . . . . 333
Using special registers in a user-defined function . . . . . . . . . . . . . . . . . . . . 342
Using a scratchpad in a user-defined function . . . . . . . . . . . . . . . . . . . . . 344
Accessing transition tables in a user-defined function or stored procedure . . . . . . . . . . . . 345

Preparing a user-defined function for execution . . . . . . . . . . . . . . . . . . . . . . 350
Making a user-defined function reentrant . . . . . . . . . . . . . . . . . . . . . . . 351
Determining the authorization ID for user-defined function invocation . . . . . . . . . . . . . 351
Preparing user-defined functions to run concurrently . . . . . . . . . . . . . . . . . . . 352

Testing a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Implementing an SQL scalar function . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Invoking a user-defined function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Syntax for user-defined function invocation . . . . . . . . . . . . . . . . . . . . . . . 355
Ensuring that DB2 executes the intended user-defined function. . . . . . . . . . . . . . . . . 356

How DB2 chooses candidate functions . . . . . . . . . . . . . . . . . . . . . . . . 357
How DB2 chooses the best fit among candidate functions . . . . . . . . . . . . . . . . . 359
How you can simplify function resolution . . . . . . . . . . . . . . . . . . . . . . . 360
Using DSN_FUNCTION_TABLE to see how DB2 resolves a function . . . . . . . . . . . . . . 361

Casting of user-defined function arguments . . . . . . . . . . . . . . . . . . . . . . . 362
What happens when a user-defined function abnormally terminates . . . . . . . . . . . . . . . 363
Nesting SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Recommendations for user-defined function invocation . . . . . . . . . . . . . . . . . . . 365

Chapter 16. Creating and using distinct types . . . . . . . . . . . . . . . . . . . . . . 367
Introduction to distinct types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Using distinct types in application programs . . . . . . . . . . . . . . . . . . . . . . . . 368

Comparing distinct types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Assigning distinct types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Assigning column values to columns with different distinct types . . . . . . . . . . . . . . . 369
Assigning column values with distinct types to host variables . . . . . . . . . . . . . . . . 370
Assigning host variable values to columns with distinct types . . . . . . . . . . . . . . . . 370

Using distinct types in UNIONs . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

© Copyright IBM Corp. 1983, 2012 295

##



Invoking functions with distinct types . . . . . . . . . . . . . . . . . . . . . . . . . 371
Combining distinct types with user-defined functions and LOBs . . . . . . . . . . . . . . . . . 372

296 Application Programming and SQL Guide



Chapter 13. Introduction to DB2 object-relational extensions

With the object extensions of DB2, you can incorporate object-oriented concepts
and methodologies into your relational database by extending DB2 with richer sets
of data types and functions. With those extensions, you can store instances of
object-oriented data types in columns of tables and operate on them using
functions in SQL statements. In addition, you can control the types of operations
that users can perform on those data types.

The object extensions that DB2 provides are:
v Large objects (LOBs)

The VARCHAR and VARGRAPHIC data types have a storage limit of 32 KB.
Although this might be sufficient for small- to medium-size text data,
applications often need to store large text documents. They might also need to
store a wide variety of additional data types such as audio, video, drawings,
mixed text and graphics, and images. DB2 provides three data types to store
these data objects as strings of up to 2 GB - 1 in size. The three data types are
binary large objects (BLOBs), character large objects (CLOBs), and double-byte
character large objects (DBCLOBs).
For a detailed discussion of LOBs, see Chapter 14, “Programming for large
objects,” on page 299.

v Distinct types
A distinct type is a user-defined data type that shares its internal representation
with a built-in data type but is considered to be a separate and incompatible
type for semantic purposes. For example, you might want to define a picture
type or an audio type, both of which have quite different semantics, but which
use the built-in data type BLOB for their internal representation.
For a detailed discussion of distinct types, see Chapter 16, “Creating and using
distinct types,” on page 367.

v User-defined functions
The built-in functions that are supplied with DB2 are a useful set of functions,
but they might not satisfy all of your requirements. For those cases, you can use
user-defined functions. For example, a built-in function might perform a
calculation you need, but the function does not accept the distinct types you
want to pass to it. You can then define a function based on a built-in function,
called a sourced user-defined function, that accepts your distinct types. You might
need to perform another calculation in your SQL statements for which there is
no built-in function. In that situation, you can define and write an external
user-defined function.
For a detailed discussion of user-defined functions, see Chapter 15, “Creating
and using user-defined functions,” on page 311.

© Copyright IBM Corp. 1983, 2012 297



298 Application Programming and SQL Guide



Chapter 14. Programming for large objects

The term large object and the acronym LOB refer to DB2 objects that you can use to
store large amounts of data. A LOB is a varying-length character string that can
contain up to 2 GB - 1 of data.

The three LOB data types are:
v Binary large object (BLOB)

Use a BLOB to store binary data such as pictures, voice, and mixed media.
v Character large object (CLOB)

Use a CLOB to store SBCS or mixed character data, such as documents.
v Double-byte character large object (DBCLOB)

Use a DBCLOB to store data that consists of only DBCS data.

This chapter presents the following information about LOBs:
v “Introduction to LOBs”
v “Declaring LOB host variables and LOB locators” on page 302
v “LOB materialization” on page 306
v “Using LOB locators to save storage” on page 307

Introduction to LOBs
Working with LOBs involves defining the LOBs to DB2, moving the LOB data into
DB2 tables, then using SQL operations to manipulate the data. This chapter
concentrates on manipulating LOB data using SQL statements. For information on
defining LOBs to DB2, see Chapter 5 of DB2 SQL Reference. For information on
how DB2 utilities manipulate LOB data, see Part 2 of DB2 Utility Guide and
Reference.

These are the basic steps for defining LOBs and moving the data into DB2:
1. Define a column of the appropriate LOB type and optionally a row identifier

(ROWID) column in a DB2 table. Define only one ROWID column, even if there
are multiple LOB columns in the table. If you do not create a ROWID column
before you define a LOB column, DB2 creates a hidden ROWID column and
appends it as the last column of the table. For information about what hidden
ROWID columns are, see the description on page 300.
The LOB column holds information about the LOB, not the LOB data itself. The
table that contains the LOB information is called the base table. DB2 uses the
ROWID column to locate your LOB data. You can define the LOB column (and
optionally the ROWID column) in a CREATE TABLE or ALTER TABLE
statement.
You can add both a LOB column and a ROWID column to an existing table by
using two ALTER TABLE statements: add the ROWID column with the first
ALTER TABLE statement and the LOB column with the second. If you add a
LOB column first, DB2 generates a hidden ROWID column.
If you add a ROWID column after you add a LOB column, the table has two
ROWID columns: the implicitly-created, hidden, column and the
explicitly-created column. In this case, DB2 ensures that the values of the two
ROWID columns are always identical.

2. Create a table space and table to hold the LOB data.

© Copyright IBM Corp. 1983, 2012 299

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|



The table space and table are called a LOB table space and an auxiliary table. If
your base table is nonpartitioned, you must create one LOB table space and one
auxiliary table for each LOB column. If your base table is partitioned, for each
LOB column, you must create one LOB table space and one auxiliary table for
each partition. For example, if your base table has three partitions, you must
create three LOB table spaces and three auxiliary tables for each LOB column.
Create these objects using the CREATE LOB TABLESPACE and CREATE
AUXILIARY TABLE statements.

3. Create an index on the auxiliary table.
Each auxiliary table must have exactly one index. Use CREATE INDEX for this
task.

4. Put the LOB data into DB2.
If the total length of a LOB column and the base table row is less than 32 KB,
you can use the LOAD utility to put the data in DB2. Otherwise, you must use
INSERT or UPDATE statements. Even though the data is stored in the auxiliary
table, the LOAD utility statement or INSERT statement specifies the base table.
Using INSERT can be difficult because your application needs enough storage
to hold the entire value that goes into the LOB column.

Hidden ROWID column: If you do not create a ROWID column before you define
a LOB column, DB2 creates a hidden ROWID column for you. A hidden ROWID
column is not visible in the results of SELECT * statements, including those in
DESCRIBE and CREATE VIEW statements. However, it is visible to all statements
that refer to the column directly. DB2 assigns the GENERATED ALWAYS attribute
and the name DB2_GENERATED_ROWID_FOR_LOBSnn to a hidden ROWID
column. DB2 appends the identifier nn only if the column name already exists in
the table. If so, DB2 appends 00 and increments by 1 until the name is unique
within the row.

Example: Adding a CLOB column: Suppose that you want to add a resume for
each employee to the employee table. Employee resumes are no more than 5 MB in
size. The employee resumes contain single-byte characters, so you can define the
resumes to DB2 as CLOBs. You therefore need to add a column of data type CLOB
with a length of 5 MB to the employee table. If you want to define a ROWID
column explicitly, you must define it before you define the CLOB column.

Execute an ALTER TABLE statement to add the ROWID column, and then execute
another ALTER TABLE statement to add the CLOB column. Use statements like
this:
ALTER TABLE EMP

ADD ROW_ID ROWID NOT NULL GENERATED ALWAYS;
COMMIT;
ALTER TABLE EMP

ADD EMP_RESUME CLOB(5M);
COMMIT;

Next, you need to define a LOB table space and an auxiliary table to hold the
employee resumes. You also need to define an index on the auxiliary table. You
must define the LOB table space in the same database as the associated base table.
You can use statements like this:
CREATE LOB TABLESPACE RESUMETS

IN DSN8D81A
LOG NO;

COMMIT;
CREATE AUXILIARY TABLE EMP_RESUME_TAB

IN DSN8D81A.RESUMETS

300 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|

|
|



STORES DSN8810.EMP
COLUMN EMP_RESUME;

CREATE UNIQUE INDEX XEMP_RESUME
ON EMP_RESUME_TAB;

COMMIT;

If the value of bind option SQLRULES is STD, or if special register CURRENT
RULES has been set in the program and has the value STD, DB2 creates the LOB
table space, auxiliary table, and auxiliary index for you when you execute the
ALTER statement to add the LOB column.

Now that your DB2 objects for the LOB data are defined, you can load your
employee resumes into DB2. To do this in an SQL application, you can define a
host variable to hold the resume, copy the resume data from a file into the host
variable, and then execute an UPDATE statement to copy the data into DB2.
Although the data goes into the auxiliary table, your UPDATE statement specifies
the name of the base table. The C language declaration of the host variable might
be:
SQL TYPE is CLOB (5M) resumedata;

The UPDATE statement looks like this:
UPDATE EMP SET EMP_RESUME=:resumedata

WHERE EMPNO=:employeenum;

In this example, employeenum is a host variable that identifies the employee who
is associated with a resume.

After your LOB data is in DB2, you can write SQL applications to manipulate the
data. You can use most SQL statements with LOBs. For example, you can use
statements like these to extract information about an employee’s department from
the resume:
EXEC SQL BEGIN DECLARE SECTION;

char employeenum[6];
long deptInfoBeginLoc;
long deptInfoEndLoc;
SQL TYPE IS CLOB_LOCATOR resume;
SQL TYPE IS CLOB_LOCATOR deptBuffer;

EXEC SQL END DECLARE SECTION;...
EXEC SQL DECLARE C1 CURSOR FOR

SELECT EMPNO, EMP_RESUME FROM EMP;...
EXEC SQL FETCH C1 INTO :employeenum, :resume;...
EXEC SQL SET :deptInfoBeginLoc =

POSSTR(:resumedata, ’Department Information’);

EXEC SQL SET :deptInfoEndLoc =
POSSTR(:resumedata, ’Education’);

EXEC SQL SET :deptBuffer =
SUBSTR(:resume, :deptInfoBeginLoc,
:deptInfoEndLoc - :deptInfoBeginLoc);

These statements use host variables of data type large object locator (LOB locator).
LOB locators let you manipulate LOB data without moving the LOB data into host
variables. By using LOB locators, you need much smaller amounts of memory for
your programs. LOB locators are discussed in “Using LOB locators to save
storage” on page 307.

Chapter 14. Programming for large objects 301



Sample LOB applications: Table 28 lists the sample programs that DB2 provides to
assist you in writing applications to manipulate LOB data. All programs reside in
data set DSN810.SDSNSAMP.

Table 28. LOB samples shipped with DB2

Member that
contains
source code Language Function

DSNTEJ7 JCL Demonstrates how to create a table with LOB columns, an
auxiliary table, and an auxiliary index. Also demonstrates
how to load LOB data that is 32KB or less into a LOB table
space.

DSN8DLPL C Demonstrates the use of LOB locators and UPDATE
statements to move binary data into a column of type
BLOB.

DSN8DLRV C Demonstrates how to use a locator to manipulate data of
type CLOB.

DSNTEP2 PL/I Demonstrates how to allocate an SQLDA for rows that
include LOB data and use that SQLDA to describe an input
statement and fetch data from LOB columns.

For instructions on how to prepare and run the sample LOB applications, see Part
2 of DB2 Installation Guide.

Declaring LOB host variables and LOB locators
When you write applications to manipulate LOB data, you need to declare host
variables to hold the LOB data or LOB locator variables to point to the LOB data.
See “Using LOB locators to save storage” on page 307 for information on what
LOB locators are and when you should use them instead of host variables.

You can declare LOB host variables and LOB locators in assembler, C, C++,
COBOL, Fortran, and PL/I. For each host variable or locator of SQL type BLOB,
CLOB, or DBCLOB that you declare, DB2 generates an equivalent declaration that
uses host language data types. When you refer to a LOB host variable or locator in
an SQL statement, you must use the variable you specified in the SQL type
declaration. When you refer to the host variable in a host language statement, you
must use the variable that DB2 generates. See Chapter 9, “Embedding SQL
statements in host languages,” on page 143 for the syntax of LOB declarations in
each language and for host language equivalents for each LOB type.

DB2 supports host variable declarations for LOBs with lengths of up to 2 GB - 1.
However, the size of a LOB host variable is limited by the restrictions of the host
language and the amount of storage available to the program.

Declare LOB host variables that are referenced by the precompiler in SQL
statements by using the SQL TYPE IS BLOB, SQL TYPE IS CLOB, or SQL TYPE IS
DBCLOB keywords.

LOB host variables that are referenced only by an SQL statement that uses a
DESCRIPTOR should use the same form as declared by the precompiler. In this
form, the LOB host-variable-array consists of a 31-bit length, followed by the data,
followed by another 31-bit length, followed by the data, and so on. The 31-bit
length must be fullword aligned.

302 Application Programming and SQL Guide

#
#
#

#
#
#
#
#



Example: Suppose that you want to allocate a LOB array of 10 elements, each with
a length of 5 bytes. You need to allocate the following bytes for each element, for a
total of 120 bytes:
v 4 bytes for the 31-bit integer
v 5 bytes for the data
v 3 bytes to force fullword alignment

The following examples show you how to declare LOB host variables in each
supported language. In each table, the left column contains the declaration that
you code in your application program. The right column contains the declaration
that DB2 generates.

Declarations of LOB host variables in assembler: Table 29 shows assembler
language declarations for some typical LOB types.

Table 29. Example of assembler LOB variable declarations

You declare this variable DB2 generates this variable

clob_var SQL TYPE IS CLOB 40000K clob_var DS 0FL4
clob_var_length DS FL4
clob_var_data DS CL655351

ORG clob_var_data +(40960000-65535)

dbclob-var SQL TYPE IS DBCLOB 4000K dbclob_var DS 0FL4
dbclob_var_length DS FL4
dbclob_var_data DS GL655342

ORG dbclob_var_data+(8192000-65534)

blob_var SQL TYPE IS BLOB 1M blob_var DS 0FL4
blob_var_length DS FL4
blob_var_data DS CL655351

ORG blob_var_data+(1048476-65535)

clob_loc SQL TYPE IS CLOB_LOCATOR clob_loc DS FL4

dbclob_var SQL TYPE IS DBCLOB_LOCATOR dbclob_loc DS FL4

blob_loc SQL TYPE IS BLOB_LOCATOR blob_loc DS FL4

Notes:

1. Because assembler language allows character declarations of no more than 65535 bytes,
DB2 separates the host language declarations for BLOB and CLOB host variables that are
longer than 65535 bytes into two parts.

2. Because assembler language allows graphic declarations of no more than 65534 bytes,
DB2 separates the host language declarations for DBCLOB host variables that are longer
than 65534 bytes into two parts.

Declarations of LOB host variables in C: The following table shows C and C++
language declarations for some typical LOB types.

Table 30. Examples of C language variable declarations

You declare this variable DB2 generates this variable

SQL TYPE IS BLOB (1M) blob_var; struct {
unsigned long length;
char data[1048576];

} blob_var;

SQL TYPE IS CLOB(400K) clob_var; struct {
unsigned long length;
char data[409600];

} clob_var;

Chapter 14. Programming for large objects 303

#
#
#
#
#
#

##

##

##
#
#
#

##
#
#
#



Table 30. Examples of C language variable declarations (continued)

You declare this variable DB2 generates this variable

SQL TYPE IS DBCLOB (4000K) dbclob_var; struct {
unsigned long length;
sqldbchar data[4096000];

} dbclob_var;

SQL TYPE IS BLOB_LOCATOR blob_loc; unsigned long blob_loc;

SQL TYPE IS CLOB_LOCATOR clob_loc; unsigned long clob_loc;

SQL TYPE IS DBCLOB_LOCATOR dbclob_loc; unsigned long dbclob_loc;

Declarations of LOB host variables in COBOL: The declarations that are
generated for COBOL depend on whether you use the DB2 precompiler or the DB2
coprocessor. The following table shows COBOL declarations that the DB2
precompiler generates for some typical LOB types. The declarations that the DB2
coprocessor generates might be different.

Table 31. Examples of COBOL variable declarations by the DB2 precompiler

You declare this variable DB2 precompiler generates this variable

01 BLOB-VAR USAGE IS
SQL TYPE IS BLOB(1M).

01 BLOB-VAR.
02 BLOB-VAR-LENGTH

PIC 9(9) COMP.
02 BLOB-VAR-DATA.

49 FILLER PIC X(32767).1

49 FILLER PIC X(32767).
Repeat 30 times...
49 FILLER

PIC X(1048576-32*32767).

01 CLOB-VAR USAGE IS
SQL TYPE IS CLOB(40000K).

01 CLOB-VAR.
02 CLOB-VAR-LENGTH

PIC 9(9) COMP.
02 CLOB-VAR-DATA.

49 FILLER PIC X(32767).1

49 FILLER PIC X(32767).
Repeat 1248 times...
49 FILLER

PIC X(40960000-1250*32767).

01 DBCLOB-VAR USAGE IS
SQL TYPE IS DBCLOB(4000K).

01 DBCLOB-VAR.
02 DBCLOB-VAR-LENGTH

PIC 9(9) COMP.
02 DBCLOB-VAR-DATA.

49 FILLER PIC G(32767)
USAGE DISPLAY-1.2

49 FILLER PIC G(32767)
USAGE DISPLAY-1.

Repeat 123 times...
49 FILLER

PIC G(20480000-125*32767)
USAGE DISPLAY-1.

01 BLOB-LOC USAGE IS SQL
TYPE IS BLOB-LOCATOR.

01 BLOB-LOC PIC S9(9) USAGE IS BINARY.

01 CLOB-LOC USAGE IS SQL
TYPE IS CLOB-LOCATOR.

01 CLOB-LOC PIC S9(9) USAGE IS BINARY.

01 DBCLOB-LOC USAGE IS SQL
TYPE IS DBCLOB-LOCATOR.

01 DBCLOB-LOC PIC S9(9) USAGE IS BINARY.

304 Application Programming and SQL Guide

#

##

##
#
|
#

##

##

##
#

#
#
#
#
#

##

##

#
#
#
#
#
#
#
#
####
#
#

#
#
#
#
#
#
#
#
####
#
#

#
#
#
#
#
#
#
#
#
#
####
#
#
#

#
#
#

#
#
#

#
#
#



Table 31. Examples of COBOL variable declarations by the DB2 precompiler (continued)

You declare this variable DB2 precompiler generates this variable

Notes:

1. Because the COBOL language allows character declarations of no more than 32767 bytes,
for BLOB or CLOB host variables that are greater than 32767 bytes in length, DB2 creates
multiple host language declarations of 32767 or fewer bytes.

2. Because the COBOL language allows graphic declarations of no more than 32767
double-byte characters, for DBCLOB host variables that are greater than 32767
double-byte characters in length, DB2 creates multiple host language declarations of
32767 or fewer double-byte characters.

Declarations of LOB host variables in Fortran: Table 32 shows Fortran
declarations for some typical LOB types.

Table 32. Examples of Fortran variable declarations

You declare this variable DB2 generates this variable

SQL TYPE IS BLOB(1M) blob_var CHARACTER blob_var(1048580)
INTEGER*4 blob_var_LENGTH
CHARACTER blob_var_DATA
EQUIVALENCE( blob_var(1),
+ blob_var_LENGTH )
EQUIVALENCE( blob_var(5),
+ blob_var_DATA )

SQL TYPE IS CLOB(40000K) clob_var CHARACTER clob_var(4096004)
INTEGER*4 clob_var_length
CHARACTER clob_var_data
EQUIVALENCE( clob_var(1),
+ clob_var_length )
EQUIVALENCE( clob_var(5),
+ clob_var_data )

SQL TYPE IS BLOB_LOCATOR blob_loc INTEGER*4 blob_loc

SQL TYPE IS CLOB_LOCATOR clob_loc INTEGER*4 clob_loc

Declarations of LOB host variables in PL/I: The declarations that are generated
for PL/I depend on whether you use the DB2 precompiler or the DB2 coprocessor.
The following table shows PL/I declarations that the DB2 precompiler generates
for some typical LOB types. The declarations that the DB2 coprocessor generates
might be different.

Table 33. Examples of PL/I variable declarations by the DB2 precompiler

You declare this variable DB2 precompiler generates this variable

DCL BLOB_VAR
SQL TYPE IS BLOB (1M);

DCL 1 BLOB_VAR,
2 BLOB_VAR_LENGTH FIXED BINARY(31),
2 BLOB_VAR_DATA,1

3 BLOB_VAR_DATA1(32)
CHARACTER(32767),

3 BLOB_VAR_DATA2
CHARACTER(1048576-32*32767);

DCL CLOB_VAR
SQL TYPE IS CLOB (40000K);

DCL 1 CLOB_VAR,
2 CLOB_VAR_LENGTH FIXED BINARY(31),
2 CLOB_VAR_DATA,1

3 CLOB_VAR_DATA1(1250)
CHARACTER(32767),

3 CLOB_VAR_DATA2
CHARACTER(40960000-1250*32767);

Chapter 14. Programming for large objects 305

#

##

#

#
#
#

#
#
#
#
#

#
#
#
#
#

##

##

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#



Table 33. Examples of PL/I variable declarations by the DB2 precompiler (continued)

You declare this variable DB2 precompiler generates this variable

DCL DBCLOB_VAR
SQL TYPE IS DBCLOB (4000K);

DCL 1 DBCLOB_VAR,
2 DBCLOB_VAR_LENGTH FIXED BINARY(31),
2 DBCLOB_VAR_DATA,2

3 DBCLOB_VAR_DATA1(250)
GRAPHIC(16383),

3 DBCLOB_VAR_DATA2
GRAPHIC(4096000-250*16383);

DCL blob_loc
SQL TYPE IS BLOB_LOCATOR;

DCL blob_loc FIXED BINARY(31);

DCL clob_loc
SQL TYPE IS CLOB_LOCATOR;

DCL clob_loc FIXED BINARY(31);

DCL dbclob_loc SQL TYPE IS
DBCLOB_LOCATOR;

DCL dbclob_loc FIXED BINARY(31);

Notes:

1. For BLOB or CLOB host variables that are greater than 32767 bytes in length, DB2
creates PL/I host language declarations in the following way:

v If the length of the LOB is greater than 32767 bytes and evenly divisible by 32767, DB2
creates an array of 32767-byte strings. The dimension of the array is length/32767.

v If the length of the LOB is greater than 32767 bytes but not evenly divisible by 32767,
DB2 creates two declarations: The first is an array of 32767 byte strings, where the
dimension of the array, n, is length/32767. The second is a character string of length
length-n*32767.

2. For DBCLOB host variables that are greater than 16383 double-byte characters in length,
DB2 creates PL/I host language declarations in the following way:

v If the length of the LOB is greater than 16383 characters and evenly divisible by 16383,
DB2 creates an array of 16383-character strings. The dimension of the array is
length/16383.

v If the length of the LOB is greater than 16383 characters but not evenly divisible by
16383, DB2 creates two declarations: The first is an array of 16383 byte strings, where
the dimension of the array, m, is length/16383. The second is a character string of
length length-m*16383.

LOB materialization
LOB materialization means that DB2 places a LOB value into contiguous storage.
Because LOB values can be very large, DB2 avoids materializing LOB data until
absolutely necessary. However, DB2 must materialize LOBs when your application
program:
v Calls a user-defined function with a LOB as an argument
v Moves a LOB into or out of a stored procedure
v Assigns a LOB host variable to a LOB locator host variable
v Converts a LOB from one CCSID to another

The amount of storage that is used for LOB materialization depends on a number
of factors including:
v The size of the LOBs
v The number of LOBs that need to be materialized in a statement

DB2 loads LOBs into virtual pools above the bar. If insufficient space is available
for LOB materialization, your application receives SQLCODE -904.

306 Application Programming and SQL Guide

#

##

#
#
#
#
#
#
#
#
#

#
#
#

#
#
#

#
#
#

#

#
#

#
#

#
#
#
#

#
#

#
#
#

#
#
#
#
#

#
#
#
#
#
#
#
#

#
#
#
#

#
#



Although you cannot completely avoid LOB materialization, you can minimize it
by using LOB locators, rather than LOB host variables in your application
programs. See “Using LOB locators to save storage” for information on how to use
LOB locators.

Using LOB locators to save storage
To retrieve LOB data from a DB2 table, you can define host variables that are large
enough to hold all of the LOB data. This requires your application to allocate large
amounts of storage, and requires DB2 to move large amounts of data, which can
be inefficient or impractical. Instead, you can use LOB locators. LOB locators let
you manipulate LOB data without retrieving the data from the DB2 table. Using
LOB locators for LOB data retrieval is a good choice in the following situations:
v When you move only a small part of a LOB to a client program
v When the entire LOB does not fit in the application’s memory
v When the program needs a temporary LOB value from a LOB expression but

does not need to save the result
v When performance is important

A LOB locator is associated with a LOB value or expression, not with a row in a
DB2 table or a physical storage location in a table space. Therefore, after you select
a LOB value using a locator, the value in the locator normally does not change
until the current unit of work ends. However the value of the LOB itself can
change.

If you want to remove the association between a LOB locator and its value before a
unit of work ends, execute the FREE LOCATOR statement. To keep the association
between a LOB locator and its value after the unit of work ends, execute the
HOLD LOCATOR statement. After you execute a HOLD LOCATOR statement, the
locator keeps the association with the corresponding value until you execute a
FREE LOCATOR statement or the program ends.

If you execute HOLD LOCATOR or FREE LOCATOR dynamically, you cannot use
EXECUTE IMMEDIATE. For more information on HOLD LOCATOR and FREE
LOCATOR, see Chapter 5 of DB2 SQL Reference.

Deferring evaluation of a LOB expression to improve
performance

DB2 moves no bytes of a LOB value until a program assigns a LOB expression to a
target destination. This means that when you use a LOB locator with string
functions and operators, you can create an expression that DB2 does not evaluate
until the time of assignment. This is called deferring evaluation of a LOB expression.
Deferring evaluation can improve LOB I/O performance.

Figure 122 on page 308 is a C language program that defers evaluation of a LOB
expression. The program runs on a client and modifies LOB data at a server. The
program searches for a particular resume (EMPNO = ’000130’) in the
EMP_RESUME table. It then uses LOB locators to rearrange a copy of the resume
(with EMPNO = ’A00130’). In the copy, the Department Information Section
appears at the end of the resume. The program then inserts the copy into
EMP_RESUME without modifying the original resume.

Because the program in Figure 122 on page 308 uses LOB locators, rather than
placing the LOB data into host variables, no LOB data is moved until the INSERT

Chapter 14. Programming for large objects 307



statement executes. In addition, no LOB data moves between the client and the
server.

EXEC SQL INCLUDE SQLCA;

/**************************/
/* Declare host variables */ �1�
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

char userid[9];
char passwd[19];
long HV_START_DEPTINFO;
long HV_START_EDUC;
long HV_RETURN_CODE;
SQL TYPE IS CLOB_LOCATOR HV_NEW_SECTION_LOCATOR;
SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR1;
SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR2;
SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR3;

EXEC SQL END DECLARE SECTION;

/*************************************************/
/* Delete any instance of "A00130" from previous */
/* executions of this sample */
/*************************************************/
EXEC SQL DELETE FROM EMP_RESUME WHERE EMPNO = ’A00130’;

/*************************************************/
/* Use a single row select to get the document */ �2�
/*************************************************/
EXEC SQL SELECT RESUME

INTO :HV_DOC_LOCATOR1
FROM EMP_RESUME
WHERE EMPNO = ’000130’

AND RESUME_FORMAT = ’ascii’;
/*****************************************************/
/* Use the POSSTR function to locate the start of */
/* sections "Department Information" and "Education" */ �3�
/*****************************************************/
EXEC SQL SET :HV_START_DEPTINFO =

POSSTR(:HV_DOC_LOCATOR1, ’Department Information’);

EXEC SQL SET :HV_START_EDUC =
POSSTR(:HV_DOC_LOCATOR1, ’Education’);

Figure 122. Example of deferring evaluation of LOB expressions (Part 1 of 2)

308 Application Programming and SQL Guide



Notes:

�1� Declare the LOB locators here.

�2� This SELECT statement associates LOB locator
HV_DOC_LOCATOR1 with the value of column RESUME for
employee number 000130.

�3� The next five SQL statements use LOB locators to manipulate the
resume data without moving the data.

�4� Evaluation of the LOB expressions in the previous statements has
been deferred until execution of this INSERT statement.

�5� Free all LOB locators to release them from their associated values.

Indicator variables and LOB locators
For host variables other than LOB locators, when you select a null value into a
host variable, DB2 assigns a negative value to the associated indicator variable.
However, for LOB locators, DB2 uses indicator variables differently. A LOB locator
is never null. When you select a LOB column using a LOB locator and the LOB
column contains a null value, DB2 assigns a null value to the associated indicator
variable. The value in the LOB locator does not change. In a client/server
environment, this null information is recorded only at the client.

When you use LOB locators to retrieve data from columns that can contain null
values, define indicator variables for the LOB locators, and check the indicator
variables after you fetch data into the LOB locators. If an indicator variable is null
after a fetch operation, you cannot use the value in the LOB locator.

/*******************************************************/
/* Replace Department Information section with nothing */
/*******************************************************/
EXEC SQL SET :HV_DOC_LOCATOR2 =

SUBSTR(:HV_DOC_LOCATOR1, 1, :HV_START_DEPTINFO -1)
|| SUBSTR (:HV_DOC_LOCATOR1, :HV_START_EDUC);

/*******************************************************/
/* Associate a new locator with the Department */
/* Information section */
/*******************************************************/
EXEC SQL SET :HV_NEW_SECTION_LOCATOR =

SUBSTR(:HV_DOC_LOCATOR1, :HV_START_DEPTINFO,
:HV_START_EDUC -:HV_START_DEPTINFO);

/*******************************************************/
/* Append the Department Information to the end */
/* of the resume */
/*******************************************************/
EXEC SQL SET :HV_DOC_LOCATOR3 =

:HV_DOC_LOCATOR2 || :HV_NEW_SECTION_LOCATOR;
/*******************************************************/
/* Store the modified resume in the table. This is */ �4�
/* where the LOB data really moves. */
/*******************************************************/
EXEC SQL INSERT INTO EMP_RESUME VALUES (’A00130’, ’ascii’,

:HV_DOC_LOCATOR3, DEFAULT);

/*********************/
/* Free the locators */ �5�
/*********************/
EXEC SQL FREE LOCATOR :HV_DOC_LOCATOR1, :HV_DOC_LOCATOR2, :HV_DOC_LOCATOR3;

Figure 122. Example of deferring evaluation of LOB expressions (Part 2 of 2)

Chapter 14. Programming for large objects 309



Valid assignments for LOB locators
Although you usually use LOB locators for assigning data to and retrieving data
from LOB columns, you can also use LOB locators to assign data to CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC columns. However, you cannot fetch
data from CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC columns into LOB
locators.

Avoiding character conversion for LOB locators
You can use a VALUES INTO or SET statement to obtain the results of functions
that operate on LOB locators, such as LEN or SUBSTR. VALUES INTO and SET
statements are processed in the application encoding scheme for the plan or
package that contains the statement. If that encoding scheme is different from the
encoding scheme of the LOB data, the entire LOB value is materialized and
converted to the encoding scheme of the statement. This materialization and
conversion processing can cause performance degradation.

To avoid the character conversion, SELECT from the SYSIBM.SYSDUMMYA,
SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU sample table. These dummy
tables perform functions similar to SYSIBM.SYSDUMMY1, and are each associated
with an encoding scheme:

SYSIBM.SYSDUMMYA ASCII

SYSIBM.SYSDUMMYE EBCDIC

SYSIBM.SYSDUMMYU Unicode

By using these tables, you can obtain the same result as you would with a
VALUES INTO or SET statement.

Example: Suppose that the encoding scheme of the following statement is EBCDIC:
SET : unicode_hv = SUBSTR(:Unicode_lob_locator,X,Y);

DB2 must materialize the LOB that is specified by :Unicode_lob_locator and
convert that entire LOB to EBCDIC before executing the statement. To avoid
materialization and conversion, you can execute the following statement, which
produces the same result but is processed by the Unicode encoding scheme of the
table:
SELECT SUBSTR(:Unicode_lob_locator,X,Y) INTO :unicode_hv

FROM SYSIBM.SYSDUMMYU;

310 Application Programming and SQL Guide

#

#
#
#
#
#
#
#

#
#
#
#

##

##

##

#
#

#

#

#
#
#
#
#

#
#

#



Chapter 15. Creating and using user-defined functions

A user-defined function is an extension to the SQL language. A user-defined
function is similar to a host language subprogram or function. However, a
user-defined function is often the better choice for an SQL application because you
can invoke a user-defined function in an SQL statement.

This chapter presents the following information about user-defined functions:
v “Overview of user-defined function definition, implementation, and invocation”
v “Defining a user-defined function” on page 314
v “Implementing an external user-defined function” on page 318
v “Implementing an SQL scalar function” on page 355
v “Invoking a user-defined function” on page 355

This chapter contains information that applies to all user-defined functions and
specific information about user-defined functions in languages other than Java. For
information about writing, preparing, and running Java user-defined functions, see
DB2 Application Programming Guide and Reference for Java.

Overview of user-defined function definition, implementation, and
invocation

The types of user-defined functions are:
v Sourced user-defined functions, which are based on existing built-in functions or

user-defined functions
v External user-defined functions, which a programmer writes in a host language
v SQL user-defined functions, which contain the source code for the user-defined

function in the user-defined function definition

User-defined functions can also be categorized as user-defined scalar functions or
user-defined table functions:
v A user-defined scalar function returns a single-value answer each time it is

invoked
v A user-defined table function returns a table to the SQL statement that references

it

External user-defined functions can be user-defined scalar functions or
user-defined table functions. Sourced and SQL user-defined functions can only be
user-defined scalar functions.

Creating and using a user-defined function involves these steps:
v Setting up the environment for user-defined functions

A systems administrator probably performs this step. The user-defined function
environment is shown in Figure 123 on page 312. It contains an application
address space, from which a program invokes a user-defined function; a DB2
system, where the packages from the user-defined function are run; and a
WLM-established address space, where the user-defined function is stored. The
steps for setting up and maintaining the user-defined function environment are
the same as for setting up and maintaining the environment for stored
procedures in WLM-established address spaces. See Chapter 25, “Using stored
procedures for client/server processing,” on page 631 for this information.

© Copyright IBM Corp. 1983, 2012 311



v Writing and preparing the user-defined function
This step is necessary only for an external user-defined function.
The person who performs this step is called the user-defined function
implementer.

v Defining the user-defined function to DB2
The person who performs this step is called the user-defined function definer.

v Invoking the user-defined function from an SQL application
The person who performs this step is called the user-defined function invoker.

Example of creating and using a user-defined scalar function
Suppose that your organization needs a user-defined scalar function that calculates
the bonus that each employee receives. All employee data, including salaries,
commissions, and bonuses, is kept in the employee table, EMP. The input fields for
the bonus calculation function are the values of the SALARY and COMM columns.
The output from the function goes into the BONUS column. Because this function
gets its input from a DB2 table and puts the output in a DB2 table, a convenient
way to manipulate the data is through a user-defined function.

The user-defined function's definer and invoker determine that this new
user-defined function should have these characteristics:
v The user-defined function name is CALC_BONUS.
v The two input fields are of type DECIMAL(9,2).
v The output field is of type DECIMAL(9,2).
v The program for the user-defined function is written in COBOL and has a load

module name of CBONUS.

Because no built-in function or user-defined function exists on which to build a
sourced user-defined function, the function implementer must code an external
user-defined function. The implementer performs the following steps:
v Writes the user-defined function, which is a COBOL program
v Precompiles, compiles, and links the program
v Binds a package if the user-defined function contains SQL statements
v Tests the program thoroughly
v Grants execute authority on the user-defined function package to the definer

Function Program

Application Program

Address Space DB2 System

WLM-Established

Stored Procedures

Address Space

Program A

..

.
..
.

..

.

EXEC SQL

SELECT

F1(ARG1,ARG2)

FROM TB1;

Program B

Package B

SELECT...

Package A

SELECT

F1(ARG1,ARG2)

FROM TB1;

..

.

EXEC SQL

SELECT...

Invoking Program

Figure 123. The user-defined function environment

312 Application Programming and SQL Guide



The user-defined function definer executes this CREATE FUNCTION statement to
register CALC_BONUS to DB2:
CREATE FUNCTION CALC_BONUS(DECIMAL(9,2),DECIMAL(9,2))

RETURNS DECIMAL(9,2)
EXTERNAL NAME ’CBONUS’
PARAMETER STYLE SQL
LANGUAGE COBOL;

The definer then grants execute authority on CALC_BONUS to all invokers.

User-defined function invokers write and prepare application programs that invoke
CALC_BONUS. An invoker might write a statement like this, which uses the
user-defined function to update the BONUS field in the employee table:
UPDATE EMP

SET BONUS = CALC_BONUS(SALARY,COMM);

An invoker can execute this statement either statically or dynamically.

User-defined function samples shipped with DB2
To assist you in defining, implementing, and invoking your user-defined functions,
DB2 provides a number of sample user-defined functions. All user-defined function
code is in data set DSN810.SDSNSAMP.

Table 34 summarizes the characteristics of the sample user-defined functions.

Table 34. User-defined function samples shipped with DB2

User-defined function
name Language

Member that
contains source
code Purpose

ALTDATE1 C DSN8DUAD Converts the current date to a user-specified format

ALTDATE2 C DSN8DUCD Converts a date from one format to another

ALTTIME3 C DSN8DUAT Converts the current time to a user-specified format

ALTTIME4 C DSN8DUCT Converts a time from one format to another

DAYNAME C++ DSN8EUDN Returns the day of the week for a user-specified date

MONTHNAME C++ DSN8EUMN Returns the month for a user-specified date

CURRENCY C DSN8DUCY Formats a floating-point number as a currency value

TABLE_NAME C DSN8DUTI Returns the unqualified table name for a table, view,
or alias

TABLE_QUALIF C DSN8DUTI Returns the qualifier for a table, view, or alias

TABLE_LOCATION C DSN8DUTI Returns the location for a table, view, or alias

WEATHER C DSN8DUWF Returns a table of weather information from a
EBCDIC data set

Notes:

1. This version of ALTDATE has one input parameter, of type VARCHAR(13).

2. This version of ALTDATE has three input parameters, of type VARCHAR(17), VARCHAR(13), and
VARCHAR(13).

3. This version of ALTTIME has one input parameter, of type VARCHAR(14).

4. This version of ALTTIME has three input parameters, of type VARCHAR(11), VARCHAR(14), and VARCHAR(14).

Chapter 15. Creating and using user-defined functions 313

|



Member DSN8DUWC contains a client program that shows you how to invoke the
WEATHER user-defined table function.

Member DSNTEJ2U shows you how to define and prepare the sample user-defined
functions and the client program.

Defining a user-defined function
To define a user-defined function, perform the following steps:
1. Determine the characteristics of the user-defined function, such as the

user-defined function name, schema (qualifier), and number and data types of
the input parameters and the types of the values returned. For information
about the characteristics that you can define for a user-defined function, see
“Components of a user-defined function definition.”

2. Execute a CREATE FUNCTION statement to register the information in the
DB2 catalog. For examples of CREATE FUNCTION statements, see “Examples
of user-defined function definitions” on page 316.

If you discover after you define the function that any of these characteristics is not
appropriate for the function, you can use an ALTER FUNCTION statement to
change information in the definition. You cannot use ALTER FUNCTION to change
some of the characteristics of a user-defined function definition. See Chapter 5 of
DB2 SQL Reference for information about which characteristics you can change with
ALTER FUNCTION.

Components of a user-defined function definition
The characteristics you include in a CREATE FUNCTION or ALTER FUNCTION
statement depend on whether the user-defined function is sourced, external, or
SQL. Table 35 lists the characteristics of a user-defined function, the corresponding
parameters in the CREATE FUNCTION and ALTER FUNCTION statements, and
which parameters are valid for sourced, external, and SQL user-defined functions.

Table 35. Characteristics of a user-defined function

Characteristic
CREATE FUNCTION or
ALTER FUNCTION option

Valid in
sourced
function?

Valid in
external
function?

Valid in
SQL
function?

User-defined function name FUNCTION Yes Yes Yes

Input parameter types and
encoding schemes

FUNCTION Yes Yes Yes

Output parameter types and
encoding schemes

RETURNS
RETURNS TABLE1

Yes Yes Yes2

Specific name SPECIFIC Yes Yes Yes

External name EXTERNAL NAME No Yes No

Language LANGUAGE ASSEMBLE
LANGUAGE C
LANGUAGE COBOL
LANGUAGE PLI
LANGUAGE JAVA
LANGUAGE SQL

No Yes3 Yes4

Deterministic or not
deterministic

NOT DETERMINISTIC
DETERMINISTIC

No Yes Yes

314 Application Programming and SQL Guide



Table 35. Characteristics of a user-defined function (continued)

Characteristic
CREATE FUNCTION or
ALTER FUNCTION option

Valid in
sourced
function?

Valid in
external
function?

Valid in
SQL
function?

Types of SQL statements in
the function

NO SQL
CONTAINS SQL
READS SQL DATA
MODIFIES SQL DATA

No Yes5 Yes6

Name of source function SOURCE Yes No No

Parameter style PARAMETER STYLE SQL
PARAMETER STYLE JAVA

No Yes7 No

Address space for
user-defined functions

FENCED No Yes No

Call with null input RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT

No Yes Yes8

External actions EXTERNAL ACTION
NO EXTERNAL ACTION

No Yes Yes

Scratchpad specification NO SCRATCHPAD
SCRATCHPAD length

No Yes No

Call function after SQL
processing

NO FINAL CALL
FINAL CALL

No Yes No

Consider function for parallel
processing

ALLOW PARALLEL
DISALLOW PARALLEL

No Yes5 No

Package collection NO COLLID
COLLID collection-id

No Yes No

WLM environment WLM ENVIRONMENT name
WLM ENVIRONMENT name,*

No Yes No

CPU time for a function
invocation

ASUTIME NO LIMIT
ASUTIME LIMIT integer

No Yes No

Load module stays in
memory

STAY RESIDENT NO
STAY RESIDENT YES

No Yes No

Program type PROGRAM TYPE MAIN
PROGRAM TYPE SUB

No Yes No

Security SECURITY DB2
SECURITY USER
SECURITY DEFINER

No Yes No

Run-time options RUN OPTIONS options No Yes No

Pass DB2 environment
information

NO DBINFO
DBINFO

No Yes No

Expected number of rows
returned

CARDINALITY integer No Yes1 No

Function resolution is based
on the declared parameter
types

STATIC DISPATCH No No Yes

SQL expression that evaluates
to the value returned by the
function

RETURN expression No No Yes

Encoding scheme for all string
parameters

PARAMETER CCSID EBCDIC
PARAMETER CCSID ASCII
PARAMETER CCSID UNICODE

No Yes Yes

Chapter 15. Creating and using user-defined functions 315

|



Table 35. Characteristics of a user-defined function (continued)

Characteristic
CREATE FUNCTION or
ALTER FUNCTION option

Valid in
sourced
function?

Valid in
external
function?

Valid in
SQL
function?

For functions that are defined
as LANGUAGE C, the
representation of VARCHAR
parameters and, if applicable,
the returned result.

PARAMETER VARCHAR NULTERM
PARAMETER VARCHAR STRUCTURE9

No Yes No

Number of abnormal
terminations before the
function is stopped

STOP AFTER SYSTEM DEFAULT
FAILURES
STOP AFTER n FAILURES
CONTINUE AFTER FAILURE

No Yes No

Notes:

1. RETURNS TABLE and CARDINALITY are valid only for user-defined table functions. For a single query, you can
override the CARDINALITY value by specifying a CARDINALITY clause for the invocation of a user-defined
table function in the SELECT statement. For additional information, see “Special techniques to influence access
path selection” on page 776.

2. An SQL user-defined function can return only one parameter.

3. LANGUAGE SQL is not valid for an external user-defined function.

4. Only LANGUAGE SQL is valid for an SQL user-defined function.

5. MODIFIES SQL DATA and ALLOW PARALLEL are not valid for user-defined table functions.

6. MODIFIES SQL DATA and NO SQL are not valid for SQL user-defined functions.

7. PARAMETER STYLE JAVA is valid only with LANGUAGE JAVA. PARAMETER STYLE SQL is valid only with
LANGUAGE values other than LANGUAGE JAVA.

8. RETURNS NULL ON NULL INPUT is not valid for an SQL user-defined function.

9. The PARAMETER VARCHAR clause can be specified in CREATE FUNCTION statements only.

For a complete explanation of the parameters in a CREATE FUNCTION or ALTER
FUNCTION statement, see Chapter 5 of DB2 SQL Reference.

Examples of user-defined function definitions
Example: Definition for an external user-defined scalar function: A programmer
develops a user-defined function that searches for a string of maximum length 200
in a CLOB value whose maximum length is 500 KB. This CREATE FUNCTION
statement defines the user-defined function:
CREATE FUNCTION FINDSTRING (CLOB(500K), VARCHAR(200))

RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC FINDSTRINCLOB
EXTERNAL NAME ’FINDSTR’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
STOP AFTER 3 FAILURES;

The output from the user-defined function is of type float, but users require integer
output for their SQL statements. The user-defined function is written in C and
contains no SQL statements. The function is defined to stop when the number of
abnormal terminations is equal to 3.

316 Application Programming and SQL Guide

#
#
#
#
#

#
#
###

|
|
|

|
|
|
|

|

#

|

|

|
|



Example: Definition for an external user-defined scalar function that overloads an
operator: A programmer has written a user-defined function that overloads the
built-in SQL division operator (/). That is, this user-defined function is invoked
when an application program executes a statement like either of the following:
UPDATE TABLE1 SET INTCOL1=INTCOL2/INTCOL3;

UPDATE TABLE1 SET INTCOL1="/"(INTCOL2,INTCOL3);

The user-defined function takes two integer values as input. The output from the
user-defined function is of type integer. The user-defined function is in the MATH
schema, is written in assembler, and contains no SQL statements. This CREATE
FUNCTION statement defines the user-defined function:
CREATE FUNCTION MATH."/" (INT, INT)

RETURNS INTEGER
SPECIFIC DIVIDE
EXTERNAL NAME ’DIVIDE’
LANGUAGE ASSEMBLE
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED;

Suppose that you want the FINDSTRING user-defined function to work on BLOB
data types, as well as CLOB types. You can define another instance of the
user-defined function that specifies a BLOB type as input:
CREATE FUNCTION FINDSTRING (BLOB(500K), VARCHAR(200))

RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC FINDSTRINBLOB
EXTERNAL NAME ’FNDBLOB’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
STOP AFTER 3 FAILURES;

Each instance of FINDSTRING uses a different application program to implement
the user-defined function.

Example: Definition for a sourced user-defined function: Suppose you need a
user-defined function that finds a string in a value with a distinct type of BOAT.
BOAT is based on a BLOB data type. User-defined function FINDSTRING has
already been defined. FINDSTRING takes a BLOB data type and performs the
required function. The specific name for FINDSTRING is FINDSTRINBLOB.

You can therefore define a sourced user-defined function based on FINDSTRING to
do the string search on values of type BOAT. This CREATE FUNCTION statement
defines the sourced user-defined function:
CREATE FUNCTION FINDSTRING (BOAT, VARCHAR(200))

RETURNS INTEGER
SPECIFIC FINDSTRINBOAT
SOURCE SPECIFIC FINDSTRINBLOB;

Example: Definition for an SQL user-defined function: You can define an SQL
user-defined function for the tangent of a value by using the existing built-in SIN
and COS functions:

Chapter 15. Creating and using user-defined functions 317

|

|

|



CREATE FUNCTION TAN (X DOUBLE)
RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(X)/COS(X);

Example: Definition for an external user-defined table function: An application
programmer develops a user-defined function that receives two values and returns
a table. The two input values are:
v A character string of maximum length 30 that describes a subject
v A character string of maximum length 255 that contains text to search for

The user-defined function scans documents on the subject for the search string and
returns a list of documents that match the search criteria, with an abstract for each
document. The list is in the form of a two-column table. The first column is a
character column of length 16 that contains document IDs. The second column is a
varying-character column of maximum length 5000 that contains document
abstracts.

The user-defined function is written in COBOL, uses SQL only to perform queries,
always produces the same output for given input, and should not execute as a
parallel task. The program is reentrant, and successive invocations of the
user-defined function share information. You expect an invocation of the
user-defined function to return about 20 rows.

The following CREATE FUNCTION statement defines the user-defined function:
CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))

RETURNS TABLE (DOC_ID CHAR(16), DOC_ABSTRACT VARCHAR(5000))
EXTERNAL NAME ’DOCMTCH’
LANGUAGE COBOL
PARAMETER STYLE SQL
READS SQL DATA
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20;

Implementing an external user-defined function
This section discusses these steps in implementing an external user-defined
function:
v “Writing a user-defined function”
v “Preparing a user-defined function for execution” on page 350
v “Testing a user-defined function” on page 352

Writing a user-defined function
A user-defined function is similar to any other SQL program. When you write a
user-defined function, you can include static or dynamic SQL statements, IFI calls,
and DB2 commands issued through IFI calls.

Your user-defined function can also access remote data using the following
methods:
v DB2 private protocol access using three-part names or aliases for three-part

names

318 Application Programming and SQL Guide

|



v DRDA® access using three-part names or aliases for three-part names
v DRDA access using CONNECT or SET CONNECTION statements

The user-defined function and the application that calls it can access the same
remote site if both use the same protocol.

You can write an external user-defined function in assembler, C, C++, COBOL,
PL/I, or Java. User-defined functions that are written in COBOL can include
object-oriented extensions, just as other DB2 COBOL programs can. User-defined
functions that are written in Java follow coding guidelines and restrictions specific
to Java. For information about writing Java user-defined functions, see DB2
Application Programming Guide and Reference for Java.

The following sections include additional information that you need when you
write a user-defined function:
v “Restrictions on user-defined function programs”
v “Coding your user-defined function as a main program or as a subprogram”
v “Parallelism considerations” on page 320
v “Passing parameter values to and from a user-defined function” on page 321
v “Examples of receiving parameters in a user-defined function” on page 333
v “Using special registers in a user-defined function” on page 342
v “Using a scratchpad in a user-defined function” on page 344
v “Accessing transition tables in a user-defined function or stored procedure” on

page 345

Restrictions on user-defined function programs
Observe these restrictions when you write a user-defined function:
v Because DB2 uses the Resource Recovery Services attachment facility (RRSAF) as

its interface with your user-defined function, you must not include RRSAF calls
in your user-defined function. DB2 rejects any RRSAF calls that it finds in a
user-defined function.

v If your user-defined function is not defined with parameters SCRATCHPAD or
EXTERNAL ACTION, the user-defined function is not guaranteed to execute
under the same task each time it is invoked.

v You cannot execute COMMIT or ROLLBACK statements in your user-defined
function.

v You must close all cursors that were opened within a user-defined scalar
function. DB2 returns an SQL error if a user-defined scalar function does not
close all cursors that it opened before it completes.

v When you choose the language in which to write a user-defined function
program, be aware of restrictions on the number of parameters that can be
passed to a routine in that language. User-defined table functions in particular
can require large numbers of parameters. Consult the programming guide for
the language in which you plan to write the user-defined function for
information about the number of parameters that can be passed.

Coding your user-defined function as a main program or as a
subprogram
You can code your user-defined function as either a main program or a
subprogram. The way that you code your program must agree with the way you
defined the user-defined function: with the PROGRAM TYPE MAIN or
PROGRAM TYPE SUB parameter. The main difference is that when a main
program starts, Language Environment® allocates the application program storage

Chapter 15. Creating and using user-defined functions 319



that the external user-defined function uses. When a main program ends,
Language Environment closes files and releases dynamically allocated storage.

If you code your user-defined function as a subprogram and manage the storage
and files yourself, you can get better performance. The user-defined function
should always free any allocated storage before it exits. To keep data between
invocations of the user-defined function, use a scratchpad.

You must code a user-defined table function that accesses external resources as a
subprogram. Also ensure that the definer specifies the EXTERNAL ACTION
parameter in the CREATE FUNCTION or ALTER FUNCTION statement. Program
variables for a subprogram persist between invocations of the user-defined
function, and use of the EXTERNAL ACTION parameter ensures that the
user-defined function stays in the same address space from one invocation to
another.

Parallelism considerations
If the definer specifies the parameter ALLOW PARALLEL in the definition of a
user-defined scalar function, and the invoking SQL statement runs in parallel, the
function can run under a parallel task. DB2 executes a separate instance of the
user-defined function for each parallel task. When you write your function
program, you need to understand how the following parameter values interact
with ALLOW PARALLEL so that you can avoid unexpected results:
v SCRATCHPAD

When an SQL statement invokes a user-defined function that is defined with the
ALLOW PARALLEL parameter, DB2 allocates one scratchpad for each parallel
task of each reference to the function. This can lead to unpredictable or incorrect
results.
For example, suppose that the user-defined function uses the scratchpad to
count the number of times it is invoked. If a scratchpad is allocated for each
parallel task, this count is the number of invocations done by the parallel task
and not for the entire SQL statement, which is not the desired result.

v FINAL CALL
If a user-defined function performs an external action, such as sending a note,
for each final call to the function, one note is sent for each parallel task instead
of once for the function invocation.

v EXTERNAL ACTION
Some user-defined functions with external actions can receive incorrect results if
the function is executed by parallel tasks.
For example, if the function sends a note for each initial call to the function, one
note is sent for each parallel task instead of once for the function invocation.

v NOT DETERMINISTIC
A user-defined function that is not deterministic can generate incorrect results if
it is run under a parallel task.
For example, suppose that you execute the following query under parallel tasks:
SELECT * FROM T1 WHERE C1 = COUNTER();

COUNTER is a user-defined function that increments a variable in the
scratchpad every time it is invoked. Counter is nondeterministic because the
same input does not always produce the same output. Table T1 contains one
column, C1, that has the following values:

320 Application Programming and SQL Guide



1
2
3
4
5
6
7
8
9
10

When the query is executed with no parallelism, DB2 invokes COUNTER once
for each row of table T1, and there is one scratchpad for counter, which DB2
initializes the first time that COUNTER executes. COUNTER returns 1 the first
time it executes, 2 the second time, and so on. The result table for the query has
the following values:
1
2
3
4
5
6
7
8
9
10

Now suppose that the query is run with parallelism, and DB2 creates three
parallel tasks. DB2 executes the predicate WHERE C1 = COUNTER() for each
parallel task. This means that each parallel task invokes its own instance of the
user-defined function and has its own scratchpad. DB2 initializes the scratchpad
to zero on the first call to the user-defined function for each parallel task.
If parallel task 1 processes rows 1 to 3, parallel task 2 processes rows 4 to 6, and
parallel task 3 processes rows 7 to 10, the following results occur:
– When parallel task 1 executes, C1 has values 1, 2, and 3, and COUNTER

returns values 1, 2, and 3, so the query returns values 1, 2, and 3.
– When parallel task 2 executes, C1 has values 4, 5, and 6, but COUNTER

returns values 1, 2, and 3, so the query returns no rows.
– When parallel task 3, executes, C1 has values 7, 8, 9, and 10, but COUNTER

returns values 1, 2, 3, and 4, so the query returns no rows.

Thus, instead of returning the 10 rows that you might expect from the query,
DB2 returns only 3 rows.

Passing parameter values to and from a user-defined function
To receive parameters from and pass parameters to a function invoker, you must
understand the structure of the parameter list, the meaning of each parameter, and
whether DB2 or your user-defined function sets the value of each parameter. This
section explains the parameters and gives examples of how a user-defined function
in each host language receives the parameter list.

Figure 124 on page 322 shows the structure of the parameter list that DB2 passes to
a user-defined function. An explanation of each parameter follows.

Chapter 15. Creating and using user-defined functions 321



Input parameter values: DB2 obtains the input parameters from the invoker's
parameter list, and your user-defined function receives those parameters according
to the rules of the host language in which the user-defined function is written. The
number of input parameters is the same as the number of parameters in the
user-defined function invocation. If one of the parameters in the function
invocation is an expression, DB2 evaluates the expression and assigns the result of
the expression to the parameter.

Figure 124. Parameter conventions for a user-defined function

322 Application Programming and SQL Guide



For all data types except LOBs, ROWIDs, locators, and VARCHAR (with C
language), see the tables listed in Table 36 for the host data types that are
compatible with the data types in the user-defined function definition.

Table 36. Listing of tables of compatible data types

Language Compatible data types table

Assembler Table 12 on page 153

C Table 14 on page 177

COBOL Table 17 on page 211

PL/I Table 21 on page 243

For LOBs, ROWIDs, and locators, see Table 37 for the assembler data types that are
compatible with the data types in the user-defined function definition.

Table 37. Compatible assembler language declarations for LOBs, ROWIDs, and locators

SQL data type in definition Assembler declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

DS FL4

BLOB(n) If n <= 65535:

var DS 0FL4
var_length DS FL4
var_data DS CLn

If n > 65535:

var DS 0FL4
var_length DS FL4
var_data DS CL65535

ORG var_data+(n-65535)

CLOB(n) If n <= 65535:

var DS 0FL4
var_length DS FL4
var_data DS CLn

If n > 65535:

var DS 0FL4
var_length DS FL4
var_data DS CL65535

ORG var_data+(n-65535)

DBCLOB(n) If n (=2*n) <= 65534:

var DS 0FL4
var_length DS FL4
var_data DS CLm

If n > 65534:

var DS 0FL4
var_length DS FL4
var_data DS CL65534

ORG var_data+(m-65534)

ROWID DS HL2,CL40

Chapter 15. Creating and using user-defined functions 323

#
#



For LOBs, ROWIDs, VARCHARs, and locators see Table 38 for the C data types
that are compatible with the data types in the user-defined function definition.

Table 38. Compatible C language declarations for LOBs, ROWIDs, VARCHARs, and locators

SQL data type in definition1 C declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

unsigned long

BLOB(n) struct
{unsigned long length;

char data[n];
} var;

CLOB(n) struct
{unsigned long length;

char var_data[n];
} var;

DBCLOB(n) struct
{unsigned long length;
sqldbchar data[n];
} var;

ROWID struct {
short int length;
char data[40];

} var;

VARCHAR(n)2 If PARAMETER VARCHAR NULTERM is
specified or implied:

char data[n+1];

If PARAMETER VARCHAR STRUCTURE is
specified:

struct
{short len;
char data[n];

} var;

Notes:

1. The SQLUDF file, which is in data set DSN810.SDSNC.H, includes the typedef
sqldbchar. Using sqldbchar lets you manipulate DBCS and Unicode UTF-16 data in the
same format in which it is stored in DB2. sqldbchar also makes applications easier to
port to other DB2 platforms.

2. This row does not apply to VARCHAR(n) FOR BIT DATA. BIT DATA is always passed
in a structured representation.

For LOBs, ROWIDs, and locators, see Table 39 for the COBOL data types that are
compatible with the data types in the user-defined function definition.

Table 39. Compatible COBOL declarations for LOBs, ROWIDs, and locators

SQL data type in definition COBOL declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

01 var PIC S9(9)
USAGE IS BINARY.

324 Application Programming and SQL Guide

#
#

|

##
#

#

#
#

#
#
#
#

#
#



Table 39. Compatible COBOL declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition COBOL declaration

BLOB(n) If n <= 32767:

01 var.
49 var-LENGTH PIC 9(9)

USAGE COMP.
49 var-DATA PIC X(n).

If length > 32767:

01 var.
02 var-LENGTH PIC S9(9)

USAGE COMP.
02 var-DATA.

49 FILLER
PIC X(32767).

49 FILLER
PIC X(32767)....

49 FILLER
PIC X(mod(n,32767)).

CLOB(n) If n <= 32767:

01 var.
49 var-LENGTH PIC 9(9)

USAGE COMP.
49 var-DATA PIC X(n).

If length > 32767:

01 var.
02 var-LENGTH PIC S9(9)

USAGE COMP.
02 var-DATA.

49 FILLER
PIC X(32767).

49 FILLER
PIC X(32767)....

49 FILLER
PIC X(mod(n,32767)).

DBCLOB(n) If n <= 32767:

01 var.
49 var-LENGTH PIC 9(9)

USAGE COMP.
49 var-DATA PIC G(n)

USAGE DISPLAY-1.

If length > 32767:

01 var.
02 var-LENGTH PIC S9(9)

USAGE COMP.
02 var-DATA.

49 FILLER
PIC G(32767)

USAGE DISPLAY-1.
49 FILLER

PIC G(32767).
USAGE DISPLAY-1....
49 FILLER

PIC G(mod(n,32767))
USAGE DISPLAY-1.

Chapter 15. Creating and using user-defined functions 325



Table 39. Compatible COBOL declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition COBOL declaration

ROWID 01 var.
49 var-LEN PIC 9(4)

USAGE COMP.
49 var-DATA PIC X(40).

For LOBs, ROWIDs, and locators, see Table 40 for the PL/I data types that are
compatible with the data types in the user-defined function definition.

Table 40. Compatible PL/I declarations for LOBs, ROWIDs, and locators

SQL data type in definition PL/I

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

BIN FIXED(31)

BLOB(n) If n <= 32767:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

CHAR(n);

If n > 32767:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
CHAR(32767),

03 var_DATA2
CHAR(mod(n,32767));

CLOB(n) If n <= 32767:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

CHAR(n);

If n > 32767:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
CHAR(32767),

03 var_DATA2
CHAR(mod(n,32767));

326 Application Programming and SQL Guide



Table 40. Compatible PL/I declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition PL/I

DBCLOB(n) If n <= 16383:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

GRAPHIC(n);

If n > 16383:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
GRAPHIC(16383),

03 var_DATA2
GRAPHIC(mod(n,16383));

ROWID CHAR(40) VAR;

Result parameters: Set these values in your user-defined function before exiting.
For a user-defined scalar function, you return one result parameter. For a
user-defined table function, you return the same number of parameters as columns
in the RETURNS TABLE clause of the CREATE FUNCTION statement. DB2
allocates a buffer for each result parameter value and passes the buffer address to
the user-defined function. Your user-defined function places each result parameter
value in its buffer. You must ensure that the length of the value you place in each
output buffer does not exceed the buffer length. Use the SQL data type and length
in the CREATE FUNCTION statement to determine the buffer length.

See “Passing parameter values to and from a user-defined function” on page 321 to
determine the host data type to use for each result parameter value. If the CREATE
FUNCTION statement contains a CAST FROM clause, use a data type that
corresponds to the SQL data type in the CAST FROM clause. Otherwise, use a data
type that corresponds to the SQL data type in the RETURNS or RETURNS TABLE
clause.

To improve performance for user-defined table functions that return many
columns, you can pass values for a subset of columns to the invoker. For example,
a user-defined table function might be defined to return 100 columns, but the
invoker needs values for only two columns. Use the DBINFO parameter to indicate
to DB2 the columns for which you will return values. Then return values for only
those columns. See the explanation of DBINFO on page 331 for information about
how to indicate the columns of interest.

Input parameter indicators: These are SMALLINT values, which DB2 sets before it
passes control to the user-defined function. You use the indicators to determine
whether the corresponding input parameters are null. The number and order of the
indicators are the same as the number and order of the input parameters. On entry
to the user-defined function, each indicator contains one of these values:

0 The input parameter value is not null.

negative The input parameter value is null.

Chapter 15. Creating and using user-defined functions 327



Code the user-defined function to check all indicators for null values unless the
user-defined function is defined with RETURNS NULL ON NULL INPUT. A
user-defined function defined with RETURNS NULL ON NULL INPUT executes
only if all input parameters are not null.

Result indicators: These are SMALLINT values, which you must set before the
user-defined function ends to indicate to the invoking program whether each result
parameter value is null. A user-defined scalar function has one result indicator. A
user-defined table function has the same number of result indicators as the number
of result parameters. The order of the result indicators is the same as the order of
the result parameters. Set each result indicator to one of these values:

0 or positive The result parameter is not null.

negative The result parameter is null.

SQLSTATE value: This CHAR(5) value represents the SQLSTATE that is passed in
to the program from the database manager. The initial value is set to ‘00000’.
Although the SQLSTATE is usually not set by the program, it can be set as the
result SQLSTATE that is used to return an error or a warning. Returned values that
start with anything other than ‘00’, ‘01’, or ‘02’ are error conditions.

Refer to DB2 Codes for more information about the valid SQLSTATE values that a
program may generate.

User-defined function name: DB2 sets this value in the parameter list before the
user-defined function executes. This value is VARCHAR(257): 128 bytes for the
schema name, 1 byte for a period, and 128 bytes for the user-defined function
name. If you use the same code to implement multiple versions of a user-defined
function, you can use this parameter to determine which version of the function
the invoker wants to execute.

Specific name: DB2 sets this value in the parameter list before the user-defined
function executes. This value is VARCHAR(128) and is either the specific name
from the CREATE FUNCTION statement or a specific name that DB2 generated. If
you use the same code to implement multiple versions of a user-defined function,
you can use this parameter to determine which version of the function the invoker
wants to execute.

Diagnostic message: Your user-defined function can set this CHAR or VARCHAR
value to a character string of up to 70 bytes before exiting. Use this area to pass
descriptive information about an error or warning to the invoker.

DB2 allocates a buffer for this area and passes you the buffer address in the
parameter list. At least the first 17 bytes of the value you put in the buffer appear
in the SQLERRMC field of the SQLCA that is returned to the invoker. The exact
number of bytes depends on the number of other tokens in SQLERRMC. Do not
use X'FF' in your diagnostic message. DB2 uses this value to delimit tokens.

Scratchpad: If the definer specified SCRATCHPAD in the CREATE FUNCTION
statement, DB2 allocates a buffer for the scratchpad area and passes its address to
the user-defined function. Before the user-defined function is invoked for the first
time in an SQL statement, DB2 sets the length of the scratchpad in the first 4 bytes
of the buffer and then sets the scratchpad area to X'00'. DB2 does not reinitialize
the scratchpad between invocations of a correlated subquery.

328 Application Programming and SQL Guide

|
|
|
|
|

|
|

|
|
|

#
#
#

#
#
#
#
#



You must ensure that your user-defined function does not write more bytes to the
scratchpad than the scratchpad length.

Call type: For a user-defined scalar function, if the definer specified FINAL CALL
in the CREATE FUNCTION statement, DB2 passes this parameter to the
user-defined function. For a user-defined table function, DB2 always passes this
parameter to the user-defined function.

On entry to a user-defined scalar function, the call type parameter has one of the
following values:

-1 This is the first call to the user-defined function for the SQL statement. For
a first call, all input parameters are passed to the user-defined function. In
addition, the scratchpad, if allocated, is set to binary zeros.

0 This is a normal call. For a normal call, all the input parameters are passed
to the user-defined function. If a scratchpad is also passed, DB2 does not
modify it.

1 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application explicitly
closes a cursor. When a value of 1 is passed to a user-defined function, the
user-defined function can execute SQL statements.

255 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application executes a
COMMIT or ROLLBACK statement, or when the invoking application
abnormally terminates. When a value of 255 is passed to the user-defined
function, the user-defined function cannot execute any SQL statements,
except for CLOSE CURSOR. If the user-defined function executes any close
cursor statements during this type of final call, the user-defined function
should tolerate SQLCODE -501 because DB2 might have already closed
cursors before the final call.

During the first call, your user-defined scalar function should acquire any system
resources it needs. During the final call, the user-defined scalar function should
release any resources it acquired during the first call. The user-defined scalar
function should return a result value only during normal calls. DB2 ignores any
results that are returned during a final call. However, the user-defined scalar
function can set the SQLSTATE and diagnostic message area during the final call.

If an invoking SQL statement contains more than one user-defined scalar function,
and one of those user-defined functions returns an error SQLSTATE, DB2 invokes
all of the user-defined functions for a final call, and the invoking SQL statement
receives the SQLSTATE of the first user-defined function with an error.

On entry to a user-defined table function, the call type parameter has one of the
following values:

-2 This is the first call to the user-defined function for the SQL statement. A
first call occurs only if the FINAL CALL keyword is specified in the

Chapter 15. Creating and using user-defined functions 329



user-defined function definition. For a first call, all input parameters are
passed to the user-defined function. In addition, the scratchpad, if
allocated, is set to binary zeros.

-1 This is the open call to the user-defined function by an SQL statement. If
FINAL CALL is not specified in the user-defined function definition, all
input parameters are passed to the user-defined function, and the
scratchpad, if allocated, is set to binary zeros during the open call. If
FINAL CALL is specified for the user-defined function, DB2 does not
modify the scratchpad.

0 This is a fetch call to the user-defined function by an SQL statement. For a
fetch call, all input parameters are passed to the user-defined function. If a
scratchpad is also passed, DB2 does not modify it.

1 This is a close call. For a close call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

2 This is a final call. This type of final call occurs only if FINAL CALL is
specified in the user-defined function definition. For a final call, no input
parameters are passed to the user-defined function. If a scratchpad is also
passed, DB2 does not modify it.

This type of final call occurs when the invoking application executes a
CLOSE CURSOR statement.

255 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application executes a
COMMIT or ROLLBACK statement, or when the invoking application
abnormally terminates. When a value of 255 is passed to the user-defined
function, the user-defined function cannot execute any SQL statements,
except for CLOSE CURSOR. If the user-defined function executes any close
cursor statements during this type of final call, the user-defined function
should tolerate SQLCODE -501 because DB2 might have already closed
cursors before the final call.

If a user-defined table function is defined with FINAL CALL, the user-defined
function should allocate any resources it needs during the first call and release
those resources during the final call that sets a value of 2.

If a user-defined table function is defined with NO FINAL CALL, the user-defined
function should allocate any resources it needs during the open call and release
those resources during the close call.

During a fetch call, the user-defined table function should return a row. If the
user-defined function has no more rows to return, it should set the SQLSTATE to
02000.

During the close call, a user-defined table function can set the SQLSTATE and
diagnostic message area.

If a user-defined table function is invoked from a subquery, the user-defined table
function receives a CLOSE call for each invocation of the subquery within the
higher level query, and a subsequent OPEN call for the next invocation of the
subquery within the higher level query.

330 Application Programming and SQL Guide



DBINFO: If the definer specified DBINFO in the CREATE FUNCTION statement,
DB2 passes the DBINFO structure to the user-defined function. DBINFO contains
information about the environment of the user-defined function caller. It contains
the following fields, in the order shown:

Location name length
An unsigned 2-byte integer field. It contains the length of the location name in
the next field.

Location name
A 128-byte character field. It contains the name of the location to which the
invoker is currently connected.

Authorization ID length
An unsigned 2-byte integer field. It contains the length of the authorization ID
in the next field.

Authorization ID
A 128-byte character field. It contains the authorization ID of the application
from which the user-defined function is invoked, padded on the right with
blanks. If this user-defined function is nested within other user-defined
functions, this value is the authorization ID of the application that invoked the
highest-level user-defined function.

Subsystem code page
A 48-byte structure that consists of 10 integer fields and an eight-byte reserved
area. These fields provide information about the CCSIDs of the subsystem from
which the user-defined function is invoked.

Table qualifier length
An unsigned 2-byte integer field. It contains the length of the table qualifier in
the next field. If the table name field is not used, this field contains 0.

Table qualifier
A 128-byte character field. It contains the qualifier of the table that is specified
in the table name field.

Table name length
An unsigned 2-byte integer field. It contains the length of the table name in the
next field. If the table name field is not used, this field contains 0.

Table name
A 128-byte character field. This field contains the name of the table that the
UPDATE or INSERT modifies if the reference to the user-defined function in
the invoking SQL statement is in one of the following places:
v The right side of a SET clause in an UPDATE statement
v In the VALUES list of an INSERT statement

Otherwise, this field is blank.

Column name length
An unsigned 2-byte integer field. It contains the length of the column name in
the next field. If no column name is passed to the user-defined function, this
field contains 0.

Column name
A 128-byte character field. This field contains the name of the column that the
UPDATE or INSERT modifies if the reference to the user-defined function in
the invoking SQL statement is in one of the following places:
v The right side of a SET clause in an UPDATE statement
v In the VALUES list of an INSERT statement

Chapter 15. Creating and using user-defined functions 331

|
|
|



Otherwise, this field is blank.

Product information
An 8-byte character field that identifies the product on which the user-defined
function executes. This field has the form pppvvrrm, where:
v ppp is a 3-byte product code:

ARI DB2 Server for VSE & VM

DSN DB2 UDB for z/OS

QSQ DB2 UDB for iSeries

SQL DB2 UDB for Linux, UNIX, and Windows
v vv is a 2-digit version identifier.
v rr is a 2-digit release identifier.
v m is a 1-digit maintenance level identifier.

Reserved area
2 bytes.

Operating system
A 4-byte integer field. It identifies the operating system on which the program
that invokes the user-defined function runs. The value is one of these:

0 Unknown

1 OS/2

3 Windows

4 AIX

5 Windows NT

6 HP-UX

7 Solaris

8 OS/390 or z/OS

13 Siemens Nixdorf

15 Windows 95

16 SCO UNIX

18 Linux

19 DYNIX/ptx

24 Linux for S/390

25 Linux for zSeries

26 Linux/IA64

27 Linux/PPC

28 Linux/PPC64

29 Linux/AMD64

400 iSeries

Number of entries in table function column list
An unsigned 2-byte integer field.

332 Application Programming and SQL Guide

|
|

||

||

||

||

||

||

||

||



Reserved area
26 bytes.

Table function column list pointer
If a table function is defined, this field is a pointer to an array that contains
1000 2-byte integers. DB2 dynamically allocates the array. If a table function is
not defined, this pointer is null.

Only the first n entries, where n is the value in the field entitled number of
entries in table function column list, are of interest. n is greater than or equal
to 0 and less than or equal to the number result columns defined for the
user-defined function in the RETURNS TABLE clause of the CREATE
FUNCTION statement. The values correspond to the numbers of the columns
that the invoking statement needs from the table function. A value of 1 means
the first defined result column, 2 means the second defined result column, and
so on. The values can be in any order. If n is equal to 0, the first array element
is 0. This is the case for a statement like the following one, where the invoking
statement needs no column values.
SELECT COUNT(*) FROM TABLE(TF(...)) AS QQ

This array represents an opportunity for optimization. The user-defined
function does not need to return all values for all the result columns of the
table function. Instead, the user-defined function can return only those
columns that are needed in the particular context, which you identify by
number in the array. However, if this optimization complicates the
user-defined function logic enough to cancel the performance benefit, you
might choose to return every defined column.

Unique application identifier
This field is a pointer to a string that uniquely identifies the application's
connection to DB2. The string is regenerated for each connection to DB2.

The string is the LUWID, which consists of a fully-qualified LU network name
followed by a period and an LUW instance number. The LU network name
consists of a 1- to 8-character network ID, a period, and a 1- to 8-character
network LU name. The LUW instance number consists of 12 hexadecimal
characters that uniquely identify the unit of work.

Reserved area
20 bytes.

“Examples of receiving parameters in a user-defined function” has examples of
declarations of passed parameters in each language. If you write your user-defined
function in C or C++, you can use the declarations in member SQLUDF of
DSN810.SDSNC.H for many of the passed parameters. To include SQLUDF, make
these changes to your program:
v Put this statement in your source code:

#include <sqludf.h>

v Include the DSN810.SDSNC.H data set in the SYSLIB concatenation for the
compile step of your program preparation job.

v Specify the NOMARGINS and NOSEQUENCE options in the compile step of
your program preparation job.

Examples of receiving parameters in a user-defined function
The following examples show how a user-defined function that is written in each
of the supported host languages receives the parameter list that is passed by DB2.

Chapter 15. Creating and using user-defined functions 333

|



These examples assume that the user-defined function is defined with the
SCRATCHPAD, FINAL CALL, and DBINFO parameters.

Assembler: Figure 125 shows the parameter conventions for a user-defined scalar
function that is written as a main program that receives two parameters and
returns one result. For an assembler language user-defined function that is a
subprogram, the conventions are the same. In either case, you must include the
CEEENTRY and CEEEXIT macros.

C or C++: For C or C++ user-defined functions, the conventions for passing
parameters are different for main programs and subprograms.

For subprograms, you pass the parameters directly. For main programs, you use
the standard argc and argv variables to access the input and output parameters:

MYMAIN CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS
USING PROGAREA,R13

L R7,0(R1) GET POINTER TO PARM1
MVC PARM1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF PARM1
L R7,4(R1) GET POINTER TO PARM2
MVC PARM2(4),0(R7) MOVE VALUE INTO LOCAL COPY OF PARM2
L R7,12(R1) GET POINTER TO INDICATOR 1
MVC F_IND1(2),0(R7) MOVE PARM1 INDICATOR TO LOCAL STORAGE
LH R7,F_IND1 MOVE PARM1 INDICATOR INTO R7
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, PARM1 IS NULL
L R7,16(R1) GET POINTER TO INDICATOR 2
MVC F_IND2(2),0(R7) MOVE PARM2 INDICATOR TO LOCAL STORAGE
LH R7,F_IND2 MOVE PARM2 INDICATOR INTO R7
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, PARM2 IS NULL

...
L R7,8(R1) GET ADDRESS OF AREA FOR RESULT

NULLIN MVC 0(9,R7),RESULT MOVE A VALUE INTO RESULT AREA
L R7,20(R1) GET ADDRESS OF AREA FOR RESULT IND
MVC 0(2,R7),=H’0’ MOVE A VALUE INTO INDICATOR AREA

...
CEETERM RC=0

*******************************************************************
* VARIABLE DECLARATIONS AND EQUATES *
*******************************************************************
R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
PARM1 DS F PARAMETER 1
PARM2 DS F PARAMETER 2
RESULT DS CL9 RESULT
F_IND1 DS H INDICATOR FOR PARAMETER 1
F_IND2 DS H INDICATOR FOR PARAMETER 2
F_INDR DS H INDICATOR FOR RESULT

PROGSIZE EQU *-PROGAREA
CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END MYMAIN

Figure 125. How an assembler language user-defined function receives parameters

334 Application Programming and SQL Guide



v The argv variable contains an array of pointers to the parameters that are passed
to the user-defined function. All string parameters that are passed back to DB2
must be null terminated.
– argv[0] contains the address of the load module name for the user-defined

function.
– argv[1] through argv[n] contain the addresses of parameters 1 through n.

v The argc variable contains the number of parameters that are passed to the
external user-defined function, including argv[0].

Figure 126 shows the parameter conventions for a user-defined scalar function that
is written as a main program that receives two parameters and returns one result.

#include <stdlib.h>
#include <stdio.h>

main(argc,argv)
int argc;
char *argv[];
{

/***************************************************/
/* Assume that the user-defined function invocation*/
/* included 2 input parameters in the parameter */
/* list. Also assume that the definition includes */
/* the SCRATCHPAD, FINAL CALL, and DBINFO options, */
/* so DB2 passes the scratchpad, calltype, and */
/* dbinfo parameters. */
/* The argv vector contains these entries: */
/* argv[0] 1 load module name */
/* argv[1-2] 2 input parms */
/* argv[3] 1 result parm */
/* argv[4-5] 2 null indicators */
/* argv[6] 1 result null indicator */
/* argv[7] 1 SQLSTATE variable */
/* argv[8] 1 qualified func name */
/* argv[9] 1 specific func name */
/* argv[10] 1 diagnostic string */
/* argv[11] 1 scratchpad */
/* argv[12] 1 call type */
/* argv[13] + 1 dbinfo */
/* ------ */
/* 14 for the argc variable */
/***************************************************/
if argc<>14
{

...
/**********************************************************/
/* This section would contain the code executed if the */
/* user-defined function is invoked with the wrong number */
/* of parameters. */
/**********************************************************/

}

Figure 126. How a C or C++ user-defined function that is written as a main program receives
parameters (Part 1 of 2)

Chapter 15. Creating and using user-defined functions 335



Figure 127 on page 337 shows the parameter conventions for a user-defined scalar
function written as a C subprogram that receives two parameters and returns one
result.

/***************************************************/
/* Assume the first parameter is an integer. */
/* The following code shows how to copy the integer*/
/* parameter into the application storage. */
/***************************************************/
int parm1;
parm1 = *(int *) argv[1];

/***************************************************/
/* Access the null indicator for the first */
/* parameter on the invoked user-defined function */
/* as follows: */
/***************************************************/
short int ind1;
ind1 = *(short int *) argv[4];

/***************************************************/
/* Use the following expression to assign */
/* ’xxxxx’ to the SQLSTATE returned to caller on */
/* the SQL statement that contains the invoked */
/* user-defined function. */
/***************************************************/
strcpy(argv[7],"xxxxx/0");

/***************************************************/
/* Obtain the value of the qualified function */
/* name with this expression. */
/***************************************************/
char f_func[28];
strcpy(f_func,argv[8]);
/***************************************************/
/* Obtain the value of the specific function */
/* name with this expression. */
/***************************************************/
char f_spec[19];
strcpy(f_spec,argv[9]);

/***************************************************/
/* Use the following expression to assign */
/* ’yyyyyyyy’ to the diagnostic string returned */
/* in the SQLCA associated with the invoked */
/* user-defined function. */
/***************************************************/
strcpy(argv[10],"yyyyyyyy/0");

/***************************************************/
/* Use the following expression to assign the */
/* result of the function. */
/***************************************************/
char l_result[11];
strcpy(argv[3],l_result);

...
}

Figure 126. How a C or C++ user-defined function that is written as a main program receives
parameters (Part 2 of 2)

336 Application Programming and SQL Guide



Figure 128 on page 338 shows the parameter conventions for a user-defined scalar
function that is written as a C++ subprogram that receives two parameters and
returns one result. This example demonstrates that you must use an extern "C"
modifier to indicate that you want the C++ subprogram to receive parameters
according to the C linkage convention. This modifier is necessary because the
CEEPIPI CALL_SUB interface, which DB2 uses to call the user-defined function,
passes parameters using the C linkage convention.

#pragma runopts(plist(os))
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sqludf.h>

void myfunc(long *parm1, char parm2[11], char result[11],
short *f_ind1, short *f_ind2, short *f_indr,
char udf_sqlstate[6], char udf_fname[138],
char udf_specname[129], char udf_msgtext[71],
struct sqludf_scratchpad *udf_scratchpad,
long *udf_call_type,
struct sql_dbinfo *udf_dbinfo);

{
/***************************************************/
/* Declare local copies of parameters */
/***************************************************/
int l_p1;
char l_p2[11];
short int l_ind1;
short int l_ind2;
char ludf_sqlstate[6]; /* SQLSTATE */
char ludf_fname[138]; /* function name */
char ludf_specname[129]; /* specific function name */
char ludf_msgtext[71] /* diagnostic message text*/
sqludf_scratchpad *ludf_scratchpad; /* scratchpad */
long *ludf_call_type; /* call type */
sqludf_dbinfo *ludf_dbinfo /* dbinfo */
/***************************************************/
/* Copy each of the parameters in the parameter */
/* list into a local variable to demonstrate */
/* how the parameters can be referenced. */
/***************************************************/

l_p1 = *parm1;
strcpy(l_p2,parm2);
l_ind1 = *f_ind1;
l_ind1 = *f_ind2;
strcpy(ludf_sqlstate,udf_sqlstate);
strcpy(ludf_fname,udf_fname);
strcpy(ludf_specname,udf_specname);
l_udf_call_type = *udf_call_type;
strcpy(ludf_msgtext,udf_msgtext);
memcpy(&ludf_scratchpad,udf_scratchpad,sizeof(ludf_scratchpad));
memcpy(&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

...
}

Figure 127. How a C language user-defined function that is written as a subprogram receives
parameters

Chapter 15. Creating and using user-defined functions 337

|



COBOL: Figure 129 on page 339 shows the parameter conventions for a
user-defined table function that is written as a main program that receives two
parameters and returns two results. For a COBOL user-defined function that is a
subprogram, the conventions are the same.

#pragma runopts(plist(os))
#include <stdlib.h>
#include <stdio.h>
#include <sqludf.h>

extern "C" void myfunc(long *parm1, char parm2[11],
char result[11], short *f_ind1, short *f_ind2, short *f_indr,
char udf_sqlstate[6], char udf_fname[138],
char udf_specname[129], char udf_msgtext[71],
struct sqludf_scratchpad *udf_scratchpad,
long *udf_call_type,
struct sql_dbinfo *udf_dbinfo);

{
/***************************************************/
/* Define local copies of parameters. */
/***************************************************/
int l_p1;
char l_p2[11];
short int l_ind1;
short int l_ind2;
char ludf_sqlstate[6]; /* SQLSTATE */
char ludf_fname[138]; /* function name */
char ludf_specname[129]; /* specific function name */
char ludf_msgtext[71] /* diagnostic message text*/
sqludf_scratchpad *ludf_scratchpad; /* scratchpad */
long *ludf_call_type; /* call type */
sqludf_dbinfo *ludf_dbinfo /* dbinfo */
/***************************************************/
/* Copy each of the parameters in the parameter */
/* list into a local variable to demonstrate */
/* how the parameters can be referenced. */
/***************************************************/
l_p1 = *parm1;
strcpy(l_p2,parm2);
l_ind1 = *f_ind1;
l_ind1 = *f_ind2;
strcpy(ludf_sqlstate,udf_sqlstate);
strcpy(ludf_fname,udf_fname);
strcpy(ludf_specname,udf_specname);
l_udf_call_type = *udf_call_type;
strcpy(ludf_msgtext,udf_msgtext);
memcpy(&ludf_scratchpad,udf_scratchpad,sizeof(ludf_scratchpad));
memcpy(&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

...
}

Figure 128. How a C++ user-defined function that is written as a subprogram receives
parameters

338 Application Programming and SQL Guide

|



CBL APOST,RES,RENT
IDENTIFICATION DIVISION.

...
DATA DIVISION.

...
LINKAGE SECTION.
*********************************************************
* Declare each of the parameters *
*********************************************************
01 UDFPARM1 PIC S9(9) USAGE COMP.
01 UDFPARM2 PIC X(10).

...
*********************************************************
* Declare these variables for result parameters *
*********************************************************
01 UDFRESULT1 PIC X(10).
01 UDFRESULT2 PIC X(10).

...
*********************************************************
* Declare a null indicator for each parameter *
*********************************************************
01 UDF-IND1 PIC S9(4) USAGE COMP.
01 UDF-IND2 PIC S9(4) USAGE COMP.

...
*********************************************************
* Declare a null indicator for result parameter *
*********************************************************
01 UDF-RIND1 PIC S9(4) USAGE COMP.
01 UDF-RIND2 PIC S9(4) USAGE COMP.

...
*********************************************************
* Declare the SQLSTATE that can be set by the *
* user-defined function *
*********************************************************
01 UDF-SQLSTATE PIC X(5).
*********************************************************
* Declare the qualified function name *
*********************************************************
01 UDF-FUNC.

49 UDF-FUNC-LEN PIC 9(4) USAGE BINARY.
49 UDF-FUNC-TEXT PIC X(137).

*********************************************************
* Declare the specific function name *
*********************************************************
01 UDF-SPEC.

49 UDF-SPEC-LEN PIC 9(4) USAGE BINARY.
49 UDF-SPEC-TEXT PIC X(128).

*********************************************************
* Declare SQL diagnostic message token *
*********************************************************
01 UDF-DIAG.

49 UDF-DIAG-LEN PIC 9(4) USAGE BINARY.
49 UDF-DIAG-TEXT PIC X(70).

Figure 129. How a COBOL user-defined function receives parameters (Part 1 of 3)

Chapter 15. Creating and using user-defined functions 339



*********************************************************
* Declare the scratchpad *
*********************************************************
01 UDF-SCRATCHPAD.

49 UDF-SPAD-LEN PIC 9(9) USAGE BINARY.
49 UDF-SPAD-TEXT PIC X(100).

*********************************************************
* Declare the call type *
*********************************************************
01 UDF-CALL-TYPE PIC 9(9) USAGE BINARY.
*********************************************************
* CONSTANTS FOR DB2-EBCODING-SCHEME. *
*********************************************************
77 SQLUDF-ASCII PIC 9(9) VALUE 1.
77 SQLUDF-EBCDIC PIC 9(9) VALUE 2.
77 SQLUDF-UNICODE PIC 9(9) VALUE 3.
*********************************************************
* Structure used for DBINFO *
*********************************************************
01 SQLUDF-DBINFO.
* location name length

05 DBNAMELEN PIC 9(4) USAGE BINARY.
* location name

05 DBNAME PIC X(128).
* authorization ID length

05 AUTHIDLEN PIC 9(4) USAGE BINARY.
* authorization ID

05 AUTHID PIC X(128).
* environment CCSID information

05 CODEPG PIC X(48).
05 CDPG-DB2 REDEFINES CODEPG.

10 DB2-CCSIDS OCCURS 3 TIMES.
15 DB2-SBCS PIC 9(9) USAGE BINARY.
15 DB2-DBCS PIC 9(9) USAGE BINARY.
15 DB2-MIXED PIC 9(9) USAGE BINARY.

10 ENCODING-SCHEME PIC 9(9) USAGE BINARY.
10 RESERVED PIC X(8).

* other platform-specific deprecated CCSID structures not included here
* schema name length

05 TBSCHEMALEN PIC 9(4) USAGE BINARY.
* schema name

05 TBSCHEMA PIC X(128).
* table name length

05 TBNAMELEN PIC 9(4) USAGE BINARY.
* table name

05 TBNAME PIC X(128).
* column name length

05 COLNAMELEN PIC 9(4) USAGE BINARY.
* column name

05 COLNAME PIC X(128).
* product information

05 VER-REL PIC X(8).
* reserved for expansion

05 RESD0 PIC X(2).
* platform type

05 PLATFORM PIC 9(9) USAGE BINARY.
* number of entries in tfcolumn list array (tfcolumn, below)

05 NUMTFCOL PIC 9(4) USAGE BINARY.

Figure 129. How a COBOL user-defined function receives parameters (Part 2 of 3)

340 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



PL/I: Figure 130 shows the parameter conventions for a user-defined scalar
function that is written as a main program that receives two parameters and
returns one result. For a PL/I user-defined function that is a subprogram, the
conventions are the same.

* reserved for expansion
05 RESD1 PIC X(26).

* tfcolumn will be allocated dynamically if TF is defined
* otherwise this will be a null pointer

05 TFCOLUMN USAGE IS POINTER.
* Application identifier

05 APPL-ID USAGE IS POINTER.
* reserved for expansion

05 RESD2 PIC X(20).
*
PROCEDURE DIVISION USING UDFPARM1, UDFPARM2, UDFRESULT1,

UDFRESULT2, UDF-IND1, UDF-IND2,
UDF-RIND1, UDF-RIND2,
UDF-SQLSTATE, UDF-FUNC, UDF-SPEC,
UDF-DIAG, UDF-SCRATCHPAD,
UDF-CALL-TYPE, SQLUDF-DBINFO.

Figure 129. How a COBOL user-defined function receives parameters (Part 3 of 3)

*PROCESS SYSTEM(MVS);
MYMAIN: PROC(UDF_PARM1, UDF_PARM2, UDF_RESULT,

UDF_IND1, UDF_IND2, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)

OPTIONS(MAIN NOEXECOPS REENTRANT);

DCL UDF_PARM1 BIN FIXED(31); /* first parameter */
DCL UDF_PARM2 CHAR(10); /* second parameter */
DCL UDF_RESULT CHAR(10); /* result parameter */
DCL UDF_IND1 BIN FIXED(15); /* indicator for 1st parm */
DCL UDF_IND2 BIN FIXED(15); /* indicator for 2nd parm */
DCL UDF_INDR BIN FIXED(15); /* indicator for result */
DCL UDF_SQLSTATE CHAR(5); /* SQLSTATE returned to DB2 */
DCL UDF_NAME CHAR(137) VARYING; /* Qualified function name */
DCL UDF_SPEC_NAME CHAR(128) VARYING; /* Specific function name */
DCL UDF_DIAG_MSG CHAR(70) VARYING; /* Diagnostic string */
DCL 01 UDF_SCRATCHPAD /* Scratchpad */

03 UDF_SPAD_LEN BIN FIXED(31),
03 UDF_SPAD_TEXT CHAR(100);

DCL UDF_CALL_TYPE BIN FIXED(31); /* Call Type */
DCL DBINFO PTR;

/* CONSTANTS FOR DB2_ENCODING_SCHEME */
DCL SQLUDF_ASCII BIN FIXED(15) INIT(1);
DCL SQLUDF_EBCDIC BIN FIXED(15) INIT(2);
DCL SQLUDF_MIXED BIN FIXED(15) INIT(3);

Figure 130. How a PL/I user-defined function receives parameters (Part 1 of 2)

Chapter 15. Creating and using user-defined functions 341

|
|
|
|
|
|
|
|
|
|

|



Using special registers in a user-defined function
You can use all special registers in a user-defined function. However, you can
modify only some of those special registers. After a user-defined function
completes, DB2 restores all special registers to the values they had before
invocation.

Table 41 shows information that you need when you use special registers in a
user-defined function.

Table 41. Characteristics of special registers in a user-defined function

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Function can
use SET to
modify?

CURRENT CLIENT_ACCTNG Inherited from invoking
application

Inherited from invoking
application

Not applicable5

CURRENT
CLIENT_APPLNAME

Inherited from invoking
application

Inherited from invoking
application

Not applicable5

CURRENT CLIENT_USERID Inherited from invoking
application

Inherited from invoking
application

Not applicable5

CURRENT
CLIENT_WRKSTNNAME

Inherited from invoking
application

Inherited from invoking
application

Not applicable5

CURRENT APPLICATION
ENCODING SCHEME

The value of bind option
ENCODING for the
user-defined function package1

The value of bind option
ENCODING for the
user-defined function package1

Yes

DCL 01 UDF_DBINFO BASED(DBINFO), /* Dbinfo */
03 UDF_DBINFO_LLEN BIN FIXED(15), /* location length */
03 UDF_DBINFO_LOC CHAR(128), /* location name */
03 UDF_DBINFO_ALEN BIN FIXED(15), /* auth ID length */
03 UDF_DBINFO_AUTH CHAR(128), /* authorization ID */
03 UDF_DBINFO_CDPG, /* environment CCSID info */

05 DB2_CCSIDS(3),
07 R1 BIN FIXED(15), /* Reserved */
07 DB2_SBCS BIN FIXED(15), /* SBCS CCSID */
07 R2 BIN FIXED(15), /* Reserved */
07 DB2_DBCS BIN FIXED(15), /* DBCS CCSID */
07 R3 BIN FIXED(15), /* Reserved */
07 DB2_MIXED BIN FIXED(15), /* MIXED CCSID */

05 DB2_ENCODING_SCHEME BIN FIXED(31),
05 DB2_CCSID_RESERVED CHAR(8),

03 UDF_DBINFO_SLEN BIN FIXED(15), /* schema length */
03 UDF_DBINFO_SCHEMA CHAR(128), /* schema name */
03 UDF_DBINFO_TLEN BIN FIXED(15), /* table length */
03 UDF_DBINFO_TABLE CHAR(128), /* table name */
03 UDF_DBINFO_CLEN BIN FIXED(15), /* column length */
03 UDF_DBINFO_COLUMN CHAR(128), /* column name */
03 UDF_DBINFO_RELVER CHAR(8), /* DB2 release level */
03 UDF_DBINFO_RESERV0 CHAR(2), /* reserved */
03 UDF_DBINFO_PLATFORM BIN FIXED(31), /* database platform */
03 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /* # of TF columns used */
03 UDF_DBINFO_RESERV1 CHAR(26), /* reserved */
03 UDF_DBINFO_TFCOLUMN PTR, /* -> TFcolumn list */
03 UDF_DBINFO_APPLID PTR, /* -> application id */
03 UDF_DBINFO_RESERV2 CHAR(20); /* reserved */

...

Figure 130. How a PL/I user-defined function receives parameters (Part 2 of 2)

342 Application Programming and SQL Guide

|

|

|

|
|

|

|
|



Table 41. Characteristics of special registers in a user-defined function (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Function can
use SET to
modify?

CURRENT DATE New value for each SQL
statement in the user-defined
function package2

New value for each SQL
statement in the user-defined
function package2

Not applicable5

CURRENT DEGREE Inherited from invoking
application3

The value of field CURRENT
DEGREE on installation panel
DSNTIP8

Yes

CURRENT LOCALE LC_CTYPE Inherited from invoking
application

The value of field CURRENT
DEGREE on installation panel
DSNTIP8

Yes

CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION

Inherited from invoking
application

The value of field CURRENT
MAINT TYPES on installation
panel DSNTIP8

Yes

CURRENT MEMBER New value for each SET
host-variable=CURRENT
MEMBER statement

New value for each SET
host-variable=CURRENT
MEMBER statement

No

CURRENT OPTIMIZATION
HINT

The value of bind option
OPTHINT for the user-defined
function package or inherited
from invoking application6

The value of bind option
OPTHINT for the user-defined
function package

Yes

CURRENT PACKAGESET Inherited from invoking
application4

Inherited from invoking
application4

Yes

CURRENT PACKAGE PATH Inherited from invoking
application9

Inherited from invoking
application9

Yes

CURRENT PATH The value of bind option PATH
for the user-defined function
package or inherited from
invoking application6

The value of bind option PATH
for the user-defined function
package

Yes

CURRENT PRECISION Inherited from invoking
application

The value of field DECIMAL
ARITHMETIC on installation
panel DSNTIP4

Yes

CURRENT REFRESH AGE Inherited from invoking
application

The value of field CURRENT
REFRESH AGE on installation
panel DSNTIP8

Yes

CURRENT RULES Inherited from invoking
application

The value of bind option
SQLRULES for the user-defined
function package

Yes

CURRENT SCHEMA Inherited from invoking
application

The value of CURRENT SQLID
when the user defined function
is entered

Yes

CURRENT SERVER Inherited from invoking
application

Inherited from invoking
application

Yes

CURRENT SQLID The primary authorization ID of
the application process or
inherited from invoking
application7

The primary authorization ID of
the application process

Yes8

CURRENT TIME New value for each SQL
statement in the user-defined
function package2

New value for each SQL
statement in the user-defined
function package2

Not applicable5

Chapter 15. Creating and using user-defined functions 343

|

|

|
|
|

|

|

|



Table 41. Characteristics of special registers in a user-defined function (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Function can
use SET to
modify?

CURRENT TIMESTAMP New value for each SQL
statement in the user-defined
function package2

New value for each SQL
statement in the user-defined
function package2

Not applicable5

CURRENT TIMEZONE Inherited from invoking
application

Inherited from invoking
application

Not applicable5

ENCRYPTION PASSWORD Inherited from invoking
application

A string of 0 length Yes

USER Primary authorization ID of the
application process

Primary authorization ID of the
application process

Not applicable5

Notes:

1. If the ENCODING bind option is not specified, the initial value is the value that was specified in field
APPLICATION ENCODING of installation panel DSNTIPF.

2. If the user-defined function is invoked within the scope of a trigger, DB2 uses the timestamp for the triggering
SQL statement as the timestamp for all SQL statements in the function package.

3. DB2 allows parallelism at only one level of a nested SQL statement. If you set the value of the CURRENT
DEGREE special register to ANY, and parallelism is disabled, DB2 ignores the CURRENT DEGREE value.

4. If the user-defined function definer specifies a value for COLLID in the CREATE FUNCTION statement, DB2 sets
CURRENT PACKAGESET to the value of COLLID.

5. Not applicable because no SET statement exists for the special register.

6. If a program within the scope of the invoking application issues a SET statement for the special register before the
user-defined function is invoked, the special register inherits the value from the SET statement. Otherwise, the
special register contains the value that is set by the bind option for the user-defined function package.

7. If a program within the scope of the invoking application issues a SET CURRENT SQLID statement before the
user-defined function is invoked, the special register inherits the value from the SET statement. Otherwise,
CURRENT SQLID contains the authorization ID of the application process.

8. If the user-defined function package uses a value other than RUN for the DYNAMICRULES bind option, the SET
CURRENT SQLID statement can be executed but does not affect the authorization ID that is used for the dynamic
SQL statements in the user-defined function package. The DYNAMICRULES value determines the authorization
ID that is used for dynamic SQL statements. See “Using DYNAMICRULES to specify behavior of dynamic SQL
statements” on page 504 for more information about DYNAMICRULES values and authorization IDs.

9. If the user-defined function definer specifies a value for COLLID in the CREATE FUNCTION statement, DB2 sets
CURRENT PACKAGE PATH to an empty string.

Using a scratchpad in a user-defined function
You can use a scratchpad to save information between invocations of a
user-defined function. To indicate that a scratchpad should be allocated when the
user-defined function executes, the function definer specifies the SCRATCHPAD
parameter in the CREATE FUNCTION statement.

The scratchpad consists of a 4-byte length field, followed by the scratchpad area.
The definer can specify the length of the scratchpad area in the CREATE
FUNCTION statement. The specified length does not include the length field. The
default size is 100 bytes. DB2 initializes the scratchpad for each function to binary
zeros at the beginning of execution for each subquery of an SQL statement and
does not examine or change the content thereafter. On each invocation of the
user-defined function, DB2 passes the scratchpad to the user-defined function. You
can therefore use the scratchpad to preserve information between invocations of a
reentrant user-defined function.

344 Application Programming and SQL Guide

|



Figure 131 demonstrates how to enter information in a scratchpad for a
user-defined function defined like this:
CREATE FUNCTION COUNTER()

RETURNS INT
SCRATCHPAD
FENCED
NOT DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
LANGUAGE C
PARAMETER STYLE SQL
EXTERNAL NAME ’UDFCTR’;

The scratchpad length is not specified, so the scratchpad has the default length of
100 bytes, plus 4 bytes for the length field. The user-defined function increments
an integer value and stores it in the scratchpad on each execution.

Accessing transition tables in a user-defined function or stored
procedure
When you write a user-defined function, external stored procedure, or SQL
procedure that is invoked from a trigger, you might need access to transition tables
for the trigger. This section describes how to access transition variables in a
user-defined function, but the same techniques apply to a stored procedure.

To access transition tables in a user-defined function, use table locators, which are
pointers to the transition tables. You declare table locators as input parameters in
the CREATE FUNCTION statement using the TABLE LIKE table-name AS
LOCATOR clause. See Chapter 5 of DB2 SQL Reference for more information.

#pragma linkage(ctr,fetchable)
#include <stdlib.h>
#include <stdio.h>
/* Structure scr defines the passed scratchpad for function ctr */

struct scr {
long len;
long countr;
char not_used[96];

};
/***************************************************************/
/* Function ctr: Increments a counter and reports the value */
/* from the scratchpad. */
/* */
/* Input: None */
/* Output: INTEGER out the value from the scratchpad */
/***************************************************************/
void ctr(

long *out, /* Output answer (counter) */
short *outnull, /* Output null indicator */
char *sqlstate, /* SQLSTATE */
char *funcname, /* Function name */
char *specname, /* Specific function name */
char *mesgtext, /* Message text insert */
struct scr *scratchptr) /* Scratchpad */

{
*out = ++scratchptr->countr; /* Increment counter and */

/* copy to output variable */
*outnull = 0; /* Set output null indicator*/
return;

}
/* end of user-defined function ctr */

Figure 131. Example of coding a scratchpad in a user-defined function

Chapter 15. Creating and using user-defined functions 345

|



The five basic steps to accessing transition tables in a user-defined function are:
1. Declare input parameters to receive table locators. You must define each

parameter that receives a table locator as an unsigned 4-byte integer.
2. Declare table locators. You can declare table locators in assembler, C, C++,

COBOL, PL/I, and in an SQL procedure compound statement. The syntax for
declaring table locators in C, C++, COBOL, and PL/I is described in Chapter 9,
“Embedding SQL statements in host languages,” on page 143. The syntax for
declaring table locators in an SQL procedure is described in Chapter 6 of DB2
SQL Reference.

3. Declare a cursor to access the rows in each transition table.
4. Assign the input parameter values to the table locators.
5. Access rows from the transition tables using the cursors that are declared for

the transition tables.

The following examples show how a user-defined function that is written in C,
C++, COBOL, or PL/I accesses a transition table for a trigger. The transition table,
NEWEMP, contains modified rows of the employee sample table. The trigger is
defined like this:
CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

VALUES (CHECKEMP(TABLE NEWEMPS));
END;

The user-defined function definition looks like this:
CREATE FUNCTION CHECKEMP(TABLE LIKE EMP AS LOCATOR)

RETURNS INTEGER
EXTERNAL NAME ’CHECKEMP’
PARAMETER STYLE SQL
LANGUAGE language;

Assembler: Figure 132 on page 347 shows how an assembler program accesses
rows of transition table NEWEMPS.

346 Application Programming and SQL Guide

|



CHECKEMP CSECT
SAVE (14,12) ANY SAVE SEQUENCE
LR R12,R15 CODE ADDRESSABILITY
USING CHECKEMP,R12 TELL THE ASSEMBLER
LR R7,R1 SAVE THE PARM POINTER
USING PARMAREA,R7 SET ADDRESSABILITY FOR PARMS
USING SQLDSECT,R8 ESTABLISH ADDRESSIBILITY TO SQLDSECT
L R6,PROGSIZE GET SPACE FOR USER PROGRAM
GETMAIN R,LV=(6) GET STORAGE FOR PROGRAM VARIABLES
LR R10,R1 POINT TO THE ACQUIRED STORAGE
LR R2,R10 POINT TO THE FIELD
LR R3,R6 GET ITS LENGTH
SR R4,R4 CLEAR THE INPUT ADDRESS
SR R5,R5 CLEAR THE INPUT LENGTH
MVCL R2,R4 CLEAR OUT THE FIELD
ST R13,FOUR(R10) CHAIN THE SAVEAREA PTRS
ST R10,EIGHT(R13) CHAIN SAVEAREA FORWARD
LR R13,R10 POINT TO THE SAVEAREA
USING PROGAREA,R13 SET ADDRESSABILITY
ST R6,GETLENTH SAVE THE LENGTH OF THE GETMAIN

...
************************************************************
* Declare table locator host variable TRIGTBL *
************************************************************
TRIGTBL SQL TYPE IS TABLE LIKE EMP AS LOCATOR
************************************************************
* Declare a cursor to retrieve rows from the transition *
* table *
************************************************************

EXEC SQL DECLARE C1 CURSOR FOR X
SELECT LASTNAME FROM TABLE(:TRIGTBL LIKE EMP) X
WHERE SALARY > 100000

************************************************************
* Copy table locator for trigger transition table *
************************************************************

L R2,TABLOC GET ADDRESS OF LOCATOR
L R2,0(0,R2) GET LOCATOR VALUE
ST R2,TRIGTBL
EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :NAME

...
EXEC SQL CLOSE C1...

Figure 132. How an assembler user-defined function accesses a transition table (Part 1 of 2)

PROGAREA DSECT WORKING STORAGE FOR THE PROGRAM
SAVEAREA DS 18F THIS ROUTINE’S SAVE AREA
GETLENTH DS A GETMAIN LENGTH FOR THIS AREA...
NAME DS CL24...

DS 0D
PROGSIZE EQU *-PROGAREA DYNAMIC WORKAREA SIZE
PARMAREA DSECT
TABLOC DS A INPUT PARAMETER FOR TABLE LOCATOR...

END CHECKEMP

Figure 132. How an assembler user-defined function accesses a transition table (Part 2 of 2)

Chapter 15. Creating and using user-defined functions 347



C or C++: Figure 133 shows how a C or C++ program accesses rows of transition
table NEWEMPS.

COBOL: Figure 134 on page 349 shows how a COBOL program accesses rows of
transition table NEWEMPS.

int CHECK_EMP(int trig_tbl_id)
{

...
/**********************************************************/
/* Declare table locator host variable trig_tbl_id */
/**********************************************************/
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS TABLE LIKE EMP AS LOCATOR trig_tbl_id;
char name[25];

EXEC SQL END DECLARE SECTION;

...
/**********************************************************/
/* Declare a cursor to retrieve rows from the transition */
/* table */
/**********************************************************/
EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:trig_tbl_id LIKE EMPLOYEE)
WHERE SALARY > 100000;

/**********************************************************/
/* Fetch a row from transition table */
/**********************************************************/
EXEC SQL OPEN C1;
EXEC SQL FETCH C1 INTO :name;

...
EXEC SQL CLOSE C1;

...
}

Figure 133. How a C or C++ user-defined function accesses a transition table

348 Application Programming and SQL Guide



PL/I: Figure 135 on page 350 shows how a PL/I program accesses rows of
transition table NEWEMPS.

IDENTIFICATION DIVISION.
PROGRAM-ID. CHECKEMP.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NAME PIC X(24).

...
LINKAGE SECTION.
*********************************************************
* Declare table locator host variable TRIG-TBL-ID *
*********************************************************
01 TRIG-TBL-ID SQL TYPE IS TABLE LIKE EMP AS LOCATOR.

...
PROCEDURE DIVISION USING TRIG-TBL-ID.

...
*********************************************************
* Declare cursor to retrieve rows from transition table *
*********************************************************
EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:TRIG-TBL-ID LIKE EMP)
WHERE SALARY > 100000 END-EXEC.

*********************************************************
* Fetch a row from transition table *
*********************************************************
EXEC SQL OPEN C1 END-EXEC.
EXEC SQL FETCH C1 INTO :NAME END-EXEC.

...
EXEC SQL CLOSE C1 END-EXEC.

...
PROG-END.
GOBACK.

Figure 134. How a COBOL user-defined function accesses a transition table

Chapter 15. Creating and using user-defined functions 349



Preparing a user-defined function for execution
To prepare a user-defined function for execution, perform these steps:
1. Precompile the user-defined function program and bind the DBRM into a

package.
You need to do this only if your user-defined function contains SQL statements.
You do not need to bind a plan for the user-defined function.

2. Compile the user-defined function program and link-edit it with Language
Environment and RRSAF.
You must compile the program with a compiler that supports Language
Environment and link-edit the appropriate Language Environment components
with the user-defined function. You must also link-edit the user-defined
function with RRSAF.
For the minimum compiler and Language Environment requirements for
user-defined functions, see DB2 Release Planning Guide.
The program preparation JCL samples DSNHASM, DSNHC, DSNHCPP,
DSNHICOB, and DSNHPLI show you how to precompile, compile, and
link-edit assembler, C, C++, COBOL, and PL/I DB2 programs. If your DB2
subsystem has been installed to work with Language Environment, you can use
this sample JCL when you prepare your user-defined functions. For
object-oriented programs in C++ or COBOL, see JCL samples DSNHCPP2 and
DSNHICB2 for program preparation hints.

3. For a user-defined function that contains SQL statements, grant EXECUTE
authority on the user-defined function package to the function definer.

CHECK_EMP: PROC(TRIG_TBL_ID) RETURNS(BIN FIXED(31))
OPTIONS(MAIN NOEXECOPS REENTRANT);

/****************************************************/
/* Declare table locator host variable TRIG_TBL_ID */
/****************************************************/
DECLARE TRIG_TBL_ID SQL TYPE IS TABLE LIKE EMP AS LOCATOR;
DECLARE NAME CHAR(24);

...
/****************************************************/
/* Declare a cursor to retrieve rows from the */
/* transition table */
/****************************************************/
EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:TRIG_TBL_ID LIKE EMP)
WHERE SALARY > 100000;

/****************************************************/
/* Retrieve rows from the transition table */
/****************************************************/
EXEC SQL OPEN C1;
EXEC SQL FETCH C1 INTO :NAME;

...
EXEC SQL CLOSE C1;

...
END CHECK_EMP;

Figure 135. How a PL/I user-defined function accesses a transition table

350 Application Programming and SQL Guide



Making a user-defined function reentrant
Compiling and link-editing your user-defined function as reentrant is
recommended. (For an assembler program, you must also code the user-defined
function to be reentrant.) Reentrant user-defined functions have the following
advantages:
v The operating system does not need to load the user-defined function into

storage every time the user-defined function is called.
v Multiple tasks in a WLM-established stored procedures address space can share

a single copy of the user-defined function. This decreases the amount of virtual
storage that is needed for code in the address space.

Preparing user-defined functions that contain multiple programs: If your
user-defined function consists of several programs, you must bind each program
that contains SQL statements into a separate package. The definer of the
user-defined function must have EXECUTE authority for all packages that are part
of the user-defined function.

When the primary program of a user-defined function calls another program, DB2
uses the CURRENT PACKAGE PATH special register to determine the list of
collections to search for the called program's package. The primary program can
change this collection ID by executing the statement SET CURRENT PACKAGE
PATH.

If the value of CURRENT PACKAGE PATH is blank, DB2 uses the CURRENT
PACKAGESET special register to determine the collection to search for the called
program's package. The primary program can change this value by executing the
statement SET CURRENT PACKAGESET.

If both special registers CURRENT PACKAGE PATH and CURRENT
PACKAGESET contain a blank value, DB2 uses the method described in
“Specifying the package list for the PKLIST option of BIND PLAN” on page 501 to
search for the package.

Determining the authorization ID for user-defined function
invocation
If your user-defined function is invoked statically, the authorization ID under
which the user-defined function is invoked is the owner of the package that
contains the user-defined function invocation.

If the user-defined function is invoked dynamically, the authorization ID under
which the user-defined function is invoked depends on the value of bind
parameter DYNAMICRULES for the package that contains the function invocation.

While a user-defined function is executing, the authorization ID under which static
SQL statements in the user-defined function package execute is the owner of the
user-defined function package. The authorization ID under which dynamic SQL
statements in the user-defined function package execute depends on the value of
DYNAMICRULES with which the user-defined function package was bound.

DYNAMICRULES influences a number of features of an application program. For
information about how DYNAMICRULES works, see “Using DYNAMICRULES to
specify behavior of dynamic SQL statements” on page 504. For more information
about the authorization needed to invoke and execute SQL statements in a
user-defined function, see Chapter 5 of DB2 SQL Reference and Part 3 (Volume 1) of
DB2 Administration Guide.

Chapter 15. Creating and using user-defined functions 351

|
|
|
|
|

|
|
|
|

|
|
|
|



Preparing user-defined functions to run concurrently
Multiple user-defined functions and stored procedures can run concurrently, each
under its own z/OS task (TCB).

To maximize the number of user-defined functions and stored procedures that can
run concurrently, follow these preparation recommendations:
v Ask the system administrator to set the region size parameter in the startup

procedures for the WLM-established stored procedures address spaces to
REGION=0. This lets an address space obtain the largest possible amount of
storage below the 16-MB line.

v Limit storage required by application programs below the 16-MB line by:
– Link-editing programs with the AMODE(31) and RMODE(ANY) attributes
– Compiling COBOL programs with the RES and DATA(31) options

v Limit storage that is required by Language Environment by using these run-time
options:

HEAP(,,ANY) Allocates program heap storage above the 16-MB
line

STACK(,,ANY,) Allocates program stack storage above the
16-MB line

STORAGE(,,,4K) Reduces reserve storage area below the line to 4
KB

BELOWHEAP(4K,,) Reduces the heap storage below the line to 4 KB

LIBSTACK(4K,,) Reduces the library stack below the line to 4 KB

ALL31(ON) Causes all programs contained in the external
user-defined function to execute with
AMODE(31) and RMODE(ANY)

The definer can list these options as values of the RUN OPTIONS parameter of
CREATE FUNCTION, or the system administrator can establish these options as
defaults during Language Environment installation.
For example, the RUN OPTIONS option parameter could contain:
H(,,ANY),STAC(,,ANY,),STO(,,,4K),BE(4K,,),LIBS(4K,,),ALL31(ON)

v Ask the system administrator to set the NUMTCB parameter for
WLM-established stored procedures address spaces to a value greater than 1.
This lets more than one TCB run in an address space. Be aware that setting
NUMTCB to a value greater than 1 also reduces your level of application
program isolation. For example, a bad pointer in one application can overwrite
memory that is allocated by another application.

Testing a user-defined function
Some commonly used debugging tools, such as TSO TEST, are not available in the
environment where user-defined functions run. This section describes some
alternative testing strategies.

Debug Tool for z/OS: You can use the Debug Tool for z/OS, which works with
Language Environment, to test DB2 UDB for z/OS user-defined functions written
in any of the supported languages. You can use the Debug Tool either interactively
or in batch mode.

352 Application Programming and SQL Guide



Using the Debug Tool interactively: To test a user-defined function interactively
using the Debug Tool, you must have the Debug Tool installed on the z/OS system
where the user-defined function runs. To debug your user-defined function using
the Debug Tool, do the following:
1. Compile the user-defined function with the TEST option. This places

information in the program that the Debug Tool uses.
2. Invoke the Debug Tool. One way to do that is to specify the Language

Environment run-time TEST option. The TEST option controls when and how
the Debug Tool is invoked. The most convenient place to specify run-time
options is with the RUN OPTIONS parameter of CREATE FUNCTION or
ALTER FUNCTION. See “Components of a user-defined function definition” on
page 314 for more information about the RUN OPTIONS parameter.
For example, suppose that you code this option:
TEST(ALL,*,PROMPT,JBJONES%SESSNA:)

The parameter values cause the following things to happen:

ALL
The Debug Tool gains control when an attention interrupt, abend, or
program or Language Environment condition of Severity 1 and above
occurs.

* Debug commands will be entered from the terminal.

PROMPT
The Debug Tool is invoked immediately after Language Environment
initialization.

JBJONES%SESSNA:
The Debug Tool initiates a session on a workstation identified to APPC as
JBJONES with a session ID of SESSNA.

3. If you want to save the output from your debugging session, issue a command
that names a log file. For example, the following command starts logging to a
file on the workstation called dbgtool.log.
SET LOG ON FILE dbgtool.log;

This should be the first command that you enter from the terminal or include
in your commands file.

Using the Debug Tool in batch mode: To test your user-defined function in batch
mode, you must have the Debug Tool installed on the z/OS system where the
user-defined function runs. To debug your user-defined function in batch mode
using the Debug Tool, do the following:
1. If you plan to use the Language Environment run-time TEST option to invoke

the Debug Tool, compile the user-defined function with the TEST option. This
places information in the program that the Debug Tool uses during a
debugging session.

2. Allocate a log data set to receive the output from the Debug Tool. Put a DD
statement for the log data set in the startup procedure for the stored procedures
address space.

3. Enter commands in a data set that you want the Debug Tool to execute. Put a
DD statement for that data set in the startup procedure for the stored
procedures address space. To define the data set that contains the commands to
the Debug Tool, specify its data set name or DD name in the TEST run-time
option. For example, this option tells the Debug Tool to look for the commands
in the data set that is associated with DD name TESTDD:

Chapter 15. Creating and using user-defined functions 353



TEST(ALL,TESTDD,PROMPT,*)

The first command in the commands data set should be:
SET LOG ON FILE ddname;

This command directs output from your debugging session to the log data set
you defined in step 2. For example, if you defined a log data set with DD name
INSPLOG in the start-up procedure for the stored procedures address space,
the first command should be:
SET LOG ON FILE INSPLOG;

4. Invoke the Debug Tool. The following are two possible methods for invoking
the Debug Tool:
v Specify the Language Environment run-time TEST option. The most

convenient place to do that is in the RUN OPTIONS parameter of CREATE
FUNCTION or ALTER FUNCTION.

v Put CEETEST calls in the user-defined function source code. If you use this
approach for an existing user-defined function, you must compile, link-edit,
and bind the user-defined function again. Then you must issue the STOP
FUNCTION SPECIFIC and START FUNCTION SPECIFIC commands to
reload the user-defined function.
You can combine the Language Environment run-time TEST option with
CEETEST calls. For example, you might want to use TEST to name the
commands data set but use CEETEST calls to control when the Debug Tool
takes control.

You can combine the Language Environment run-time TEST option with
CEETEST calls. For example, you might want to use TEST to name the
commands data set but use CEETEST calls to control when the Debug Tool
takes control.

For more information about the Debug Tool, see Debug Tool User's Guide and
Reference.

Route debugging messages to SYSPRINT: You can include simple print statements
in your user-defined function code that you route to SYSPRINT. Then use System
Display and Search Facility (SDSF) to examine the SYSPRINT contents while the
WLM-established stored procedure address space is running. You can serialize I/O
by running the WLM-established stored procedure address space with
NUMTCB=1.

Driver applications: You can write a small driver application that calls the
user-defined function as a subprogram and passes the parameter list for the
user-defined function. You can then test and debug the user-defined function as a
normal DB2 application under TSO. You can then use TSO TEST and other
commonly used debugging tools.

Using SQL INSERT statements: You can use SQL to insert debugging information
into a DB2 table. This allows other machines in the network (such as a
workstation) to easily access the data in the table using DRDA access.

DB2 discards the debugging information if the application executes the
ROLLBACK statement. To prevent the loss of the debugging data, code the calling
application so that it retrieves the diagnostic data before executing the ROLLBACK
statement.

354 Application Programming and SQL Guide



Implementing an SQL scalar function
An SQL scalar function is a user-defined function in which the CREATE
FUNCTION statement contains the source code. The source code is a single SQL
expression that evaluates to a single value. The SQL scalar function can return only
one parameter. You specify the SQL expression in the RETURN clause of the
CREATE FUNCTION statement. The value of the SQL expression must be
compatible with the data type of the parameter in the RETURNS clause.

See “Defining a user-defined function” on page 314 and Chapter 5 of DB2 SQL
Reference for a description of the parameters that you can specify in the CREATE
FUNCTION statement for an SQL scalar function.

To prepare an SQL scalar function for execution, you execute the CREATE
FUNCTION statement, either statically or dynamically.

Invoking a user-defined function
You can invoke a sourced or external user-defined scalar function in an SQL
statement wherever you use an expression. For a table function, you can invoke
the user-defined function only in the FROM clause of a SELECT statement. The
invoking SQL statement can be in a stand alone program, a stored procedure, a
trigger body, or another user-defined function.

See the following sections for details you should know before you invoke a
user-defined function:
v “Syntax for user-defined function invocation”
v “Ensuring that DB2 executes the intended user-defined function” on page 356
v “Casting of user-defined function arguments” on page 362
v “What happens when a user-defined function abnormally terminates” on page

363

Syntax for user-defined function invocation
Use the syntax shown in Figure 136 when you invoke a user-defined scalar
function:

Use the syntax shown in Figure 137 on page 356 when you invoke a table function:

�� function-name

�

( )
ALL ,
DISTINCT

expression
TABLE transition-table-name

��

Figure 136. Syntax for user-defined scalar function invocation

Chapter 15. Creating and using user-defined functions 355



See Chapter 2 of DB2 SQL Reference for more information about the syntax of
user-defined function invocation.

Ensuring that DB2 executes the intended user-defined
function

Several user-defined functions with the same name but different numbers or types
of parameters can exist in a DB2 subsystem. Several user-defined functions with
the same name can have the same number of parameters, as long as the data types
of any of the first 30 parameters are different. In addition, several user-defined
functions might have the same name as a built-in function. When you invoke a
function, DB2 must determine which user-defined function or built-in function to
execute. This process is known as function resolution. You need to understand DB2's
function resolution process to ensure that you invoke the user-defined function
that you want to invoke.

DB2 performs these steps for function resolution:
1. Determines if any function instances are candidates for execution. If no

candidates exist, DB2 issues an SQL error message.
2. Compares the data types of the input parameters to determine which

candidates fit the invocation best.
DB2 does not compare data types for input parameters that are untyped
parameter markers.
For a qualified function invocation, if there are no parameter markers in the
invocation, the result of the data type comparison is one best fit. That best fit is
the choice for execution. If there are parameter markers in the invocation, there
might be more than one best fit. DB2 issues an error if there is more than one
best fit.
For an unqualified function invocation, DB2 might find multiple best fits
because the same function name with the same input parameters can exist in
different schemas, or because there are parameter markers in the invocation.

3. If two or more candidates fit the unqualified function invocation equally well
because the same function name with the same input parameters exists in
different schemas, DB2 chooses the user-defined function whose schema name
is earliest in the SQL path.
For example, suppose functions SCHEMA1.X and SCHEMA2.X fit a function
invocation equally well. Assume that the SQL path is:
"SCHEMA2", "SYSPROC", "SYSIBM", "SCHEMA1", "SYSFUN"

��

�

TABLE ( function-name ( ) )
,

expression
TABLE transition-table-name

�

�

�

AS
correlation-name

,

( column-name )

��

Figure 137. Syntax for table function invocation

356 Application Programming and SQL Guide



Then DB2 chooses function SCHEMA2.X.
If two or more candidates fit the unqualified function invocation equally well
because the function invocation contains parameter markers, DB2 issues an
error.

The remainder of this section discusses details of the function resolution process
and gives suggestions on how you can ensure that DB2 picks the right function.

How DB2 chooses candidate functions
An instance of a user-defined function is a candidate for execution only if it meets
all of the following criteria:
v If the function name is qualified in the invocation, the schema of the function

instance matches the schema in the function invocation.
If the function name is unqualified in the invocation, the schema of the function
instance matches a schema in the invoker’s SQL path.

v The name of the function instance matches the name in the function invocation.
v The number of input parameters in the function instance matches the number of

input parameters in the function invocation.
v The function invoker is authorized to execute the function instance.
v The type of each of the input parameters in the function invocation matches or

is promotable to the type of the corresponding parameter in the function instance.
If an input parameter in the function invocation is an untyped parameter
marker, DB2 considers that parameter to be a match or promotable.
For a function invocation that passes a transition table, the data type, length,
precision, and scale of each column in the transition table must match exactly
the data type, length, precision, and scale of each column of the table that is
named in the function instance definition. For information about transition
tables, see Chapter 12, “Using triggers for active data,” on page 279.

v The create timestamp for a user-defined function must be older than the BIND
or REBIND timestamp for the package or plan in which the user-defined
function is invoked.
If DB2 authorization checking is in effect, and DB2 performs an automatic rebind
on a plan or package that contains a user-defined function invocation, any
user-defined functions that were created after the original BIND or REBIND of
the invoking plan or package are not candidates for execution.
If you use an access control authorization exit routine, some user-defined
functions that were not candidates for execution before the original BIND or
REBIND of the invoking plan or package might become candidates for execution
during the automatic rebind of the invoking plan or package. See Appendix B
(Volume 2) of DB2 Administration Guide for information about function resolution
with access control authorization exit routines.
If a user-defined function is invoked during an automatic rebind, and that
user-defined function is invoked from a trigger body and receives a transition
table, then the form of the invoked function that DB2 uses for function selection
includes only the columns of the transition table that existed at the time of the
original BIND or REBIND of the package or plan for the invoking program.
During an automatic rebind, DB2 does not consider built-in functions for
function resolution if those built-in functions were introduced in a later release
of DB2 than the release in which the BIND or REBIND of the invoking plan or
package occurred.
When you explicitly bind or rebind a plan or package, the plan or package
receives a release dependency marker. When DB2 performs an automatic rebind

Chapter 15. Creating and using user-defined functions 357



of a query that contains a function invocation, a built-in function is a candidate
for function resolution only if the release dependency marker of the built-in
function is the same as or lower than the release dependency marker of the plan
or package that contains the function invocation.

To determine whether a data type is promotable to another data type, see Table 42.
The first column lists data types in function invocations. The second column lists
data types to which the types in the first column can be promoted, in order from
best fit to worst fit. For example, suppose that in this statement, the data type of A
is SMALLINT:
SELECT USER1.ADDTWO(A) FROM TABLEA;

Two instances of USER1.ADDTWO are defined: one with an input parameter of
type INTEGER and one with an input parameter of type DECIMAL. Both function
instances are candidates for execution because the SMALLINT type is promotable
to either INTEGER or DECIMAL. However, the instance with the INTEGER type is
a better fit because INTEGER is higher in the list than DECIMAL.

Table 42. Promotion of data types

Data type in function invocation Possible fits (in best-to-worst order)

SMALLINT SMALLINT
INTEGER
DECIMAL
REAL
DOUBLE

INTEGER INTEGER
DECIMAL
REAL
DOUBLE

DECIMAL DECIMAL
REAL
DOUBLE

REAL2 REAL
DOUBLE

DOUBLE3 DOUBLE

CHAR or GRAPHIC CHAR or GRAPHIC
VARCHAR or VARGRAPHIC
CLOB or DBCLOB

VARCHAR or VARGRAPHIC VARCHAR or VARGRAPHIC
CLOB or DBCLOB

CLOB or DBCLOB1 CLOB or DBCLOB

BLOB1 BLOB

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

ROWID ROWID

Distinct type Distinct type with same name

358 Application Programming and SQL Guide



Table 42. Promotion of data types (continued)

Data type in function invocation Possible fits (in best-to-worst order)

Notes:

1. This promotion also applies if the parameter type in the invocation is a LOB locator for a
LOB with this data type.

2. The FLOAT type with a length of less than 22 is equivalent to REAL.

3. The FLOAT type with a length of greater than or equal to 22 is equivalent to DOUBLE.

How DB2 chooses the best fit among candidate functions
More than one function instance might be a candidate for execution. In that case,
DB2 determines which function instances are the best fit for the invocation by
comparing parameter data types.

If the data types of all parameters in a function instance are the same as those in
the function invocation, that function instance is a best fit. If no exact match exists,
DB2 compares data types in the parameter lists from left to right, using this
method:
1. DB2 compares the data types of the first parameter in the function invocation

to the data type of the first parameter in each function instance.
If the first parameter in the invocation is an untyped parameter marker, DB2
does not do the comparison.

2. For the first parameter, if one function instance has a data type that fits the
function invocation better than the data types in the other instances, that
function is a best fit. Table 42 on page 358 shows the possible fits for each data
type, in best-to-worst order.

3. If the data types of the first parameter are the same for all function instances,
or if the first parameter in the function invocation is an untyped parameter
marker, DB2 repeats this process for the next parameter. DB2 continues this
process for each parameter until it finds a best fit.

Example of function resolution: Suppose that a program contains the following
statement:
SELECT FUNC(VCHARCOL,SMINTCOL,DECCOL) FROM T1;

In user-defined function FUNC, VCHARCOL has data type VARCHAR,
SMINTCOL has data type SMALLINT, and DECCOL has data type DECIMAL.
Also suppose that two function instances with the following definitions meet the
criteria in “How DB2 chooses candidate functions” on page 357 and are therefore
candidates for execution.
Candidate 1:
CREATE FUNCTION FUNC(VARCHAR(20),INTEGER,DOUBLE)

RETURNS DECIMAL(9,2)
EXTERNAL NAME ’FUNC1’
PARAMETER STYLE SQL
LANGUAGE COBOL;

Candidate 2:
CREATE FUNCTION FUNC(VARCHAR(20),REAL,DOUBLE)

RETURNS DECIMAL(9,2)
EXTERNAL NAME ’FUNC2’
PARAMETER STYLE SQL
LANGUAGE COBOL;

Chapter 15. Creating and using user-defined functions 359

|

|



DB2 compares the data type of the first parameter in the user-defined function
invocation to the data types of the first parameters in the candidate functions.
Because the first parameter in the invocation has data type VARCHAR, and both
candidate functions also have data type VARCHAR, DB2 cannot determine the
better candidate based on the first parameter. Therefore, DB2 compares the data
types of the second parameters.

The data type of the second parameter in the invocation is SMALLINT. INTEGER,
which is the data type of candidate 1, is a better fit to SMALLINT than REAL,
which is the data type of candidate 2. Therefore, candidate 1 is the DB2 choice for
execution.

How you can simplify function resolution
When you use the following techniques, you can simplify function resolution:
v When you invoke a function, use the qualified name. This causes DB2 to search

for functions only in the schema you specify. This has two advantages:
– DB2 is less likely to choose a function that you did not intend to use. Several

functions might fit the invocation equally well. DB2 picks the function whose
schema name is earliest in the SQL path, which might not be the function you
want.

– The number of candidate functions is smaller, so DB2 takes less time for
function resolution.

v Cast parameters in a user-defined function invocation to the types in the
user-defined function definition. For example, if an input parameter for
user-defined function FUNC is defined as DECIMAL(13,2), and the value you
want to pass to the user-defined function is an integer value, cast the integer
value to DECIMAL(13,2):
SELECT FUNC(CAST (INTCOL AS DECIMAL(13,2))) FROM T1;

v Avoid defining user-defined function numeric parameters as SMALLINT or
REAL. Use INTEGER or DOUBLE instead. An invocation of a user-defined
function defined with parameters of type SMALLINT or REAL must use
parameters of the same types. For example, if user-defined function FUNC is
defined with a parameter of type SMALLINT, only an invocation with a
parameter of type SMALLINT resolves correctly. An invocation like this does not
resolve to FUNC because the constant 123 is of type INTEGER, not SMALLINT:
SELECT FUNC(123) FROM T1;

v Avoid defining user-defined function string parameters with fixed-length string
types. If you define a parameter with a fixed-length string type (CHAR or
GRAPHIC), you can invoke the user-defined function only with a fixed-length
string parameter. However, if you define the parameter with a varying-length
string type (VARCHAR or VARGRAPHIC), you can invoke the user-defined
function with either a fixed-length string parameter or a varying-length string
parameter.
If you must define parameters for a user-defined function as CHAR, and you
call the user-defined function from a C program or SQL procedure, you need to
cast the corresponding parameter values in the user-defined function invocation
to CHAR to ensure that DB2 invokes the correct function. For example, suppose
that a C program calls user-defined function CVRTNUM, which takes one input
parameter of type CHAR(6). Also suppose that you declare host variable
empnumbr as char empnumbr[6]. When you invoke CVRTNUM, cast empnumbr
to CHAR:
UPDATE EMP
SET EMPNO=CVRTNUM(CHAR(:empnumbr))
WHERE EMPNO = :empnumbr;

360 Application Programming and SQL Guide



Using DSN_FUNCTION_TABLE to see how DB2 resolves a
function
You can use the DB2 EXPLAIN tool to obtain information about how DB2 resolves
functions. DB2 stores the information in a table called DSN_FUNCTION_TABLE,
which you create. DB2 puts a row in DSN_FUNCTION_TABLE for each function
that is referenced in an SQL statement when one of the following events occurs:
v You execute the SQL EXPLAIN statement on an SQL statement that contains

user-defined function invocations.
v You run a program whose plan is bound with EXPLAIN(YES), and the program

executes an SQL statement that contains user-defined function invocations.

Before you use EXPLAIN to obtain information about function resolution, create
DSN_FUNCTION_TABLE. The table definition looks like this:
CREATE TABLE DSN_FUNCTION_TABLE

(QUERYNO INTEGER NOT NULL WITH DEFAULT,
QBLOCKNO INTEGER NOT NULL WITH DEFAULT,
APPLNAME CHAR(8) NOT NULL WITH DEFAULT,
PROGNAME VARCHAR(128) NOT NULL WITH DEFAULT,
COLLID VARCHAR(128) NOT NULL WITH DEFAULT,
GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,
SCHEMA_NAME VARCHAR(128) NOT NULL WITH DEFAULT,
FUNCTION_NAME VARCHAR(128) NOT NULL WITH DEFAULT,
SPEC_FUNC_NAME VARCHAR(128) NOT NULL WITH DEFAULT,
FUNCTION_TYPE CHAR(2) NOT NULL WITH DEFAULT,
VIEW_CREATOR VARCHAR(128) NOT NULL WITH DEFAULT,
VIEW_NAME VARCHAR(128) NOT NULL WITH DEFAULT,
PATH VARCHAR(2048) NOT NULL WITH DEFAULT,
FUNCTION_TEXT VARCHAR(1500) NOT NULL WITH DEFAULT);

Columns QUERYNO, QBLOCKNO, APPLNAME, PROGNAME, COLLID, and
GROUP_MEMBER have the same meanings as in the PLAN_TABLE. See
Chapter 27, “Using EXPLAIN to improve SQL performance,” on page 789 for
explanations of those columns. The meanings of the other columns are:

EXPLAIN_TIME
Timestamp when the EXPLAIN statement was executed.

SCHEMA_NAME
Schema name of the function that is invoked in the explained statement.

FUNCTION_NAME
Name of the function that is invoked in the explained statement.

SPEC_FUNC_NAME
Specific name of the function that is invoked in the explained statement.

FUNCTION_TYPE
The type of function that is invoked in the explained statement. Possible values
are:

SU Scalar function

TU Table function

VIEW_CREATOR
The creator of the view, if the function that is specified in the
FUNCTION_NAME column is referenced in a view definition. Otherwise, this
field is blank.

Chapter 15. Creating and using user-defined functions 361

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



VIEW_NAME
The name of the view, if the function that is specified in the
FUNCTION_NAME column is referenced in a view definition. Otherwise, this
field is blank.

PATH
The value of the SQL path when DB2 resolved the function reference.

FUNCTION_TEXT
The text of the function reference (the function name and parameters). If the
function reference exceeds 1500 bytes, this column contains the first 1500 bytes.

For a function specified in infix notation, FUNCTION_TEXT contains only the
function name. For example, suppose a user-defined function named / is in
the function reference A/B. Then FUNCTION_TEXT contains only /, not A/B.

Casting of user-defined function arguments
Whenever you invoke a user-defined function, DB2 assigns your input parameter
values to parameters with the data types and lengths in the user-defined function
definition. See Chapter 2 of DB2 SQL Reference for information about how DB2
assigns values when the data types of the source and target differ.

When you invoke a user-defined function that is sourced on another function, DB2
casts your parameters to the data types and lengths of the sourced function.

The following example demonstrates what happens when the parameter
definitions of a sourced function differ from those of the function on which it is
sourced.

Suppose that external user-defined function TAXFN1 is defined like this:
CREATE FUNCTION TAXFN1(DEC(6,0))

RETURNS DEC(5,2)
PARAMETER STYLE SQL
LANGUAGE C
EXTERNAL NAME TAXPROG;

Sourced user-defined function TAXFN2, which is sourced on TAXFN1, is defined
like this:
CREATE FUNCTION TAXFN2(DEC(8,2))

RETURNS DEC(5,0)
SOURCE TAXFN1;

You invoke TAXFN2 using this SQL statement:
UPDATE TB1

SET SALESTAX2 = TAXFN2(PRICE2);

TB1 is defined like this:
CREATE TABLE TB1

(PRICE1 DEC(6,0),
SALESTAX1 DEC(5,2),
PRICE2 DEC(9,2),
SALESTAX2 DEC(7,2));

Now suppose that PRICE2 has the DECIMAL(9,2) value 0001234.56. DB2 must first
assign this value to the data type of the input parameter in the definition of
TAXFN2, which is DECIMAL(8,2). The input parameter value then becomes
001234.56. Next, DB2 casts the parameter value to a source function parameter,

362 Application Programming and SQL Guide

|



which is DECIMAL(6,0). The parameter value then becomes 001234. (When you
cast a value, that value is truncated, rather than rounded.)

Now, if TAXFN1 returns the DECIMAL(5,2) value 123.45, DB2 casts the value to
DECIMAL(5,0), which is the result type for TAXFN2, and the value becomes 00123.
This is the value that DB2 assigns to column SALESTAX2 in the UPDATE
statement.

Casting of parameter markers: You can use untyped parameter markers in a
function invocation. However, DB2 cannot compare the data types of untyped
parameter markers to the data types of candidate functions. Therefore, DB2 might
find more than one function that qualifies for invocation. If this happens, an SQL
error occurs. To ensure that DB2 picks the right function to execute, cast the
parameter markers in your function invocation to the data types of the parameters
in the function that you want to execute. For example, suppose that two versions
of function FX exist. One version of FX is defined with a parameter of type of
DECIMAL(9,2), and the other is defined with a parameter of type INTEGER. You
want to invoke FX with a parameter marker, and you want DB2 to execute the
version of FX that has a DECIMAL(9,2) parameter. You need to cast the parameter
marker to a DECIMAL(9,2) type:

SELECT FX(CAST(? AS DECIMAL(9,2))) FROM T1;

What happens when a user-defined function abnormally
terminates

If an external user-defined function abnormally terminates:
v Your program receives SQLCODE -430 for the invoking statement.
v DB2 places the unit of work that contains the invoking statement in a

must-rollback state.
v DB2 stops the user-defined function, and subsequent calls fail, in either of the

following situations:
– The number of abnormal terminations equals the STOP AFTER n FAILURES

value for the user-defined function.
– If the STOP AFTER n FAILURES option is not specified, the number of

abnormal terminations equals the default MAX ABEND COUNT value for the
subsystem.

You should include code in your program to check for a user-defined function
abend and to roll back the unit of work that contains the user-defined function
invocation.

Nesting SQL statements
An SQL statement can explicitly invoke user-defined functions or stored
procedures or can implicitly activate triggers that invoke user-defined functions or
stored procedures. This is known as nesting of SQL statements. DB2 supports up to
16 levels of nesting. Figure 138 on page 364 shows an example of SQL statement
nesting.

Chapter 15. Creating and using user-defined functions 363

|

|
|

|
|

|
|

|
|
|



DB2 has the following restrictions on nested SQL statements:
v Restrictions for SELECT statements:

When you execute a SELECT statement on a table, you cannot execute INSERT,
UPDATE, or DELETE statements on the same table at a lower level of nesting.
For example, suppose that you execute this SQL statement at level 1 of nesting:
SELECT UDF1(C1) FROM T1;

You cannot execute this SQL statement at a lower level of nesting:
INSERT INTO T1 VALUES(...);

v Restrictions for INSERT, UPDATE, and DELETE statements:
When you execute an INSERT, DELETE, or UPDATE statement on a table, you
cannot access that table from a user-defined function or stored procedure that is
at a lower level of nesting.
For example, suppose that you execute this SQL statement at level 1 of nesting:
DELETE FROM T1 WHERE UDF3(T1.C1) = 3;

You cannot execute this SELECT statement at a lower level of nesting:
SELECT * FROM T1;

The preceding list of restrictions do not apply to SQL statements that are executed
at a lower level of nesting as a result of an after trigger. For example, suppose an
UPDATE statement at nesting level 1 activates an after update trigger, which calls
a stored procedure. The stored procedure executes two SQL statements that
reference the triggering table: one SELECT statement and one INSERT statement.
In this situation, both the SELECT and the INSERT statements can be executed
even though they are at nesting level 3.

Although trigger activations count in the levels of SQL statement nesting, the
previous restrictions on SQL statements do not apply to SQL statements that are
executed in the trigger body.

Example: Suppose that trigger TR1 is defined on table T1:

Trigger TR1 is defined on table T3:
CREATE TRIGGER TR1
AFTER UPDATE ON T3
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
CALL SP3(PARM1);
END

Program P1 (nesting level 1) contains:
SELECT UDF1(C1) FROM T1;
UDF1 (nesting level 2) contains:
CALL SP2(C2);
SP2 (nesting level 3) contains:
UPDATE T3 SET C3=1;
SP3 (nesting level 4) contains:
SELECT UDF4(C4) FROM T4;...
SP16 (nesting level 16) cannot invoke stored procedures
or user-defined functions

Figure 138. Nested SQL statements

364 Application Programming and SQL Guide

#
#
#
#
#
#
#



CREATE TRIGGER TR1
AFTER INSERT ON T1
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
UPDATE T1 SET C1=1;
END

Now suppose that you execute this SQL statement at level 1 of nesting:
INSERT INTO T1 VALUES(...);

Although the UPDATE statement in the trigger body is at level 2 of nesting and
modifies the same table that the triggering statement updates, DB2 can execute the
INSERT statement successfully.

Recommendations for user-defined function invocation
Invoke user-defined functions with external actions and nondeterministic
user-defined functions from select lists: Invoking user-defined functions with
external action from a select list and nondeterministic user-defined functions from
a select list is preferred to invoking these user-defined functions from a predicate.

The access path that DB2 chooses for a predicate determines whether a
user-defined function in that predicate is executed. To ensure that DB2 executes the
external action for each row of the result set, put the user-defined function
invocation in the SELECT list.

Invoking a nondeterministic user-defined function from a predicate can yield
undesirable results. The following example demonstrates this idea.

Suppose that you execute this query:
SELECT COUNTER(), C1, C2 FROM T1 WHERE COUNTER() = 2;

Table T1 looks like this:
C1 C2
-- --
1 b
2 c
3 a

COUNTER is a user-defined function that increments a variable in the scratchpad
each time it is invoked.

DB2 invokes an instance of COUNTER in the predicate 3 times. Assume that
COUNTER is invoked for row 1 first, for row 2 second, and for row 3 third. Then
COUNTER returns 1 for row 1, 2 for row 2, and 3 for row 3. Therefore, row 2
satisfies the predicate WHERE COUNTER()=2, so DB2 evaluates the SELECT list
for row 2. DB2 uses a different instance of COUNTER in the select list from the
instance in the predicate. Because the instance of COUNTER in the select list is
invoked only once, it returns a value of 1. Therefore, the result of the query is:
COUNTER() C1 C2
--------- -- --

1 2 c

This is not the result you might expect.

The results can differ even more, depending on the order in which DB2 retrieves
the rows from the table. Suppose that an ascending index is defined on column C2.
Then DB2 retrieves row 3 first, row 1 second, and row 2 third. This means that

Chapter 15. Creating and using user-defined functions 365



row 1 satisfies the predicate WHERE COUNTER()=2. The value of COUNTER in
the select list is again 1, so the result of the query in this case is:
COUNTER() C1 C2
--------- -- --

1 1 b

Understand the interaction between scrollable cursors and nondeterministic
user-defined functions or user-defined functions with external actions: When you
use a scrollable cursor, you might retrieve the same row multiple times while the
cursor is open. If the select list of the cursor’s SELECT statement contains a
user-defined function, that user-defined function is executed each time you retrieve
a row. Therefore, if the user-defined function has an external action, and you
retrieve the same row multiple times, the external action is executed multiple times
for that row.

A similar situation occurs with scrollable cursors and nondeterministic functions.
The result of a nondeterministic user-defined function can be different each time
you execute the user-defined function. If the select list of a scrollable cursor
contains a nondeterministic user-defined function, and you use that cursor to
retrieve the same row multiple times, the results can differ each time you retrieve
the row.

A nondeterministic user-defined function in the predicate of a scrollable cursor’s
SELECT statement does not change the result of the predicate while the cursor is
open. DB2 evaluates a user-defined function in the predicate only once while the
cursor is open.

366 Application Programming and SQL Guide



Chapter 16. Creating and using distinct types

A distinct type is a data type that you define using the CREATE DISTINCT TYPE
statement. Each distinct type has the same internal representation as a built-in data
type. You can use distinct types in the same way that you use built-in data types,
in any type of SQL application except for a DB2 private protocol application.

This chapter presents the following information about distinct types:
v “Introduction to distinct types”
v “Using distinct types in application programs” on page 368
v “Combining distinct types with user-defined functions and LOBs” on page 372

Introduction to distinct types
Suppose you want to define some audio and video data in a DB2 table. You can
define columns for both types of data as BLOB, but you might want to use a data
type that more specifically describes the data. To do that, define distinct types. You
can then use those types when you define columns in a table or manipulate the
data in those columns. For example, you can define distinct types for the audio
and video data like this:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M);
CREATE DISTINCT TYPE VIDEO AS BLOB (1M);

Then, your CREATE TABLE statement might look like this:
CREATE TABLE VIDEO_CATALOG;

(VIDEO_NUMBER CHAR(6) NOT NULL,
VIDEO_SOUND AUDIO,
VIDEO_PICS VIDEO,
ROW_ID ROWID NOT NULL GENERATED ALWAYS);

For more information on LOB data, see Chapter 14, “Programming for large
objects,” on page 299.

After you define distinct types and columns of those types, you can use those data
types in the same way you use built-in types. You can use the data types in
assignments, comparisons, function invocations, and stored procedure calls.
However, when you assign one column value to another or compare two column
values, those values must be of the same distinct type. For example, you must
assign a column value of type VIDEO to a column of type VIDEO, and you can
compare a column value of type AUDIO only to a column of type AUDIO. When
you assign a host variable value to a column with a distinct type, you can use any
host data type that is compatible with the source data type of the distinct type. For
example, to receive an AUDIO or VIDEO value, you can define a host variable like
this:
SQL TYPE IS BLOB (1M) HVAV;

When you use a distinct type as an argument to a function, a version of that
function that accepts that distinct type must exist. For example, if function SIZE
takes a BLOB type as input, you cannot automatically use a value of type AUDIO
as input. However, you can create a sourced user-defined function that takes the
AUDIO type as input. For example:

© Copyright IBM Corp. 1983, 2012 367



CREATE FUNCTION SIZE(AUDIO)
RETURNS INTEGER
SOURCE SIZE(BLOB(1M));

Using distinct types in application programs
The main reason to use distinct types is because DB2 enforces strong typing for
distinct types. Strong typing ensures that only functions, procedures, comparisons,
and assignments that are defined for a data type can be used.

For example, if you have defined a user-defined function to convert U.S. dollars to
euro currency, you do not want anyone to use this same user-defined function to
convert Japanese Yen to euros because the U.S. dollars to euros function returns the
wrong amount. Suppose you define three distinct types:
CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL(9,2);
CREATE DISTINCT TYPE EURO AS DECIMAL(9,2);
CREATE DISTINCT TYPE JAPANESE_YEN AS DECIMAL(9,2);

If a conversion function is defined that takes an input parameter of type
US_DOLLAR as input, DB2 returns an error if you try to execute the function with
an input parameter of type JAPANESE_YEN.

Comparing distinct types
The basic rule for comparisons is that the data types of the operands must be
compatible. The compatibility rule defines, for example, that all numeric types
(SMALLINT, INTEGER, FLOAT, and DECIMAL) are compatible. That is, you can
compare an INTEGER value with a value of type FLOAT. However, you cannot
compare an object of a distinct type to an object of a different type. You can
compare an object with a distinct type only to an object with exactly the same
distinct type.

DB2 does not let you compare data of a distinct type directly to data of its source
type. However, you can compare a distinct type to its source type by using a cast
function.

For example, suppose you want to know which products sold more than
$100 000.00 in the US in the month of July in 2003 (7/03). Because you cannot
compare data of type US_DOLLAR with instances of data of the source type of
US_DOLLAR (DECIMAL) directly, you must use a cast function to cast data from
DECIMAL to US_DOLLAR or from US_DOLLAR to DECIMAL. Whenever you
create a distinct type, DB2 creates two cast functions, one to cast from the source
type to the distinct type and the other to cast from the distinct type to the source
type. For distinct type US_DOLLAR, DB2 creates a cast function called DECIMAL
and a cast function called US_DOLLAR. When you compare an object of type
US_DOLLAR to an object of type DECIMAL, you can use one of those cast
functions to make the data types identical for the comparison. Suppose table
US_SALES is defined like this:
CREATE TABLE US_SALES

(PRODUCT_ITEM INTEGER,
MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1990),
TOTAL US_DOLLAR);

Then you can cast DECIMAL data to US_DOLLAR like this:

368 Application Programming and SQL Guide

|
|
|



SELECT PRODUCT_ITEM
FROM US_SALES
WHERE TOTAL > US_DOLLAR(100000.00)
AND MONTH = 7
AND YEAR = 2003;

The casting satisfies the requirement that the compared data types are identical.

You cannot use host variables in statements that you prepare for dynamic
execution. As explained in “Using parameter markers with PREPARE and
EXECUTE” on page 608, you can substitute parameter markers for host variables
when you prepare a statement, and then use host variables when you execute the
statement.

If you use a parameter marker in a predicate of a query, and the column to which
you compare the value represented by the parameter marker is of a distinct type,
you must cast the parameter marker to the distinct type, or cast the column to its
source type.

For example, suppose that distinct type CNUM is defined like this:
CREATE DISTINCT TYPE CNUM AS INTEGER;

Table CUSTOMER is defined like this:
CREATE TABLE CUSTOMER

(CUST_NUM CNUM NOT NULL,
FIRST_NAME CHAR(30) NOT NULL,
LAST_NAME CHAR(30) NOT NULL,
PHONE_NUM CHAR(20) WITH DEFAULT,
PRIMARY KEY (CUST_NUM));

In an application program, you prepare a SELECT statement that compares the
CUST_NUM column to a parameter marker. Because CUST_NUM is of a distinct
type, you must cast the distinct type to its source type:
SELECT FIRST_NAME, LAST_NAME, PHONE_NUM FROM CUSTOMER

WHERE CAST(CUST_NUM AS INTEGER) = ?

Alternatively, you can cast the parameter marker to the distinct type:
SELECT FIRST_NAME, LAST_NAME, PHONE_NUM FROM CUSTOMER

WHERE CUST_NUM = CAST (? AS CNUM)

Assigning distinct types
For assignments from columns to columns or from constants to columns of distinct
types, the type of that value to be assigned must match the type of the object to
which the value is assigned, or you must be able to cast one type to the other.

If you need to assign a value of one distinct type to a column of another distinct
type, a function must exist that converts the value from one type to another.
Because DB2 provides cast functions only between distinct types and their source
types, you must write the function to convert from one distinct type to another.

Assigning column values to columns with different distinct types
Suppose tables JAPAN_SALES and JAPAN_SALES_03 are defined like this:
CREATE TABLE JAPAN_SALES

(PRODUCT_ITEM INTEGER,
MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1990),
TOTAL JAPANESE_YEN);

Chapter 16. Creating and using distinct types 369

|



CREATE TABLE JAPAN_SALES_03
(PRODUCT_ITEM INTEGER,
TOTAL US_DOLLAR);

You need to insert values from the TOTAL column in JAPAN_SALES into the
TOTAL column of JAPAN_SALES_03. Because INSERT statements follow
assignment rules, DB2 does not let you insert the values directly from one column
to the other because the columns are of different distinct types. Suppose that a
user-defined function called US_DOLLAR has been written that accepts values of
type JAPANESE_YEN as input and returns values of type US_DOLLAR. You can
then use this function to insert values into the JAPAN_SALES_03 table:
INSERT INTO JAPAN_SALES_03

SELECT PRODUCT_ITEM, US_DOLLAR(TOTAL)
FROM JAPAN_SALES
WHERE YEAR = 2003;

Assigning column values with distinct types to host variables
The rules for assigning distinct types to host variables or host variables to columns
of distinct types differ from the rules for constants and columns.

You can assign a column value of a distinct type to a host variable if you can
assign a column value of the distinct type’s source type to the host variable. In the
following example, you can assign SIZECOL1 and SIZECOL2, which has distinct
type SIZE, to host variables of type double and short because the source type of
SIZE, which is INTEGER, can be assigned to host variables of type double or short.
EXEC SQL BEGIN DECLARE SECTION;

double hv1;
short hv2;

EXEC SQL END DECLARE SECTION;
CREATE DISTINCT TYPE SIZE AS INTEGER;
CREATE TABLE TABLE1 (SIZECOL1 SIZE, SIZECOL2 SIZE);...
SELECT SIZECOL1, SIZECOL2

INTO :hv1, :hv2
FROM TABLE1;

Assigning host variable values to columns with distinct types
When you assign a value in a host variable to a column with a distinct type, the
type of the host variable must be able to cast to the distinct type. For a table of
base data types and the base data types to which they can be cast, see Table 42 on
page 358.

In this example, values of host variable hv2 can be assigned to columns SIZECOL1
and SIZECOL2, because C data type short is equivalent to DB2 data type
SMALIINT, and SMALLINT is promotable to data type INTEGER. However,
values of hv1 cannot be assigned to SIZECOL1 and SIZECOL2, because C data
type double, which is equivalent to DB2 data type DOUBLE, is not promotable to
data type INTEGER.
EXEC SQL BEGIN DECLARE SECTION;

double hv1;
short hv2;

EXEC SQL END DECLARE SECTION;
CREATE DISTINCT TYPE SIZE AS INTEGER;
CREATE TABLE TABLE1 (SIZECOL1 SIZE, SIZECOL2 SIZE);...
INSERT INTO TABLE1

VALUES (:hv1,:hv1); /* Invalid statement */
INSERT INTO TABLE1

VALUES (:hv2,:hv2); /* Valid statement */

370 Application Programming and SQL Guide



Using distinct types in UNIONs
As with comparisons, DB2 enforces strong typing of distinct types in UNIONs.
When you use a UNION to combine column values from several tables, the
combined columns must be of the same types. For example, suppose you create a
view that combines the values of the US_SALES, EUROPEAN_SALES, and
JAPAN_SALES tables. The TOTAL columns in the three tables are of different
distinct types, so before you combine the table values, you must convert the types
of two of the TOTAL columns to the type of the third TOTAL column. Assume that
the US_DOLLAR type has been chosen as the common distinct type. Because DB2
does not generate cast functions to convert from one distinct type to another, two
user-defined functions must exist:
v A function that converts values of type EURO to US_DOLLAR
v A function that converts values of type JAPANESE_YEN to US_DOLLAR

Assume that these functions exist, and that both are called US_DOLLAR. Then you
can execute a query like this to display a table of combined sales:
SELECT PRODUCT_ITEM, MONTH, YEAR, TOTAL
FROM US_SALES
UNION
SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR(TOTAL)
FROM EUROPEAN_SALES
UNION
SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR(TOTAL)
FROM JAPAN_SALES;

Because the result type of both US_DOLLAR functions is US_DOLLAR, you have
satisfied the requirement that the distinct types of the combined columns are the
same.

Invoking functions with distinct types
DB2 enforces strong typing when you pass arguments to a function. This means
that:
v You can pass arguments that have distinct types to a function if either of the

following conditions is true:
– A version of the function that accepts those distinct types is defined.

This also applies to infix operators. If you want to use one of the five built-in
infix operators (||, /, *, +, -) with your distinct types, you must define a
version of that operator that accepts the distinct types.

– You can cast your distinct types to the argument types of the function.
v If you pass arguments to a function that accepts only distinct types, the

arguments you pass must have the same distinct types as in the function
definition. If the types are different, you must cast your arguments to the
distinct types in the function definition.
If you pass constants or host variables to a function that accepts only distinct
types, you must cast the constants or host variables to the distinct types that the
function accepts.

The following examples demonstrate how to use distinct types as arguments in
function invocations.

Example: Defining a function with distinct types as arguments: Suppose that you
want to invoke the built-in function HOUR with a distinct type that is defined like
this:
CREATE DISTINCT TYPE FLIGHT_TIME AS TIME;

Chapter 16. Creating and using distinct types 371

|



The HOUR function takes only the TIME or TIMESTAMP data type as an
argument, so you need a sourced function that is based on the HOUR function that
accepts the FLIGHT_TIME data type. You might declare a function like this:
CREATE FUNCTION HOUR(FLIGHT_TIME)

RETURNS INTEGER
SOURCE SYSIBM.HOUR(TIME);

Example: Casting function arguments to acceptable types: Another way you can
invoke the HOUR function is to cast the argument of type FLIGHT_TIME to the
TIME data type before you invoke the HOUR function. Suppose table
FLIGHT_INFO contains column DEPARTURE_TIME, which has data type
FLIGHT_TIME, and you want to use the HOUR function to extract the hour of
departure from the departure time. You can cast DEPARTURE_TIME to the TIME
data type, and then invoke the HOUR function:
SELECT HOUR(CAST(DEPARTURE_TIME AS TIME)) FROM FLIGHT_INFO;

Example: Using an infix operator with distinct type arguments: Suppose you want
to add two values of type US_DOLLAR. Before you can do this, you must define a
version of the + function that accepts values of type US_DOLLAR as operands:
CREATE FUNCTION "+"(US_DOLLAR,US_DOLLAR)

RETURNS US_DOLLAR
SOURCE SYSIBM."+"(DECIMAL(9,2),DECIMAL(9,2));

Because the US_DOLLAR type is based on the DECIMAL(9,2) type, the source
function must be the version of + with arguments of type DECIMAL(9,2).

Example: Casting constants and host variables to distinct types to invoke a
user-defined function: Suppose function CDN_TO_US is defined like this:
CREATE FUNCTION EURO_TO_US(EURO)

RETURNS US_DOLLAR
EXTERNAL NAME ’CDNCVT’
PARAMETER STYLE SQL
LANGUAGE C;

This means that EURO_TO_US accepts only the EURO type as input. Therefore, if
you want to call CDN_TO_US with a constant or host variable argument, you
must cast that argument to distinct type EURO:
SELECT * FROM US_SALES

WHERE TOTAL = EURO_TO_US(EURO(:H1));

SELECT * FROM US_SALES
WHERE TOTAL = EURO_TO_US(EURO(10000));

Combining distinct types with user-defined functions and LOBs
The example in this section demonstrates the following concepts:
v Creating a distinct type based on a LOB data type
v Defining a user-defined function with a distinct type as an argument
v Creating a table with a distinct type column that is based on a LOB type
v Defining a LOB table space, auxiliary table, and auxiliary index
v Inserting data from a host variable into a distinct type column based on a LOB

column
v Executing a query that contains a user-defined function invocation
v Casting a LOB locator to the input data type of a user-defined function

Suppose that you keep electronic mail documents that are sent to your company in
a DB2 table. The DB2 data type of an electronic mail document is a CLOB, but you

372 Application Programming and SQL Guide

|



define it as a distinct type so that you can control the types of operations that are
performed on the electronic mail. The distinct type is defined like this:
CREATE DISTINCT TYPE E_MAIL AS CLOB(5M);

You have also defined and written user-defined functions to search for and return
the following information about an electronic mail document:
v Subject
v Sender
v Date sent
v Message content
v Indicator of whether the document contains a user-specified string

The user-defined function definitions look like this:
CREATE FUNCTION SUBJECT(E_MAIL)

RETURNS VARCHAR(200)
EXTERNAL NAME ’SUBJECT’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION SENDER(E_MAIL)
RETURNS VARCHAR(200)
EXTERNAL NAME ’SENDER’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION SENDING_DATE(E_MAIL)
RETURNS DATE
EXTERNAL NAME ’SENDDATE’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION CONTENTS(E_MAIL)
RETURNS CLOB(1M)
EXTERNAL NAME ’CONTENTS’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION CONTAINS(E_MAIL, VARCHAR (200))
RETURNS INTEGER
EXTERNAL NAME ’CONTAINS’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

The table that contains the electronic mail documents is defined like this:
CREATE TABLE DOCUMENTS

(LAST_UPDATE_TIME TIMESTAMP,
DOC_ROWID ROWID NOT NULL GENERATED ALWAYS,
A_DOCUMENT E_MAIL);

Chapter 16. Creating and using distinct types 373

|

|

|

|

|



Because the table contains a column with a source data type of CLOB, the table
requires an associated LOB table space, auxiliary table, and index on the auxiliary
table. Use statements like this to define the LOB table space, the auxiliary table,
and the index:
CREATE LOB TABLESPACE DOCTSLOB

LOG YES
GBPCACHE SYSTEM;

CREATE AUX TABLE DOCAUX_TABLE
IN DOCTSLOB
STORES DOCUMENTS COLUMN A_DOCUMENT;

CREATE INDEX A_IX_DOC ON DOCAUX_TABLE;

To populate the document table, you write code that executes an INSERT
statement to put the first part of a document in the table, and then executes
multiple UPDATE statements to concatenate the remaining parts of the document.
For example:
EXEC SQL BEGIN DECLARE SECTION;

char hv_current_time[26];
SQL TYPE IS CLOB (1M) hv_doc;

EXEC SQL END DECLARE SECTION;
/* Determine the current time and put this value */
/* into host variable hv_current_time. */
/* Read up to 1 MB of document data from a file */
/* into host variable hv_doc. */...
/* Insert the time value and the first 1 MB of */
/* document data into the table. */
EXEC SQL INSERT INTO DOCUMENTS

VALUES(:hv_current_time, DEFAULT, E_MAIL(:hv_doc));

/* Although there is more document data in the */
/* file, read up to 1 MB more of data, and then */
/* use an UPDATE statement like this one to */
/* concatenate the data in the host variable */
/* to the existing data in the table. */
EXEC SQL UPDATE DOCUMENTS

SET A_DOCUMENT = A_DOCUMENT || E_MAIL(:hv_doc)
WHERE LAST_UPDATE_TIME = :hv_current_time;

Now that the data is in the table, you can execute queries to learn more about the
documents. For example, you can execute this query to determine which
documents contain the word "performance":
SELECT SENDER(A_DOCUMENT), SENDING_DATE(A_DOCUMENT),

SUBJECT(A_DOCUMENT)
FROM DOCUMENTS
WHERE CONTAINS(A_DOCUMENT,’performance’) = 1;

Because the electronic mail documents can be very large, you might want to use
LOB locators to manipulate the document data instead of fetching all of a
document into a host variable. You can use a LOB locator on any distinct type that
is defined on one of the LOB types. The following example shows how you can
cast a LOB locator as a distinct type, and then use the result in a user-defined
function that takes a distinct type as an argument:
EXEC SQL BEGIN DECLARE SECTION

long hv_len;
char hv_subject[200];
SQL TYPE IS CLOB_LOCATOR hv_email_locator;

EXEC SQL END DECLARE SECTION

374 Application Programming and SQL Guide



...
/* Select a document into a CLOB locator. */
EXEC SQL SELECT A_DOCUMENT, SUBJECT(A_DOCUMENT)

INTO :hv_email_locator, :hv_subject
FROM DOCUMENTS
WHERE LAST_UPDATE_TIME = :hv_current_time;...

/* Extract the subject from the document. The */
/* SUBJECT function takes an argument of type */
/* E_MAIL, so cast the CLOB locator as E_MAIL. */
EXEC SQL SET :hv_subject =

SUBJECT(CAST(:hv_email_locator AS E_MAIL));...

Chapter 16. Creating and using distinct types 375



376 Application Programming and SQL Guide



Part 4. Designing a DB2 database application
Chapter 17. Planning for DB2 program preparation . . . . . . . . . . . . . . . . . . . . 381
Planning to process SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Planning to bind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Binding DBRMs with packages and plans . . . . . . . . . . . . . . . . . . . . . . . . 384
Binding with a package list only . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Binding all DBRMs to a plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Binding with both DBRMs and a package list . . . . . . . . . . . . . . . . . . . . . 385
Advantages of packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Conversion of DBRMs that are bound to a plan to DBRMs that are bound to a package . . . . . . . . 386
Planning for changes to your application . . . . . . . . . . . . . . . . . . . . . . . . 387

Dropping objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Rebinding a package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Rebinding a plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Rebinding lists of plans and packages . . . . . . . . . . . . . . . . . . . . . . . . 390
Working with trigger packages . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Automatic rebinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Chapter 18. Planning for concurrency . . . . . . . . . . . . . . . . . . . . . . . . . 393
Definitions of concurrency and locks . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Effects of DB2 locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Basic recommendations to promote concurrency . . . . . . . . . . . . . . . . . . . . . . . 397
Recommendations for database design . . . . . . . . . . . . . . . . . . . . . . . . . 398
Recommendations for application design . . . . . . . . . . . . . . . . . . . . . . . . 399

Aspects of transaction locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
The size of a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Hierarchy of lock sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
General effects of size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Effects of table spaces of different types . . . . . . . . . . . . . . . . . . . . . . . 403

The duration of a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

The mode of a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Modes of page and row locks . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Modes of table, partition, and table space locks . . . . . . . . . . . . . . . . . . . . . 405
Lock mode compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

The object of a lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Definition and examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Indexes and data-only locking . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Options for tuning locks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Bind options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

The ACQUIRE and RELEASE options . . . . . . . . . . . . . . . . . . . . . . . . 408
Advantages and disadvantages of the combinations . . . . . . . . . . . . . . . . . . . 410
The ISOLATION option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
Advantages and disadvantages of the isolation values . . . . . . . . . . . . . . . . . . . 412
The CURRENTDATA option . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
When plan and package options differ . . . . . . . . . . . . . . . . . . . . . . . . 420
The effect of WITH HOLD for a cursor . . . . . . . . . . . . . . . . . . . . . . . . 420

Isolation overriding with SQL statements . . . . . . . . . . . . . . . . . . . . . . . . 421
The LOCK TABLE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

The purpose of LOCK TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
The effect of LOCK TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Recommendations for using LOCK TABLE . . . . . . . . . . . . . . . . . . . . . . 423

Access paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

© Copyright IBM Corp. 1983, 2012 377

##



LOB locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Relationship between transaction locks and LOB locks . . . . . . . . . . . . . . . . . . . 425
Hierarchy of LOB locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
LOB and LOB table space lock modes . . . . . . . . . . . . . . . . . . . . . . . . . 427

Modes of LOB locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
Modes of LOB table space locks . . . . . . . . . . . . . . . . . . . . . . . . . . 427

LOB lock and LOB table space lock duration . . . . . . . . . . . . . . . . . . . . . . . 427
The duration of LOB locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
The duration of LOB table space locks . . . . . . . . . . . . . . . . . . . . . . . . 428

Instances when LOB table space locks are not taken . . . . . . . . . . . . . . . . . . . . 428
The LOCK TABLE statement for LOBs . . . . . . . . . . . . . . . . . . . . . . . . . 428

Chapter 19. Planning for recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Unit of work in TSO batch and online . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Unit of work in CICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Unit of work in IMS online programs . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Planning ahead for program recovery: Checkpoint and restart . . . . . . . . . . . . . . . . . 435
What symbolic checkpoint does . . . . . . . . . . . . . . . . . . . . . . . . . . 435
What restart does . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

When are checkpoints important? . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Checkpoints in MPPs and transaction-oriented BMPs . . . . . . . . . . . . . . . . . . . . 436
Checkpoints in batch-oriented BMPs . . . . . . . . . . . . . . . . . . . . . . . . . 437
Specifying checkpoint frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Unit of work in DL/I and IMS batch programs . . . . . . . . . . . . . . . . . . . . . . . 438
Commit and rollback coordination . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Using ROLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Using ROLB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
In batch programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Restart and recovery in IMS batch . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Using savepoints to undo selected changes within a unit of work . . . . . . . . . . . . . . . . . 439

Chapter 20. Planning to access distributed data. . . . . . . . . . . . . . . . . . . . . . 441
Planning for DRDA and DB2 private protocol access . . . . . . . . . . . . . . . . . . . . . 441

Advantages of DRDA access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Moving from DB2 private protocol access to DRDA access . . . . . . . . . . . . . . . . . . 442
Bind processes for DRDA and DB2 private protocol access . . . . . . . . . . . . . . . . . . 444
Precompiler and bind options for DRDA access . . . . . . . . . . . . . . . . . . . . . . 445

Precompiler options for DRDA access . . . . . . . . . . . . . . . . . . . . . . . . 445
BIND PLAN options for DRDA access . . . . . . . . . . . . . . . . . . . . . . . . 445
BIND PACKAGE options for DRDA access . . . . . . . . . . . . . . . . . . . . . . 446
Checking BIND PACKAGE options . . . . . . . . . . . . . . . . . . . . . . . . . 447

Coding methods for distributed data . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Using three-part table names to access distributed data . . . . . . . . . . . . . . . . . . . 448

Three-part names and multiple servers . . . . . . . . . . . . . . . . . . . . . . . . 449
Accessing declared temporary tables by using three-part names . . . . . . . . . . . . . . . 449

Using explicit CONNECT statements to access distributed data . . . . . . . . . . . . . . . . 450
Using a location alias name for multiple sites. . . . . . . . . . . . . . . . . . . . . . 451
Releasing connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Coordinating updates to two or more data sources . . . . . . . . . . . . . . . . . . . . . . 452
Working without two-phase commit. . . . . . . . . . . . . . . . . . . . . . . . . . 452
Update restrictions on servers that do not support two-phase commit . . . . . . . . . . . . . . 453
Forcing update restrictions by using CONNECT (Type 1). . . . . . . . . . . . . . . . . . . 453

Maximizing performance for distributed data . . . . . . . . . . . . . . . . . . . . . . . 454
Coding efficient queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
Maximizing LOB performance in a distributed environment . . . . . . . . . . . . . . . . . . 454
Using bind options to improve performance for distributed applications . . . . . . . . . . . . . 456

DEFER(PREPARE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
PKLIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
REOPT(ALWAYS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
CURRENTDATA(NO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
KEEPDYNAMIC(YES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

378 Application Programming and SQL Guide

||

||



DBPROTOCOL(DRDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Using block fetch in distributed applications . . . . . . . . . . . . . . . . . . . . . . . 458

When DB2 uses block fetch for non-scrollable cursors . . . . . . . . . . . . . . . . . . . 459
When DB2 uses block fetch for scrollable cursors . . . . . . . . . . . . . . . . . . . . 459

Limiting the number of DRDA network transmissions. . . . . . . . . . . . . . . . . . . . 461
Limiting the number of rows returned to DRDA clients . . . . . . . . . . . . . . . . . . . 464

Fast implicit close and FETCH FIRST n ROWS ONLY . . . . . . . . . . . . . . . . . . . 464
Example of FETCH FIRST n ROWS ONLY . . . . . . . . . . . . . . . . . . . . . . 464
Limiting the number of rows with the rowset parameter . . . . . . . . . . . . . . . . . . 465

Working with distributed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
SQL limitations at dissimilar servers. . . . . . . . . . . . . . . . . . . . . . . . . . 465
Executing long SQL statements in a distributed environment . . . . . . . . . . . . . . . . . 466
Retrieving data from ASCII or Unicode tables . . . . . . . . . . . . . . . . . . . . . . 466
Accessing data with a scrollable cursor when the requester is down-level . . . . . . . . . . . . . 467
Accessing data with a rowset-positioned cursor when the requester is down-level . . . . . . . . . . 467
Maintaining data currency by using cursors . . . . . . . . . . . . . . . . . . . . . . . 467
Copying a table from a remote location. . . . . . . . . . . . . . . . . . . . . . . . . 467
Transmitting mixed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Converting mixed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Identifying the server at run time . . . . . . . . . . . . . . . . . . . . . . . . . 468

Part 4.Designing a DB2 database application 379

||

||



380 Application Programming and SQL Guide



Chapter 17. Planning for DB2 program preparation

DB2 application programs include SQL statements. You need to process those SQL
statements, using either the DB2 precompiler or the DB2 coprocessor that is
provided with a compiler. Either type of SQL statement processor does the
following things:
v Replaces the SQL statements in your source programs with calls to DB2

language interface modules
v Creates a database request module (DBRM), which communicates your SQL

requests to DB2 during the bind process

For specific information about accomplishing the steps in program preparation, see
Chapter 21, “Preparing an application program to run,” on page 471.

Figure 139 on page 382 illustrates the program preparation process when you use
the DB2 precompiler. After you process SQL statements in your source program
using the DB2 precompiler, you create a load module, possibly one or more
packages, and an application plan. Creating a load module involves compiling the
modified source code that is produced by the precompiler into an object program,
and link-editing the object program to create a load module. Creating a package or
an application plan, a process unique to DB2, involves binding one or more
DBRMs, which are created by the DB2 precompiler, using the BIND PACKAGE or
BIND PLAN commands.

© Copyright IBM Corp. 1983, 2012 381

#
#
#
#

#
#

#
#

|

|
|

|
|



Figure 140 on page 383 illustrates the program preparation process when you use
the DB2 coprocessor. The process is similar to the process used with the DB2
precompiler, except that the DB2 coprocessor does not create modified source for
your application program.

Figure 139. Program preparation with the DB2 precompiler

382 Application Programming and SQL Guide

#
|
|
|



Planning to process SQL statements
When you process SQL statements in an application program, you can specify a
number of options. Most of the options do not affect the way you design or code
the program. Those options describe the basic characteristics of the source program
or indicate how you want the output listings to look. For example, there are
options that specify:
v The host language in which the program is written
v The maximum precision of decimal numbers in the program
v How many lines are on a page of the precompiler listing

In many cases, you may want to accept the default value provided.

A few options, however, can affect the way that you write your program. For
example, you need to know if you are using NOFOR or STDSQL(YES) before you
begin coding.

Before you begin writing your program, review the list of options in Table 64 on
page 485. You can specify any of those options whether you use the DB2
precompiler or an DB2 coprocessor. However, the DB2 coprocessor might ignore
certain options because there are host language compiler options that provide the
same information.

Figure 140. Program preparation with the DB2 coprocessor

Chapter 17. Planning for DB2 program preparation 383

#
#
#
#
#



Planning to bind
Depending on how you design your DB2 application, you might bind all your
DBRMs in one operation, creating only a single application plan. Alternatively, you
might bind some or all of your DBRMs into separate packages in separate
operations. After that, you must still bind the entire application as a single plan,
listing the included packages or collections and binding any DBRMs that are not
already bound into packages. Regardless of what the plan contains, you must bind
a plan before the application can run.

Binding or rebinding a package or plan in use: Packages and plans are locked
when you bind or run them. Packages that run under a plan are not locked until
the plan uses them. If you run a plan and some packages in the package list never
run, those packages are never locked.

You cannot bind or rebind a package or a plan while it is running. However, you
can bind a different version of a package that is running.

Options for binding and rebinding: Several of the options of BIND PACKAGE and
BIND PLAN can affect your program design. For example, you can use a bind
option to ensure that a package or plan can run only from a particular CICS
connection or a particular IMS region—you do not need to enforce this in your
code. Several other options are discussed at length in later chapters, particularly
the ones that affect your program's use of locks, such as the ISOLATION option.
Before you finish reading this chapter, you might want to review those options in
Chapter 2 of DB2 Command Reference.

Preliminary steps: Before you bind, consider the following:
v Determine how you want to bind the DBRMs. You can bind them into packages

or directly into plans, or you can use a combination of both methods.
v Develop a naming convention and strategy for the most effective and efficient

use of your plans and packages.
v Determine when your application should acquire locks on the objects it uses: on

all objects when the plan is first allocated, or on each object in turn when that
object is first used. For a description of the consequences of these choices, see
“The ACQUIRE and RELEASE options” on page 408.

Binding DBRMs with packages and plans
The question of whether to use packages affects your application design from the
beginning. For example, you might decide to put certain SQL statements together
in the same program, precompiling them into the same DBRM and then binding
them into a single package.

Input to binding the plan can include DBRMs only, a package list only, or a
combination of the two. When choosing one of those alternatives for your
application, consider the impact of rebinding; see “Planning for changes to your
application” on page 387.

Binding with a package list only
At one extreme, you can bind each DBRM into its own package. Input to binding a
package is a single DBRM only. A one-to-one correspondence between programs
and packages might easily allow you to keep track of each. However, your
application might consist of too many packages to track easily.

384 Application Programming and SQL Guide



Binding a plan that includes only a package list makes maintenance easier when
the application changes significantly over time.

Binding all DBRMs to a plan
At the other extreme, you can bind all your DBRMs into a single plan. This
approach has the disadvantage that a change to even one DBRM requires
rebinding the entire plan, even though most DBRMs are unchanged.

Binding all DBRMs to a plan is suitable for small applications that are unlikely to
change or that require all resources to be acquired when the plan is allocated
rather than when your program first uses them.

Binding with both DBRMs and a package list
Binding DBRMs directly to the plan and specifying a package list is suitable for
maintaining existing applications. You can add a package list when rebinding an
existing plan. To migrate gradually to the use of packages, bind DBRMs as
packages when you need to make changes.

Advantages of packages
You must decide how to use packages based on your application design and your
operational objectives. The following are advantages of using packages:

Ease of maintenance: When you use packages, you do not need to bind the entire
plan again when you change one SQL statement. You need to bind only the
package that is associated with the changed SQL statement.

Incremental development of your program: Binding packages into package
collections allows you to add packages to an existing application plan without
having to bind the entire plan again. A collection is a group of associated packages.
If you include a collection name in the package list when you bind a plan, any
package in the collection becomes available to the plan. The collection can even be
empty when you first bind the plan. Later, you can add packages to the collection,
and drop or replace existing packages, without binding the plan again.

Versioning: Maintaining several versions of a plan without using packages requires
a separate plan for each version, and therefore separate plan names and RUN
commands. Isolating separate versions of a program into packages requires only
one plan and helps to simplify program migration and fallback. For example, you
can maintain separate development, test, and production levels of a program by
binding each level of the program as a separate version of a package, all within a
single plan.

Flexibility in using bind options: The options of BIND PLAN apply to all DBRMs
that are bound directly to the plan. The options of BIND PACKAGE apply only to
the single DBRM that is bound to that package. The package options need not all
be the same as the plan options, and they need not be the same as the options for
other packages that are used by the same plan.

Flexibility in using name qualifiers: You can use a bind option to name a qualifier
for the unqualified object names in SQL statements in a plan or package. By using
packages, you can use different qualifiers for SQL statements in different parts of
your application. By rebinding, you can redirect your SQL statements, for example,
from a test table to a production table.

Chapter 17. Planning for DB2 program preparation 385



CICS
With packages, you probably do not need dynamic plan selection and its
accompanying exit routine. A package that is listed within a plan is not
accessed until it is executed. However, you can use dynamic plan selection
and packages together, which can reduce the number of plans in an
application and the effort to maintain the dynamic plan exit routine. See
“Using packages with dynamic plan selection” on page 508 for information
about using packages with dynamic plan selection.

Conversion of DBRMs that are bound to a plan to DBRMs that
are bound to a package

In future releases, you will need to bind all DBRMs into a package, and bind the
packages into a plan.

You can execute the REBIND PLAN command with the COLLID option to convert
all plans with DBRMs into plans with a package list. You can use this technique for
local applications only. If the plan that you specify already contains both DBRMs
and package list, the newly converted package entries will be inserted into the
front of the existing package list.

Example: converting all plans

The following examples converts all DBRMs that are bound with plan X into
packages under collection ID: DSN_DEFAULT_COLLID_X.
REBIND PLAN(X) COLLID(*);

Example: specifying a collection ID

The following examples converts DBRMs that are bound with plan X into packages
under the my_collection collection ID.
REBIND PLAN(x) COLLID(’my_collection’);

Example: rebinding multiple plans which may contain DBRMs

In the following example, BIND will traverse through each plan that is specified in
the SYSPLAN table and will convert the DBRMs accordingly, and until none of the
DBRMs are bound with plans.
REBIND PLAN (X1, X2, X3) COLLID (collection_id|*);

Example: rebinding all plans which may contain DBRMs

In the following example, BIND will traverse through all plans that are specified in
the SYSPLAN table and will convert the DBRMs accordingly, and until none of the
DBRMs are bound with plans.
REBIND PLAN (*) COLLID (collection_id|*);

Example: specifying a package list

The following examples converts all DBRMs that are bound with plan X into
packages under collection ID: DSN_DEFAULT_COLLID_X.

386 Application Programming and SQL Guide

#

#

#
#

#
#
#
#
#

#

#
#

#

#

#
#

#

#

#
#
#

#

#

#
#
#

#

#

#
#



v If plan X does not have a package list, the newly converted package entries will
be appended to the front of package list Z and then package list Z will be added
to plan X.

v If plan X has both a package list and DBRMs, the newly converted package
entries will be appended to the front of package list Z and then package list Z
will replace the existing package list.

v If plan X has only a package list, then package list Z will replace the existing
package list.

REBIND PLAN (x) COLLID (collection_id|*) PKLIST(Z);

Example: specifying no package list

The following examples converts all DBRMs that are bound with plan X into
packages under collection ID: DSN_DEFAULT_COLLID_X.
v If plan X has both a package list and DBRMs, the existing package list will be

deleted, and the new package list will be bound into plan X.
v If plan X has only DBRMs, the DBRMs will be converted into packages

accordingly and added to plan X. The NOPKLIST option will be ignored.
v If plan X does not have DBRMs, then the existing package list, if any, will be

deleted.
REBIND PLAN (x) COLLID (collection_id|*) NOPKLIST;

Planning for changes to your application
As you design your application, consider what will happen to your plans and
packages when you make changes to your application.

A change to your program probably invalidates one or more of your packages and
perhaps your entire plan. For some changes, you must bind a new object; for
others, rebinding is sufficient.
v To bind a new plan or package, other than a trigger package, use the

subcommand BIND PLAN or BIND PACKAGE with the option
ACTION(REPLACE).
To bind a new trigger package, recreate the trigger associated with the trigger
package.

v To rebind an existing plan or package, other than a trigger package, use the
REBIND subcommand.
To rebind trigger package, use the REBIND TRIGGER PACKAGE subcommand.

Table 43 on page 388 tells which action particular types of change require. For
more information about trigger packages, see “Working with trigger packages” on
page 390.

If you want to change the bind options in effect when the plan or package runs,
review the descriptions of those bind options in Part 3 of DB2 Command Reference.
Some options of BIND are not available on REBIND.

A plan or package can also become invalid for reasons that do not depend on
operations in your program (such as when an index is dropped that is used as an
access path by one of your queries). In those cases, DB2 might rebind the plan or
package automatically, the next time it is used. (For details about automatic
rebinding, see “Automatic rebinding” on page 391.)

Chapter 17. Planning for DB2 program preparation 387

#
#
#

#
#
#

#
#

#

#

#
#

#
#

#
#

#
#

#



Table 43. Changes requiring BIND or REBIND

Change made Minimum action necessary

Drop a table, index, or other object,
and recreate the object

If a table with a trigger is dropped, recreate the
trigger if you recreate the table. Otherwise, no change
is required; automatic rebind is attempted at the next
run.

Revoke an authorization to use an
object

None required; automatic rebind is attempted at the
next run. Automatic rebind fails if authorization is still
not available; then you must issue REBIND for the
package or plan.

Run RUNSTATS to update catalog
statistics

Issue REBIND for the package or plan to possibly
change the access path that DB2 uses.

Add an index to a table Issue REBIND for the package or plan to use the
index.

Change bind options Issue REBIND for the package or plan, or issue BIND
with ACTION(REPLACE) if the option you want is
not available on REBIND.

Change statements in host language
and SQL statements

Precompile, compile, and link the application
program. Issue BIND with ACTION(REPLACE) for
the package or plan.

RUN REPAIR DBD REBUILD on a
database

Trigger packages in the database are invalidated.
Rebind all trigger packages in the database.

Dropping objects
If you drop an object that a package depends on, the package might become
invalid for the following reasons:
v If the package is not appended to any running plan, the package becomes

invalid.
v If the package is appended to a running plan, and the drop occurs within that

plan, the package becomes invalid.
However, if the package is appended to a running plan, and the drop occurs
outside of that plan, the object is not dropped, and the package does not become
invalid.

In all cases, the plan does not become invalid until it has a DBRM that references
the dropped object. If the package or plan becomes invalid, automatic rebind
occurs the next time the package or plan is allocated.

Rebinding a package
Table 44 on page 389 clarifies which packages are bound, depending on how you
specify collection-id (coll-id), package-id (pkg-id), and version-id (ver-id) on the
REBIND PACKAGE subcommand. For syntax and descriptions of this
subcommand, see Part 3 of DB2 Command Reference.

REBIND PACKAGE does not apply to packages for which you do not have the
BIND privilege. An asterisk (*) used as an identifier for collections, packages, or
versions does not apply to packages at remote sites.

388 Application Programming and SQL Guide

#
#
#
#



Table 44. Behavior of REBIND PACKAGE specification. "All" means all collections,
packages, or versions at the local DB2 server for which the authorization ID that issues the
command has the BIND privilege.

Input
Collections
affected

Packages
affected Versions affected

* all all all

*.*.(*) all all all

*.* all all all

*.*.(ver-id) all all ver-id

*.*.() all all empty string

coll-id.* coll-id all all

coll-id.*.(*) coll-id all all

coll-id.*.(ver-id) coll-id all ver-id

coll-id.*.() coll-id all empty string

coll-id.pkg-id.(*) coll-id pkg-id all

coll-id.pkg-id coll-id pkg-id empty string

coll-id.pkg-id.() coll-id pkg-id empty string

coll-id.pkg-id.(ver-id) coll-id pkg-id ver-id

*.pkg-id.(*) all pkg-id all

*.pkg-id all pkg-id empty string

*.pkg-id.() all pkg-id empty string

*.pkg-id.(ver-id) all pkg-id ver-id

Example: The following example shows the options for rebinding a package at the
remote location. The location name is SNTERSA. The collection is GROUP1, the
package ID is PROGA, and the version ID is V1. The connection types shown in
the REBIND subcommand replace connection types that are specified on the
original BIND subcommand. For information about the REBIND subcommand
options, see DB2 Command Reference.
REBIND PACKAGE(SNTERSA.GROUP1.PROGA.(V1)) ENABLE(CICS,REMOTE)

You can use the asterisk on the REBIND subcommand for local packages, but not
for packages at remote sites. Any of the following commands rebinds all versions
of all packages in all collections, at the local DB2 system, for which you have the
BIND privilege.
REBIND PACKAGE (*)
REBIND PACKAGE (*.*)
REBIND PACKAGE (*.*.(*))

Either of the following commands rebinds all versions of all packages in the local
collection LEDGER for which you have the BIND privilege.
REBIND PACKAGE (LEDGER.*)
REBIND PACKAGE (LEDGER.*.(*))

Either of the following commands rebinds the empty string version of the package
DEBIT in all collections, at the local DB2 system, for which you have the BIND
privilege.
REBIND PACKAGE (*.DEBIT)
REBIND PACKAGE (*.DEBIT.())

Chapter 17. Planning for DB2 program preparation 389



Rebinding a plan
When you rebind a plan, use the PKLIST keyword to replace any previously
specified package list. Omit the PKLIST keyword to use of the previous package
list for rebinding. Use the NOPKLIST keyword to delete any package list that was
specified when the plan was previously bound.

Example: Rebinds PLANA and changes the package list:
REBIND PLAN(PLANA) PKLIST(GROUP1.*) MEMBER(ABC)

Example: Rebinds the plan and drops the entire package list:
REBIND PLAN(PLANA) NOPKLIST

Rebinding lists of plans and packages
You can generate a list of REBIND subcommands for a set of plans or packages
that cannot be described by using asterisks, by using information in the DB2
catalog. You can then issue the list of subcommands through DSN.

One situation in which this technique is useful is to complete a rebind operation
that has terminated due to lack of resources. A rebind for many objects, such as
REBIND PACKAGE (*) for an ID with SYSADM authority, terminates if a needed
resource becomes unavailable. As a result, some objects are successfully rebound
and others are not. If you repeat the subcommand, DB2 attempts to rebind all the
objects again. But if you generate a rebind subcommand for each object that was
not rebound, and issue those subcommands, DB2 does not repeat any work that
was already done and is not likely to run out of resources.

For a description of the technique and several examples of its use, see Appendix F,
“REBIND subcommands for lists of plans or packages,” on page 1105.

Working with trigger packages
A trigger package is a special type of package that is created only when you
execute a CREATE TRIGGER statement. A trigger package executes only when its
associated trigger is activated.

As with any other package, DB2 marks a trigger package invalid when you drop a
table, index, or view on which the trigger package depends. DB2 executes an
automatic rebind the next time the trigger is activated. However, if the automatic
rebind fails, DB2 does not mark the trigger package as inoperative.

Unlike other packages, a trigger package is freed if you drop the table on which
the trigger is defined, so you can recreate the trigger package only by recreating
the table and the trigger.

You can use the subcommand REBIND TRIGGER PACKAGE to rebind a trigger
package that DB2 has marked as inoperative. You can also use REBIND TRIGGER
PACKAGE to change the option values with which DB2 originally bound the
trigger package. The default values for the options that you can change are:
v CURRENTDATA(YES)
v EXPLAIN(YES)
v FLAG(I)
v ISOLATION(RR)
v IMMEDWRITE(NO)
v RELEASE(COMMIT)

390 Application Programming and SQL Guide



When you run REBIND TRIGGER PACKAGE, you can change only the values of
options CURRENTDATA, EXPLAIN, FLAG, IMMEDWRITE, ISOLATION, and
RELEASE.

Automatic rebinding
Automatic rebind might occur if an authorized user invokes a plan or package
when the attributes of the data on which the plan or package depends change, or
if the environment in which the package executes changes. Whether the automatic
rebind occurs depends on the value of the field AUTO BIND on installation panel
DSNTIPO. The options used for an automatic rebind are the options used during
the most recent bind process.

In most cases, DB2 marks a plan or package that needs to be automatically
rebound as invalid. A few common situations in which DB2 marks a plan or
package as invalid are:
v When a package is dropped
v When a plan depends on the execute privilege of a package that is dropped
v When a table, index, or view on which the plan or package depends is dropped
v When the authorization of the owner to access any of those objects is revoked
v When the authorization to execute a stored procedure is revoked from a plan or

package owner, and the plan or package uses the CALL literal form of the CALL
statement to call the stored procedure

v When a table on which the plan or package depends is altered to add a TIME,
TIMESTAMP, or DATE column

v When a table is altered to add a self-referencing constraint or a constraint with a
delete rule of SET NULL or CASCADE

v When the limit key value of a partitioned index on which the plan or package
depends is altered

v When the definition of an index on which the plan or package depends is
altered from NOT PADDED to PADDED

v When the definition of an index on which the plan or package depends is
altered from PADDED to NOT PADDED

v When the AUDIT attribute of a table on which the plan or package depends is
altered

v When the length attribute of a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC
column in a table on which the plan or package depends is altered

v When the data type, precision, or scale of a column in a table on which the plan
or package depends is altered

v When a plan or package depends on a view that DB2 cannot regenerate after a
column in the underlying table is altered

v When a created temporary table on which the plan or package depends is
altered to add a column

v When a user-defined function on which the plan or package depends is altered

Whether a plan or package is valid is recorded in column VALID of catalog tables
SYSPLAN and SYSPACKAGE.

In the following cases, DB2 might automatically rebind a plan or package that has
not been marked as invalid:

Chapter 17. Planning for DB2 program preparation 391

|
|

|
|

|
|

|
|

|
|

|
|



v A plan or package that is bound on release of DB2 that is more recent than the
release in which it is being run. This can happen in a data sharing environment,
or it can happen after a DB2 subsystem has fallen back to a previous release of
DB2.

v A plan or package that was bound prior to DB2 Version 2 Release 3. Plans and
packages that are bound prior to Version 2 Release 3 will be automatically
rebound when they are run on the current release of DB2.

v A plan or package that has a location dependency and runs at a location other
than the one at which it was bound. This can happen when members of a data
sharing group are defined with location names, and a package runs on a
different member from the one on which it was bound.

In the following cases, DB2 automatically rebinds a plan or package that has not
been marked as invalid if the ABIND subsystem parameter is set to COEXIST:
v The subsystem on which the plan or package runs is in a data sharing group.
v The plan or package was previously bound on the current DB2 release and is

now running on the previous DB2 release.

DB2 marks a plan or package as inoperative if an automatic rebind fails. Whether a
plan or package is operative is recorded in column OPERATIVE of SYSPLAN and
SYSPACKAGE.

Whether EXPLAIN runs during automatic rebind depends on the value of the field
EXPLAIN PROCESSING on installation panel DSNTIPO, and on whether you
specified EXPLAIN(YES). Automatic rebind fails for all EXPLAIN errors except
“PLAN_TABLE not found.”

The SQLCA is not available during automatic rebind. Therefore, if you encounter
lock contention during an automatic rebind, DSNT501I messages cannot
accompany any DSNT376I messages that you receive. To see the matching
DSNT501I messages, you must issue the subcommand REBIND PLAN or REBIND
PACKAGE.

392 Application Programming and SQL Guide

|
|
|
|

|
|
|

#
#

#

#
#



Chapter 18. Planning for concurrency

This chapter begins with an overview of concurrency and locks in the following
sections:
v “Definitions of concurrency and locks”
v “Effects of DB2 locks” on page 394
v “Basic recommendations to promote concurrency” on page 397

After the basic recommendations, the chapter covers some of the major techniques
that DB2 uses to control concurrency:
v Transaction locks mainly control access by SQL statements. Those locks are the

ones over which you have the most control.
– “Aspects of transaction locks” on page 402 describes the various types of

transaction locks that DB2 uses and how they interact.
– “Options for tuning locks” on page 408 describes what you can change to

control locking. Your choices include:
- “Bind options” on page 408
- “Isolation overriding with SQL statements” on page 421
- “The LOCK TABLE statement” on page 422

Under those headings, lock (with no qualifier) refers to transaction lock.
v LOB locks are described separately from transaction locks because the purpose

of LOB locks is different than that of regular transition locks. See “LOB locks”
on page 425.

v Claims and drains control access by DB2 utilities and commands. For
information about them, see DB2 Administration Guide.

v Physical locks are of concern only if you are using DB2 data sharing. For
information about that, see DB2 Data Sharing: Planning and Administration.

Definitions of concurrency and locks
Definition: Concurrency is the ability of more than one application process to
access the same data at essentially the same time.

Example: An application for order entry is used by many transactions
simultaneously. Each transaction makes inserts in tables of invoices and invoice
items, reads a table of data about customers, and reads and updates data about
items on hand. Two operations on the same data, by two simultaneous
transactions, might be separated only by microseconds. To the users, the operations
appear concurrent.

Conceptual background: Concurrency must be controlled to prevent lost updates
and such possibly undesirable effects as unrepeatable reads and access to
uncommitted data.

Lost updates. Without concurrency control, two processes, A and B, might both
read the same row from the database, and both calculate new values for one of
its columns, based on what they read. If A updates the row with its new value,
and then B updates the same row, A's update is lost.
Access to uncommitted data. Also without concurrency control, process A
might update a value in the database, and process B might read that value

© Copyright IBM Corp. 1983, 2012 393



before it was committed. Then, if A's value is not later committed, but backed
out, B's calculations are based on uncommitted (and presumably incorrect) data.
Unrepeatable reads. Some processes require the following sequence of events:
A reads a row from the database and then goes on to process other SQL
requests. Later, A reads the first row again and must find the same values it
read the first time. Without control, process B could have changed the row
between the two read operations.

To prevent those situations from occurring unless they are specifically allowed,
DB2 might use locks to control concurrency.

What do locks do? A lock associates a DB2 resource with an application process in
a way that affects how other processes can access the same resource. The process
associated with the resource is said to “hold” or “own” the lock. DB2 uses locks to
ensure that no process accesses data that has been changed, but not yet committed,
by another process.

What do you do about locks? To preserve data integrity, your application process
acquires locks implicitly, that is, under DB2 control. It is not necessary for a process
to request a lock explicitly to conceal uncommitted data. Therefore, sometimes you
need not do anything about DB2 locks. Nevertheless processes acquire, or avoid
acquiring, locks based on certain general parameters. You can make better use of
your resources and improve concurrency by understanding the effects of those
parameters.

Effects of DB2 locks
The effects of locks that you want to minimize are suspension, timeout, and deadlock.

Suspension
Definition: An application process is suspended when it requests a lock that is
already held by another application process and cannot be shared. The suspended
process temporarily stops running.

Order of precedence for lock requests: Incoming lock requests are queued. Requests
for lock promotion, and requests for a lock by an application process that already
holds a lock on the same object, precede requests for locks by new applications.
Within those groups, the request order is “first in, first out”.

Example: Using an application for inventory control, two users attempt to reduce
the quantity on hand of the same item at the same time. The two lock requests are
queued. The second request in the queue is suspended and waits until the first
request releases its lock.

Effects: The suspended process resumes running when:
v All processes that hold the conflicting lock release it.
v The requesting process times out or deadlocks and the process resumes to deal

with an error condition.

Timeout
Definition: An application process is said to time out when it is terminated because
it has been suspended for longer than a preset interval.

394 Application Programming and SQL Guide



Example: An application process attempts to update a large table space that is
being reorganized by the utility REORG TABLESPACE with SHRLEVEL NONE. It
is likely that the utility job will not release control of the table space before the
application process times out.

Effects: DB2 terminates the process, issues two messages to the console, and
returns SQLCODE -911 or -913 to the process (SQLSTATEs '40001' or '57033').
Reason code 00C9008E is returned in the SQLERRD(3) field of the SQLCA.
Alternatively, you can use the GET DIAGNOSTICS statement to check the reason
code. If statistics trace class 3 is active, DB2 writes a trace record with IFCID 0196.

IMS

If you are using IMS, and a timeout occurs, the following actions take place:
v In a DL/I batch application, the application process abnormally terminates

with a completion code of 04E and a reason code of 00D44033 or 00D44050.
v In any IMS environment except DL/I batch:

– DB2 performs a rollback operation on behalf of your application process
to undo all DB2 updates that occurred during the current unit of work.

– For a non-message driven BMP, IMS issues a rollback operation on
behalf of your application. If this operation is successful, IMS returns
control to your application, and the application receives SQLCODE -911.
If the operation is unsuccessful, IMS issues user abend code 0777, and
the application does not receive an SQLCODE.

– For an MPP, IFP, or message driven BMP, IMS issues user abend code
0777, rolls back all uncommitted changes, and reschedules the
transaction. The application does not receive an SQLCODE.

COMMIT and ROLLBACK operations do not time out. The command STOP
DATABASE, however, may time out and send messages to the console, but it will
retry up to 15 times.

Deadlock
Definition: A deadlock occurs when two or more application processes each hold
locks on resources that the others need and without which they cannot proceed.

Example: Figure 141 on page 396 illustrates a deadlock between two transactions.

Chapter 18. Planning for concurrency 395

|
|



Effects: After a preset time interval (the value of DEADLOCK TIME), DB2 can roll
back the current unit of work for one of the processes or request a process to
terminate. That frees the locks and allows the remaining processes to continue. If
statistics trace class 3 is active, DB2 writes a trace record with IFCID 0172. Reason
code 00C90088 is returned in the SQLERRD(3) field of the SQLCA. Alternatively,
you can use the GET DIAGNOSTICS statement to check the reason code. (The
codes that describe DB2's exact response depend on the operating environment; for
details, see Part 5 of DB2 Application Programming and SQL Guide.)

It is possible for two processes to be running on distributed DB2 subsystems, each
trying to access a resource at the other location. In that case, neither subsystem can
detect that the two processes are in deadlock; the situation resolves only when one
process times out.

Indications of deadlocks: In some cases, a deadlock can occur if two application
processes attempt to update data in the same page or table space.

TSO, Batch, and CAF

When a deadlock or timeout occurs in these environments, DB2 attempts to
roll back the SQL for one of the application processes. If the ROLLBACK is
successful, that application receives SQLCODE -911. If the ROLLBACK fails,
and the application does not abend, the application receives SQLCODE -913.

Job EMPLJCHG

Suspend

Suspend

(3)

(4)

Table N

(1)

(2)

OK

OKTable M

000300 Page B

000010 Page A

Job PROJNCHG

Notes:

1. Jobs EMPLJCHG and PROJNCHG are two transactions. Job EMPLJCHG accesses table
M, and acquires an exclusive lock for page B, which contains record 000300.

2. Job PROJNCHG accesses table N, and acquires an exclusive lock for page A, which
contains record 000010.

3. Job EMPLJCHG requests a lock for page A of table N while still holding the lock on
page B of table M. The job is suspended, because job PROJNCHG is holding an
exclusive lock on page A.

4. Job PROJNCHG requests a lock for page B of table M while still holding the lock on
page A of table N. The job is suspended, because job EMPLJCHG is holding an exclusive
lock on page B. The situation is a deadlock.

Figure 141. A deadlock example

396 Application Programming and SQL Guide

|
|



IMS

If you are using IMS, and a deadlock occurs, the following actions take place:
v In a DL/I batch application, the application process abnormally terminates

with a completion code of 04E and a reason code of 00D44033 or 00D44050.
v In any IMS environment except DL/I batch:

– DB2 performs a rollback operation on behalf of your application process
to undo all DB2 updates that occurred during the current unit of work.

– For a non-message driven BMP, IMS issues a rollback operation on
behalf of your application. If this operation is successful, IMS returns
control to your application, and the application receives SQLCODE -911.
If the operation is unsuccessful, IMS issues user abend code 0777, and
the application does not receive an SQLCODE.

– For an MPP, IFP, or message driven BMP, IMS issues user abend code
0777, rolls back all uncommitted changes, and reschedules the
transaction. The application does not receive an SQLCODE.

CICS

If you are using CICS and a deadlock occurs, the CICS attachment facility
decides whether or not to roll back one of the application processes, based on
the value of the ROLBE or ROLBI parameter. If your application process is
chosen for rollback, it receives one of two SQLCODEs in the SQLCA:

-911 A SYNCPOINT command with the ROLLBACK option was
issued on behalf of your application process. All updates
(CICS commands and DL/I calls, as well as SQL statements)
that occurred during the current unit of work have been
undone. (SQLSTATE '40001')

-913 A SYNCPOINT command with the ROLLBACK option was
not issued. DB2 rolls back only the incomplete SQL statement
that encountered the deadlock or timed out. CICS does not
roll back any resources. Your application process should
either issue a SYNCPOINT command with the ROLLBACK
option itself or terminate. (SQLSTATE '57033')

Consider using the DSNTIAC subroutine to check the SQLCODE and display
the SQLCA. Your application must take appropriate actions before resuming.

Basic recommendations to promote concurrency
Recommendations are grouped by their scope:
v “Recommendations for database design” on page 398
v “Recommendations for application design” on page 399

Chapter 18. Planning for concurrency 397



Recommendations for database design
Keep like things together: Put tables relevant to the same application into the same
database. Give each application process that creates private tables a private
database. Put tables together in a segmented table space if they are similar in size
and can be recovered together.

Keep unlike things apart: Use an adequate number of databases, schema or
authorization-ID qualifiers, and table spaces. Concurrency and performance is
improved for SQL data definition statements, GRANT statements, REVOKE
statements, and utilities. For example, a general guideline is a maximum of 50
tables per database.

Plan for batch inserts: If your application does sequential batch insertions,
excessive contention on the space map pages for the table space can occur. This
problem is especially apparent in data sharing, where contention on the space map
means the added overhead of page P-lock negotiation. For these types of
applications, consider using the MEMBER CLUSTER option of CREATE
TABLESPACE. This option causes DB2 to disregard the clustering index (or implicit
clustering index) when assigning space for the SQL INSERT statement. For more
information about using this option in data sharing, see Chapter 6 of DB2 Data
Sharing: Planning and Administration. For the syntax, see Chapter 5 of DB2 SQL
Reference.

Use LOCKSIZE ANY until you have reason not to: LOCKSIZE ANY is the default
for CREATE TABLESPACE. It allows DB2 to choose the lock size, and DB2 usually
chooses LOCKSIZE PAGE and LOCKMAX SYSTEM for non-LOB table spaces. For
LOB table spaces, it chooses LOCKSIZE LOB and LOCKMAX SYSTEM. You should
use LOCKSIZE TABLESPACE or LOCKSIZE TABLE only for read-only table spaces
or tables, or when concurrent access to the object is not needed. Before you choose
LOCKSIZE ROW, you should estimate whether there will be an increase in
overhead for locking and weigh that against the increase in concurrency.

Examine small tables: For small tables with high concurrency requirements,
estimate the number of pages in the data and in the index. If the index entries are
short or they have many duplicates, then the entire index can be one root page and
a few leaf pages. In this case, spread out your data to improve concurrency, or
consider it a reason to use row locks.

Partition the data: Large tables can be partitioned to take advantage of parallelism
for online queries, batch jobs, and utilities. When batch jobs are run in parallel and
each job goes after different partitions, lock contention is reduced. In addition, in a
data sharing environment, data sharing overhead is reduced when applications
that are running on different members go after different partitions.

Partition secondary indexes: The use of data-partitioned secondary indexes (DPSIs)
promotes partition independence and, therefore, can reduce lock contention and
improve index availability, especially for utility processing, partition-level
operations (such as dropping or rotating partitions), and recovery of indexes.

However, the use of data-partitioned secondary indexes does not always improve
the performance of queries. For example, for a query with a predicate that
references only the columns of a data-partitioned secondary index, DB2 must probe
each partition of the index for values that satisfy the predicate if index access is
chosen as the access path. Therefore, take into account data access patterns and
maintenance practices when deciding to use a data-partitioned secondary index.

398 Application Programming and SQL Guide

|
|
|
|

|
|
|
|
|
|



Replace a nonpartitioned index with a partitioned index only if there are
perceivable benefits such as improved data or index availability, easier data or
index maintenance, or improved performance.

For examples of how query performance can be improved with data-partitioned
secondary indexes, see “Writing efficient queries on tables with data-partitioned
secondary indexes” on page 774.

Fewer rows of data per page: By using the MAXROWS clause of CREATE or
ALTER TABLESPACE, you can specify the maximum number of rows that can be
on a page. For example, if you use MAXROWS 1, each row occupies a whole page,
and you confine a page lock to a single row. Consider this option if you have a
reason to avoid using row locking, such as in a data sharing environment where
row locking overhead can be greater.

Consider volatile tables to ensure index access: If multiple applications access the
same table, consider defining the table as VOLATILE. DB2 uses index access
whenever possible for volatile tables, even if index access does not appear to be
the most efficient access method because of volatile statistics. Because each
application generally accesses the rows in the table in the same order, lock
contention can be reduced.

Recommendations for application design
Access data in a consistent order: When different applications access the same
data, try to make them do so in the same sequence. For example, make both access
rows 1,2,3,5 in that order. In that case, the first application to access the data delays
the second, but the two applications cannot deadlock. For the same reason, try to
make different applications access the same tables in the same order.

Commit work as soon as is practical: To avoid unnecessary lock contention, issue
a COMMIT statement as soon as possible after reaching a point of consistency,
even in read-only applications. To prevent unsuccessful SQL statements (such as
PREPARE) from holding locks, issue a ROLLBACK statement after a failure.
Statements issued through SPUFI can be committed immediately by the SPUFI
autocommit feature.

Taking commit points frequently in a long running unit of recovery (UR) has the
following benefits at the possible cost of more CPU usage and log write I/Os:
v Reduces lock contention, especially in a data sharing environment
v Improves the effectiveness of lock avoidance, especially in a data sharing

environment
v Reduces the elapsed time for DB2 system restart following a system failure
v Reduces the elapsed time for a unit of recovery to rollback following an

application failure or an explicit rollback request by the application
v Provides more opportunity for utilities, such as online REORG, to break in

Consider using the UR CHECK FREQ field or the UR LOG WRITE CHECK field
of installation panel DSNTIPN to help you identify those applications that are not
committing frequently. UR CHECK FREQ, which identifies when too many
checkpoints have occurred without a UR issuing a commit, is helpful in
monitoring overall system activity. UR LOG WRITE CHECK enables you to detect
applications that might write too many log records between commit points,
potentially creating a lengthy recovery situation for critical tables.

Chapter 18. Planning for concurrency 399

|
|
|

|
|
|

|
|
|
|
|
|

|
|



Even though an application might conform to the commit frequency standards of
the installation under normal operational conditions, variation can occur based on
system workload fluctuations. For example, a low-priority application might issue
a commit frequently on a system that is lightly loaded. However, under a heavy
system load, the use of the CPU by the application may be pre-empted, and, as a
result, the application may violate the rule set by the UR CHECK FREQ parameter.
For this reason, add logic to your application to commit based on time elapsed
since last commit, and not solely based on the amount of SQL processing
performed. In addition, take frequent commit points in a long running unit of
work that is read-only to reduce lock contention and to provide opportunities for
utilities, such as online REORG, to access the data.

Retry an application after deadlock or timeout: Include logic in a batch program
so that it retries an operation after a deadlock or timeout. Such a method could
help you recover from the situation without assistance from operations personnel.
Field SQLERRD(3) in the SQLCA returns a reason code that indicates whether a
deadlock or timeout occurred. Alternatively, you can use the GET DIAGNOSTICS
statement to check the reason code.

Close cursors: If you define a cursor using the WITH HOLD option, the locks it
needs can be held past a commit point. Use the CLOSE CURSOR statement as
soon as possible in your program to cause those locks to be released and the
resources they hold to be freed at the first commit point that follows the CLOSE
CURSOR statement. Whether page or row locks are held for WITH HOLD cursors
is controlled by the RELEASE LOCKS parameter on installation panel DSNTIP8.
Closing cursors is particularly important in a distributed environment.

Free locators: If you have executed the HOLD LOCATOR statement, the LOB
locator holds locks on LOBs past commit points. Use the FREE LOCATOR
statement to release these locks.

Bind plans with ACQUIRE(USE): ACQUIRE(USE), which indicates that DB2 will
acquire table and table space locks when the objects are first used and not when
the plan is allocated, is the best choice for concurrency. Packages are always bound
with ACQUIRE(USE), by default. ACQUIRE(ALLOCATE) can provide better
protection against timeouts. Consider ACQUIRE(ALLOCATE) for applications that
need gross locks instead of intent locks or that run with other applications that
may request gross locks instead of intent locks. Acquiring the locks at plan
allocation also prevents any one transaction in the application from incurring the
cost of acquiring the table and table space locks. If you need
ACQUIRE(ALLOCATE), you might want to bind all DBRMs directly to the plan.

For information about intent and gross locks, see “The mode of a lock” on page
404.

Bind with ISOLATION(CS) and CURRENTDATA(NO) typically: ISOLATION(CS)
lets DB2 release acquired row and page locks as soon as possible.
CURRENTDATA(NO) lets DB2 avoid acquiring row and page locks as often as
possible. After that, in order of decreasing preference for concurrency, use these
bind options:
1. ISOLATION(CS) with CURRENTDATA(YES), when data returned to the

application must not be changed before your next FETCH operation.
2. ISOLATION(RS), when data returned to the application must not be changed

before your application commits or rolls back. However, you do not care if
other application processes insert additional rows.

400 Application Programming and SQL Guide

|
|



3. ISOLATION(RR), when data evaluated as the result of a query must not be
changed before your application commits or rolls back. New rows cannot be
inserted into the answer set.

For more information about the ISOLATION option, see “The ISOLATION option”
on page 412.

For updatable static scrollable cursors, ISOLATION(CS) provides the additional
advantage of letting DB2 use optimistic concurrency control to further reduce the
amount of time that locks are held. With optimistic concurrency control, DB2
releases the row or page locks on the base table after it materializes the result table
in a temporary global table. DB2 also releases the row lock after each FETCH,
taking a new lock on a row only for a positioned update or delete to ensure data
integrity. For more information about optimistic concurrency control, see
“Advantages and disadvantages of the isolation values” on page 412.

For updatable dynamic scrollable cursors and ISOLATION(CS), DB2 holds row or
page locks on the base table (DB2 does not use a temporary global table). The most
recently fetched row or page from the base table remains locked to maintain data
integrity for a positioned update or delete.

Use ISOLATION(UR) cautiously: UR isolation acquires almost no locks on rows or
pages. It is fast and causes little contention, but it reads uncommitted data. Do not
use it unless you are sure that your applications and end users can accept the
logical inconsistencies that can occur.

For information on how to make an agent part of a global transaction for RRSAF
applications, see Chapter 31, “Programming for the Resource Recovery Services
attachment facility,” on page 895.

Use sequence objects to generate unique, sequential numbers: Using an identity
column is one way to generate unique sequential numbers. However, as a column
of a table, an identity column is associated with and tied to the table, and a table
can have only one identity column. Your applications might need to use one
sequence of unique numbers for many tables or several sequences for each table.
As a user-defined object, sequences provide a way for applications to have DB2
generate unique numeric key values and to coordinate the keys across multiple
rows and tables.

The use of sequences can avoid the lock contention problems that can result when
applications implement their own sequences, such as in a one-row table that
contains a sequence number that each transaction must increment. With DB2
sequences, many users can access and increment the sequence concurrently
without waiting. DB2 does not wait for a transaction that has incremented a
sequence to commit before allowing another transaction to increment the sequence
again.

Examine multi-row operations: In an application, multi-row inserts, positioned
updates, and positioned deletes have the potential of expanding the unit of work.
This can affect the concurrency of other users accessing the data. Minimize
contention by adjusting the size of the host-variable-array, committing between
inserts, updates, and preventing lock escalation.

Use global transactions: The Resource Recovery Services attachment facility
(RRSAF) relies on an z/OS component called Resource Recovery Services (RRS).
RRS provides system-wide services for coordinating two-phase commit operations

Chapter 18. Planning for concurrency 401

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|



across z/OS products. For RRSAF applications and IMS transactions that run
under RRS, you can group together a number of DB2 agents into a single global
transaction. A global transaction allows multiple DB2 agents to participate in a
single global transaction and thus share the same locks and access the same data.
When two agents that are in a global transaction access the same DB2 object within
a unit of work, those agents will not deadlock with each other. The following
restrictions apply:
v There is no Parallel Sysplex support for global transactions.
v Because each of the "branches" of a global transaction are sharing locks,

uncommitted updates issued by one branch of the transaction are visible to
other branches of the transaction.

v Claim/drain processing is not supported across the branches of a global
transaction, which means that attempts to issue CREATE, DROP, ALTER,
GRANT, or REVOKE may deadlock or timeout if they are requested from
different branches of the same global transaction.

v LOCK TABLE may deadlock or timeout across the branches of a global
transaction.

Aspects of transaction locks
Transaction locks have the following four basic aspects:
v “The size of a lock”
v “The duration of a lock” on page 404
v “The mode of a lock” on page 404
v “The object of a lock” on page 407

Knowing the aspects helps you understand why a process suspends or times out
or why two processes deadlock.

The size of a lock

Definition
The size (sometimes scope or level) of a lock on data in a table describes the amount
of data controlled. The possible sizes of locks are table space, table, partition, page,
and row. This section contains information about locking for non-LOB data. See
“LOB locks” on page 425 for information on locking for LOBs.

Hierarchy of lock sizes
The same piece of data can be controlled by locks of different sizes. A table space
lock (the largest size) controls the most data, all the data in an entire table space. A
page or row lock controls only the data in a single page or row.

As Figure 142 on page 403 suggests, row locks and page locks occupy an equal
place in the hierarchy of lock sizes.

402 Application Programming and SQL Guide



General effects of size
Locking larger or smaller amounts of data allows you to trade performance for
concurrency. Using page or row locks instead of table or table space locks has the
following effects:
v Concurrency usually improves, meaning better response times and higher

throughput rates for many users.
v Processing time and use of storage increases. That is especially evident in batch

processes that scan or update a large number of rows.

Using only table or table space locks has the following effects:
v Processing time and storage usage is reduced.
v Concurrency can be reduced, meaning longer response times for some users but

better throughput for one user.

Effects of table spaces of different types
v In a partitioned table space, locks are obtained at the partition level. Individual

partitions are locked as they are accessed. This locking behavior enables greater
concurrency because gross locks (S, U, or X) can be obtained on individual
partitions instead of on the entire partitioned table space. (Partition locks are
always acquired, even if the table space was defined in a version of DB2 prior to
Version 8 with the LOCKPART NO clause. For LOCKPART NO table spaces,
DB2 no longer locks the entire table space with one lock when any partition of
the table space is accessed.)
Restrictions: If any of the following conditions are true, DB2 must lock all
partitions:
– The plan is bound with ACQUIRE(ALLOCATE).
– The table space is defined with LOCKSIZE TABLESPACE.
– The LOCK TABLE statement is used without the PART option.

v A simple table space can contain more than one table. A lock on the table space
locks all the data in every table. A single page of the table space can contain
rows from every table. A lock on a page locks every row in the page, no matter
what tables the data belongs to. Thus, a lock needed to access data from one

Segmented table space Simple table space LOB table space

Table space lockTable space lock

Table lock

Row lockRow lock

Row lock Row lock Row lock

Page lockPage lock

Page lock Page lock Page lock

Partitioned table space

Partition lock Partition lockPartition lock

LOB table space lock

LOB lock

Figure 142. Sizes of objects locked

Chapter 18. Planning for concurrency 403

|
|
|
|
|
|
|
|

|
|
|
|
|



table can make data from other tables temporarily unavailable. That effect can be
partly undone by using row locks instead of page locks.

v In a segmented table space, rows from different tables are contained in different
pages. Locking a page does not lock data from more than one table. Also, DB2
can acquire a table lock, which locks only the data from one specific table.
Because a single row, of course, contains data from only one table, the effect of a
row lock is the same as for a simple or partitioned table space: it locks one row
of data from one table.

v In a LOB table space, pages are not locked. Because there is no concept of a row
in a LOB table space, rows are not locked. Instead, LOBs are locked. See “LOB
locks” on page 425 for more information.

The duration of a lock
Definition: The duration of a lock is the length of time the lock is held. It varies
according to when the lock is acquired and when it is released.

Effects
For maximum concurrency, locks on a small amount of data held for a short
duration are better than locks on a large amount of data held for a long duration.
However, acquiring a lock requires processor time, and holding a lock requires
storage; thus, acquiring and holding one table space lock is more economical than
acquiring and holding many page locks. Consider that trade-off to meet your
performance and concurrency objectives.

Duration of partition, table, and table space locks: Partition, table, and table space
locks can be acquired when a plan is first allocated, or you can delay acquiring
them until the resource they lock is first used. They can be released at the next
commit point or be held until the program terminates.

On the other hand, LOB table space locks are always acquired when needed and
released at a commit or held until the program terminates. See “LOB locks” on
page 425 for information about locking LOBs and LOB table spaces.

Duration of page and row locks: If a page or row is locked, DB2 acquires the lock
only when it is needed. When the lock is released depends on many factors, but it
is rarely held beyond the next commit point.

For information about controlling the duration of locks, see “Bind options” on
page 408 for information about the ACQUIRE and RELEASE, ISOLATION, and
CURRENTDATA bind options.

The mode of a lock
Definition: The mode (sometimes state) of a lock tells what access to the locked
object is permitted to the lock owner and to any concurrent processes.

The possible modes for page and row locks and the modes for partition, table, and
table space locks are listed in “Modes of page and row locks” on page 405 and
“Modes of table, partition, and table space locks” on page 405. See “LOB locks” on
page 425 for more information about modes for LOB locks and locks on LOB table
spaces.

When a page or row is locked, the table, partition, or table space containing it is
also locked. In that case, the table, partition, or table space lock has one of the
intent modes: IS, IX, or SIX. The modes S, U, and X of table, partition, and table

404 Application Programming and SQL Guide



space locks are sometimes called gross modes. In the context of reading, SIX is a
gross mode lock because you don't get page or row locks; in this sense, it is like an
S lock.

Example: An SQL statement locates John Smith in a table of customer data and
changes his address. The statement locks the entire table space in mode IX and the
specific row that it changes in mode X.

Modes of page and row locks
Modes and their effects are listed in the order of increasing control over resources.

S (SHARE) The lock owner and any concurrent processes can read, but not
change, the locked page or row. Concurrent processes can acquire S
or U locks on the page or row or might read data without
acquiring a page or row lock.

U (UPDATE) The lock owner can read, but not change, the locked page or row.
Concurrent processes can acquire S locks or might read data
without acquiring a page or row lock, but no concurrent process
can acquire a U lock.

U locks reduce the chance of deadlocks when the lock owner is
reading a page or row to determine whether to change it, because
the owner can start with the U lock and then promote the lock to
an X lock to change the page or row.

X (EXCLUSIVE)
The lock owner can read or change the locked page or row. A
concurrent process cannot acquire S, U, or X locks on the page or
row. However, a concurrent process, such as those bound with the
CURRENTDATA(NO) or ISO(UR) options or running with YES
specified for the EVALUNC subsystem parameter, can read the
data without acquiring a page or row lock.

Modes of table, partition, and table space locks
Modes and their effects are listed in the order of increasing control over resources.

IS (INTENT SHARE) The lock owner can read data in the table,
partition, or table space, but not change it.
Concurrent processes can both read and change the
data. The lock owner might acquire a page or row
lock on any data it reads.

IX (INTENT EXCLUSIVE) The lock owner and concurrent processes can read
and change data in the table, partition, or table
space. The lock owner might acquire a page or row
lock on any data it reads; it must acquire one on
any data it changes.

S (SHARE) The lock owner and any concurrent processes can
read, but not change, data in the table, partition, or
table space. The lock owner does not need page or
row locks on data it reads.

U (UPDATE) The lock owner can read, but not change, the
locked data; however, the owner can promote the
lock to an X lock and then can change the data.
Processes concurrent with the U lock can acquire S

Chapter 18. Planning for concurrency 405

|
#
#
#
#
#
#



locks and read the data, but no concurrent process
can acquire a U lock. The lock owner does not
need page or row locks.

U locks reduce the chance of deadlocks when the
lock owner is reading data to determine whether to
change it. U locks are acquired on a table space
when locksize is TABLESPACE and the statement
is a SELECT with a FOR UPDATE clause. Similarly,
U locks are acquired on a table when lock size is
TABLE and the statement is a SELECT with a FOR
UPDATE clause.

SIX (SHARE with INTENT EXCLUSIVE)
The lock owner can read and change data in the
table, partition, or table space. Concurrent
processes can read data in the table, partition, or
table space, but not change it. Only when the lock
owner changes data does it acquire page or row
locks.

X (EXCLUSIVE) The lock owner can read or change data in the
table, partition, or table space. A concurrent
process can access the data if the process runs with
UR isolation or if data in a partitioned table space
is running with CS isolation and
CURRENTDATA((NO). The lock owner does not
need page or row locks.

Lock mode compatibility
The major effect of the lock mode is to determine whether one lock is compatible
with another.

Definition: Locks of some modes do not shut out all other users. Assume that
application process A holds a lock on a table space that process B also wants to
access. DB2 requests, on behalf of B, a lock of some particular mode. If the mode
of A's lock permits B's request, the two locks (or modes) are said to be compatible.

Effects of incompatibility: If the two locks are not compatible, B cannot proceed. It
must wait until A releases its lock. (And, in fact, it must wait until all existing
incompatible locks are released.)

Compatible lock modes: Compatibility for page and row locks is easy to define.
Table 45 shows whether page locks of any two modes, or row locks of any two
modes, are compatible (Yes) or not (No). No question of compatibility of a page
lock with a row lock can arise, because a table space cannot use both page and
row locks.

Table 45. Compatibility of page lock and row lock modes

Lock Mode S U X

S Yes Yes No
U Yes No No
X No No No

Compatibility for table space locks is slightly more complex. Table 46 on page 407
shows whether or not table space locks of any two modes are compatible.

406 Application Programming and SQL Guide

|
|
|
|
|



Table 46. Compatibility of table and table space (or partition) lock modes

Lock Mode IS IX S U SIX X

IS Yes Yes Yes Yes Yes No
IX Yes Yes No No No No
S Yes No Yes Yes No No
U Yes No Yes No No No

SIX Yes No No No No No
X No No No No No No

The object of a lock

Definition and examples
The object of a lock is the resource being locked.

You might have to consider locks on any of the following objects:
v User data in target tables. A target table is a table that is accessed specifically in

an SQL statement, either by name or through a view. Locks on those tables are
the most common concern, and the ones over which you have most control.

v User data in related tables. Operations subject to referential constraints can
require locks on related tables. For example, if you delete from a parent table,
DB2 might delete rows from the dependent table as well. In that case, DB2 locks
data in the dependent table as well as in the parent table.
Similarly, operations on rows that contain LOB values might require locks on the
LOB table space and possibly on LOB values within that table space. See “LOB
locks” on page 425 for more information.
If your application uses triggers, any triggered SQL statements can cause
additional locks to be acquired.

v DB2 internal objects. Most of these you are never aware of, but you might
notice the following locks on internal objects:
– Portions of the DB2 catalog
– The skeleton cursor table (SKCT) representing an application plan
– The skeleton package table (SKPT) representing a package
– The database descriptor (DBD) representing a DB2 database

For information about any of those, see Part 5 (Volume 2) of DB2 Administration
Guide.

Indexes and data-only locking
No index page locks are acquired during processing. Instead, DB2 uses a technique
called data-only locking to serialize changes. Index page latches are acquired to
serialize changes within a page and guarantee that the page is physically
consistent. Acquiring page latches ensures that transactions accessing the same
index page concurrently do not see the page in a partially changed state.

The underlying data page or row locks are acquired to serialize the reading and
updating of index entries to ensure the data is logically consistent, meaning that
the data is committed and not subject to rollback or abort. The data locks can be
held for a long duration such as until commit. However, the page latches are only
held for a short duration while the transaction is accessing the page. Because the
index pages are not locked, hot spot insert scenarios (which involve several
transactions trying to insert different entries into the same index page at the same
time) do not cause contention problems in the index.

Chapter 18. Planning for concurrency 407



A query that uses index-only access might lock the data page or row, and that lock
can contend with other processes that lock the data. However, using lock
avoidance techniques can reduce the contention. See “Lock avoidance” on page 418
for more information about lock avoidance.

Options for tuning locks
The following sections describe the options that affect transaction locks for
applications:
v “Bind options”
v “Isolation overriding with SQL statements” on page 421
v “The LOCK TABLE statement” on page 422

Bind options
These options determine when an application process acquires and releases its
locks and to what extent it isolates its actions from possible effects of other
processes acting concurrently.

These options of bind operations are relevant to transaction locks:
v “The ACQUIRE and RELEASE options”
v “The ISOLATION option” on page 412
v “The CURRENTDATA option” on page 417

The ACQUIRE and RELEASE options
Effects: The ACQUIRE and RELEASE options of bind determine when DB2 locks
an object (table, partition, or table space) your application uses and when it
releases the lock. (The ACQUIRE and RELEASE options do not affect page, row, or
LOB locks.) The options apply to static SQL statements, which are bound before
your program executes. If your program executes dynamic SQL statements, the
objects they lock are locked when first accessed and released at the next commit
point though some locks acquired for dynamic SQL may be held past commit
points. See 409.

ACQUIRE(ALLOCATE)
Acquires the lock when the object is allocated. This option is not allowed for
BIND or REBIND PACKAGE.

ACQUIRE(USE)
Acquires the lock when the object is first accessed.

RELEASE(DEALLOCATE)
Releases the lock when the object is deallocated (the application ends). The
value has no effect on dynamic SQL statements, which always use
RELEASE(COMMIT), unless you are using dynamic statement caching. For
information about the RELEASE option with dynamic statement caching, see
409. The value also has no effect on packages that are executed on a DB2 server
through a DRDA connection with the client system.

RELEASE(COMMIT)
Releases the lock at the next commit point, unless there are held cursors or held
locators. If the application accesses the object again, it must acquire the lock
again.

Example: An application selects employee names and telephone numbers from a
table, according to different criteria. Employees can update their own telephone

408 Application Programming and SQL Guide

|
|



numbers. They can perform several searches in succession. The application is
bound with the options ACQUIRE(USE) and RELEASE(DEALLOCATE), for these
reasons:
v The alternative to ACQUIRE(USE), ACQUIRE(ALLOCATE), gets a lock of mode

IX on the table space as soon as the application starts, because that is needed if
an update occurs. But most uses of the application do not update the table and
so need only the less restrictive IS lock. ACQUIRE(USE) gets the IS lock when
the table is first accessed, and DB2 promotes the lock to mode IX if that is
needed later.

v Most uses of this application do not update and do not commit. For those uses,
there is little difference between RELEASE(COMMIT) and
RELEASE(DEALLOCATE). But administrators might update several phone
numbers in one session with the application, and the application commits after
each update. In that case, RELEASE(COMMIT) releases a lock that DB2 must
acquire again immediately. RELEASE(DEALLOCATE) holds the lock until the
application ends, avoiding the processing needed to release and acquire the lock
several times.

Partition locks: Partition locks follow the same rules as table space locks, and all
partitions are held for the same duration. Thus, if one package is using
RELEASE(COMMIT) and another is using RELEASE(DEALLOCATE), all partitions
use RELEASE(DEALLOCATE).

The RELEASE option and dynamic statement caching: Generally, the RELEASE
option has no effect on dynamic SQL statements with one exception. When you
use the bind options RELEASE(DEALLOCATE) and KEEPDYNAMIC(YES), and
your subsystem is installed with YES for field CACHE DYNAMIC SQL on
installation panel DSNTIP8, DB2 retains prepared SELECT, INSERT, UPDATE, and
DELETE statements in memory past commit points. For this reason, DB2 can honor
the RELEASE(DEALLOCATE) option for these dynamic statements. The locks are
held until deallocation, or until the commit after the prepared statement is freed
from memory, in the following situations:
v The application issues a PREPARE statement with the same statement identifier.
v The statement is removed from memory because it has not been used.
v An object that the statement is dependent on is dropped or altered, or a

privilege needed by the statement is revoked.
v RUNSTATS is run against an object that the statement is dependent on.

If a lock is to be held past commit and it is an S, SIX, or X lock on a table space or
a table in a segmented table space, DB2 sometimes demotes that lock to an intent
lock (IX or IS) at commit. DB2 demotes a gross lock if it was acquired for one of
the following reasons:
v DB2 acquired the gross lock because of lock escalation.
v The application issued a LOCK TABLE.
v The application issued a mass delete (DELETE FROM ... without a WHERE

clause).

For partitioned table spaces, lock demotion occurs for each partition for which
there is a lock.

Defaults: The defaults differ for different types of bind operations, as shown in
Table 47 on page 410.

Chapter 18. Planning for concurrency 409

#
#
#
#
#
#
#
#
#

#

#

#
#

#



Table 47. Default ACQUIRE and RELEASE values for different bind options

Operation Default values

BIND PLAN ACQUIRE(USE) and RELEASE(COMMIT).

BIND PACKAGE There is no option for ACQUIRE; ACQUIRE(USE) is
always used. At the local server the default for RELEASE
is the value used by the plan that includes the package in
its package list. At a remote server the default is
COMMIT.

REBIND PLAN or PACKAGE The existing values for the plan or package that is being
rebound.

Recommendation: Choose a combination of values for ACQUIRE and RELEASE
based on the characteristics of the particular application.

The RELEASE option and DDL operations for remote requesters: When you
perform DDL operations on behalf of remote requesters and
RELEASE(DEALLOCATE) is in effect, be aware of the following condition. When a
package that is bound with RELEASE(DEALLOCATE) accesses data at a server, it
might prevent other remote requesters from performing CREATE, ALTER, DROP,
GRANT, or REVOKE operations at the server.

To allow those operations to complete, you can use the command STOP DDF
MODE(SUSPEND). The command suspends server threads and terminates their
locks so that DDL operations from remote requesters can complete. When these
operations complete, you can use the command START DDF to resume the
suspended server threads. However, even after the command STOP DDF
MODE(SUSPEND) completes successfully, database resources might be held if DB2
is performing any activity other than inbound DB2 processing. You might have to
use the command CANCEL THREAD to terminate other processing and thereby
free the database resources.

Advantages and disadvantages of the combinations
Different combinations of bind options have advantages and disadvantages for
certain situations.

ACQUIRE(ALLOCATE) / RELEASE(DEALLOCATE): In some cases, this
combination can avoid deadlocks by locking all needed resources as soon as the
program starts to run. This combination is most useful for a long-running
application that runs for hours and accesses various tables, because it prevents an
untimely deadlock from wasting that processing.
v All tables or table spaces used in DBRMs bound directly to the plan are locked

when the plan is allocated.
v All tables or table spaces are unlocked only when the plan terminates.
v The locks used are the most restrictive needed to execute all SQL statements in

the plan regardless of whether the statements are actually executed.
v Restrictive states are not checked until the page set is accessed. Locking when

the plan is allocated insures that the job is compatible with other SQL jobs.
Waiting until the first access to check restrictive states provides greater
availability; however, it is possible that an SQL transaction could:
– Hold a lock on a table space or partition that is stopped
– Acquire a lock on a table space or partition that is started for DB2 utility

access only (ACCESS(UT))

410 Application Programming and SQL Guide



– Acquire an exclusive lock (IX, X) on a table space or partition that is started
for read access only (ACCESS(RO)), thus prohibiting access by readers

Disadvantages: This combination reduces concurrency. It can lock resources in high
demand for longer than needed. Also, the option ACQUIRE(ALLOCATE) turns off
selective partition locking; if you are accessing a partitioned table space, all
partitions are locked.

Restriction: This combination is not allowed for BIND PACKAGE. Use this
combination if processing efficiency is more important than concurrency. It is a
good choice for batch jobs that would release table and table space locks only to
reacquire them almost immediately. It might even improve concurrency, by
allowing batch jobs to finish sooner. Generally, do not use this combination if your
application contains many SQL statements that are often not executed.

ACQUIRE(USE) / RELEASE(DEALLOCATE): This combination results in the most
efficient use of processing time in most cases.
v A table, partition, or table space used by the plan or package is locked only if it

is needed while running.
v All tables or table spaces are unlocked only when the plan terminates.
v The least restrictive lock needed to execute each SQL statement is used, with the

exception that if a more restrictive lock remains from a previous statement, that
lock is used without change.

Disadvantages: This combination can increase the frequency of deadlocks. Because
all locks are acquired in a sequence that is predictable only in an actual run, more
concurrent access delays might occur.

ACQUIRE(USE) / RELEASE(COMMIT): This combination is the default
combination and provides the greatest concurrency, but it requires more processing
time if the application commits frequently.
v A table or table space is locked only when needed. That locking is important if

the process contains many SQL statements that are rarely used or statements
that are intended to access data only in certain circumstances.

v All tables and table spaces are unlocked when:

TSO, Batch, and CAF
An SQL COMMIT or ROLLBACK statement is issued, or your application
process terminates

IMS
A CHKP or SYNC call (for single-mode transactions), a GU call to the I/O
PCB, or a ROLL or ROLB call is completed

CICS
A SYNCPOINT command is issued.

Exception: If the cursor is defined WITH HOLD, table or table space locks
necessary to maintain cursor position are held past the commit point. (See “The
effect of WITH HOLD for a cursor” on page 420 for more information.

Chapter 18. Planning for concurrency 411

|
|
|



v The least restrictive lock needed to execute each SQL statement is used except
when a more restrictive lock remains from a previous statement. In that case,
that lock is used without change.

Disadvantages: This combination can increase the frequency of deadlocks. Because
all locks are acquired in a sequence that is predictable only in an actual run, more
concurrent access delays might occur.

ACQUIRE(ALLOCATE) / RELEASE(COMMIT): This combination is not allowed; it
results in an error message from BIND.

The ISOLATION option
Effects: The ISOLATION option Specifies the degree to which operations are
isolated from the possible effects of other operations acting concurrently. Based on
this information, DB2 releases S and U locks on rows or pages as soon as possible.
You can use the following ISOLATION options:

Default: The default differs for different types of bind operations, as shown in.

Table 48. The default ISOLATION values for different bind operations

Operation Default value

BIND PLAN ISOLATION(RR)

BIND PACKAGE The value used by the plan that includes the package
in its package list

REBIND PLAN or PACKAGE The existing value for the plan or package being
rebound

For more detailed examples, see DB2 Application Programming and SQL Guide.

Recommendation: Choose an ISOLATION value based on the characteristics of the
particular application.

Advantages and disadvantages of the isolation values
The various isolation levels offer less or more concurrency at the cost of more or
less protection from other application processes. The values you choose should be
based primarily on the needs of the application. This section presents the isolation
levels in order of recommendation, from the most recommended (CS) to the least
recommended (RR). For ISOLATION (CS), CURRENTDATA(NO) is preferred over
CURRENTDATA(YES). For more information on the CURRENTDATA option, see
“The CURRENTDATA option” on page 417.

Regardless of the isolation level, uncommitted claims on DB2 objects can inhibit
the execution of DB2 utilities or commands.

ISOLATION (CS)
Allows maximum concurrency with data integrity. However, after the
process leaves a row or page, another process can change the data. With
CURRENTDATA(NO), the process doesn't have to leave a row or page to
allow another process to change the data. If the first process returns to
read the same row or page, the data is not necessarily the same. Consider
these consequences of that possibility:
v For table spaces created with LOCKSIZE ROW, PAGE, or ANY, a change

can occur even while executing a single SQL statement, if the statement
reads the same row more than once. In the following example:

412 Application Programming and SQL Guide

|
|
|
|
|



SELECT * FROM T1
WHERE COL1 = (SELECT MAX(COL1) FROM T1);

data read by the inner SELECT can be changed by another transaction
before it is read by the outer SELECT. Therefore, the information
returned by this query might be from a row that is no longer the one
with the maximum value for COL1.

v In another case, if your process reads a row and returns later to update
it, that row might no longer exist or might not exist in the state that it
did when your application process originally read it. That is, another
application might have deleted or updated the row. If your application
is doing non-cursor operations on a row under the cursor, make sure
the application can tolerate “not found” conditions.
Similarly, assume another application updates a row after you read it. If
your process returns later to update it based on the value you originally
read, you are, in effect, erasing the update made by the other process. If
you use isolation (CS) with update, your process might need to lock
out concurrent updates. One method is to declare a cursor with the FOR
UPDATE clause.

General-use Programming Interface

For packages and plans that contain updatable static scrollable cursors,
ISOLATION(CS) lets DB2 use optimistic concurrency control. DB2 can use
optimistic concurrency control to shorten the amount of time that locks are
held in the following situations:
v Between consecutive fetch operations
v Between fetch operations and subsequent positioned update or delete

operations

DB2 cannot use optimistic concurrency control for dynamic scrollable
cursors. With dynamic scrollabe cursors, the most recently fetched row or
page from the base table remains locked to maintain position for a
positioned update or delete.

Figure 143 and Figure 144 on page 414 show processing of positioned
update and delete operations without optimistic concurrency control and
with optimistic concurrency control.

Figure 143. Positioned updates and deletes with a static non-scrollable cursor and without
optimistic concurrency control

Chapter 18. Planning for concurrency 413



Optimistic concurrency control consists of the following steps:
1. When the application requests a fetch operation to position the cursor

on a row, DB2 locks that row, executes the FETCH, and releases the
lock.

2. When the application requests a positioned update or delete operation
on the row, DB2 performs the following steps:
a. Locks the row.
b. Reevaluates the predicate to ensure that the row still qualifies for

the result table.
c. For columns that are in the result table, compares current values in

the row to the values of the row when step 1 was executed.
Performs the positioned update or delete operation only if the
values match.

End of General-use Programming Interface

ISOLATION (UR)
Allows the application to read while acquiring few locks, at the risk of
reading uncommitted data. UR isolation applies only to read-only
operations: SELECT, SELECT INTO, or FETCH from a read-only result
table.

Reading uncommitted data introduces an element of uncertainty.

Example: An application tracks the movement of work from station to
station along an assembly line. As items move from one station to another,
the application subtracts from the count of items at the first station and
adds to the count of items at the second. Assume you want to query the
count of items at all the stations, while the application is running
concurrently.

What can happen if your query reads data that the application has
changed but has not committed?

If the application subtracts an amount from one record before adding it
to another, the query could miss the amount entirely.

If the application adds first and then subtracts, the query could add the
amount twice.

Figure 144. Positioned updates and deletes with a static sensitive scrollable cursor and with
optimistic concurrency control

414 Application Programming and SQL Guide



When an application uses ISO(UR) and runs concurrently with applications
that update variable-length records such that the update creates a
double-overflow record, the ISO(UR) application might miss rows that are
being updated.

If those situations can occur and are unacceptable, do not use UR isolation.

Restrictions: You cannot use UR isolation for the following types of
statements:
v INSERT, UPDATE, and DELETE
v Any cursor defined with a FOR UPDATE clause

If you bind with ISOLATION(UR) and the statement does not specify
WITH RR or WITH RS, DB2 uses CS isolation for thee types of statements.

When can you use uncommitted read (UR)? You can probably use UR
isolation in cases like the following ones:
v When errors cannot occur.

Example: A reference table, like a table of descriptions of parts by part
number. It is rarely updated, and reading an uncommitted update is
probably no more damaging than reading the table 5 seconds earlier. Go
ahead and read it with ISOLATION(UR).
Example: The employee table of Spiffy Computer, our hypothetical user.
For security reasons, updates can be made to the table only by members
of a single department. And that department is also the only one that
can query the entire table. It is easy to restrict queries to times when no
updates are being made and then run with UR isolation.

v When an error is acceptable.
Example: Spiffy wants to do some statistical analysis on employee data.
A typical question is, “What is the average salary by sex within
education level?” Because reading an occasional uncommitted record
cannot affect the averages much, UR isolation can be used.

v When the data already contains inconsistent information.
Example: Spiffy gets sales leads from various sources. The data is often
inconsistent or wrong, and end users of the data are accustomed to
dealing with that. Inconsistent access to a table of data on sales leads
does not add to the problem.

Do not use uncommitted read (UR) in the following cases:
When the computations must balance
When the answer must be accurate
When you are not sure it can do no damage

ISOLATION (RS)
Allows the application to read the same pages or rows more than once
without allowing qualifying rows to be updated or deleted by another
process. It offers possibly greater concurrency than repeatable read,
because although other applications cannot change rows that are returned
to the original application, they can insert new rows or update rows that
did not satisfy the original application's search condition. Only those rows
or pages that satisfy the stage 1 predicate (and all rows or pages evaluated
during stage 2 processing) are locked until the application commits.
Figure 145 on page 416 illustrates this. In the example, the rows held by
locks L2 and L4 satisfy the predicate.

Chapter 18. Planning for concurrency 415

#
#
#
#



Applications using read stability can leave rows or pages locked for long
periods, especially in a distributed environment.

If you do use read stability, plan for frequent commit points.

ISOLATION (RR)
Allows the application to read the same pages or rows more than once
without allowing any UPDATE, INSERT, or DELETE by another process.
All accessed rows or pages are locked, even if they do not satisfy the
predicate.

Figure 146 shows that all locks are held until the application commits. In
the following example, the rows held by locks L2 and L4 satisfy the
predicate.

Applications that use repeatable read can leave rows or pages locked for
longer periods, especially in a distributed environment, and they can claim
more logical partitions than similar applications using cursor stability.

They are also subject to being drained more often by utility operations.

Because so many locks can be taken, lock escalation might take place.
Frequent commits release the locks and can help avoid lock escalation.

With repeatable read, lock promotion occurs for table space scan to prevent
the insertion of rows that might qualify for the predicate. (If access is via
index, DB2 locks the key range. If access is via table space scans, DB2 locks
the table, partition, or table space.)

Application

Request row Request next row

DB2

Time line

Lock Unlock Lock Unlock Lock

L L L1 L1 L2

Lock Unlock Lock

L3 L3 L4

Figure 145. How an application using RS isolation acquires locks when no lock avoidance
techniques are used. Locks L2 and L4 are held until the application commits. The other locks
aren't held.

Application

Request row Request next row

DB2

Lock

L L1

Lock

L2

Lock

L3

Lock

L4

Lock

Time line

Figure 146. How an application using RR isolation acquires locks. All locks are held until the
application commits.

416 Application Programming and SQL Guide



Restrictions on concurrent access: An application using UR isolation cannot run
concurrently with a utility that drains all claim classes. Also, the application must
acquire the following locks:
v A special mass delete lock acquired in S mode on the target table or table space. A

“mass delete” is a DELETE statement without a WHERE clause; that operation
must acquire the lock in X mode and thus cannot run concurrently.

v An IX lock on any table space used in the work file database. That lock prevents
dropping the table space while the application is running.

v If LOB values are read, LOB locks and a lock on the LOB table space. If the LOB
lock is not available because it is held by another application in an incompatible
lock state, the UR reader skips the LOB and moves on to the next LOB that
satisfies the query.

The CURRENTDATA option
The CURRENTDATA option has different effects, depending on if access is local or
remote:
v For local access, the option tells whether the data upon which your cursor is

positioned must remain identical to (or “current with”) the data in the local base
table. For cursors positioned on data in a work file, the CURRENTDATA option
has no effect. This effect only applies to read-only or ambiguous cursors in plans
or packages bound with CS isolation.
A cursor is “ambiguous” if DB2 cannot tell whether it is used for update or
read-only purposes. If the cursor appears to be used only for read-only, but
dynamic SQL could modify data through the cursor, then the cursor is
ambiguous. If you use CURRENTDATA to indicate an ambiguous cursor is
read-only when it is actually targeted by dynamic SQL for modification, you'll
get an error. See “Problems with ambiguous cursors” on page 419 for more
information about ambiguous cursors.

v For a request to a remote system, CURRENTDATA has an effect for ambiguous
cursors using isolation levels RR, RS, or CS. For ambiguous cursors, it turns
block fetching on or off. (Read-only cursors and UR isolation always use block
fetch.) Turning on block fetch offers best performance, but it means the cursor is
not current with the base table at the remote site.

Local access: Locally, CURRENTDATA(YES) means that the data upon which the
cursor is positioned cannot change while the cursor is positioned on it. If the
cursor is positioned on data in a local base table or index, then the data returned
with the cursor is current with the contents of that table or index. If the cursor is
positioned on data in a work file, the data returned with the cursor is current only
with the contents of the work file; it is not necessarily current with the contents of
the underlying table or index.

Figure 147 on page 418 shows locking with CURRENTDATA(YES).

Chapter 18. Planning for concurrency 417



As with work files, if a cursor uses query parallelism, data is not necessarily
current with the contents of the table or index, regardless of whether a work file is
used. Therefore, for work file access or for parallelism on read-only queries, the
CURRENTDATA option has no effect.

If you are using parallelism but want to maintain currency with the data, you have
the following options:
v Disable parallelism (Use SET DEGREE = '1' or bind with DEGREE(1)).
v Use isolation RR or RS (parallelism can still be used).
v Use the LOCK TABLE statement (parallelism can still be used).

For local access, CURRENTDATA(NO) is similar to CURRENTDATA(YES) except
for the case where a cursor is accessing a base table rather than a result table in a
work file. In those cases, although CURRENTDATA(YES) can guarantee that the
cursor and the base table are current, CURRENTDATA(NO) makes no such
guarantee.

Remote access: For access to a remote table or index, CURRENTDATA(YES)
turns off block fetching for ambiguous cursors. The data returned with the cursor
is current with the contents of the remote table or index for ambiguous cursors.
See “Using block fetch in distributed applications” on page 458 for more
information about the effect of CURRENTDATA on block fetch.

Lock avoidance: With CURRENTDATA(NO), you have much greater opportunity
for avoiding locks. DB2 can test to see if a row or page has committed data on it. If
it has, DB2 does not have to obtain a lock on the data at all. Unlocked data is
returned to the application, and the data can be changed while the cursor is
positioned on the row. (For SELECT statements in which no cursor is used, such as
those that return a single row, a lock is not held on the row unless you specify
WITH RS or WITH RR on the statement.)

To take the best advantage of this method of avoiding locks, make sure all
applications that are accessing data concurrently issue COMMITs frequently.

Figure 148 on page 419 shows how DB2 can avoid taking locks and Table 54 on
page 419 summarizes the factors that influence lock avoidance.

Application

Request
row or page

Request next
row or page

DB2

Time line

Lock   Unlock   Lock   Unlock   Lock
L L L1 L1 L2

Unlock   Lock   Unlock   Lock
L2 L3 L3 L4

Figure 147. How an application using CS isolation with CURRENTDATA(YES) acquires locks.
This figure shows access to the base table. The L2 and L4 locks are released after DB2
moves to the next row or page. When the application commits, the last lock is released.

418 Application Programming and SQL Guide



Table 54. Lock avoidance factors. “Returned data” means data that satisfies the predicate.
“Rejected data” is that which does not satisfy the predicate.

Isolation CURRENTDATA Cursor type

Avoid
locks on
returned
data?

Avoid locks
on rejected
data?

UR N/A Read-only N/A N/A

CS YES Read-only No Yes1

Updatable

Ambiguous

NO Read-only Yes

Updatable No

Ambiguous Yes

RS N/A Read-only No Yes1, 2

Updatable

Ambiguous

RR N/A Read-only No No

Updatable

Ambiguous

Note:
1. Locks are avoided when the row is disqualified after stage 1 processing
2. When using ISO(RS) and multi-row fetch, DB2 releases locks that were

acquired on Stage 1 qualified rows, but which subsequently failed to qualify for
stage 2 predicates at the next fetch of the cursor.

Problems with ambiguous cursors: As shown in Table 54, ambiguous cursors can
sometimes prevent DB2 from using lock avoidance techniques. However, misuse of
an ambiguous cursor can cause your program to receive a -510 SQLCODE:
v The plan or package is bound with CURRENTDATA(NO)
v An OPEN CURSOR statement is performed before a dynamic DELETE WHERE

CURRENT OF statement against that cursor is prepared
v One of the following conditions is true for the open cursor:

– Lock avoidance is successfully used on that statement.
– Query parallelism is used.

Application

Request
row or page

Request next
row or page

DB2

Time line

Test and avoid locks Test and avoid locks

Figure 148. Best case of avoiding locks using CS isolation with CURRENTDATA(NO). This
figure shows access to the base table. If DB2 must take a lock, then locks are released when
DB2 moves to the next row or page, or when the application commits (the same as
CURRENTDATA(YES)).

Chapter 18. Planning for concurrency 419

#

#

|

#

#
#
#



– The cursor is distributed, and block fetching is used.

In all cases, it is a good programming technique to eliminate the ambiguity by
declaring the cursor with either the FOR FETCH ONLY or the FOR UPDATE
clause.

When plan and package options differ
A plan bound with one set of options can include packages in its package list that
were bound with different sets of options. In general, statements in a DBRM bound
as a package use the options that the package was bound with, and statements in
DBRMs bound to a plan use the options that the plan was bound with.

For example, the plan value for CURRENTDATA has no effect on the packages
executing under that plan. If you do not specify a CURRENTDATA option
explicitly when you bind a package, the default is CURRENTDATA(YES).

The rules are slightly different for the bind options RELEASE and ISOLATION.
The values of those two options are set when the lock on the resource is acquired
and usually stay in effect until the lock is released. But a conflict can occur if a
statement that is bound with one pair of values requests a lock on a resource that
is already locked by a statement that is bound with a different pair of values. DB2
resolves the conflict by resetting each option with the available value that causes
the lock to be held for the greatest duration.

If the conflict is between RELEASE(COMMIT) and RELEASE(DEALLOCATE), then
the value used is RELEASE(DEALLOCATE).

Table 55 shows how conflicts between isolation levels are resolved. The first
column is the existing isolation level, and the remaining columns show what
happens when another isolation level is requested by a new application process.

Table 55. Resolving isolation conflicts

UR CS RS RR

UR n/a CS RS RR

CS CS n/a RS RR

RS RS RS n/a RR

RR RR RR RR n/a

The effect of WITH HOLD for a cursor
For a cursor defined as WITH HOLD, the cursor position is maintained past a
commit point. Hence, locks and claims needed to maintain that position are not
released immediately, even if they were acquired with ISOLATION(CS) or
RELEASE(COMMIT).

For locks and claims that are needed for cursor position, the following exceptions
exist for special cases:

Page and row locks: If your installation specifies NO on the RELEASE LOCKS
field of installation panel DSNTIP8, as described in DB2 Administration Guide, a
page or row lock is held past the commit point. This page or row lock is not
necessary for cursor position, but the NO option is provided for compatibility that
might rely on this lock. However, an X or U lock is demoted to an S lock at that
time. (Because changes have been committed, exclusive control is no longer

420 Application Programming and SQL Guide

#
#
#
#
#



needed.) After the commit point, the lock is released at the next commit point,
provided that no cursor is still positioned on that page or row.

If your installation specifies YES on the RELEASE LOCKS field on installation
panel DSNTIP8, data page or row locks are not held past commit.

Table, table space, and DBD locks: All necessary locks are held past the commit
point. After that, they are released according to the RELEASE option under which
they were acquired: for COMMIT, at the next commit point after the cursor is
closed; for DEALLOCATE, when the application is deallocated.

Claims: All claims, for any claim class, are held past the commit point. They are
released at the next commit point after all held cursors have moved off the object
or have been closed.

Isolation overriding with SQL statements
Function of the WITH clause: You can override the isolation level with which a
plan or package is bound by the WITH clause on certain SQL statements.

Example: This statement:
SELECT MAX(BONUS), MIN(BONUS), AVG(BONUS)

INTO :MAX, :MIN, :AVG
FROM DSN8810.EMP

WITH UR;

finds the maximum, minimum, and average bonus in the sample employee table.
The statement is executed with uncommitted read isolation, regardless of the value
of ISOLATION with which the plan or package containing the statement is bound.

Rules for the WITH clause: The WITH clause:
v Can be used on these statements:

– Select-statement
– SELECT INTO
– Searched delete
– INSERT from fullselect
– Searched update

v Cannot be used on subqueries.
v Can specify the isolation levels that specifically apply to its statement. (For

example, because WITH UR applies only to read-only operations, you cannot
use it on an INSERT statement.)

v Overrides the isolation level for the plan or package only for the statement in
which it appears.

USE AND KEEP ... LOCKS options of the WITH clause: If you use the WITH RR
or WITH RS clause, you can use the USE AND KEEP EXCLUSIVE LOCKS, USE
AND KEEP UPDATE LOCKS, USE AND KEEP SHARE LOCKS options in SELECT
and SELECT INTO statements.

Example: To use these options, specify them as shown in the following example:
SELECT ...
WITH RS USE KEEP UPDATE LOCKS;

Chapter 18. Planning for concurrency 421

#
#

|
|
|
|

|

|
|



By using one of these options, you tell DB2 to acquire and hold a specific mode of
lock on all the qualified pages or rows. Table 56 shows which mode of lock is held
on rows or pages when you specify the SELECT using the WITH RS or WITH RR
isolation clause.

Table 56. Which mode of lock is held on rows or pages when you specify the SELECT using
the WITH RS or WITH RR isolation clause

Option Value Lock Mode

USE AND KEEP EXCLUSIVE LOCKS X

USE AND KEEP UPDATE LOCKS U

USE AND KEEP SHARE LOCKS S

With read stability (RS) isolation, a row or page that is rejected during stage 2
processing might still have a lock held on it, even though it is not returned to the
application.

With repeatable read (RR) isolation, DB2 acquires locks on all pages or rows that
fall within the range of the selection expression.

All locks are held until the application commits. Although this option can reduce
concurrency, it can prevent some types of deadlocks and can better serialize access
to data.

The LOCK TABLE statement
For information about using LOCK TABLE on an auxiliary table, see “The LOCK
TABLE statement for LOBs” on page 428.

The purpose of LOCK TABLE
Use the LOCK TABLE statement to override DB2's rules for choosing initial lock
attributes. Two examples are:
LOCK TABLE table-name IN SHARE MODE;
LOCK TABLE table-name PART n IN EXCLUSIVE MODE;

Executing the statement requests a lock immediately, unless a suitable lock exists
already. The bind option RELEASE determines when locks acquired by LOCK
TABLE or LOCK TABLE with the PART option are released.

You can use LOCK TABLE on any table, including auxiliary tables of LOB table
spaces. See “The LOCK TABLE statement for LOBs” on page 428 for information
about locking auxiliary tables.

LOCK TABLE has no effect on locks acquired at a remote server.

The effect of LOCK TABLE
Table 57 on page 423 shows the modes of locks acquired in segmented and
nonsegmented table spaces for the SHARE and EXCLUSIVE modes of LOCK
TABLE. Auxiliary tables of LOB table spaces are considered nonsegmented table
spaces and have the same locking behavior.

422 Application Programming and SQL Guide

|
|
|
|

||
|

||

||

||

||
|

|
|
|

|
|

|
|
|



Table 57. Modes of locks acquired by LOCK TABLE. LOCK TABLE on partitions behave the
same as nonsegmented table spaces.

LOCK TABLE IN
Nonsegmented
Table Space

Segmented Table Space

Table Table Space

EXCLUSIVE MODE X X IX

SHARE MODE S or SIX S or SIX IS

Note: The SIX lock is acquired if the process already holds an IX lock. SHARE MODE has
no effect if the process already has a lock of mode SIX, U, or X.

Recommendations for using LOCK TABLE
Use LOCK TABLE to prevent other application processes from changing any row
in a table or partition that your process is accessing. For example, suppose that
you access several tables. You can tolerate concurrent updates on all the tables
except one; for that one, you need RR or RS isolation. There are several ways to
handle the situation:
v Bind the application plan with RR or RS isolation. But that affects all the tables

you access and might reduce concurrency.
v Design the application to use packages and access the exceptional table in only a

few packages. Bind those packages with RR or RS isolation and the plan with
CS isolation. Only the tables accessed within those packages are accessed with
RR or RS isolation.

v Add the clause WITH RR or WITH RS to statements that must be executed with
RR or RS isolation. Statements that do not use WITH are executed as specified
by the bind option ISOLATION.

v Bind the application plan with CS isolation and execute LOCK TABLE for the
exceptional table. (If there are other tables in the same table space, see the
caution that follows.) The LOCK TABLE statement locks out changes by any
other process, giving the exceptional table a degree of isolation even more
thorough than repeatable read. All tables in other table spaces are shared for
concurrent update.

Caution when using LOCK TABLE with simple table spaces: The statement locks
all tables in a simple table space, even though you name only one table. No other
process can update the table space for the duration of the lock. If the lock is in
exclusive mode, no other process can read the table space, unless that process is
running with UR isolation.

Additional examples of LOCK TABLE: You might want to lock a table or partition
that is normally shared for any of the following reasons:

Taking a“snapshot”
If you want to access an entire table throughout a unit of work as
it was at a particular moment, you must lock out concurrent
changes. If other processes can access the table, use LOCK TABLE
IN SHARE MODE. (RR isolation is not enough; it locks out
changes only from rows or pages you have already accessed.)

Avoiding overhead
If you want to update a large part of a table, it can be more
efficient to prevent concurrent access than to lock each page as it is
updated and unlock it when it is committed. Use LOCK TABLE IN
EXCLUSIVE MODE.

Chapter 18. Planning for concurrency 423



Preventing timeouts
Your application has a high priority and must not risk timeouts
from contention with other application processes. Depending on
whether your application updates or not, use either LOCK IN
EXCLUSIVE MODE or LOCK TABLE IN SHARE MODE.

Access paths
The access path used can affect the mode, size, and even the object of a lock. For
example, an UPDATE statement using a table space scan might need an X lock on
the entire table space. If rows to be updated are located through an index, the
same statement might need only an IX lock on the table space and X locks on
individual pages or rows.

If you use the EXPLAIN statement to investigate the access path chosen for an
SQL statement, then check the lock mode in column TSLOCKMODE of the
resulting PLAN_TABLE. If the table resides in a nonsegmented table space, or is
defined with LOCKSIZE TABLESPACE, the mode shown is that of the table space
lock. Otherwise, the mode is that of the table lock.

Important points about DB2 locks:

v You usually do not have to lock data explicitly in your program.
v DB2 ensures that your program does not retrieve uncommitted data unless you

specifically allow that.
v Any page or row where your program updates, inserts, or deletes stays locked

at least until the end of a unit of work, regardless of the isolation level. No other
process can access the object in any way until then, unless you specifically allow
that access to that process.

v Commit often for concurrency. Determine points in your program where
changed data is consistent. At those points, issue:

TSO, Batch, and CAF
An SQL COMMIT statement

IMS
A CHKP or SYNC call, or (for single-mode transactions) a GU call to the
I/O PCB

CICS
A SYNCPOINT command.

v Bind with ACQUIRE(USE) to improve concurrency.
v Set ISOLATION (usually RR, RS, or CS) when you bind the plan or package.

– With RR (repeatable read), all accessed pages or rows are locked until the
next commit point. (See “Recommendations for database design” on page 398
for information about cursor position locks for cursors defined WITH HOLD.)

– With RS (read stability), all qualifying pages or rows are locked until the next
commit point. (See “Recommendations for application design” on page 399
for information about cursor position locks for cursors defined WITH HOLD.)

424 Application Programming and SQL Guide



– With CS (cursor stability), only the pages or rows currently accessed can be
locked, and those locks might be avoided. (You can access one page or row
for each open cursor.)

v You can also set isolation for specific SQL statements, using WITH.
v A deadlock can occur if two processes each hold a resource that the other needs.

One process is chosen as “victim”, its unit of work is rolled back, and an SQL
error code is issued.

v You can lock an entire nonsegmented table space, or an entire table in a
segmented table space, by the LOCK TABLE statement:
– To let other users retrieve, but not update, delete, or insert, issue:

LOCK TABLE table-name IN SHARE MODE

– To prevent other users from accessing rows in any way, except by using UR
isolation, issue:
LOCK TABLE table-name IN EXCLUSIVE MODE

LOB locks
The locking activity for LOBs is described separately from transaction locks
because the purpose of LOB locks is different than that of regular transaction locks.

A lock that is taken on a LOB value in a LOB table space is called a LOB lock.

In this section, the following topics are described:
v “Relationship between transaction locks and LOB locks”
v “Hierarchy of LOB locks” on page 426
v “LOB and LOB table space lock modes” on page 427
v “LOB lock and LOB table space lock duration” on page 427
v “Instances when LOB table space locks are not taken” on page 428
v “The LOCK TABLE statement for LOBs” on page 428

Relationship between transaction locks and LOB locks
As described in “Introduction to LOBs” on page 299, LOB column values are
stored in a different table space, a LOB table space, from the values in the base
table. An application that reads or updates a row in a table that contains LOB
columns obtains its normal transaction locks on the base table. The locks on the
base table also control concurrency for the LOB table space. When locks are not
acquired on the base table, such as for ISO(UR), DB2 maintains data consistency by
using locks on the LOB table space. Even when locks are acquired on the base
table, DB2 still obtains locks on the LOB table space. When a conditional LOB lock
cannot be acquired for some SQL statements with UR isolation, DB2 might return
no rows and issue an SQL return code +100.

DB2 also obtains locks on the LOB table space and the LOB values stored in that
LOB table space, but those locks have the following primary purposes:
v To determine whether space from a deleted LOB can be reused by an inserted or

updated LOB
Storage for a deleted LOB is not reused until no more readers (including held
locators) are on the LOB and the delete operation has been committed.

v To prevent deallocating space for a LOB that is currently being read
A LOB can be deleted from one application's point-of-view while a reader from
another application is reading the LOB. The reader continues reading the LOB
because all readers, including those readers that are using uncommitted read
isolation, acquire S-locks on LOBs to prevent the storage for the LOB they are

Chapter 18. Planning for concurrency 425

#
#
#



reading from being deallocated. That lock is held until commit. A held LOB
locator or a held cursor cause the LOB lock and LOB table space lock to be held
past commit.

In summary, the main purpose of LOB locks is for managing the space used by
LOBs and to ensure that LOB readers do not read partially updated LOBs.
Applications need to free held locators so that the space can be reused.

Table 58 shows the relationship between the action that is occurring on the LOB
value and the associated LOB table space and LOB locks that are acquired.

Table 58. Locks that are acquired for operations on LOBs. This table does not account for
gross locks that can be taken because of LOCKSIZE TABLESPACE, the LOCK TABLE
statement, or lock escalation.

Action on LOB value LOB table space
lock LOB lock Comment

Read (including UR) IS S Prevents storage from being
reused while the LOB is
being read or while locators
are referencing the LOB

Insert IX X Prevents other processes
from seeing a partial LOB

Delete IS S To hold space in case the
delete is rolled back. (The X
is on the base table row or
page.) Storage is not
reusable until the delete is
committed and no other
readers of the LOB exist.

Update IS->IX Two LOB
locks: an
S-lock for the
delete and an
X-lock for the
insert.

Operation is a delete
followed by an insert.

Update the LOB to null
or zero-length

IS S No insert, just a delete.

Update a null or
zero-length LOB to a
value

IX X No delete, just an insert.

ISOLATION(UR) or ISOLATION(CS): When an application is reading rows using
uncommitted read or lock avoidance, no page or row locks are taken on the base
table. Therefore, these readers must take an S LOB lock to ensure that they are not
reading a partial LOB or a LOB value that is inconsistent with the base row.

Hierarchy of LOB locks
Just as page locks (or row locks) and table space locks have a hierarchical
relationship, LOB locks and locks on LOB table spaces have a hierarchical
relationship. (See Figure 142 on page 403 for a picture of the hierarchical
relationship.) If the LOB table space is locked with a gross lock, then LOB locks are

426 Application Programming and SQL Guide



not acquired. In a data sharing environment, the lock on the LOB table space is
used to determine whether the lock on the LOB must be propagated beyond the
local IRLM.

LOB and LOB table space lock modes
This section describes the modes of LOB locks and LOB table space locks.

Modes of LOB locks
The following LOB lock modes are possible:

S (SHARE)
The lock owner and any concurrent processes can read, update, or delete
the locked LOB. Concurrent processes can acquire an S lock on the LOB.
The purpose of the S lock is to reserve the space used by the LOB.

X (EXCLUSIVE)
The lock owner can read or change the locked LOB. Concurrent processes
cannot access the LOB.

Modes of LOB table space locks
The following locks modes are possible on the LOB table space:

IS (INTENT SHARE)
The lock owner can update LOBs to null or zero-length, or read or delete
LOBs in the LOB table space. Concurrent processes can both read and
change LOBs in the same table space. The lock owner acquires a LOB lock
on any data that it reads or deletes.

IX (INTENT EXCLUSIVE)
The lock owner and concurrent processes can read and change data in the
LOB table space. The lock owner acquires a LOB lock on any data it
accesses.

S (SHARE)
The lock owner and any concurrent processes can read and delete LOBs in
the LOB table space. The lock owner does not need LOB locks.

SIX (SHARE with INTENT EXCLUSIVE)
The lock owner can read and change data in the LOB table space. If the
lock owner is inserting (INSERT or UPDATE), the lock owner obtains a
LOB lock. Concurrent processes can read or delete data in the LOB table
space (or update to a null or zero-length LOB).

X (EXCLUSIVE)
The lock owner can read or change LOBs in the LOB table space. The lock
owner does not need LOB locks. Concurrent processes cannot access the
data.

LOB lock and LOB table space lock duration
This section describes the duration of LOB locks and LOB table space locks.

The duration of LOB locks
Locks on LOBs are taken when they are needed and are usually released at
commit. However, if that LOB value is assigned to a LOB locator, the S lock
remains until the application commits.

If the application uses HOLD LOCATOR, the LOB lock is not freed until the first
commit operation after a FREE LOCATOR statement is issued, or until the thread
is deallocated.

Chapter 18. Planning for concurrency 427



If a cursor is defined WITH HOLD, LOB locks are held through commit
operations.

Because LOB locks are held until commit and because locks are put on each LOB
column in both a source table and a target table, it is possible that a statement such
as an INSERT with a fullselect that involves LOB columns can accumulate many
more locks than a similar statement that does not involve LOB columns. To
prevent system problems caused by too many locks, you can:
v Ensure that you have lock escalation enabled for the LOB table spaces that are

involved in the INSERT. In other words, make sure that LOCKMAX is non-zero
for those LOB table spaces.

v Alter the LOB table space to change the LOCKSIZE to TABLESPACE before
executing the INSERT with fullselect.

v Increase the LOCKMAX value on the table spaces involved and ensure that the
user lock limit is sufficient.

v Use LOCK TABLE statements to lock the LOB table spaces. (Locking the
auxiliary table that is contained in the LOB table space locks the LOB table
space.)

The duration of LOB table space locks
Locks on LOB table spaces are acquired when they are needed; that is, the
ACQUIRE option of BIND has no effect on when the table space lock on the LOB
table space is taken. When the table space lock is released is determined by a
combination of factors:
v The RELEASE option of bind
v Whether the SQL statement is static or dynamic
v Whether there are held cursors or held locators

When the release option is COMMIT, the lock is released at the next commit point,
unless there are held corsors or held locators. If the release option is
DEALLOCATE, the lock is released when the object is deallocated (the application
ends). The BIND option has no effect on dynamic SQL statements, which always
use RELEASE(COMMIT), unless you use dynamic statement caching.

Instances when LOB table space locks are not taken
A lock might not be acquired on a LOB table space at all. For example, if a row is
deleted from a table and the value of the LOB column is null, the LOB table space
associated with that LOB column is not locked. DB2 does not access the LOB table
space if the application:
v Selects a LOB that is null or zero length
v Deletes a row where the LOB is null or zero length
v Inserts a null or zero length LOB
v Updates a null or zero-length LOB to null or zero-length

The LOCK TABLE statement for LOBs
“The LOCK TABLE statement” on page 422 describes how and why you might use
a LOCK TABLE statement on a table. The reasons for using LOCK TABLE on an
auxiliary table are somewhat different than that for regular tables.
v You can use LOCK TABLE to control the number of locks acquired on the

auxiliary table.
v You can use LOCK TABLE IN SHARE MODE to prevent other applications from

inserting LOBs.

428 Application Programming and SQL Guide

#
#
#
#

#

#

#

#
#
#
#
#



With auxiliary tables, LOCK TABLE IN SHARE MODE does not prevent any
changes to the auxiliary table. The statement does prevent LOBs from being
inserted into the auxiliary table, but it does not prevent deletes. Updates are
generally restricted also, except where the LOB is updated to a null value or a
zero-length string.

v You can use LOCK TABLE IN EXCLUSIVE MODE to prevent other applications
from accessing LOBs.
With auxiliary tables, LOCK TABLE IN EXCLUSIVE MODE also prevents access
from uncommitted readers.

v Either statement eliminates the need for lower-level LOB locks.

Chapter 18. Planning for concurrency 429



430 Application Programming and SQL Guide



Chapter 19. Planning for recovery

During recovery, when a DB2 database is restoring to its most recent consistent
state, you must back out any uncommitted changes to data that occurred before
the program abend or system failure. You must do this without interfering with
other system activities.

If your application intercepts abends, DB2 commits work because it is unaware
that an abend has occurred. If you want DB2 to roll back work automatically when
an abend occurs in your program, do not let the program or run-time environment
intercept the abend. If your program uses Language Environment, and you want
DB2 to roll back work automatically when an abend occurs in the program, specify
the run-time options ABTERMENC(ABEND) and TRAP(ON).

A unit of work is a logically distinct procedure containing steps that change the
data. If all the steps complete successfully, you want the data changes to become
permanent. But, if any of the steps fail, you want all modified data to return to the
original value before the procedure began.

For example, suppose two employees in the sample table DSN8810.EMP exchange
offices. You need to exchange their office phone numbers in the PHONENO
column. You would use two UPDATE statements to make each phone number
current. Both statements, taken together, are a unit of work. You want both
statements to complete successfully. For example, if only one statement is
successful, you want both phone numbers rolled back to their original values
before attempting another update.

When a unit of work completes, all locks that were implicitly acquired by that unit
of work are released, allowing a new unit of work to begin.

The amount of processing time that is used by a unit of work in your program
affects the length of time DB2 prevents other users from accessing that locked data.
When several programs try to use the same data concurrently, each program's unit
of work should be as short as possible to minimize the interference between the
programs.

This chapter describes the way a unit of work functions in various environments.
It contains the following sections:
v “Unit of work in TSO batch and online” on page 432
v “Unit of work in CICS” on page 432
v “Unit of work in IMS online programs” on page 433
v “Unit of work in DL/I and IMS batch programs” on page 438
v “Using savepoints to undo selected changes within a unit of work” on page 439

For more information about unit of work, see Chapter 1 of DB2 SQL Reference or
Part 4 (Volume 1) of DB2 Administration Guide.

© Copyright IBM Corp. 1983, 2012 431



Unit of work in TSO batch and online
A unit of work starts when the first updates of a DB2 object occur.

A unit of work ends when one of the following conditions occurs:
v The program issues a subsequent COMMIT statement. At this point in the

processing, your program has determined that the data is consistent; all data
changes made since the previous commit point were made correctly.

v The program issues a subsequent ROLLBACK statement. At this point in the
processing, your program has determined that the data changes were not made
correctly and, therefore, should not be permanent.

v The program terminates and returns to the DSN command processor, which
returns to the TSO Terminal Monitor Program (TMP).

A commit point occurs when you issue a COMMIT statement or your program
terminates normally. You should issue a COMMIT statement only when you are
sure the data is in a consistent state. For example, a bank transaction might
transfer funds from account A to account B. The transaction first subtracts the
amount of the transfer from account A, and then adds the amount to account B.
Both events, taken together, are a unit of work. When both events complete (and
not before), the data in the two accounts is consistent. The program can then issue
a COMMIT statement. A ROLLBACK statement causes any data changes that were
made since the last commit point to be backed out.

Before you can connect to another DBMS, you must issue a COMMIT statement. If
the system fails at this point, DB2 cannot know that your transaction is complete.
In this case, as in the case of a failure during a one-phase commit operation for a
single subsystem, you must make your own provision for maintaining data
integrity.

You can provide an abend exit routine in your program. It must use tracking
indicators to determine if an abend occurs during DB2 processing. If an abend
does occur when DB2 has control, you must allow task termination to complete.
DB2 detects task termination and terminates the thread with the ABRT parameter.
Do not re-run the program.

If your program abends or the system fails, DB2 backs out uncommitted data
changes. Changed data returns to its original condition without interfering with
other system activities.

Allowing task termination to complete is the only action that you can take for
abends that are caused by the CANCEL command or by DETACH. You cannot use
additional SQL statements at this point. If you attempt to execute another SQL
statement from the application program or its recovery routine, unexpected errors
can occur.

Unit of work in CICS
In CICS, all the processing that occurs in your program between two commit
points is known as a logical unit of work (LUW) or unit of work. Generally, a unit
of work is a sequence of actions that must complete before any of the individual
actions in the sequence can complete. For example, decrementing an inventory file
and incrementing a reorder file by the same quantity can constitute a unit of work:
both steps must complete before either step is complete. (If one action occurs and
not the other, the database loses its integrity, or consistency.)

432 Application Programming and SQL Guide

|
|
|
|
|

|
|
|
|
|



A unit of work is marked as complete by a commit or synchronization (sync) point,
which is defined:
v Implicitly at the end of a transaction, signalled by a CICS RETURN command at

the highest logical level.
v Explicitly by CICS SYNCPOINT commands that the program issues at logically

appropriate points in the transaction.
v Implicitly through a DL/I PSB termination (TERM) call or command.
v Implicitly when a batch DL/I program issues a DL/I checkpoint call. This can

occur when the batch DL/I program is sharing a database with CICS
applications through the database sharing facility.

Consider the inventory example, in which the quantity of items sold is subtracted
from the inventory file and then added to the reorder file. When both transactions
complete (and not before) and the data in the two files is consistent, the program
can then issue a DL/I TERM call or a SYNCPOINT command. If one of the steps
fails, you want the data to return to the value it had before the unit of work began.
That is, you want it rolled back to a previous point of consistency. You can achieve
this by using the SYNCPOINT command with the ROLLBACK option.

By using a SYNCPOINT command with the ROLLBACK option, you can back out
uncommitted data changes. For example, a program that updates a set of related
rows sometimes encounters an error after updating several of them. The program
can use the SYNCPOINT command with the ROLLBACK option to undo all of the
updates without giving up control.

The SQL COMMIT and ROLLBACK statements are not valid in a CICS
environment. You can coordinate DB2 with CICS functions that are used in
programs, so that DB2 and non-DB2 data are consistent.

If the system fails, DB2 backs out uncommitted changes to data. Changed data
returns to its original condition without interfering with other system activities.
Sometimes, DB2 data does not return to a consistent state immediately. DB2 does
not process indoubt data (data that is neither uncommitted nor committed) until the
CICS attachment facility is also restarted. To ensure that DB2 and CICS are
synchronized, restart both DB2 and the CICS attachment facility.

Unit of work in IMS online programs
In IMS, a unit of work starts:
v When the program starts
v After a CHKP, SYNC, ROLL, or ROLB call has completed
v For single-mode transactions, when a GU call is issued to the I/O PCB

A unit of work ends when:
v The program issues either a subsequent CHKP or SYNC call, or (for single-mode

transactions) a GU call to the I/O PCB. At this point in the processing, the data
is consistent. All data changes that were made since the previous commit point
are made correctly.

v The program issues a subsequent ROLB or ROLL call. At this point in the
processing, your program has determined that the data changes are not correct
and, therefore, that the data changes should not become permanent.

v The program terminates.

Chapter 19. Planning for recovery 433



A commit point can occur in a program as the result of any one of the following
four events:
v The program terminates normally. Normal program termination is always a

commit point.
v The program issues a checkpoint call. Checkpoint calls are a program's means of

explicitly indicating to IMS that it has reached a commit point in its processing.
v The program issues a SYNC call. The SYNC call is a Fast Path system service call

to request commit-point processing. You can use a SYNC call only in a
nonmessage-driven Fast Path program.

v For a program that processes messages as its input, a commit point can occur
when the program retrieves a new message. IMS considers a new message the
start of a new unit of work in the program. Commit points occur given the
following conditions:
– If you specify single-mode, a commit point in DB2 occurs each time the

program issues a call to retrieve a new message. Specifying single-mode can
simplify recovery; you can restart the program from the most recent call for a
new message if the program abends. When IMS restarts the program, the
program starts by processing the next message.

– If you specify multiple-mode, a commit point occurs when the program issues
a checkpoint call or when it terminates normally. Those are the only times
during the program that IMS sends the program's output messages to their
destinations. Because fewer commit points are processed in multiple-mode
programs than in single-mode programs, multiple-mode programs could
perform slightly better than single-mode programs. When a multiple-mode
program abends, IMS can restart it only from a checkpoint call. Instead of
having only the most recent message to reprocess, a program might have
several messages to reprocess. The number of messages to process depends
on when the program issued the last checkpoint call.

If you do not define the transaction as single- or multiple-mode on the
TRANSACT statement of the APPLCTN macro for the program, retrieving a new
message does not signal a commit point. For more information about the
APPLCTN macro, see IMS Install Volume 2: System Definition and Tailoring.

DB2 does some processing with single- and multiple-mode programs. When a
multiple-mode program issues a call to retrieve a new message, DB2 performs an
authorization check and closes all open cursors in the program.

At the time of a commit point:
v IMS and DB2 can release locks that the program has held since the last commit

point. That makes the data available to other application programs and users.
(However, when you define a cursor as WITH HOLD in a BMP program, DB2
holds those locks until the cursor closes or the program ends.)

v DB2 closes any open cursors that the program has been using. Your program
must issue CLOSE CURSOR statements before a checkpoint call or a GU to the
message queue, not after.

v IMS and DB2 make the program's changes to the database permanent.

If the program abends before reaching the commit point:
v Both IMS and DB2 back out all the changes the program has made to the

database since the last commit point.
v IMS deletes any output messages that the program has produced since the last

commit point (for nonexpress PCBs).

434 Application Programming and SQL Guide



If the program processes messages, IMS sends the output messages that the
application program produces to their final destinations. Until the program reaches
a commit point, IMS holds the program's output messages at a temporary
destination. If the program abends, people at terminals and other application
programs receive information from the terminating application program.

The SQL COMMIT and ROLLBACK statements are not valid in an IMS
environment.

If the system fails, DB2 backs out uncommitted changes to data. Changed data
returns to its original state without interfering with other system activities.
Sometimes DB2 data does not return to a consistent state immediately. DB2 does
not process data in an indoubt state until you restart IMS. To ensure that DB2 and
IMS are synchronized, you must restart both DB2 and IMS.

Planning ahead for program recovery: Checkpoint and restart
Both IMS and DB2 handle recovery in an IMS application program that accesses
DB2 data. IMS coordinates the process and DB2 participates by handling recovery
for DB2 data.

Two calls that are available to IMS programs to simplify program recovery are the
symbolic checkpoint call and the restart call.

What symbolic checkpoint does
Symbolic checkpoint calls indicate to IMS that the program has reached a sync
point. Such calls also establish places in the program from which you can restart
the program.

A CHKP call causes IMS to:
v Inform DB2 that the changes your program made to the database can become

permanent. DB2 makes the changes to DB2 data permanent, and IMS makes the
changes to IMS data permanent.

v Send a message containing the checkpoint identification that is given in the call
to the system console operator and to the IMS master terminal operator.

v Return the next input message to the program's I/O area if the program
processes input messages. In MPPs and transaction-oriented BMPs, a checkpoint
call acts like a call for a new message.

v Sign on to DB2 again, which resets special registers as follows:
– CURRENT PACKAGESET to blanks
– CURRENT SERVER to blanks
– CURRENT SQLID to blanks
– CURRENT DEGREE to 1

Your program must restore these special registers if their values are needed after
the checkpoint.

Programs that issue symbolic checkpoint calls can specify as many as seven data
areas in the program that is to be restored at restart. DB2 always recovers to the
last checkpoint. You must restart the program from that point.

What restart does
The restart call (XRST), which you must use with symbolic checkpoints, provides a
method for restarting a program after an abend. It restores the program's data

Chapter 19. Planning for recovery 435



areas to the way they were when the program terminated abnormally, and it
restarts the program from the last checkpoint call that the program issued before
terminating abnormally.

When are checkpoints important?
Issuing checkpoint calls releases locked resources. The decision about whether your
program should issue checkpoints (and if so, how often) depends on your
program.

Generally, the following types of programs should issue checkpoint calls:
v Multiple-mode programs
v Batch-oriented BMPs
v Nonmessage-driven Fast Path programs. (These programs can use a special Fast

Path call, but they can also use symbolic checkpoint calls.)
v Most batch programs
v Programs that run in a data sharing environment. (Data sharing makes it

possible for online and batch application programs in separate IMS systems, in
the same or separate processors, to access databases concurrently. Issuing
checkpoint calls frequently in programs that run in a data sharing environment
is important, because programs in several IMS systems access the database.)

You do not need to issue checkpoints in:
v Single-mode programs
v Database load programs
v Programs that access the database in read-only mode (defined with the

processing option GO during a PSBGEN) and are short enough to restart from
the beginning

v Programs that, by their nature, must have exclusive use of the database

Checkpoints in MPPs and transaction-oriented BMPs
Single-mode programs: In single-mode programs, checkpoint calls and message
retrieval calls (called get-unique calls) both establish commit points. The
checkpoint calls retrieve input messages and take the place of get-unique calls.
BMPs that access non-DL/I databases, and MPPs can issue both get unique calls
and checkpoint calls to establish commit points.

However, message-driven BMPs must issue checkpoint calls rather than get-unique
calls to establish commit points, because they can restart from a checkpoint only. If
a program abends after issuing a get-unique call, IMS backs out the database
updates to the most recent commit point, which is the get-unique call.

Multiple-mode programs: In multiple-mode BMPs and MPPs, the only commit
points are the checkpoint calls that the program issues and normal program
termination. If the program abends and it has not issued checkpoint calls, IMS
backs out the program's database updates and cancels the messages it has created
since the beginning of the program. If the program has issued checkpoint calls,
IMS backs out the program's changes and cancels the output messages it has
created since the most recent checkpoint call.

The following factors affect the use of checkpoint calls in multiple-mode programs:

436 Application Programming and SQL Guide



v How long it takes to back out and recover that unit of work. The program must
issue checkpoints frequently enough to make the program easy to back out and
recover.

v How long database resources are locked in DB2 and IMS
v How you want the output messages grouped. Checkpoint calls establish how a

multiple-mode program groups its output messages. Programs must issue
checkpoints frequently enough to avoid building up too many output messages.

Checkpoints in batch-oriented BMPs
Issuing checkpoints in a batch-oriented BMP is important for several reasons:
v To commit changes to the database
v To establish places from which the program can be restarted
v To release locked DB2 and IMS data that IMS has enqueued for the program

Checkpoints also close all open cursors, which means that you must reopen the
cursors you want and re-establish positioning.

If a batch-oriented BMP does not issue checkpoints frequently enough, IMS can
abend that BMP or another application program for one of these reasons:
v If a BMP retrieves and updates many database records between checkpoint calls,

it can monopolize large portions of the databases and cause long waits for other
programs that need those segments. (The exception to this is a BMP with a
processing option of GO; IMS does not enqueue segments for programs with
this processing option.) Issuing checkpoint calls releases the segments that the
BMP has enqueued and makes them available to other programs.

v If IMS is using program isolation enqueuing, the space needed to enqueue
information about the segments that the program has read and updated must
not exceed the amount of storage that is defined for the IMS system. If a BMP
enqueues too many segments, the amount of storage needed for the enqueued
segments can exceed the amount of available storage. If that happens, IMS
terminates the program abnormally with an abend code of U0775. You then need
to increase the program's checkpoint frequency before rerunning the program.
The amount of storage available is specified during IMS system definition. For
more information, see IMS Install Volume 2: System Definition and Tailoring.

When you issue a DL/I CHKP call from an application program that uses DB2
databases, IMS processes the CHKP call for all DL/I databases, and DB2 commits
all the DB2 database resources. No checkpoint information is recorded for DB2
databases in the IMS log or the DB2 log. The application program must record
relevant information about DB2 databases for a checkpoint, if necessary.

One way to do this is to put such information in a data area that is included in the
DL/I CHKP call. Undesirable performance implications can be associated with
re-establishing position within a DB2 database as a result of the commit processing
that takes place because of a DL/I CHKP call. The fastest way to re-establish a
position in a DB2 database is to use an index on the target table, with a key that
matches one-to-one with every column in the SQL predicate.

Another limitation of processing DB2 databases in a BMP program is that you can
restart the program only from the latest checkpoint and not from any checkpoint,
as in IMS.

Chapter 19. Planning for recovery 437



Specifying checkpoint frequency
You must specify checkpoint frequency in your program in a way that makes
changing it easy in case the frequency you initially specify is not right. Some ways
to do this are to use a counter in your program to keep a record of:
v Elapsed time; issue a checkpoint call after a certain time interval.
v The number of root segments your program accesses; issue a checkpoint call

after a certain number of root segments.
v The number of updates your program performs; issue a checkpoint call after a

certain number of updates.

Unit of work in DL/I and IMS batch programs
This section describes how to coordinate commit and rollback operations for DL/I
batch, and how to restart and recover data in IMS batch.

Commit and rollback coordination
DB2 coordinates commit and rollback for DL/I batch, with the following
considerations:
v DB2 and DL/I changes are committed as the result of IMS CHKP calls.

However, you lose the application program database positioning in DL/I. In
addition, the program database positioning in DB2 can be affected as follows:
– If you do not specify the WITH HOLD option for a cursor, you lose the

position of that cursor.
– If you specify the WITH HOLD option for a cursor and the application is

message-driven, you lose the position of that cursor.
– If you specify the WITH HOLD option for a cursor and the application is

operating in DL/I batch or DL/I BMP, you retain the position of that cursor.
v DB2 automatically backs out changes whenever the application program abends.

To back out DL/I changes, you must use the DL/I batch backout utility.
v You cannot use SQL statements COMMIT and ROLLBACK in the DB2 DL/I

batch support environment, because IMS coordinates the unit of work. Issuing
COMMIT causes SQLCODE -925 (SQLSTATE '2D521'); issuing ROLLBACK
causes SQLCODE -926 (SQLSTATE '2D521').

v If the system fails, a unit of work resolves automatically when DB2 and IMS
batch programs reconnect. Any indoubt units of work are resolved at reconnect
time.

v You can use IMS rollback calls, ROLL and ROLB, to back out DB2 and DL/I
changes to the last commit point. When you issue a ROLL call, DL/I terminates
your program with an abend. When you issue a ROLB call, DL/I returns control
to your program after the call.
How ROLL and ROLB affect DL/I changes in a batch environment depends on
the IMS system log and the back out options that are specified, as the following
summary indicates:
– A ROLL call with tape logging (with any BKO value), or disk logging and

BKO=NO specified. DL/I does not back out updates, and abend U0778
occurs. DB2 backs out updates to the previous checkpoint.

– A ROLB call with tape logging (with any BKO value), or disk logging and
BKO=NO specified. DL/I does not back out updates, and an AL status code
is returned in the PCB. DB2 backs out updates to the previous checkpoint.
The DB2 DL/I support causes the application program to abend when ROLB
fails.

438 Application Programming and SQL Guide



– A ROLL call with disk logging and BKO=YES specified. DL/I backs out
updates, and abend U0778 occurs. DB2 backs out updates to the previous
checkpoint.

– A ROLB call with disk logging and BKO=YES specified. DL/I backs out
databases, and control is passed back to the application program. DB2 backs
out updates to the previous checkpoint.

Using ROLL
Issuing a ROLL call causes IMS to terminate the program with a user abend code
U0778. This terminates the program without a storage dump.

When you issue a ROLL call, the only option you supply is the call function,
ROLL.

Using ROLB
The advantage of using ROLB is that IMS returns control to the program after
executing ROLB, allowing the program to continue processing. The options for
ROLB are:
v The call function, ROLB
v The name of the I/O PCB

In batch programs
If your IMS system log is on direct access storage, and if the run option BKO is Y
to specify dynamic back out, you can use the ROLB call in a batch program. The
ROLB call backs out the database updates made since the last commit point and
returns control to your program. You cannot specify the address of an I/O area as
one of the options on the call; if you do, your program receives an AD status code.
You must, however, have an I/O PCB for your program. Specify CMPAT=YES on
the CMPAT keyword in the PSBGEN statement for your program's PSB. For more
information about using the CMPAT keyword, see IMS Utilities Reference: System.

Restart and recovery in IMS batch
In an online IMS system, recovery and restart are part of the IMS system. For a
batch region, your location's operational procedures control recovery and restart.
For more information, see IMS Application Programming: Design Guide.

Using savepoints to undo selected changes within a unit of work
Savepoints let you undo selected changes within a transaction. Your application
can set any number of savepoints using SQL SAVEPOINT statements, and then use
SQL ROLLBACK TO SAVEPOINT statements to indicate which changes within the
unit of work to undo. When the application no longer uses a savepoint, it can
delete that savepoint using the SQL RELEASE SAVEPOINT statement.

You can write a ROLLBACK TO SAVEPOINT statement with or without a
savepoint name. If you do not specify a savepoint name, DB2 rolls back work to
the most recently created savepoint.

Example: Rolling back to the most recently created savepoint: When the
ROLLBACK TO SAVEPOINT statement is executed in the following code, DB2
rolls back work to savepoint B.
EXEC SQL SAVEPOINT A;...
EXEC SQL SAVEPOINT B;...
EXEC SQL ROLLBACK TO SAVEPOINT;

Chapter 19. Planning for recovery 439



When savepoints are active, you cannot access remote sites using three-part names
or aliases for three-part names. You can, however, use DRDA access with explicit
CONNECT statements when savepoints are active. If you set a savepoint before
you execute a CONNECT statement, the scope of that savepoint is the local site. If
you set a savepoint after you execute the CONNECT statement, the scope of that
savepoint is the site to which you are connected.

Example: Setting savepoints during distributed processing: Suppose that an
application performs these tasks:
1. Sets savepoint C1
2. Does some local processing
3. Executes a CONNECT statement to connect to a remote site
4. Sets savepoint C2

Because savepoint C1 is set before the application connects to a remote site,
savepoint C1 is known only at the local site. However, because savepoint C2 is set
after the application connects to the remote site, savepoint C2 is known only at the
remote site.

You can set a savepoint with the same name multiple times within a unit of work.
Each time that you set the savepoint, the new value of the savepoint replaces the
old value.

Example: Setting a savepoint multiple times: Suppose that the following actions
take place within a unit of work:
1. Application A sets savepoint S.
2. Application A calls stored procedure P.
3. Stored procedure P sets savepoint S.
4. Stored procedure P executes ROLLBACK TO SAVEPOINT S.

When DB2 executes ROLLBACK to SAVEPOINT S, DB2 rolls back work to the
savepoint that was set in the stored procedure because that value is the most
recent value of savepoint S.

If you do not want a savepoint to have different values within a unit of work, you
can use the UNIQUE option in the SAVEPOINT statement. If an application
executes a SAVEPOINT statement for a savepoint that was previously defined as
unique, an SQL error occurs.

Savepoints are automatically released at the end of a unit of work. However, if you
no longer need a savepoint before the end of a transaction, you should execute the
SQL RELEASE SAVEPOINT statement. Releasing savepoints is essential if you
need to use three-part names to access remote locations.

Restrictions on using savepoints: You cannot use savepoints in global transactions,
triggers, or user-defined functions, or in stored procedures, user-defined functions,
or triggers that are nested within triggers or user-defined functions.

For more information about the SAVEPOINT, ROLLBACK TO SAVEPOINT, and
RELEASE SAVEPOINT statements, see Chapter 5 of DB2 SQL Reference.

440 Application Programming and SQL Guide



Chapter 20. Planning to access distributed data

Distributed data is data that resides on some database management system (DBMS)
other than your local system. Your local DBMS is the one on which you bind your
application plan. All other DBMSs are remote.

This chapter assumes that you are requesting services from a remote DBMS. That
DBMS is a server in that situation, and your local system is a requester or client.

Your application can be connected to many DBMSs at one time; the one that is
currently performing work is the current server. When the local system is
performing work, it also is called the current server.

A remote server can be remote in the physical sense or it can be another subsystem
of the same operating system that your local DBMS runs under. This chapter
assumes that your local DBMS is an instance of DB2 UDB for z/OS. A remote
server might be an instance of DB2 UDB for z/OS also, or it might be an instance
of one of many other products.

A DBMS, whether local or remote, is known to your DB2 system by its location
name. The location name of a remote DBMS is recorded in the communications
database. For more information about location names or the communications
database, see Part 3 of DB2 Installation Guide.)

Authorization to connect to a remote server and to use resources there must be
granted at the server to the appropriate authorization ID. When the server is DB2
UDB for z/OS, see Part 3 (Volume 1) of DB2 Administration Guide for information
about authorization. For other servers, see the documentation for the appropriate
product.

For distributed applications that contain SQL statements that run at the requester,
you must include a DBRM that is either bound directly to a plan or to a package
that is included in the plan's package list at the requester.

Additionally, you must include a package at the server for any SQL statements that
run at the server. See Appendix C of DB2 SQL Reference for information about
which SQL statements are processed at the requester.

This chapter contains the following sections:
v “Planning for DRDA and DB2 private protocol access”
v “Coding methods for distributed data” on page 448
v “Coordinating updates to two or more data sources” on page 452
v “Maximizing performance for distributed data” on page 454
v “Working with distributed data” on page 465

Planning for DRDA and DB2 private protocol access
This section considers two methods for accessing distributed data: DRDA access
and DB2 private protocol access. In almost all cases, you should use DRDA access
instead of DB2 private protocol access.

© Copyright IBM Corp. 1983, 2012 441



Advantages of DRDA access
DRDA access has the following advantages over DB2 private protocol access:
v Integration: DRDA access is available to all DBMSs that implement Distributed

Relational Database Architecture™ (DRDA). Those include supported releases of
DB2 UDB for z/OS, other members of the DB2 UDB family of IBM products,
and many products of other companies.
DB2 private protocol access is available only to supported releases of DB2 UDB
for z/OS.

v SQL compatibility: DRDA access allows any statement that the server can
execute.
DB2 private protocol access supports only data manipulation statements:
INSERT, UPDATE, DELETE, SELECT, OPEN, FETCH, and CLOSE. In addition,
you cannot use any syntax of an SQL statement that was introduced after DB2
Version 7. You cannot invoke user-defined functions and stored procedures or
use LOBs or distinct types in applications that use DB2 private protocol access.

v Reduced network load: DRDA access uses a more compact format for sending
data over the network, which improves the performance on slow network links.

v Reduced bind processing: A DBRM for statements executed by DRDA access is
bound to a package at the server only once. Those statements can include
PREPARE and EXECUTE, so your application can accept dynamic statements
that are to be executed at the server. Binding the package is an extra step in
program preparation.
Queries that are sent by DB2 private protocol access are bound at the server
whenever they are first executed in a unit of work. Repeated binds can reduce
the performance of a query that is executed often.

v Stored procedures: You can use stored procedures with DRDA access. While a
stored procedure is running, it requires no message traffic over the network; this
reduces the biggest obstacle to high performance for distributed data.

v Scrollable cursors: You can use scrollable cursors if you use DRDA access.
v Savepoints: You can set savepoints, only if you use DRDA access with explicit

CONNECT statements. If you set a savepoint and then execute an SQL
statement with a three-part name, an SQL error occurs.
The site at which a savepoint is recognized depends on whether the CONNECT
statement is executed before or after the savepoint is set. For example, if an
application executes the statement SET SAVEPOINT C1 at the local site before it
executes a CONNECT TO S1 statement, savepoint C1 is known only at the local
site. If the application executes CONNECT to S1 before SET SAVEPOINT C1, the
savepoint is known only at site S1.
For more information about savepoints, see “Using savepoints to undo selected
changes within a unit of work” on page 439.

Moving from DB2 private protocol access to DRDA access
Recommendation: If you do not already use DRDA access, move from DB2 private
protocol access to DRDA access whenever possible. An application that uses DB2
private protocol access cannot include SQL statements that were added to DB2
after Version 7. Because DB2 supports three-part names, you can move to DRDA
access without modifying your applications. For any application that uses DB2
private protocol access, follow these steps to make the application use DRDA
access:
1. Determine which locations the application accesses.

442 Application Programming and SQL Guide

|
|
|

|
|
|



For static SQL applications, search for all SQL statements that include
three-part names and aliases for three-part names. For three-part names, the
high-level qualifier is the location name. For potential aliases, query the catalog
table SYSTABLES to determine whether the object is an alias, and if so, the
location name of the table that the alias represents. For example:
SELECT NAME, CREATOR, LOCATION, TBCREATOR, TBNAME

FROM SYSIBM.SYSTABLES
WHERE NAME=’name’
AND TYPE=’A’;

where name is the potential alias.
For dynamic SQL applications, bind packages at all remote locations that users
might access with three-part names.

2. Bind the application into a package at every location that is named in the
application. Also bind a package locally.
For an application that uses explicit CONNECT statements to connect to a
second site and then accesses a third site using a three-part name, bind a
package at the second site with DBPROTOCOL(DRDA), and bind another
package at the third site.

3. Bind all remote packages into a plan with the local package or DBRM. Bind
this plan with the option DBPROTOCOL(DRDA).

4. Ensure that aliases resolve correctly.
For DB2 private protocol access, DB2 resolves aliases at the requester site. For
DRDA access, however, DB2 resolves aliases at the site where the package
executes. Therefore, you might need to define aliases for three-part names at
remote locations.
For example, suppose you use DRDA access to run a program that contains this
statement:
SELECT * FROM MYALIAS;

MYALIAS is an alias for LOC2.MYID.MYTABLE. DB2 resolves MYALIAS at the
local site to determine that this statement needs to run at LOC2 but does not
send the resolved name to LOC2. When the statement executes at LOC2, DB2
resolves MYALIAS using the catalog at LOC2. If the catalog at LOC2 does not
contain the alias MYID.MYTABLE for MYALIAS, the SELECT statement does
not execute successfully.
This situation can become more complicated if you use three-part names to
access DB2 objects from remote sites. For example, suppose you are connected
explicitly to LOC2, and you use DRDA access to execute the following
statement:
SELECT * FROM YRALIAS;

YRALIAS is an alias for LOC3.MYID.MYTABLE. When this SELECT statement
executes at LOC3, both LOC2 and LOC3 must have an alias YRALIAS that
resolves to MYID.MYTABLE at location LOC3.

5. If you use the resource limit facility at the remote locations that are specified in
three-part names to control the amount of time that distributed dynamic SQL
statements run, modify the resource limit specification tables at those locations.
For DB2 private protocol access, you specify plan names to govern SQL
statements that originate at a remote location. For DRDA access, you specify
package names for this purpose. Therefore, you must add rows to your
resource limit specification tables at the remote locations for the packages you

Chapter 20. Planning to access distributed data 443



bound for DRDA access with three-part names. You should also delete the rows
that specify plan names for DB2 private protocol access.
For more information about the resource limit facility, see Part 5 (Volume 2) of
DB2 Administration Guide.

Bind processes for DRDA and DB2 private protocol access
The following examples explore different bind processes for DRDA and DB2
private protocol access.

Example: Suppose that you need to access data at a remote server CHICAGO, by
using the following query:
SELECT * FROM CHICAGO.DSN8810.EMP

WHERE EMPNO = ’0001000’;

This statement can be executed with DRDA access or DB2 private protocol access.
The method of access depends on whether you bind your DBRMs into packages
and on the value of the DATABASE PROTOCOL field in installation panel
DSNTIP5 or the value of bind option DBPROTOCOL. Bind option DBPROTOCOL
overrides the installation setting.

If you bind the DBRM that contains the statement into a plan at the local DB2 and
specify the bind option DBPROTOCOL(PRIVATE), you access the server by using
DB2 private protocol access.

If you bind the DBRM that contains the statement by using one of the following
processes, you access the server using DRDA access:

Local-bind DRDA access process:

1. Bind the DBRM into a package at the local DB2 using the bind option
DBPROTOCOL(DRDA).

2. Bind the DBRM into a package at the remote location (CHICAGO).
3. Bind the packages into a plan using bind option DBPROTOCOL(DRDA).

Remote-bind DRDA access process:

1. Bind the DBRM into a package at the remote location.
2. Bind the remote package and the DBRM into a plan at the local site, using the

bind option DBPROTOCOL(DRDA).

In some cases you cannot use private protocol to access distributed data. The
following examples require DRDA access.

Example: Suppose that you need to access data at a remote server CHICAGO, by
using the following CONNECT and SELECT statements:
EXEC SQL

CONNECT TO CHICAGO;
EXEC SQL SELECT * FROM DSN8810.EMP

WHERE EMPNO = ’0001000’;

This example requires DRDA access and the correct binding procedure to work
from a remote server. Before you can execute the query at location CHICAGO, you
must bind the application as a remote package at the CHICAGO server. Before you
can run the application, you must also bind a local package and a local plan with a
package list that includes the local and remote package.

444 Application Programming and SQL Guide

|
|



Example: Suppose that you need to call a stored procedure at the remote server
ATLANTA, by using the following CONNECT and CALL statements:
EXEC SQL

CONNECT TO ATLANTA;
EXEC SQL

CALL procedure_name (parameter_list);

This example requires DRDA access because private protocol does not support
stored procedures. The parameter list is a list of host variables that is passed to the
stored procedure and into which it returns the results of its execution. To execute,
the stored procedure must already exist at the ATLANTA server.

Precompiler and bind options for DRDA access
For the most part, binding a package to run at a remote location is like binding a
package to run at your local DB2 subsystem. Binding a plan to run the package is
like binding any other plan. For the general instructions, see Chapter 21,
“Preparing an application program to run,” on page 471. This section describes the
differences. For further information on improving the performance of distributed
data access with bind options, see “Using bind options to improve performance for
distributed applications” on page 456.

Precompiler options for DRDA access
The following precompiler options are relevant to preparing a package to be run
using DRDA access:

CONNECT
Use CONNECT(2), explicitly or by default.

CONNECT(1) causes your CONNECT statements to allow only the restricted
function known as “remote unit of work”. Be particularly careful to avoid
CONNECT(1) if your application updates more than one DBMS in a single
unit of work.

SQL
Use SQL(ALL) explicitly for a package that runs on a server that is not DB2
UDB for z/OS. The precompiler then accepts any statement that obeys DRDA
rules.

Use SQL(DB2), explicitly or by default, if the server is DB2 UDB for z/OS
only. The precompiler then rejects any statement that does not obey the rules
of DB2 UDB for z/OS.

BIND PLAN options for DRDA access
The following options of BIND PLAN are particularly relevant to binding a plan
that uses DRDA access:

DISCONNECT
For most flexibility, use DISCONNECT(EXPLICIT), explicitly or by default.
That requires you to use RELEASE statements in your program to explicitly
end connections.

The other values of the option are also useful.
DISCONNECT(AUTOMATIC) ends all remote connections during a
commit operation, without the need for RELEASE statements in your
program.
DISCONNECT(CONDITIONAL) ends remote connections during a
commit operation except when an open cursor defined as WITH HOLD is
associated with the connection.

Chapter 20. Planning to access distributed data 445



SQLRULES
Use SQLRULES(DB2), explicitly or by default.

SQLRULES(STD) applies the rules of the SQL standard to your CONNECT
statements, so that CONNECT TO x is an error if you are already connected to
x. Use STD only if you want that statement to return an error code.

If your program selects LOB data from a remote location, and you bind the
plan for the program with SQLRULES(DB2), the format in which you retrieve
the LOB data with a cursor is restricted. After you open the cursor to retrieve
the LOB data, you must retrieve all of the data using a LOB variable, or
retrieve all of the data using a LOB locator variable. If the value of SQLRULES
is STD, this restriction does not exist.

If you intend to switch between LOB variables and LOB locators to retrieve
data from a cursor, execute the SET SQLRULES=STD statement before you
connect to the remote location.

CURRENTDATA
Use CURRENTDATA(NO) to force block fetch for ambiguous cursors. See
“Using block fetch in distributed applications” on page 458 for more
information.

DBPROTOCOL
Use DBPROTOCOL(PRIVATE) if you want DB2 to use DB2 private protocol
access for accessing remote data that is specified with three-part names.

Use DBPROTOCOL(DRDA) if you want DB2 to use DRDA access to access
remote data that is specified with three-part names. You must bind a package
at all locations whose names are specified in three-part names.

The package value for the DBPROTOCOL option overrides the plan option.
For example, if you specify DBPROTOCOL(DRDA) for a remote package and
DBPROTOCOL(PRIVATE) for the plan, DB2 uses DRDA access when it
accesses data at that location using a three-part name. If you do not specify
any value for DBPROTOCOL, DB2 uses the value of DATABASE PROTOCOL
on installation panel DSNTIP5.

ENCODING
Use this option to control the encoding scheme that is used for static SQL
statements in the plan and to set the initial value of the CURRENT
APPLICATION ENCODING SCHEME special register.

For applications that execute remotely and use explicit CONNECT statements,
DB2 uses the ENCODING value for the plan. For applications that execute
remotely and use implicit CONNECT statements, DB2 uses the ENCODING
value for the package that is at the site where a statement executes.

BIND PACKAGE options for DRDA access
The following options of BIND PACKAGE are relevant to binding a package to be
run using DRDA access:

location-name
Name the location of the server at which the package runs.

The privileges needed to run the package must be granted to the owner of the
package at the server. If you are not the owner, you must also have SYSCTRL
authority or the BINDAGENT privilege that is granted locally.

SQLERROR
Use SQLERROR(CONTINUE) if you used SQL(ALL) when precompiling.
That creates a package even if the bind process finds SQL errors, such as

446 Application Programming and SQL Guide



statements that are valid on the remote server but that the precompiler did not
recognize. Otherwise, use SQLERROR(NOPACKAGE), explicitly or by default.

CURRENTDATA
Use CURRENTDATA(NO) to force block fetch for ambiguous cursors. See
“Using block fetch in distributed applications” on page 458 for more
information.

OPTIONS
When you make a remote copy of a package using BIND PACKAGE with the
COPY option, use this option to control the default bind options that DB2 uses.
Specify:

COMPOSITE to cause DB2 to use any options you specify in the BIND
PACKAGE command. For all other options, DB2 uses the options of the
copied package. COMPOSITE is the default.
COMMAND to cause DB2 to use the options you specify in the BIND
PACKAGE command. For all other options, DB2 uses the defaults for the
server on which the package is bound. This helps ensure that the server
supports the options with which the package is bound.

DBPROTOCOL
Use DBPROTOCOL(PRIVATE) if you want DB2 to use DB2 private protocol
access for accessing remote data that is specified with three-part names.

Use DBPROTOCOL(DRDA) if you want DB2 to use DRDA access to access
remote data that is specified with three-part names. You must bind a package
at all locations whose names are specified in three-part names.

These values override the value of DATABASE PROTOCOL on installation
panel DSNTIP5. Therefore, if the setting of DATABASE PROTOCOL at the
requester site specifies the type of remote access you want to use for three-part
names, you do not need to specify the DBPROTOCOL bind option.

ENCODING
Use this option to control the encoding scheme that is used for static SQL
statements in the package and to set the initial value of the CURRENT
APPLICATION ENCODING SCHEME special register.

The default ENCODING value for a package that is bound at a remote DB2
UDB for z/OS server is the system default for that server. The system default
is specified at installation time in the APPLICATION ENCODING field of
panel DSNTIPF.

For applications that execute remotely and use explicit CONNECT statements,
DB2 uses the ENCODING value for the plan. For applications that execute
remotely and use implicit CONNECT statements, DB2 uses the ENCODING
value for the package that is at the site where a statement executes.

Checking BIND PACKAGE options
You can request only the options of BIND PACKAGE that are supported by the
server by specifying those options at the requester and using the requester's syntax
for BIND PACKAGE. To find out which options are supported by a specific server
DBMS, refer to the documentation provided for that server.

For specific DB2 bind information, refer to the following documentation:
v For guidance in using DB2 bind options and performing a bind process, see

Chapter 21, “Preparing an application program to run,” on page 471.
v For the syntax of DB2 BIND and REBIND subcommands, see Part 3 of DB2

Command Reference.

Chapter 20. Planning to access distributed data 447



v For a list of DB2 bind options in generic terms, including options you cannot
request from DB2 but can use if you request from a non-DB2 server, see
Appendix I, “Program preparation options for remote packages,” on page 1127.

Coding methods for distributed data
You can use two primary coding methods to access distributed data:
v Three-part table names, as described in “Using three-part table names to access

distributed data.”
v Explicit connect statements, as described in “Using explicit CONNECT

statements to access distributed data” on page 450.

These two methods of coding applications for distributed access are illustrated by
the following example.

Example: Spiffy Computer has a master project table that supplies information
about all projects that are currently active throughout the company. Spiffy has
several branches in various locations around the world, each a DB2 location that
maintains a copy of the project table named DSN8810.PROJ. The main branch
location occasionally inserts data into all copies of the table. The application that
makes the inserts uses a table of location names. For each row that is inserted, the
application executes an INSERT statement in DSN8810.PROJ for each location.

Using three-part table names to access distributed data
You can use three-part table names to access data at a remote location through
DRDA access or DB2 private protocol access. When you use three-part table names,
the way you code your application is the same, regardless of the access method
you choose. You determine the access method when you bind the SQL statements
into a package or plan. If you use DRDA access, you must bind the DBRMs for the
SQL statements to be executed at the server to packages that reside at that server.

See “Binding packages at a remote location” on page 497 for information about
binding DBRMs at the server.

Recommendation: If you plan to port a distributed application that runs on a
z/OS client to another client, avoid the use of three-part names. If a client
application includes three-part names, and the z/OS client or Linux, UNIX, and
Windows client directly accesses a DB2 for Linux, UNIX, and Windows server, an
error occurs.

In a three-part table name, the first part denotes the location. The local DB2 makes
and breaks an implicit connection to a remote server as needed.

When a three-part name is parsed and forwarded to a remote location, any special
register settings are automatically propagated to remote server. This allows the
SQL statements to process the same way no matter at what site a statement is run.

Spiffy's application uses a location name to construct a three-part table name in an
INSERT statement. It then prepares the statement and executes it dynamically. (See
Chapter 24, “Coding dynamic SQL in application programs,” on page 595 for the
technique.) The values to be inserted are transmitted to the remote location and
substituted for the parameter markers in the INSERT statement.

The following overview shows how the application uses three-part names:

448 Application Programming and SQL Guide

#
#
#
#
#

|
|
|



Read input values
Do for all locations

Read location name
Set up statement to prepare
Prepare statement
Execute statement

End loop
Commit

After the application obtains a location name, for example 'SAN_JOSE', it next
creates the following character string:
INSERT INTO SAN_JOSE.DSN8810.PROJ VALUES (?,?,?,?,?,?,?,?)

The application assigns the character string to the variable INSERTX and then
executes these statements:
EXEC SQL

PREPARE STMT1 FROM :INSERTX;
EXEC SQL

EXECUTE STMT1 USING :PROJNO, :PROJNAME, :DEPTNO, :RESPEMP,
:PRSTAFF, :PRSTDATE, :PRENDATE, :MAJPROJ;

The host variables for Spiffy's project table match the declaration for the sample
project table in “Project table (DSN8810.PROJ)” on page 1002.

To keep the data consistent at all locations, the application commits the work only
when the loop has executed for all locations. Either every location has committed
the INSERT or, if a failure has prevented any location from inserting, all other
locations have rolled back the INSERT. (If a failure occurs during the commit
process, the entire unit of work can be indoubt.)

Recommendation: You might find it convenient to use aliases when creating
character strings that become prepared statements, instead of using full three-part
names like SAN_JOSE.DSN8810.PROJ. For information about aliases, see Chapter 5
of DB2 SQL Reference.

Three-part names and multiple servers
If you use a three-part name, or an alias that resolves to one, in a statement that is
executed at a remote server by DRDA access, and if the location name is not that
of the server, then the method by which the remote server accesses data at the
named location depends on the value of DBPROTOCOL. If the package at the first
remote server is bound with DBPROTOCOL(PRIVATE), DB2 uses DB2 private
protocol access to access the second remote server. If the package at the first
remote server is bound with DBPROTOCOL(DRDA), DB2 uses DRDA access to
access the second remote server. The following steps are recommended so that
access to the second remote server is by DRDA access:
1. Rebind the package at the first remote server with DBPROTOCOL(DRDA).
2. Bind the package that contains the three-part name at the second server.

Accessing declared temporary tables by using three-part names
You can access a remote declared temporary table by using a three-part name only
if you use DRDA access. However, if you combine explicit CONNECT statements
and three-part names in your application, a reference to a remote declared
temporary table must be a forward reference.

Example: You can perform the following series of actions, which includes a
forward reference to a declared temporary table:

Chapter 20. Planning to access distributed data 449



EXEC SQL CONNECT TO CHICAGO; /* Connect to the remote site */
EXEC SQL

DECLARE GLOBAL TEMPORARY TABLE T1 /* Define the temporary table */
(CHARCOL CHAR(6) NOT NULL); /* at the remote site */

EXEC SQL CONNECT RESET; /* Connect back to local site */
EXEC SQL INSERT INTO CHICAGO.SESSION.T1

(VALUES ’ABCDEF’); /* Access the temporary table*/
/* at the remote site (forward reference) */

However, you cannot perform the following series of actions, which includes a
backward reference to the declared temporary table:
EXEC SQL

DECLARE GLOBAL TEMPORARY TABLE T1 /* Define the temporary table */
(CHARCOL CHAR(6) NOT NULL); /* at the local site (ATLANTA)*/

EXEC SQL CONNECT TO CHICAGO; /* Connect to the remote site */
EXEC SQL INSERT INTO ATLANTA.SESSION.T1

(VALUES ’ABCDEF’); /* Cannot access temp table */
/* from the remote site (backward reference)*/

Using explicit CONNECT statements to access distributed
data

With this method, the application program explicitly connects to each new server.
You must bind the DBRMs for the SQL statements to be executed at the server to
packages that reside at that server.

In this example, Spiffy's application executes CONNECT for each server in turn,
and the server executes INSERT. In this case, the tables to be updated each have
the same name, although each table is defined at a different server. The application
executes the statements in a loop, with one iteration for each server.

The application connects to each new server by means of a host variable in the
CONNECT statement. CONNECT changes the special register CURRENT SERVER
to show the location of the new server. The values to insert in the table are
transmitted to a location as input host variables.

The following overview shows how the application uses explicit CONNECTs:
Read input values
Do for all locations

Read location name
Connect to location
Execute insert statement

End loop
Commit
Release all

For example, the application inserts a new location name into the variable
LOCATION_NAME and executes the following statements:
EXEC SQL

CONNECT TO :LOCATION_NAME;
EXEC SQL

INSERT INTO DSN8810.PROJ VALUES (:PROJNO, :PROJNAME, :DEPTNO, :RESPEMP,
:PRSTAFF, :PRSTDATE, :PRENDATE, :MAJPROJ);

To keep the data consistent at all locations, the application commits the work only
when the loop has executed for all locations. Either every location has committed
the INSERT or, if a failure has prevented any location from inserting, all other
locations have rolled back the INSERT. (If a failure occurs during the commit
process, the entire unit of work can be indoubt.)

450 Application Programming and SQL Guide



The host variables for Spiffy's project table match the declaration for the sample
project table in “Project table (DSN8810.PROJ)” on page 1002. LOCATION_NAME
is a character-string variable of length 16.

Using a location alias name for multiple sites
DB2 uses the DBALIAS value in the SYSIBM.LOCATIONS table to override the
location name that an application uses to access a server.

The DBALIAS column applies to DRDA connections only.

For example, suppose that an employee database is deployed across two sites and
that both sites make themselves known as location name EMPLOYEE. To access
each site, insert a row for each site into SYSIBM.LOCATIONS with the location
names SVL_EMPLOYEE and SJ_EMPLOYEE. Both rows contain EMPLOYEE as the
DBALIAS value. When an application issues a CONNECT TO SVL_EMPLOYEE
statement, DB2 searches the SYSIBM.LOCATIONS table to retrieve the location and
network attributes of the database server. Because the DBALIAS value is not blank,
DB2 uses the alias EMPLOYEE, and not the location name, to access the database.

If the application uses fully qualified object names in its SQL statements, DB2
sends the statements to the remote server without modification. For example,
suppose that the application issues the statement SELECT * FROM
SVL_EMPLOYEE.authid.table with the fully-qualified object name. However, DB2
accesses the remote server by using the EMPLOYEE alias. The remote server must
identify itself as both SVL_EMPLOYEE and EMPLOYEE; otherwise, it rejects the
SQL statement with a message indicating that the database is not found. If the
remote server is DB2, the location SVL_EMPLOYEE might be defined as a location
alias for EMPLOYEE. DB2 z/OS servers are defined with this alias by using the
DDF ALIAS statement of the DSNJU003 change log inventory utility. DB2 locally
executes any SQL statements that contain fully qualified object names if the
high-level qualifier is the location name or any of its alias names.

Releasing connections
When you connect to remote locations explicitly, you must also break those
connections explicitly. To break the connections, you can use the RELEASE
statement. The RELEASE statement differs from the CONNECT statement in the
following ways:
v While the CONNECT statement makes an immediate connection, the RELEASE

statement does not immediately break a connection. The RELEASE statement
labels connections for release at the next commit point. A connection that has
been labeled for release is in the release-pending state and can still be used before
the next commit point.

v While the CONNECT statement connects to exactly one remote system, you can
use the RELEASE statement to specify a single connection or a set of connections
for release at the next commit point.

Example: By using the RELEASE statement, you can place any of the following
connections in the release-pending state:
v A specific connection that the next unit of work does not use:

EXEC SQL RELEASE SPIFFY1;

v The current SQL connection, whatever its location name:
EXEC SQL RELEASE CURRENT;

v All connections except the local connection:
EXEC SQL RELEASE ALL;

Chapter 20. Planning to access distributed data 451

|
#
#

#

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#



v All DB2 private protocol connections. If the first phase of your application
program uses DB2 private protocol access and the second phase uses DRDA
access, open DB2 private protocol connections from the first phase could cause a
CONNECT operation to fail in the second phase. To prevent that error, execute
the following statement before the commit operation that separates the two
phases:
EXEC SQL RELEASE ALL PRIVATE;

PRIVATE refers to DB2 private protocol connections, which exist only between
instances of DB2 UDB for z/OS.

Coordinating updates to two or more data sources
Definition: Two or more updates are coordinated if they must all commit or all roll
back in the same unit of work. This situation is common in banking. Suppose that
an amount is subtracted from one account and added to another. The two actions
must either both commit or both roll back at the end of the unit of work.

Updates to two or more DBMSs can be coordinated automatically when both
systems implement a method called two-phase commit.

Recommendation: When you need to coordinate updates, work with systems that
implement two-phase commit.

DB2 and IMS, and DB2 and CICS, jointly implement a two-phase commit process.
You can update an IMS database and a DB2 table in the same unit of work. If a
system or communication failure occurs between committing the work on IMS and
on DB2, the two programs restore the two systems to a consistent point when
activity resumes.

Examples: The examples described in “Using three-part table names to access
distributed data” on page 448 and “Using explicit CONNECT statements to access
distributed data” on page 450 assume that all systems involved implement
two-phase commit. Both examples suggest updating several systems in a loop and
ending the unit of work by committing only when the loop is complete. In both
cases, updates are coordinated across the entire set of systems.

For more information about the two-phase commit process, see Part 4 (Volume 1)
of DB2 Administration Guide.

Working without two-phase commit
If you are accessing a mixture of systems, some of which might be restricted, you
can:
v Read from any of the systems at any time.
v Update any one system many times in one unit of work.
v Update many systems, including CICS or IMS, in one unit of work, provided

that none of them is a restricted system. If the first system you update in a unit
of work is not restricted, any attempt to update a restricted system in that unit
of work returns an error.

v Update one restricted system in a unit of work, provided that you do not try to
update any other system in the same unit of work. If the first system you update
in a unit of work is restricted, any attempt to update any other system in that
unit of work returns an error.

452 Application Programming and SQL Guide



Update restrictions on servers that do not support two-phase
commit

You cannot really have coordinated updates with a DBMS that does not implement
two-phase commit. In the description that follows, the DBMS is called a restricted
system. DB2 prevents you from updating both a restricted system and any other
system in the same unit of work. In this context, update includes the statements
INSERT, DELETE, UPDATE, CREATE, ALTER, DROP, GRANT, REVOKE,
RENAME, COMMENT, and LABEL.

To achieve the effect of coordinated updates with a restricted system, you must
first update one system and commit that work, and then update the second system
and commit its work. If a failure occurs after the first update is committed and
before the second update is committed, no automatic provision exists for bringing
the two systems back to a consistent point. Your program must perform that task.

CICS and IMS
You cannot update data at servers that do not support two-phase commit.

TSO and batch
You can update data if one of the following conditions is true:
v No other connections exist.
v All existing connections are to servers that are restricted to read-only

operations.

If neither condition is met, you are restricted to read-only operations.

If the first connection in a logical unit of work is to a server that supports
two-phase commit, and no connections exist or only read-only connections
exist, that server and all servers that support two-phase commit can update
data. However, if the first connection is to a server that does not support
two-phase commit, only that server is allowed to update data.

Recommendation: Rely on DB2 to prevent updates to two systems in the same
unit of work if either of them is a restricted system.

Forcing update restrictions by using CONNECT (Type 1)
You can restrict your program completely to the rules for restricted systems, by
using the type 1 rules for CONNECT. To put these rules into effect for a package,
use the precompiler option CONNECT(1). Be careful not to use packages that are
precompiled with CONNECT(1) and packages that are precompiled with
CONNECT(2) in the same package list. The first CONNECT statement that is
executed by your program determines which rules are in effect for the entire
execution: type 1 or type 2. An attempt to execute a later CONNECT statement
that is precompiled with the other type returns an error.

For more information about CONNECT (Type 1) and about managing connections
to other systems, see Chapter 1 of DB2 SQL Reference.

Chapter 20. Planning to access distributed data 453



Maximizing performance for distributed data
When your application access distributed data, you should pay particularly close
attention to performance. This section covers the following topics about
maximizing performance for distributed data:
v “Coding efficient queries”
v “Maximizing LOB performance in a distributed environment”
v “Using bind options to improve performance for distributed applications” on

page 456
v “Using block fetch in distributed applications” on page 458
v “Limiting the number of DRDA network transmissions” on page 461
v “Limiting the number of rows returned to DRDA clients” on page 464

Coding efficient queries
A query that is sent to a remote subsystem almost always takes longer to execute
than the same query that accesses tables of the same size on the local subsystem.
The principle causes are:
v Overhead processing, including startup, negotiating session limits, and, for DB2

private protocol access, the bind required at the remote location
v The time required to send messages across the network

To gain the greatest efficiency when accessing remote subsystems, write queries
that send few messages over the network:
v Reduce the number of columns and rows in the result table that is returned to

your application. Keep your SELECT lists as short as possible. Use WHERE,
GROUP BY, and HAVING clauses to eliminate unwanted data at the remote
server.

v Use FOR FETCH ONLY or FOR READ ONLY. For example, retrieving thousands
of rows as a continuous stream is reasonable. Sending a separate message for
each one can be significantly slower.

v When possible, do not bind application plans and packages with
ISOLATION(RR), even though that is the default. If your application does not
need to refer again to rows it has read once, another isolation level might reduce
lock contention and message overhead during COMMIT processing.

v Minimize the use of parameter markers. When your program package causes the
use of DRDA access, DB2 can streamline the processing of dynamic queries that
do not have parameter markers.
When a DB2 requester encounters a PREPARE statement for such a query, it
anticipates that the application is going to open a cursor. DB2 therefore sends a
single message to the server that contains a combined request for PREPARE,
DESCRIBE, and OPEN. A server that receives this message sequence will return
a reply message sequence that includes the output from the PREPARE,
DESCRIBE, and OPEN operations. As a result, the number of network messages
sent and received for these operations is reduced from two to one. DB2
combines messages for these queries regardless of whether the bind option
DEFER(PREPARE) is specified.

Maximizing LOB performance in a distributed environment
If you use DRDA access, you can access LOB columns in a remote table. Because
LOB values are usually quite large, you should use the following techniques for
data retrieval that minimize the number of bytes that are transferred between the
client and server:

454 Application Programming and SQL Guide



v Use LOB locators instead of LOB host variables: If you need to store only a
portion of a LOB value at the client, or if your client program manipulates the
LOB data but does not need a copy of it, LOB locators are a good choice. When
a client program retrieves a LOB column from a server into a locator, DB2
transfers only the 4-byte locator value to the client, not the entire LOB value. For
information about how to use LOB locators in an application, see “Using LOB
locators to save storage” on page 307.

v Use stored procedure result sets: When you return LOB data to a client program
from a stored procedure, use result sets, rather than passing the LOB data to the
client in parameters. Using result sets to return data causes less LOB
materialization and less movement of data among address spaces. For
information about how to write a stored procedure to return result sets, see
“Writing a stored procedure to return result sets to a DRDA client” on page 652.
For information about how to write a client program to receive result sets, see
“Writing a DB2 UDB for z/OS client program or SQL procedure to receive result
sets” on page 710.

v Set the CURRENT RULES special register to DB2: When a DB2 UDB for z/OS
server receives an OPEN request for a cursor, the server uses the value in the
CURRENT RULES special register to determine the type of host variables the
associated statement uses to retrieve LOB values. If you specify a value of DB2
for CURRENT RULES before you perform a CONNECT, and the first FETCH for
the cursor uses a LOB locator to retrieve LOB column values, DB2 lets you use
only LOB locators for all subsequent FETCH statements for that column until
you close the cursor. If the first FETCH uses a host variable, DB2 lets you use
only host variables for all subsequent FETCH statements for that column until
you close the cursor. However, if you set the value of CURRENT RULES to STD,
DB2 lets you use the same open cursor to fetch a LOB column into either a LOB
locator or a host variable.
Although a value of STD for CURRENT RULES gives you more programming
flexibility when you retrieve LOB data, you get better performance if you use a
value of DB2 for CURRENT RULES. With the STD option, the server must send
and receive network messages for each FETCH to indicate whether the data that
is being transferred is a LOB locator or a LOB value. With the DB2 option, the
server knows the size of the LOB data after the first FETCH, so an extra
message about LOB data size is unnecessary. The server can send multiple
blocks of data to the requester at one time, which reduces the total time for data
transfer.
Example: Suppose that an end user wants to browse through a large set of
employee records and look at pictures of only a few of those employees. At the
server, you set the CURRENT RULES special register to DB2. In the application,
you declare and open a cursor to select employee records. The application then
fetches all picture data into 4-byte LOB locators. Because DB2 knows that 4 bytes
of LOB data is returned for each FETCH, DB2 can fill the network buffers with
locators for many pictures. When a user wants to see a picture for a particular
person, the application can retrieve the picture from the server by assigning the
value that is referenced by the LOB locator to a LOB host variable:
SQL TYPE IS BLOB my_blob[1M];
SQL TYPE IS BLOB AS LOCATOR my_loc;...
FETCH C1 INTO :my_loc; /* Fetch BLOB into LOB locator */...
SET :my_blob = :my_loc; /* Assign BLOB to host variable */

Chapter 20. Planning to access distributed data 455



Using bind options to improve performance for distributed
applications

Your choice of these bind options can affect the performance of your distributed
applications:
v DEFER(PREPARE) or NODEFER(PREPARE)
v PKLIST
v REOPT(ALWAYS), REOPT(ONCE), or REOPT(NONE)
v CURRENTDATA(YES) or CURRENTDATA(NO)
v KEEPDYNAMIC(YES) or KEEPDYNAMIC(NO)
v DBPROTOCOL(PRIVATE) or DBPROTOCOL(DRDA)

DEFER(PREPARE)
To improve performance for both static and dynamic SQL used in DB2 private
protocol access, and for dynamic SQL in DRDA access, consider specifying the
option DEFER(PREPARE) when you bind or rebind your plans or packages.
Remember that statically bound SQL statements in DB2 private protocol access are
processed dynamically. When a dynamic SQL statement accesses remote data, the
PREPARE and EXECUTE statements can be transmitted over the network together
and processed at the remote location. Responses to both statements can be sent
together back to the local subsystem, thus reducing traffic on the network. DB2
does not prepare the dynamic SQL statement until the statement executes. (The
exception to this is dynamic SELECT, which combines PREPARE and DESCRIBE,
regardless of whether the DEFER(PREPARE) option is in effect.)

All PREPARE messages for dynamic SQL statements that refer to a remote object
will be deferred until one of these events occurs:
v The statement executes
v The application requests a description of the results of the statement

In general, when you defer PREPARE, DB2 returns SQLCODE 0 from PREPARE
statements. You must therefore code your application to handle any SQL codes that
might have been returned from the PREPARE statement after the associated
EXECUTE or DESCRIBE statement.

When you use predictive governing, the SQL code returned to the requester if the
server exceeds a predictive governing warning threshold depends on the level of
DRDA at the requester. See “Writing an application to handle predictive
governing” on page 604 for more information.

For DB2 private protocol access, when a static SQL statement refers to a remote
object, the transparent PREPARE statement and the EXECUTE statements are
automatically combined and transmitted across the network together. The
PREPARE statement is deferred only if you specify the bind option
DEFER(PREPARE).

PREPARE statements that contain INTO clauses are not deferred.

PKLIST
The order in which you specify package collections in a package list can affect the
performance of your application program. When a local instance of DB2 attempts
to execute an SQL statement at a remote server, the local DB2 subsystem must
determine which package collection the SQL statement is in. DB2 must send a
message to the server, requesting that the server check each collection ID for the
SQL statement, until the statement is found or no more collection IDs are in the
package list. You can reduce the amount of network traffic, and thereby improve

456 Application Programming and SQL Guide

|



performance, by reducing the number of package collections that each server must
search. The following examples show ways to reduce the collections to search:
v Reduce the number of packages per collection that must be searched. The

following example specifies only one package in each collection:
PKLIST(S1.COLLA.PGM1, S1.COLLB.PGM2)

v Reduce the number of package collections at each location that must be
searched. The following example specifies only one package collection at each
location:
PKLIST(S1.COLLA.*, S2.COLLB.*)

v Reduce the number of collections that are used for each application. The
following example specifies only one collection to search:
PKLIST(*.COLLA.*)

You can also specify the package collection that is associated with an SQL
statement in your application program. Execute the SQL statement SET CURRENT
PACKAGESET before you execute an SQL statement to tell DB2 which package
collection to search for the statement.

When you use DEFER(PREPARE) with DRDA access, the package containing the
statements whose preparation you want to defer must be the first qualifying entry
in the package search sequence that DB2 uses. (See “Identifying packages at run
time” on page 500 for more information.) For example, assume that the package
list for a plan contains two entries:
PKLIST(LOCB.COLLA.*, LOCB.COLLB.*)

If the intended package is in collection COLLB, ensure that DB2 searches that
collection first. You can do this by executing the SQL statement:
SET CURRENT PACKAGESET = ’COLLB’;

Alternatively, you can list COLLB first in the PKLIST parameter of BIND PLAN:
PKLIST(LOCB.COLLB.*, LOCB.COLLA.*)

For NODEFER(PREPARE), the collections in the package list can be in any order,
but if the package is not found in the first qualifying PKLIST entry, the result is
significant network overhead for searching through the list.

REOPT(ALWAYS)
When you specify REOPT(ALWAYS), DB2 determines access paths at both bind
time and run time for statements that contain one or more of the following
variables:
v Host variables
v Parameter markers
v Special registers

At run time, DB2 uses the values in those variables to determine the access paths.

If you specify the bind option REOPT(ALWAYS) or REOPT(ONCE), DB2 sets the
bind option DEFER(PREPARE) automatically. However, when you specify
REOPT(ONCE), DB2 determines the access path for a statement only once (at the
first run time).

Because of performance costs when DB2 reoptimizes the access path at run time,
you should use one of the following bind options:
v REOPT(ALWAYS) — use this option only on packages or plans that contain

statements that perform poorly because of a bad access path.

Chapter 20. Planning to access distributed data 457

|
|

|
|
|
|

|
|



v REOPT(ONCE) — use this option when the following conditions are true:
– You are using the dynamic statement cache.
– You have plans or packages that contain dynamic SQL statements that

perform poorly because of access path selection.
– Your dynamic SQL statements are executed many times with possibly

different input variables.
v REOPT(NONE) — use this option when you bind a plan or package that

contains statements that use DB2 private protocol access.

If you specify REOPT(ALWAYS) when you bind a plan that contains statements
that use DB2 private protocol access to access remote data, DB2 prepares those
statements twice. See “How bind options REOPT(ALWAYS) and REOPT(ONCE)
affect dynamic SQL” on page 627 for more information about REOPT(ALWAYS).

CURRENTDATA(NO)
Use this bind option to force block fetch for ambiguous queries. See “Using block
fetch in distributed applications” for more information about block fetch.

KEEPDYNAMIC(YES)
Use this bind option to improve performance for queries that use cursors defined
WITH HOLD. With KEEPDYNAMIC(YES), DB2 automatically closes the cursor
when no more data exists for retrieval. The client does not need to send a network
message to tell DB2 to close the cursor. For more information about
KEEPDYNAMIC(YES), see “Keeping prepared statements after commit points” on
page 601.

DBPROTOCOL(DRDA)
If the value of installation default DATABASE PROTOCOL is not DRDA, use this
bind option to cause DB2 to use DRDA access to execute SQL statements with
three-part names. Statements that use DRDA access perform better at execution
time because:
v Binding occurs when the package is bound, not during program execution.
v DB2 does not destroy static statement information at commit time, as it does

with DB2 private protocol access. This means that with DRDA access, if a
commit occurs between two executions of a statement, DB2 does not need to
prepare the statement twice.

Using block fetch in distributed applications
DB2 uses two different methods to reduce the number of messages that are sent
across the network when fetching data with a cursor:
v Limited block fetch optimizes data transfer by guaranteeing the transfer of a

minimum amount of data in response to each request from the requesting
system.

v Continuous block fetch sends a single request from the requester to the server. The
server fills a buffer with data it retrieves and transmits it back to the requester.
Processing at the requester is asynchronous with the server; the server continues
to send blocks of data to the requester with minimal or no further prompting.

For more information about block fetch, see Part 5 (Volume 2) of DB2
Administration Guide.

To use either type of block fetch, DB2 must determine that the cursor is not used
for updating or deleting. Indicate that the cursor does not modify data by adding

458 Application Programming and SQL Guide

|

|

|
|

|
|

|
|

|

|



FOR FETCH ONLY or FOR READ ONLY to the query in the DECLARE CURSOR
statement. If you do not use FOR FETCH ONLY or FOR READ ONLY, DB2 still
uses block fetch for the query if any of the following conditions are true:
v The cursor is a non-scrollable cursor, and the result table of the cursor is

read-only. (See Chapter 5 of DB2 SQL Reference for a description of read-only
tables.)

v The cursor is a scrollable cursor that is declared as INSENSITIVE, and the result
table of the cursor is read-only.

v The cursor is a scrollable cursor that is declared as SENSITIVE, the result table
of the cursor is read-only, and the value of bind option CURRENTDATA is NO.

v The result table of the cursor is not read-only, but the cursor is ambiguous, and
the value of bind option CURRENTDATA is NO. A cursor is ambiguous when
any of the following conditions are true:
– It is not defined with the clauses FOR FETCH ONLY, FOR READ ONLY, or

FOR UPDATE.
– It is not defined on a read-only result table.
– It is not the target of a WHERE CURRENT clause on an SQL UPDATE or

DELETE statement.
– It is in a plan or package that contains the SQL statements PREPARE or

EXECUTE IMMEDIATE.

DB2 does not use continuous block fetch if:
v The cursor is referred to in the statement DELETE WHERE CURRENT OF

elsewhere in the program.
v The cursor statement appears that it can be updated at the requesting system.

(DB2 does not check whether the cursor references a view at the server that
cannot be updated.)

When DB2 uses block fetch for non-scrollable cursors
Table 59 summarizes the conditions under which a DB2 server uses block fetch for
a non-scrollable cursor.

Table 59. Effect of CURRENTDATA and isolation level on block fetch for a non-scrollable
cursor

Isolation CURRENTDATA Cursor type Block fetch

CS, RR, or RS YES Read-only Yes

Updatable No

Ambiguous No

No Read-only Yes

Updatable No

Ambiguous Yes

UR Yes Read-only Yes

No Read-only Yes

When DB2 uses block fetch for scrollable cursors
Table 60 summarizes the conditions under which a DB2 server uses block fetch for
a scrollable cursor when the cursor is not used to retrieve result sets.

Chapter 20. Planning to access distributed data 459



Table 60. Effect of CURRENTDATA and isolation level on block fetch for a scrollable cursor
that is not used for a stored procedure result set

Isolation Cursor sensitivity CURRENTDATA Cursor type Block fetch

CS, RR, or RS INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only No

Updatable No

Ambiguous No

No Read-only Yes

Updatable No

Ambiguous Yes

UR INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only Yes

No Read-only Yes

Table 61 summarizes the conditions under which a DB2 server uses block fetch for
a scrollable cursor when the cursor is used to retrieve result sets.

Table 61. Effect of CURRENTDATA and isolation level on block fetch for a scrollable cursor
that is used for a stored procedure result set

Isolation Cursor sensitivity CURRENTDATA Cursor type Block fetch

CS, RR, or RS INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only No

No Read-only Yes

UR INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only Yes

No Read-only Yes

When a DB2 UDB for z/OS requester uses a scrollable cursor to retrieve data from
a DB2 UDB for z/OS server, the following conditions are true:
v The requester never requests more than 64 rows in a query block, even if more

rows fit in the query block. In addition, the requester never requests extra query
blocks. This is true even if the setting of field EXTRA BLOCKS REQ in the
DISTRIBUTED DATA FACILITY PANEL 2 installation panel on the requester
allows extra query blocks to be requested. If you want to limit the number of
rows that the server returns to fewer than 64, you can specify the FETCH FIRST
n ROWS ONLY clause when you declare the cursor.

v The requester discards rows of the result table if the application does not use
those rows. For example, if the application fetches row n and then fetches row
n+2, the requester discards row n+1. The application gets better performance for
a blocked scrollable cursor if it mostly scrolls forward, fetches most of the rows
in a query block, and avoids frequent switching between FETCH ABSOLUTE
statements with negative and positive values.

460 Application Programming and SQL Guide



v If the scrollable cursor does not use block fetch, the server returns one row for
each FETCH statement.

Limiting the number of DRDA network transmissions
You can use the clause OPTIMIZE FOR n ROWS in your SELECT statements to
limit the number of data rows that the server returns on each DRDA network
transmission. You can also use OPTIMIZE FOR n ROWS with query result sets
from stored procedures. OPTIMIZE FOR n ROWS has no effect on scrollable
cursors.

The number of rows that DB2 transmits on each network transmission depends on
the following factors:
v If n rows of the SQL result set fit within a single DRDA query block, a DB2

server can send n rows to any DRDA client. In this case, DB2 sends n rows in
each network transmission, until the entire query result set is exhausted.

v If n rows of the SQL result set exceed a single DRDA query block, the number of
rows that are contained in each network transmission depends on the client's
DRDA software level and configuration:
– If the client does not support extra query blocks, the DB2 server automatically

reduces the value of n to match the number of rows that fit within a DRDA
query block.

– If the client supports extra query blocks, the DRDA client can choose to
accept multiple DRDA query blocks in a single data transmission. DRDA
allows the client to establish an upper limit on the number of DRDA query
blocks in each network transmission.
The number of rows that a DB2 server sends is the smaller of n rows and the
number of rows that fit within the lesser of these two limitations:
- The value of EXTRA BLOCKS SRV in install panel DSNTIP5 at the DB2

server
This is the maximum number of extra DRDA query blocks that the DB2
server returns to a client in a single network transmission.

- The client's extra query block limit, which is obtained from the DDM
MAXBLKEXT parameter that is received from the client
When DB2 acts as a DRDA client, the DDM MAXBLKEXT parameter is set
to the value that is specified on the EXTRA BLOCKS REQ install option of
the DSNTIP5 install panel.

The OPTIMIZE FOR n ROWS clause is useful in two cases:
v If n is less than the number of rows that fit in the DRDA query block,

OPTIMIZE FOR n ROWS can improve performance by preventing the DB2
server from fetching rows that might never be used by the DRDA client
application.

v If n is greater than the number of rows that fit in a DRDA query block,
OPTIMIZE FOR n ROWS lets the DRDA client request multiple blocks of query
data on each network transmission. This use of OPTIMIZE FOR n ROWS can
significantly improve elapsed time for large query download operations.

Specifying a large value for n in OPTIMIZE FOR n ROWS can increase the number
of DRDA query blocks that a DB2 server returns in each network transmission.
This function can significantly improve performance for applications that use
DRDA access to download large amounts of data. However, this same function can

Chapter 20. Planning to access distributed data 461

|
|



degrade performance if you do not use it properly. The following examples
demonstrate the performance problems that can occur when you do not use
OPTIMIZE FOR n ROWS judiciously.

In Figure 149,, the DRDA client opens a cursor and fetches rows from the cursor.
At some point before all rows in the query result set are returned, the application
issues an SQL INSERT. DB2 uses normal DRDA blocking, which has two
advantages over the blocking that is used for OPTIMIZE FOR n ROWS:
v If the application issues an SQL statement other than FETCH (the example

shows an INSERT statement), the DRDA client can transmit the SQL statement
immediately, because the DRDA connection is not in use after the SQL OPEN.

v If the SQL application closes the cursor before fetching all the rows in the query
result set, the server fetches only the number of rows that fit in one query block,
which is 100 rows of the result set. Basically, the DRDA query block size places
an upper limit on the number of rows that are fetched unnecessarily.

In Figure 150 on page 463,, the DRDA client opens a cursor and fetches rows from
the cursor using OPTIMIZE FOR n ROWS. Both the DRDA client and the DB2
server are configured to support multiple DRDA query blocks. At some time before
the end of the query result set, the application issues an SQL INSERT. Because
OPTIMIZE FOR n ROWS is being used, the DRDA connection is not available
when the SQL INSERT is issued because the connection is still being used to
receive the DRDA query blocks for 1000 rows of data. This causes two
performance problems:
v Application elapsed time can increase if the DRDA client waits for a large query

result set to be transmitted, before the DRDA connection can be used for other
SQL statements. Figure 150 on page 463 shows how an SQL INSERT statement
can be delayed because of a large query result set.

v If the application closes the cursor before fetching all the rows in the SQL result
set, the server might fetch a large number of rows unnecessarily.

Server processes

INSERT statement

DRDA client DB2 server

DECLARE C1 CURSOR

FOR SELECT * FROM T1

FOR FETCH ONLY;

OPEN C1;

FETCH C1 INTO ...;

FETCH C1 INTO ...;

INSERT INTO ...;

SQL cursor is opened

Query block with 100

rows is returned

Figure 149. Message flows without OPTIMIZE FOR n ROWS

462 Application Programming and SQL Guide



Recommendation: OPTIMIZE FOR n ROWS should be used to increase the
number of DRDA query blocks only in applications that have all of these
attributes:
v The application fetches a large number of rows from a read-only query.
v The application rarely closes the SQL cursor before fetching the entire query

result set.
v The application does not issue statements other than FETCH to the DB2 server

while the SQL cursor is open.
v The application does not execute FETCH statements for multiple cursors that are

open concurrently and defined with OPTIMIZE FOR n ROWS.
v The application does not need to scroll randomly through the data. OPTIMIZE

FOR n ROWS has no effect on a scrollable cursor.

For more information about OPTIMIZE FOR n ROWS, see “Minimizing overhead
for retrieving few rows: OPTIMIZE FOR n ROWS” on page 778.

DRDA client DB2 server

DECLARE C1 CURSOR

FOR SELECT * FROM T1

OPTIMIZE FOR

1000 ROWS;

OPEN C1;

FETCH C1 INTO ...;

FETCH C1 INTO ...;
.
.
.

INSERT INTO ...;

SQL cursor is opened

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Query block with 100

rows is returned

Server processes

INSERT statement

Figure 150. Message flows with OPTIMIZE FOR 1000 ROWS

Chapter 20. Planning to access distributed data 463



Limiting the number of rows returned to DRDA clients
You can use the FETCH FIRST n ROWS ONLY clause of a SELECT statement to
limit the number of rows that are returned to a client program. FETCH FIRST n
ROWS ONLY improves performance of DRDA client applications when the client
needs no more than n rows from a potentially large result table.

If you specify FETCH FIRST n ROWS ONLY and do not specify OPTIMIZE FOR n
ROWS, the access path for the statement will use the value that is specified for
FETCH FIRST n ROWS ONLY for optimization. However, DRDA will not consider
the value when it determines network blocking.

When you specify both the FETCH FIRST n ROWS ONLY clause and the
OPTIMIZE FOR m ROWS clause in a statement, DB2 uses the value that you
specify for OPTIMIZE FOR m ROWS, even if that value is larger than the value
that you specify for the FETCH FIRST n ROWS ONLY clause.

Fast implicit close and FETCH FIRST n ROWS ONLY
Fast implicit close means that during a distributed query, the DB2 server
automatically closes the cursor after it prefetches the nth row if you specify FETCH
FIRST n ROWS ONLY, or when there are no more rows to return. Fast implicit
close can improve performance because it saves an additional network
transmission between the client and the server.

DB2 uses fast implicit close when the following conditions are true:
v The query uses limited block fetch.
v The query retrieves no LOBs.
v The cursor is not a scrollable cursor.
v Either of the following conditions is true:

– The cursor is declared WITH HOLD, and the package or plan that contains
the cursor is bound with the KEEPDYNAMIC(YES) option.

– The cursor is not defined WITH HOLD.

When you use FETCH FIRST n ROWS ONLY, and DB2 does a fast implicit close,
the DB2 server closes the cursor after it prefetches the nth row, or when there are
no more rows to return.

Example of FETCH FIRST n ROWS ONLY
In a DRDA environment, the following SQL statement causes DB2 to prefetch 16
rows of the result table even though n has a value of 1.
SELECT * FROM EMP
OPTIMIZE FOR 1 ROW ONLY;

For OPTIMIZE FOR n ROWS, when n is 1, 2, or 3, DB2 uses the value 16 (instead
of n) for network blocking and prefetches 16 rows. As a result, network usage is
more efficient even though DB2 uses the small value of n for query optimization.

Suppose that you need only one row of the result table. To avoid 15 unnecessary
prefetches, add the FETCH FIRST 1 ROW ONLY clause:
SELECT * FROM EMP
OPTIMIZE FOR 1 ROW ONLY
FETCH FIRST 1 ROW ONLY;

464 Application Programming and SQL Guide

|
|
|
|

|
|
|
|



Limiting the number of rows with the rowset parameter
The rowset parameter can be used in ODBC and JDBC applications on some
platforms to limit the number of rows that are returned from a fetch operation. If a
DRDA requester sends the rowset parameter to a DB2 UDB for z/OS server, the
server does the following things:
v Returns no more than the number of rows in the rowset parameter
v Returns extra query blocks if the value of field EXTRA BLOCKS SRV in the

DISTRIBUTED DATA FACILITY PANEL 2 installation panel on the server allows
extra query blocks to be returned

v Processes the FETCH FIRST n ROWS ONLY clause, if it is specified
v Does not process the OPTIMIZE FOR n ROWS clause

Working with distributed data
The following sectionsdiscuss various issues related to working with data in a
distributed environment:
v “SQL limitations at dissimilar servers”
v “Executing long SQL statements in a distributed environment” on page 466
v “Retrieving data from ASCII or Unicode tables” on page 466
v “Accessing data with a scrollable cursor when the requester is down-level” on

page 467
v “Accessing data with a rowset-positioned cursor when the requester is

down-level” on page 467
v “Maintaining data currency by using cursors” on page 467
v “Copying a table from a remote location” on page 467
v “Transmitting mixed data” on page 467

SQL limitations at dissimilar servers
Generally, a program that uses DRDA access can use SQL statements and clauses
that are supported by a remote server, even if they are not supported by the local
server. DB2 SQL Reference tells what DB2 UDB for z/OS supports; similar
documentation is usually available for other products. The following examples
suggest what to expect from dissimilar servers:
v They support SELECT, INSERT, UPDATE, DELETE, DECLARE CURSOR, and

FETCH, but details vary.
Example: In an UPDATE statement for DB2 UDB for z/OS, you cannot use
DEFAULT on the right side of the assignment clause; for DB2 UDB for LUW,
you can use DEFAULT. Any UPDATE statement that uses DEFAULT as the
value to be assigned cannot run across all platforms.

v Data definition statements vary more widely.
Example: DB2 UDB for z/OS supports ROWID columns; DB2 UDB for LUW
does not support ROWID columns. Any data definition statements that use
ROWID columns cannot run across all platforms.

v Statements can have different limits.
Example: A query in DB2 UDB for z/OS can have 750 columns; for other
systems, the maximum is higher. But a query using 750 or fewer columns could
execute in all systems.

v Some statements are not sent to the server but are processed completely by the
requester. You cannot use those statements in a remote package even though the

Chapter 20. Planning to access distributed data 465



server supports them. For a list of those statements, see Appendix H,
“Characteristics of SQL statements in DB2 UDB for z/OS,” on page 1117.

v In general, if a statement to be executed at a remote server contains host
variables, a DB2 requester assumes them to be input host variables unless it
supports the syntax of the statement and can determine otherwise. If the
assumption is not valid, the server rejects the statement.

Executing long SQL statements in a distributed environment
Remote access allows large SQL statements to flow between the requester and the
server. With this support, a distributed application can send prepared SQL
statements greater than 32 KB to the server. If the statements are greater than 32
KB, the server must support these long statements. If you are using DB2 private
protocol access, long SQL statements are not supported.

If a distributed application assigns an SQL statement to a DBCLOB (UTF-16)
variable and sends the prepared statement to a remote server, the remote DB2
server converts it to UTF-8. If the remote server does not support UTF-8, the
requester converts the statement to the system EBCDIC CCSID before sending it to
the remote server.

Retrieving data from ASCII or Unicode tables
When you perform a distributed query, the server determines the encoding scheme
of the result table. When a distributed query against an ASCII or Unicode table
arrives at the DB2 UDB for z/OS server, the server indicates in the reply message
that the columns of the result table contain ASCII or Unicode data, rather than
EBCDIC data. The reply message also includes the CCSIDs of the data to be
returned. The CCSID of data from a column is the CCSID that was in effect when
the column was defined.

The encoding scheme in which DB2 returns data depends on two factors:
v The encoding scheme of the requesting system.

If the requester is ASCII or Unicode, the returned data is ASCII or Unicode. If
the requester is EBCDIC, the returned data is EBCDIC, even though it is stored
at the server as ASCII or Unicode. However, if the SELECT statement that is
used to retrieve the data contains an ORDER BY clause, the data displays in
ASCII or Unicode order.

v Whether the application program overrides the CCSID for the returned data. The
ways to do this are as follows:
– For static SQL

You can bind a plan or package with the ENCODING bind option to control
the CCSIDs for all static data in that plan or package. For example, if you
specify ENCODING(UNICODE) when you bind a package at a remote DB2
UDB for z/OS system, the data that is returned in host variables from the
remote system is encoded in the default Unicode CCSID for that system.
See Part 2 of DB2 Command Reference for more information about the
ENCODING bind options.

– For static or dynamic SQL
An application program can specify overriding CCSIDs for individual host
variables in DECLARE VARIABLE statements. See “Changing the coded
character set ID of host variables” on page 85 for information about how to
specify the CCSID for a host variable.

466 Application Programming and SQL Guide

|

|
|
|
|
|

|
|
|
|
|



An application program that uses an SQLDA can specify an overriding
CCSID for the returned data in the SQLDA. When the application program
executes a FETCH statement, you receive the data in the CCSID that is
specified in the SQLDA. See “Changing the CCSID for retrieved data” on
page 621 for information about how to specify an overriding CCSID in an
SQLDA.

Accessing data with a scrollable cursor when the requester is
down-level

If a DB2 UDB for z/OS server processes an OPEN cursor statement for a scrollable
cursor, and the OPEN cursor statement comes from a requester that does not
support scrollable cursors, the DB2 UDB for z/OS server returns an SQL error.
However, if a stored procedure at the server uses a scrollable cursor to return a
result set, the down-level requester can access data through that cursor. The DB2
UDB for z/OS server converts the scrollable result set cursor to a non-scrollable
cursor. The requester can retrieve the data using sequential FETCH statements.

Accessing data with a rowset-positioned cursor when the
requester is down-level

If a DB2 UDB for z/OS server processes an OPEN cursor statement for a
rowset-positioned cursor, and the OPEN cursor statement comes from a requester
that does not support rowset-positioned cursors, the DB2 UDB for z/OS server
returns an SQL error. However, if a stored procedure at the server uses a
rowset-positioned cursor to return a result set, the down-level requester can access
data through that cursor by using row-positioned FETCH statements.

Maintaining data currency by using cursors
Cursors bound with cursor stability that are used in block fetch operations are
particularly vulnerable to reading data that has already changed. In a block fetch,
database access prefetches rows ahead of the row retrieval controlled by the
application. During that time the cursor might close, and the locks might be
released, before the application receives the data. Thus, it is possible for the
application to fetch a row of values that no longer exists, or to miss a recently
inserted row. In many cases, that is acceptable; a case for which it is not acceptable
is said to require data currency.

If your application requires data currency for a cursor, you need to prevent block
fetching for the data to which it points. To prevent block fetching for a distributed
cursor, declare the cursor with the FOR UPDATE clause.

Copying a table from a remote location
To copy a table from one location to another, you can either write your own
application program or use the DB2 DataPropagator product.

Transmitting mixed data
If you transmit mixed data between your local system and a remote system, put
the data in varying-length character strings instead of fixed-length character
strings.

Converting mixed data
When ASCII MIXED data or Unicode MIXED data is converted to EBCDIC
MIXED, the converted string is longer than the source string. An error occurs if

Chapter 20. Planning to access distributed data 467

|

|

|
|
|
|
|
|



that conversion is performed on a fixed-length input host variable. The remedy is
to use a varying-length string variable with a maximum length that is sufficient to
contain the expansion.

Identifying the server at run time
The special register CURRENT SERVER contains the location name of the system
you are connected to. You can assign that name to a host variable with a statement
like this:
EXEC SQL SET :CS = CURRENT SERVER;

468 Application Programming and SQL Guide



Part 5. Developing your application
Chapter 21. Preparing an application program to run . . . . . . . . . . . . . . . . . . . . 471
Steps in program preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Step 1: Process SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Using the DB2 precompiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Using the DB2 coprocessor for C programs . . . . . . . . . . . . . . . . . . . . . . 478
Using the DB2 coprocessor for C++ programs . . . . . . . . . . . . . . . . . . . . . 479
Using the DB2 coprocessor for COBOL programs . . . . . . . . . . . . . . . . . . . . 480
DB2 coprocessor for PL/I programs . . . . . . . . . . . . . . . . . . . . . . . . . 482
Differences between the DB2 precompiler and DB2 coprocessor . . . . . . . . . . . . . . . 482
Options for SQL statement processing . . . . . . . . . . . . . . . . . . . . . . . . 484
Translating command-level statements in a CICS program . . . . . . . . . . . . . . . . . 494

Step 2: Compile (or assemble) and link-edit the application . . . . . . . . . . . . . . . . . . 495
Step 3: Bind the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Binding a DBRM to a package. . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Binding an application plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Identifying packages at run time . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Using BIND and REBIND options for packages and plans . . . . . . . . . . . . . . . . . 504
Using packages with dynamic plan selection . . . . . . . . . . . . . . . . . . . . . . 508

Step 4: Run the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
DSN command processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Running a program in TSO foreground. . . . . . . . . . . . . . . . . . . . . . . . 510
Running a batch DB2 application in TSO . . . . . . . . . . . . . . . . . . . . . . . 511
Calling applications in a command procedure (CLIST). . . . . . . . . . . . . . . . . . . 512
Running a DB2 REXX application . . . . . . . . . . . . . . . . . . . . . . . . . 513

Using JCL procedures to prepare applications . . . . . . . . . . . . . . . . . . . . . . . 513
Available JCL procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
Including code from SYSLIB data sets . . . . . . . . . . . . . . . . . . . . . . . . . 514
Starting the precompiler dynamically . . . . . . . . . . . . . . . . . . . . . . . . . 515

Precompiler option list format . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
DDNAME list format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Page number format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

An alternative method for preparing a CICS program . . . . . . . . . . . . . . . . . . . . 517
Using JCL to prepare a program with object-oriented extensions . . . . . . . . . . . . . . . . 518

Using ISPF and DB2 Interactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
DB2I help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
DB2I Primary Option Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
DB2 Program Preparation panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
DB2I Defaults Panel 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
DB2I Defaults Panel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
Precompile panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Bind/Rebind/Free selection panel . . . . . . . . . . . . . . . . . . . . . . . . . . 532
Bind Package panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Bind Plan panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Rebind Package panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Rebind Trigger Package panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Rebind Plan panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Free Package panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Free Plan panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
The Defaults for Bind or Rebind Package or Plan panels . . . . . . . . . . . . . . . . . . . 547
System Connection Types panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Panels for entering lists of values. . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Program Preparation: Compile, Link, and Run panel . . . . . . . . . . . . . . . . . . . . 554
The Run panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Chapter 22. Testing an application program . . . . . . . . . . . . . . . . . . . . . . . 559
Establishing a test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

© Copyright IBM Corp. 1983, 2012 469

##
##
##
##
##



Designing a test data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Analyzing application data needs . . . . . . . . . . . . . . . . . . . . . . . . . 559
Obtaining authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
Creating a comprehensive test structure . . . . . . . . . . . . . . . . . . . . . . . 561

Filling the tables with test data . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
Testing SQL statements using SPUFI. . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Debugging your program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Debugging programs in TSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Language test facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
The TSO TEST command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Debugging programs in IMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
Debugging programs in CICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Debugging aids for CICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
CICS execution diagnostic facility . . . . . . . . . . . . . . . . . . . . . . . . . 565

Locating the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Analyzing error and warning messages from the precompiler . . . . . . . . . . . . . . . . . 569
SYSTERM output from the precompiler . . . . . . . . . . . . . . . . . . . . . . . . 569
SYSPRINT output from the precompiler . . . . . . . . . . . . . . . . . . . . . . . . 570

Chapter 23. Processing DL/I batch applications . . . . . . . . . . . . . . . . . . . . . . 575
Planning to use DL/I batch applications . . . . . . . . . . . . . . . . . . . . . . . . . 575

Features and functions of DB2 DL/I batch support . . . . . . . . . . . . . . . . . . . . . 575
Requirements for using DB2 in a DL/I batch job . . . . . . . . . . . . . . . . . . . . . 576
Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

Program design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Address spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Commits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
SQL statements and IMS calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
Checkpoint calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
Application program synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 577
Checkpoint and XRST considerations . . . . . . . . . . . . . . . . . . . . . . . . . 577
Synchronization call abends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Input and output data sets for DL/I batch jobs . . . . . . . . . . . . . . . . . . . . . . . 578
DB2 DL/I batch input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
DB2 DL/I batch output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

Preparation guidelines for DL/I batch programs . . . . . . . . . . . . . . . . . . . . . . 580
Precompiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Link-editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Loading and running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

Submitting a DL/I batch application using DSNMTV01 . . . . . . . . . . . . . . . . . . 581
Submitting a DL/I batch application without using DSNMTV01 . . . . . . . . . . . . . . . 582

Restart and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
JCL example of a batch backout . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
JCL example of restarting a DL/I batch job . . . . . . . . . . . . . . . . . . . . . . . 583
Finding the DL/I batch checkpoint ID . . . . . . . . . . . . . . . . . . . . . . . . . 584

470 Application Programming and SQL Guide



Chapter 21. Preparing an application program to run

DB2 applications require different methods of program preparation depending on
the type of the application:
v Applications that contain embedded static or dynamic SQL statements
v Applications that contain ODBC calls
v Applications in interpreted languages, such as REXX
v Java applications, which can contain JDBC calls or embedded SQL statements

Before you can run DB2 applications of the first type, you must precompile,
compile, link-edit, and bind them. This chapter details the steps needed to prepare
and run this type of application program; see “Steps in program preparation” on
page 472.

You can control the steps in program preparation by using the following methods:
v “Using JCL procedures to prepare applications” on page 513
v “Using ISPF and DB2 Interactive” on page 519

For information about applications with ODBC calls that pass dynamic SQL
statements as arguments, see DB2 ODBC Guide and Reference.

For information about running REXX programs, which you do not prepare for
execution, see “Running a DB2 REXX application” on page 513.

For information about preparing and running Java programs, see DB2 Application
Programming Guide and Reference for Java.

Productivity hint: To avoid rework, first test your SQL statements using SPUFI,
and then compile your program without SQL statements and resolve all compiler
errors. Then proceed with the preparation and the DB2 precompile and bind steps.

SQL statement processing: Because most compilers do not recognize SQL
statements, you can use the DB2 precompiler before you compile the program to
prevent compiler errors. The other alternative is to use a host language SQL
coprocessor. (An SQL coprocessor performs DB2 precompiler functions at compile
time.) The precompiler scans the program and returns modified source code, which
you can then compile and link edit. The precompiler also produces a DBRM
(database request module). Bind this DBRM to a package or plan using the BIND
subcommand. (For information about packages and plans, see Chapter 17,
“Planning for DB2 program preparation,” on page 381.) When you complete these
steps, you can run your DB2 application.

CCSID conversion of source programs: If the SQL statements of your source
program are not in Unicode UTF-8, the DB2 Version 8 precompiler converts them
to UTF-8 for parsing. The precompiler uses the source CCSID(n) value, as
described in Table 64 on page 485, to convert from that CCSID to CCSID 1208
(UTF-8). If you want to prepare a source program that is written in a CCSID that
cannot be directly converted to or from CCSID 1208, you must create an indirect
conversion. For information about indirect conversions, see z/OS Support for
Unicode.

Dependencies and binding for DB2 Version 8: Table 62 on page 472 summarizes the
relationship between characteristics of SQL processing in source programs and the

© Copyright IBM Corp. 1983, 2012 471

|

|

|
|



ability to bind in various DB2 releases and modes. This relationship is affected by
the SQL processing option NEWFUN and the new-function mode of DB2 Version
8:
v If you use the option NEWFUN(NO), the SQL statements in the DBRM use

EBCDIC. As a result, the DBRM is not a DB2 Version 8 object. DB2 Version 7
and earlier releases can bind the DBRM. NEWFUN(NO) causes the compiler to
reject any DB2 Version 8 functions.

v If you use the option NEWFUN(YES) to process the SQL statements in your
program, the SQL statements in the DBRM use Unicode UTF-8. As a result, the
DBRM is a DB2 Version 8 object even if the application program does not use
any DB2 Version 8 functions. Therefore, the DBRM is Version 8 dependent. DB2
Version 8 can bind the DBRM; DB2 Version 7 and earlier releases cannot bind
the DBRM. Version 8 can bind the DBRM even before Version 8 new-function
mode if the DBRM does not use any DB2 Version 8 functions.

v If the application program uses DB2 Version 8 functions, Version 8 can bind the
DBRM only in new-function mode for Version 8 (or later). If the program does
not use any DB2 Version 8 functions, Version 8 can bind the DBRM even before
Version 8 new-function mode.

Table 62. Dependencies and binding for DB2 Version 8

Value of NEWFUN NO1 YES2 YES3

Is the DBRM a DB2 Version 8 object and dependent on DB2 Version 8? No Yes Yes

Can DB2 Version 7, or an earlier release, bind the DBRM? Yes No No

Can DB2 Version 8 bind before DB2 Version 8 new-function mode? Yes Yes No

Can DB2 Version 8 bind while in DB2 Version 8 new-function mode? Yes Yes Yes

Notes:

1. The DBRM is created with NEWFUN(NO), which prevents the use of DB2 Version 8 functions.

2. The DBRM is created with NEWFUN(YES), although the program does not use any DB2 Version 8 functions.

3. The DBRM is created with NEWFUN(YES), and the program uses DB2 Version 8 functions.

For more information about the NEWFUN option, see Table 64 on page 485. For
information about DB2 Version 8 new-function mode, see DB2 Installation Guide.
For information about the DSNHPC7 precompiler, see the Installation guide.

Steps in program preparation
The following sections provide details on preparing and running a DB2
application:

“Step 1: Process SQL statements” on page 473
“Step 2: Compile (or assemble) and link-edit the application” on page 495
“Step 3: Bind the application” on page 496
“Step 4: Run the application” on page 509.

As described in Chapter 17, “Planning for DB2 program preparation,” on page 381,
binding a package is not necessary in all cases. In these instructions, it is assumed
that you bind some of your DBRMs into packages and include a package list in
your plan.

If you use CICS, you might need additional steps; see:
v “Translating command-level statements in a CICS program” on page 494
v “Calling applications in a command procedure (CLIST)” on page 512

472 Application Programming and SQL Guide

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

||

||||

||||

||||

||||

||||

|

|

|

|
|



Step 1: Process SQL statements
One step in preparing an SQL application to run is processing SQL statements in
the program. The SQL statements must be replaced with calls to DB2 language
interface modules, and a DBRM must be created.

For assembler or Fortran applications, use the DB2 precompiler to prepare the SQL
statements. See “Using the DB2 precompiler” on page 474.

For C, C++, COBOL, or PL/I applications, you can use one of the following
techniques to process SQL statements:
v Use the DB2 precompiler before you compile your program.

You can use this technique with any version of C or C++, COBOL, or PL/I.
v Invoke the DB2 coprocessor for the host language that you are using as you

compile your program:
– For C/C++, invoke the DB2 coprocessor by specifying the SQL compiler

option. For C, you need z/OS C/C++ Version 1 Release 5 with APAR
PK14587. For C++, you need z/OS C/C++ Version 1 Release 6 with APAR
PK31682. You can also use later versions of z/OS C/C++ with the appropriate
APARs applied. For a list of those required C/C++ APARs, seeDB2 Program
Directory. For more information about how to use the C/C++ DB2
coprocessor, see z/OS C/C++ Programming Guide for Version 1 Release 5 or
later.

– For COBOL, invoke the DB2 coprocessor by specifying the SQL compiler
option. You need Enterprise COBOL Version 3 Release 2 or later. If your
application requires DB2 Version 8 new functions, you also need COBOL
APAR PQ83744 for Enterprise COBOL Version 3 Release 2. For more
information about using the COBOL DB2 coprocessor, see “Using the DB2
coprocessor for COBOL programs” on page 480 and Enterprise COBOL for
z/OS Programming Guidefor Version 3 Release 2 or later.

– For PL/I, invoke the DB2 coprocessor by specifying the PL/I preprocessor
option PP(SQL('option,...')). You need Enterprise PL/I Version 3 Release 2 or
later. If your application requires DB2 Version 8 new functions, you also need
PL/I APAR PQ84513 for Enterprise PL/I Version 3 Release 2. For more
information about using the PL/I DB2 coprocessor, see “DB2 coprocessor for
PL/I programs” on page 482 and IBM Enterprise PL/I for z/OS Programming
Guide for Version 3 Release 2 or later.

For information about the differences between the DB2 precompiler and the DB2
coprocessor, see “Differences between the DB2 precompiler and DB2 coprocessor”
on page 482.

In this section, references to the SQL statement processor apply to either the DB2
precompiler or the DB2 coprocessor. References to the DB2 precompiler apply
specifically to the precompiler that is provided with DB2.

CICS
If the application contains CICS commands, you must translate the program
before you compile it. (See “Translating command-level statements in a CICS
program” on page 494.)

DB2 version for the DSNHDECP module: When you process SQL statements, the
DB2 version in the DSNHDECP data-only load module must match the DB2

Chapter 21. Preparing an application program to run 473

|

#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#

#
#
#

#
#



version of the DB2 precompiler or DB2 coprocessor. Otherwise, DB2 issues an
error, and SQL statement processing terminates.

Using the DB2 precompiler
To start the precompile process, use one of the following methods:
v DB2I panels. Use the Precompile panel or the DB2 Program Preparation panels.
v The DSNH command procedure (a TSO CLIST). For a description of that CLIST,

see Part 3 of DB2 Command Reference.
v JCL procedures supplied with DB2. See “Available JCL procedures” on page 513

for more information about this method.

When you precompile your program, DB2 does not need to be active. The
precompiler does not validate the names of tables and columns that are used in
SQL statements. However, the precompiler checks table and column references
against SQL DECLARE TABLE statements in the program. Therefore, you should
use DCLGEN to obtain accurate SQL DECLARE TABLE statements.

You might need to precompile and compile program source statements several
times before they are error-free and ready to link-edit. During that time, you can
get complete diagnostic output from the DB2 precompiler by specifying the
SOURCE and XREF precompiler options.

A summary of all of the data sets that the precompiler uses are listed in the
following table.

Table 63. DD statements and data sets that the DB2 precompiler uses

DD statement Data set description Required?

DBRMLIB Output data set, which
contains the SQL statements
and host variable information
that the DB2 precompiler
extracted from the source
program. It is called Database
Request Module (DBRM).
This data set becomes the
input to the DB2 bind
process. The DCB attributes
of the data set are RECFM
FB, LRECL 80. You can use
IEBCOPY, IEHPROGM, TSO
commands, COPY and
DELETE, or PDS
management tools for
maintaining the data set.

Yes

474 Application Programming and SQL Guide

#
#

#
#

##

###

##
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#



Table 63. DD statements and data sets that the DB2 precompiler uses (continued)

DD statement Data set description Required?

STEPLIB Step library for the job step.
In this DD statement, you can
specify the name of the
library for the precompiler
load module, DSNHPC, and
the name of the library for
your DB2 application
programming defaults
member, DSNHDECP.

Recommendation: Always
use the STEPLIB DD
statement to specify the
library where your DB2
DSNHDECP module resides
to ensure that the proper
application defaults are used
by the DB2 precompiler. The
library that contains your
DB2 DSNHDECP module
needs to be allocated ahead
of the prefix.SDSNLOAD
library.

No, but recommended

SYSCIN Output data set, which
contains the modified source
that the DB2 precompiler
writes out. This data set
becomes the input data set to
the compiler or assembler.
This data set must have
attributes RECFM F or FB,
and LRECL 80. SYSCIN can
be a PDS or a sequential data
set. If a PDS is used, the
member name must be
specified.

Yes

SYSIN Input data set, which
contains statements in the
host programming language
and embedded SQL
statements. This data set
must have the attributes
RECFM F or FB, LRECL 80.
SYSIN can be a PDS or a
sequential data set. If a PDS
is used, the member name
must be specified.

Yes

Chapter 21. Preparing an application program to run 475

#

###

##
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#

##
#
#
#
#
#
#
#
#
#
#
#
#

#

##
#
#
#
#
#
#
#
#
#
#

#



Table 63. DD statements and data sets that the DB2 precompiler uses (continued)

DD statement Data set description Required?

SYSLIB INCLUDE library, which
contains additional SQL and
host language statements.
The DB2 precompiler
includes the member or
members that are referenced
by SQL INCLUDE statements
in the SYSIN input from this
DD statement. Multiple data
sets can be specified, but they
must be partitioned data sets
with attributes RECFM F or
FB, LRECL 80. SQL
INCLUDE statements cannot
be nested.

No

SYSPRINT Output data set, which
contains the output listing
from the DB2 precompiler.
This data set must have an
LRECL of 133 and a RECFM
of FBA. SYSPRINT must be a
sequential data set

Yes

SYSTERM Terminal output file, which
contains diagnostic messages
from the DB2 precompiler.
SYSTERM) must be a
sequential data set

No

Input to the precompiler: The primary input for the precompiler consists of
statements in the host programming language and embedded SQL statements.

Important
The size of a source program that DB2 can precompile is limited by the
region size and the virtual memory available to the precompiler. The
maximum region size and memory available to the DB2 precompiler is
usually around 8 MB, but these amounts vary with each system installation.

You can use the SQL INCLUDE statement to get secondary input from the include
library, SYSLIB. The SQL INCLUDE statement reads input from the specified
member of SYSLIB until it reaches the end of the member.

Another preprocessor, such as the PL/I macro preprocessor, can generate source
statements for the precompiler. Any preprocessor that runs before the precompiler
must be able to pass on SQL statements. Similarly, other preprocessors can process
the source code, after you precompile and before you compile or assemble.

There are limits on the forms of source statements that can pass through the
precompiler. For example, constants, comments, and other source syntax that are
not accepted by the host compilers (such as a missing right brace in C) can
interfere with precompiler source scanning and cause errors. You might want to
run the host compiler before the precompiler to find the source statements that are
unacceptable to the host compiler. At this point you can ignore the compiler error

476 Application Programming and SQL Guide

#

###

##
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

##
#
#
#
#
#
#

#

##
#
#
#
#

#

#

#



messages for SQL statements. After the source statements are free of unacceptable
compiler errors, you can then perform the normal DB2 program preparation
process for that host language.

The following restrictions apply only to the DB2 precompiler:
v You must write host language statements and SQL statements using the same

margins, as specified in the precompiler option MARGINS.
v The input data set, SYSIN, must have the attributes RECFM F or FB, LRECL 80.
v SYSLIB must be a partitioned data set, with attributes RECFM F or FB, LRECL

80.
v Input from the INCLUDE library cannot contain other precompiler INCLUDE

statements.

Output from the precompiler: The following sections describe various kinds of
output from the precompiler.

Listing output: The output data set, SYSPRINT, used to print output from the
precompiler, has an LRECL of 133 and a RECFM of FBA. This data set uses the
CCSID of the source program. Statement numbers in the output of the precompiler
listing always display as they appear in the listing. However, DB2 stores statement
numbers greater than 32767 as 0 in the DBRM.

The DB2 precompiler writes the following information in the SYSPRINT data set:
v Precompiler source listing

If the DB2 precompiler option SOURCE is specified, a source listing is produced.
The source listing includes precompiler source statements, with line numbers
that are assigned by the precompiler.

v Precompiler diagnostics
The precompiler produces diagnostic messages that include precompiler line
numbers of statements that have errors.

v Precompiler cross-reference listing
If the DB2 precompiler option XREF is specified, a cross-reference listing is
produced. The cross-reference listing shows the precompiler line numbers of
SQL statements that refer to host names and columns.

Terminal diagnostics: If a terminal output file, SYSTERM, is present, the DB2
precompiler writes diagnostic messages to it. A portion of the source statement
accompanies the messages in this file. You can often use the SYSTERM file instead
of the SYSPRINT file to find errors. This data set uses EBCDIC.

Modified source statements: The DB2 precompiler writes the source statements that
it processes to SYSCIN, the input data set to the compiler or assembler. This data
set must have attributes RECFM F or FB, and LRECL 80. The modified source code
contains calls to the DB2 language interface. The SQL statements that the calls
replace appear as comments. This data set uses the CCSID of the source program.

Database request modules: The major output from the precompiler is a database
request module (DBRM). That data set contains the SQL statements and host
variable information extracted from the source program, along with information
that identifies the program and ties the DBRM to the translated source statements.
It becomes the input to the bind process.

Chapter 21. Preparing an application program to run 477

|
|

|

|



The data set requires space to hold all the SQL statements plus space for each host
variable name and some header information. The header information alone
requires approximately two records for each DBRM, 20 bytes for each SQL record,
and 6 bytes for each host variable.

For an exact format of the DBRM, see the DBRM mapping macros, DSNXDBRM
and DSNXNBRM in library prefix.SDSNMACS. The DCB attributes of the data set
are RECFM FB, LRECL 80. The precompiler sets the characteristics. You can use
IEBCOPY, IEHPROGM, TSO commands COPY and DELETE, or other PDS
management tools for maintaining these data sets.

In a DBRM, the SQL statements and the list of host variable names use the
following character encoding schemes:
v EBCDIC, for the result of a DB2 Version 8 precompilation with NEWFUN NO or

a precompilation in an earlier release of DB2
v Unicode UTF-8, for the result of a DB2 Version 8 precompilation with NEWFUN

YES

All other character fields in a DBRM use EBCDIC. The current release marker
(DBRMMRIC) in the header of a DBRM is marked according to the release of the
precompiler, regardless of the value of NEWFUN. In a Version 8 precompilation,
the DBRM dependency marker (DBRMPDRM) in the header of a DBRM is marked
for Version 8 if the value of NEWFUN is YES; otherwise, it is not marked for
Version 8.

The DB2 language preparation procedures in job DSNTIJMV use the DISP=OLD
parameter to enforce data integrity. However, the installation process converts the
DISP=OLD parameter for the DBRM library data set to DISP=SHR, which can
cause data integrity problems when you run multiple precompilation jobs. If you
plan to run multiple precompilation jobs and are not using the DFSMSdfp
partitioned data set extended (PDSE), you must change the DB2 language
preparation procedures (DSNHCOB, DSNHCOB2, DSNHICOB, DSNHFOR,
DSNHC, DSNHPLI, DSNHASM, DSNHSQL) to specify the DISP=OLD parameter
instead of the DISP=SHR parameter.

Binding on another system: It is not necessary to precompile the program on the
same DB2 system on which you bind the DBRM and run the program. In
particular, you can bind a DBRM at the current release level and run it on a DB2
subsystem at the previous release level, if the original program does not use any
properties of DB2 that are unique to the current release. Of course, you can run
applications on the current release that were previously bound on systems at the
previous release level.

Using the DB2 coprocessor for C programs
The DB2 coprocessor performs DB2 precompiler functions at compile time. In
addition, the DB2 coprocessor lifts some of the DB2 precompiler's restrictions on
SQL programs. When you process SQL statements with the DB2 coprocessor, you
can do the following things in your program:
v Use fully qualified names for structured host variables
v Include SQL statements at any level of a nested C program, instead of in only

the top-level source file
v Use nested SQL INCLUDE statements

To use the DB2 coprocessor, you need to do the following things:
v Specify the following options when you compile your program:

478 Application Programming and SQL Guide

|

|
|

|
|

|
|

#
#
#
#
#

#

#
#

#

#

#



– SQL
The SQL compiler option indicates that you want the compiler to invoke the
DB2 coprocessor. Specify a list of SQL processing options in parentheses after
the SQL keyword. The list is enclosed in single or double quotation marks.
Table 64 on page 485 lists the options that you can specify.
For example, suppose that you want to process SQL statements as you
compile a C program. In your program, the apostrophe is the string delimiter
in SQL statements, and the SQL statements conform to DB2 rules. This means
that you need to specify the APOSTSQL and STDSQL(NO) options. Therefore,
you need to include this option in your compile step:
SQL("APOSTSQL STDSQL(NO)")

– LIMITS(FIXEDBIN(63), FIXEDDEC(31))
These options are required for LOB support.

– SIZE(nnnnnn)
You might need to increase the SIZE value (nnnnnn) so that the user region is
large enough for the DB2 coprocessor. Do not specify SIZE(MAX).

v Include DD statements for the following data sets in the JCL for your compile
step:
– DB2 load library (prefix.SDSNLOAD)

The DB2 coprocessor calls DB2 modules to process the SQL statements. You
therefore need to include the name of the DB2 load library data set in the
STEPLIB concatenation for the compile step.

– DBRM library
The DB2 coprocessor produces a DBRM. DBRMs and the DBRM library are
described in “Output from the precompiler” on page 477. You need to include
a DBRMLIB DD statement that specifies the DBRM library data set.

– Library for SQL INCLUDE statements
If your program contains SQL INCLUDE member-name statements that specify
secondary input to the source program, you need to include the name of the
data set that contains member-name in the SYSLIB concatenation for the
compile step.

Using the DB2 coprocessor for C++ programs
The DB2 coprocessor performs DB2 precompiler functions at compile time. In
addition, the DB2 coprocessor lifts some of the DB2 precompiler's restrictions on
SQL programs. When you process SQL statements with the DB2 coprocessor, you
can do the following things in your program:
v Use fully qualified names for structured host variables
v Write a C++ application for which the source code has a record length that is

longer than 80 bytes
v Include SQL statements at any level of a nested C++ program, instead of only in

the top-level source file
v Use code page dependent characters, such as left and right brackets, without

using tri-graph notation when the C++ programs use different code pages
v Use nested SQL INCLUDE statements

To use the DB2 coprocessor, you need to do the following things:
v Specify the following options when you compile your program:

– SQL
The SQL compiler option indicates that you want the compiler to invoke the
DB2 coprocessor. Specify a list of SQL processing options in parentheses after

Chapter 21. Preparing an application program to run 479

#

#
#
#
#

#
#
#
#
#

#

#

#

#

#
#

#
#

#

#
#
#

#

#
#
#

#

#
#
#
#

#
#
|
|
|

|

|
|

|
|

|
|

|

#

|

|

|
|



the SQL keyword. The list is enclosed in single or double quotation marks.
Table 64 on page 485 lists the options that you can specify.
For example, suppose that you want to process SQL statements as you
compile a C++ program. In your program, the apostrophe is the string
delimiter in SQL statements, and the SQL statements conform to DB2 rules.
This means that you need to specify the APOSTSQL and STDSQL(NO)
options. Therefore, you need to include the following option in your compile
step:
SQL("APOSTSQL STDSQL(NO)")

– The following options are required for LOB support:
LIMITS(FIXEDBIN(63), FIXEDDEC(31))

– You might need to increase the SIZE value so that the user region is large
enough for the DB2 coprocessor. To increase the SIZE value, specify the
following option, where nnnnnn is the SIZE value that you want:
SIZE(nnnnnn)

Do not specify SIZE(MAX).
v Include DD statements for the following data sets in the JCL for your compile

step:
– DB2 load library (prefix.SDSNLOAD)

The DB2 coprocessor calls DB2 modules to process the SQL statements. You
therefore need to include the name of the DB2 load library data set in the
STEPLIB concatenation for the compile step.

– DBRM library
The DB2 coprocessor produces a DBRM. DBRMs and the DBRM library are
described in “Output from the precompiler” on page 477. You need to include
a DBRMLIB DD statement that specifies the DBRM library data set.

– Library for SQL INCLUDE statements
If your program contains EXEC SQL INCLUDE statements other than EXEC
SQL INCLUDE SQLCA and EXEC SQL INCLUDE SQLDA, you need to
include the SYSLIB DD statement to indicate the include library and the C
header files.
Note: When you use both EXEC SQL INCLUDE and #include statements in a
C++ program, the member names that you use for the statements must be
unique.

Using the DB2 coprocessor for COBOL programs
The DB2 coprocessor performs DB2 precompiler functions at compile time. In
addition, the DB2 coprocessor lifts some of the DB2 precompiler's restrictions on
SQL programs. When you process SQL statements with the DB2 coprocessor, you
can do the following things in your program:
v Use fully qualified names for structured host variables
v Include SQL statements at any level of a nested COBOL program, instead of in

only the top-level source file
v Use nested SQL INCLUDE statements
v Use COBOL REPLACE statements to replace text strings in SQL statements

To use the DB2 coprocessor, you need to do the following things:
v Specify the following options when you compile your program:

– SQL

480 Application Programming and SQL Guide

|
|

|
|
|
|
|
|

|

|

|

#
#
#

#

#

|
|

|

#
#
#

|

#
#
#

|

|
|
|
|

|
|
|

#
#
#
#
#

#

#
#

#

#

#



The SQL compiler option indicates that you want the compiler to invoke the
DB2 coprocessor. Specify a list of SQL processing options in parentheses after
the SQL keyword. The list is enclosed in single or double quotes. Table 64 on
page 485 lists the options that you can specify.
For example, suppose that you want to process SQL statements as you
compile a COBOL program. In your program, the apostrophe is the string
delimiter in SQL statements, and the SQL statements conform to DB2 rules.
This means that you need to specify the APOSTSQL and STDSQL(NO)
options. Therefore, you need to include this option in your compile step:
SQL("APOSTSQL STDSQL(NO)")

– LIB
You need to specify the LIB option when you specify the SQL option, whether
or not you have any COPY, BASIS, or REPLACE statements in your program.

– LIMITS(FIXEDBIN(63), FIXEDDEC(31))
These options are required for LOB support.

– SIZE(nnnnnn)
You might need to increase the SIZE value (nnnnnn) so that the user region is
large enough for the DB2 coprocessor. Do not specify SIZE(MAX).

v Include DD statements for the following data sets in the JCL for your compile
step:
– DB2 load library (prefix.SDSNLOAD)

The DB2 coprocessor calls DB2 modules to process the SQL statements. You
therefore need to include the name of the DB2 load library data set in the
STEPLIB concatenation for the compile step.

– DBRM library
The DB2 coprocessor produces a DBRM. DBRMs and the DBRM library are
described in “Output from the precompiler” on page 477. You need to include
a DBRMLIB DD statement that specifies the DBRM library data set.

– Library for SQL INCLUDE statements
If your program contains SQL INCLUDE member-name statements that specify
secondary input to the source program, you need to include the name of the
data set that contains member-name in the SYSLIB concatenation for the
compile step.

Support for compiling a COBOL program that includes SQL from an assembler
program: The COBOL compiler provides a facility that allows you to invoke the
COBOL compiler via an assembler program.

If you intend to use the DB2 coprocessor and start the COBOL compiler from an
assembler program as part of your DB2 application preparation, you can use the
SQL compiler option and provide the alternate DBRMLIB DD name the same way
that you can specify other alternate DD names. The DB2 coprocessor creates the
DBRM member according to your DBRM PDS library and the DBRM member that
you specified using the alternate DBRMLIB DD name.

To use the alternate DBRMLIB DD name, Enterprise COBOL V4.1 and above is
required. For more information about starting the compiler from an assembler
program, see the IBM System z® Enterprise Development Tools & Compilers
information center.

Chapter 21. Preparing an application program to run 481

#
#
#
#

#
#

#
#
#

#
#
#

#
#
#

#
#
#
#
#
#

#
#
#
#



DB2 coprocessor for PL/I programs
The PL/I compiler that supports the DB2 coprocesser is called the PL/I SQL
preprocessor. The PL/I SQL preprocessor performs DB2 precompiler functions at
compile time. The DB2 coprocessor lifts some of the DB2 precompiler's restrictions
on SQL programs. When you process SQL statements with DB2 coprocessor, you
can do the following things in your program:
v Use fully qualified names for structured host variables
v Include SQL statements at any level of a nested PL/I program, instead of in only

the top-level source file
v Use nested SQL INCLUDE statements

To use the SQL statement preprocessor, you need to do the following things:
v Specify the following options when you compile your program, using the

Enterprise PL/I for z/OS and OS/390 Version 3 Release 1 or later:
– PP(SQL('option,...'))

The PP compiler option indicates that you want the compiler to invoke the
PLI SQL preprocessor. You can further specify a list of SQL processing options
after the SQL suboption PP. The list is enclosed in single or double quotation
marks. Separate options in the list by a comma, blank, or both. Table 64 on
page 485 lists the options that you can specify.
For example, suppose that you want to process SQL statements as you
compile a PL/I program. In your program, the DATE data types require USA
format, and the SQL statements conform to DB2 rules. This means that you
need to specify the DATE(USA) and STDSQL(NO) options. Therefore, you
need to include this option in your compile step:
PP(SQL(’DATE(USA), STDSQL(NO)’))

– LIMITS(FIXEDBIN(63), FIXEDDEC(31))
These options are required for LOB support.

– SIZE(nnnnnn)
You might need to increase the SIZE value so that the user region is large
enough for the processing of the DB2 coprocessor. Do not specify SIZE(MAX).

v Include DD statements for the following data sets in the JCL for your compile
step:
– DB2 load library (prefix.SDSNLOAD)

The PL/I SQL preprocessor calls the DB2 coprocessor APIs to do the SQL
statement processing. You therefore need to include the name of the DB2 load
library data set in the STEPLIB concatenation for the compile step.

– DBRM library
The DB2 coprocessor produces a DBRM. DBRMs and the DBRM library are
described in “Output from the precompiler” on page 477. You need to include
a DBRMLIB DD statement that specifies the DBRM library data set.

– Library for SQL INCLUDE statements
If your program contains SQL INCLUDE member-name statements that specify
secondary input to the source program, you need to include the name of the
data set that contains member-name in the SYSLIB concatenation for the
compile step.

Differences between the DB2 precompiler and DB2 coprocessor
Recommendation: Use the coprocessor instead of the precompiler when using
Unicode variables in COBOL or PL/I applications.

482 Application Programming and SQL Guide

#
#
#
#
#
#

#

#
#

#

#

#
#

#

#
#
#
#
#

#
#
#
#
#

#

#

#

#

#
#

#
#

#

#
#
#

#

#
#
#

#

#
#
#
#

#
#
#



Depending on whether you use the DB2 precompiler or the DB2 coprocessor,
ensure that you account for the following differences:
v Differences in handling source CCSIDs:

DB2 coprocessor:
DB2 uses the source CCSID that is specified by the compiler CODEPAGE
option. If this option is not specified and the compiler does not provide a
default, DB2 uses the value for the DB2 coprocessor CCSID option. If that
option is also not specified, DB2 uses the CCSID in DSNHDECP as the
default.

DB2 precompiler:
DB2 uses the value for the DB2 precompiler CCSID option. If that option is
not specified, DB2 uses the CCSID in DSNHDECP as the default. Because
the DB2 precompiler is processed before the compile step, you must ensure
that the CCSID specified during the precompile step is the same as the
source CCSID that is specified in the compile step.

v Differences in handling host variable CCSIDs:
– COBOL:

DB2 coprocessor:
The COBOL compiler with National Character Support always sets
CCSIDs for alphanumeric variables, including host variables that are used
within SQL, to the source CCSID.

DB2 precompiler:
The DB2 precompiler sets CCSIDs for alphanumeric host variables only
when the program includes an explicit DECLARE :hv VARIABLE
statement.

Recommendation: If you have problems with host variable CCSIDs, use the
DB2 precompiler or change your application to include the DECLARE :hv
VARIABLE statement to overwrite the CCSID that is specified by the COBOL
compiler.
Example: Assume that DB2 has mapped a FOR BIT DATA column to a host
variable in the following way:
01 hv1 pic x(5).
01 hv2 pic x(5).

EXEC SQL CREATE TABLE T1 (colwbit char(5) for bit data,
rowid char(5)) END-EXEC.

EXEC SQL
INSERT INTO T1 VALUES (:hv1, :hv2)
END-EXEC.

DB2 precompiler: In the modified source from the DB2 precompiler, hv1 and
hv2 are represented to DB2 through SQLDA in the following way, without
CCSIDs:
for hv1: NO CCSID

20 SQL-PVAR-NAMEL1 PIC S9(4) COMP-4 VALUE +0.
20 SQL-PVAR-NAMEC1 PIC X(30) VALUE ’ ’.

for hv2: NO CCSID

20 SQL-PVAR-NAMEL2 PIC S9(4) COMP-4 VALUE +0.
20 SQL-PVAR-NAMEC2 PIC X(30) VALUE ’ ’

Chapter 21. Preparing an application program to run 483

#
#

#

#
#
#
#
#
#

#
#
#
#
#
#

#

#

#
#
#
#

#
#
#
#

#
#
#
#

#
#

#
#
#
#
#
#
#
#
#

#
#
#

#
#
#
#
#
#
#
#
#



DB2 coprocessor: In the modified source from the DB2 coprocessor with the
National Character Support for COBOL, hv1 and hv2 are represented to DB2
in the following way, with CCSIDs: (Assume that the source CCSID is 1140.)
for hv1 and hv2, the value for CCSID is set to ’1140’ (’474’x) in input SQLDA
of the INSERT statement.

’7F00000474000000007F’x

To ensure that no discrepancy exists between the column with FOR BIT
DATA and the host variable with CCSID 1140, add the following statement
for :hv1 or use the DB2 precompiler:
EXEC SQL DECLARE : hv1 VARIABLE FOR BIT DATA END-EXEC.

for hv1 declared with for bit data. The value in SQL---AVAR-NAME-DATA is
set to ’FFFF’x for CCSID instead of ’474x’.

’7F0000FFFF000000007F’x <<= with DECLARE :hv1 VARIABLE FOR BIT DATA
vs.
’7F00000474000000007F’x <<= without

– PL/I

DB2 coprocessor:
You can specify whether CCSIDs are to be associated with host variables
by using the following PL/I SQL preprocessor options:

CCSID0
Specifies that the PL/I SQL preprocessor is not to set the CCSIDs for
all host variables unless they are defined with the SQL DECLARE :hv
VARIABLE statement.

NOCCSID0
Specifies that the PL/I SQL preprocessor is to set the CCSIDs for all
host variables.

For more information about these options, see the IBM Enterprise PL/I for
z/OS Programming Guide.

Options for SQL statement processing
To control the DB2 precompiler or DB2 coprocessor, you specify options when you
use it. The options specify how the SQL statement processor interprets or processes
its input, and how it presents its output.

If you are using the DB2 precompiler, you can specify SQL processing options in
one of the following ways:
v With DSNH operands
v With the PARM.PC option of the EXEC JCL statement
v In DB2I panels

If you are using the SQL preprocessor, specify the DB2 coprocessor options in the
following way:
v For C or C++, specify the options as the argument of the SQL compiler option.
v For COBOL, specify the options as the argument of the SQL compiler option.
v For PL/I, specify the options as the argument of the PP(SQL('option,...'))

compiler option.

DB2 assigns default values for any SQL processing options for which you do not
explicitly specify a value. Those defaults are the values that are specified in the
APPLICATION PROGRAMMING DEFAULTS installation panels.

484 Application Programming and SQL Guide

#
#
#

#
#
#
#

#
#
#

#
#
#
#
#
#
#
#

#

#
#
#

#
#
#
#

#
#
#

#
#

#
#
#
#

#
#

|

#

#
#



Table of SQL processing options: Table 64 shows the options that you can specify
when you use the DB2 precompiler or the DB2 coprocessor. The table also includes
abbreviations for those options. Not all options apply to all host languages. For
information about which options are ignored for a particular host language, see
Table 64.

Table 64 uses a vertical bar (|) to separate mutually exclusive options, and brackets
([ ]) to indicate that you can sometimes omit the enclosed option.

Table 64. SQL processing options

Option keyword Meaning

APOST1 Indicates that the DB2 precompiler is to use the apostrophe (') as the string
delimiter in host language statements that it generates.

This option is not available in all languages; see Table 66 on page 493.

APOST and QUOTE are mutually exclusive options. The default is in the field
STRING DELIMITER on Application Programming Defaults Panel 1 when DB2 is
installed. If STRING DELIMITER is the apostrophe ('), APOST is the default.

APOSTSQL Recognizes the apostrophe (') as the string delimiter and the quotation mark (") as
the SQL escape character within SQL statements.

APOSTSQL and QUOTESQL are mutually exclusive options. The default is in the
field SQL STRING DELIMITER on Application Programming Defaults Panel 1
when DB2 is installed. If SQL STRING DELIMITER is the apostrophe ('),
APOSTSQL is the default.

ATTACH(TSO|CAF|
RRSAF)

Specifies the attachment facility that the application uses to access DB2. TSO, CAF,
and RRSAF applications that load the attachment facility can use this option to
specify the correct attachment facility, instead of coding a dummy DSNHLI entry
point.

This option is not available for Fortran applications.

The default is ATTACH(TSO).

Chapter 21. Preparing an application program to run 485

#
#
#
#
#

#
#

#

#
#
#

#
#

#
#
#
#



Table 64. SQL processing options (continued)

Option keyword Meaning

CCSID(n) Specifies the numeric value n of the CCSID in which the source program is
written. The number n must be 65535 or in the range 1 through 65533, and must
be an EBCDIC CCSID.

The default setting is the EBCDIC system CCSID as specified on the panel
DSNTIPF during installation.

The DB2 coprocessor uses the following process to determine the CCSID of the
source statements:

1. If the CCSID of the source program is specified by a compiler option, such as
the COBOL CODEPAGE compiler option, the DB2 coprocessor uses that
CCSID.

2. If the CCSID is not specified by a compiler option:

a. If the CCSID suboption of the SQL compiler option is specified and contains
a valid EBCDIC CCSID, that CCSID is used.

b. If the CCSID suboption of the SQL compiler option is not specified, and the
compiler supports an option for specifying the CCSID, such as the COBOL
CODEPAGE compiler option, the default for that compiler option is used.

c. If the CCSID suboption of the SQL compiler option is not specified, and the
compiler does not support an option for specifying the CCSID, the default
CCSID from DSNHDECP is used.

d. If the CCSID suboption of the SQL option is specified and contains an
invalid CCSID, compilation terminates.

CCSID supersedes the GRAPHIC and NOGRAPHIC SQL processing options.

If you specify CCSID(1026) or CCSID(1155), the DB2 coprocessor does not support
the code point 'FC'X for the double quotation mark (").

COMMA Recognizes the comma (,) as the decimal point indicator in decimal or floating
point literals in the following cases:

v For static SQL statements in COBOL programs

v For dynamic SQL statements, when the value of installation parameter
DYNRULS is NO and the package or plan that contains the SQL statements has
DYNAMICRULES bind, define, or invoke behavior.

COMMA and PERIOD are mutually exclusive options. The default (COMMA or
PERIOD) is chosen under DECIMAL POINT IS on Application Programming
Defaults Panel 1 when DB2 is installed.

CONNECT(2|1)
CT(2|1)

Determines whether to apply type 1 or type 2 CONNECT statement rules.
CONNECT(2) Default: Apply rules for the CONNECT (Type 2) statement.
CONNECT(1) Apply rules for the CONNECT (Type 1) statement

If you do not specify the CONNECT option when you precompile a program, the
rules of the CONNECT (Type 2) statement apply. See “Precompiler options for
DRDA access” on page 445 for more information about this option, and Chapter 5
of DB2 SQL Reference for a comparison of CONNECT (Type 1) and CONNECT
(Type 2).

486 Application Programming and SQL Guide

|
#
#

|
|

#
#

#
#
#

#

#
#

#
#
#

#
#
#

#
#

#

#
#



Table 64. SQL processing options (continued)

Option keyword Meaning

DATE(ISO|USA
|EUR|JIS|LOCAL)

Specifies that date output should always return in a particular format, regardless
of the format that is specified as the location default. For a description of these
formats, see Chapter 2 of DB2 SQL Reference.

The default is specified in the field DATE FORMAT on Application Programming
Defaults Panel 2 when DB2 is installed.

The default format is determined by the installation defaults of the system where
the program is bound, not by the installation defaults of the system where the
program is precompiled.

You cannot use the LOCAL option unless you have a date exit routine.

DEC(15|31)
DEC15 | DEC31
D15.s | D31.s

Specifies the maximum precision for decimal arithmetic operations. See “Using
15-digit and 31-digit precision for decimal numbers” on page 16.

The default is in the field DECIMAL ARITHMETIC on Application Programming
Defaults Panel 1 when DB2 is installed.

If the form Dpp.s is specified, pp must be either 15 or 31, and s, which represents
the minimum scale to be used for division, must be a number between 1 and 9.

FLAG(I|W|E|S)1 Suppresses diagnostic messages below the specified severity level (Informational,
Warning, Error, and Severe error for severity codes 0, 4, 8, and 12 respectively).

The default setting is FLAG(I).

FLOAT(S390|IEEE) Determines whether the contents of floating-point host variables in assembler, C,
C++, or PL/I programs are in IEEE floating-point format or System/390
floating-point format. DB2 ignores this option if the value of HOST is anything
other than ASM, C, CPP, or PLI.

The default setting is FLOAT(S390).

GRAPHIC This option is no longer used for SQL statement processing. CCSID supersedes the
GRAPHIC and NOGRAPHIC SQL processing options.

Indicates that the source code might use mixed data, and that X'0E' and X'0F' are
special control characters (shift-out and shift-in) for EBCDIC data.

GRAPHIC and NOGRAPHIC are mutually exclusive options. The default
(GRAPHIC or NOGRAPHIC) is chosen under MIXED DATA on Application
Programming Defaults Panel 1 when DB2 is installed.

Chapter 21. Preparing an application program to run 487

|
|
|

#
#



Table 64. SQL processing options (continued)

Option keyword Meaning

HOST1(ASM|C[(FOLD)]|
CPP[(FOLD)]|
IBMCOB|
PLI|FORTRAN)

Defines the host language containing the SQL statements.

Use IBMCOB for Enterprise COBOL for z/OS and OS/390. If you specify COBOL
or COB2, a warning message is issued and the precompiler uses IBMCOB.

For C, specify:
v C if you do not want DB2 to fold lowercase letters in SBCS SQL ordinary

identifiers to uppercase
v C(FOLD) if you want DB2 to fold lowercase letters in SBCS SQL ordinary

identifiers to uppercase

For C++, specify:
v CPP if you do not want DB2 to fold lowercase letters in SBCS SQL ordinary

identifiers to uppercase
v CPP(FOLD) if you want DB2 to fold lowercase letters in SBCS SQL ordinary

identifiers to uppercase

If you omit the HOST option, the DB2 precompiler issues a level-4 diagnostic
message and uses the default value for this option.

The default is in the field LANGUAGE DEFAULT on Application Programming
Defaults Panel 1 when DB2 is installed.

This option also sets the language-dependent defaults; see Table 66 on page 493.

LEVEL[(aaaa)]
L

Defines the level of a module, where aaaa is any alphanumeric value of up to
seven characters. This option is not recommended for general use, and the DSNH
CLIST and the DB2I panels do not support it. For more information, see “Setting
the program level” on page 503.

For assembler, C, C++, Fortran, and PL/I, you can omit the suboption (aaaa). The
resulting consistency token is blank. For COBOL, you need to specify the
suboption.

LINECOUNT1(n)
LC

Defines the number of lines per page to be n for the DB2 precompiler listing. This
includes header lines inserted by the DB2 precompiler. The default setting is
LINECOUNT(60).

MARGINS1(m,n[,c])
MAR

Specifies what part of each source record contains host language or SQL
statements; and, for assembler, where column continuations begin. The first option
(m) is the beginning column for statements. The second option (n) is the ending
column for statements. The third option (c) specifies for assembler where
continuations begin. Otherwise, the DB2 precompiler places a continuation
indicator in the column immediately following the ending column. Margin values
can range from 1 to 80.

Default values depend on the HOST option you specify; see Table 66 on page 493.

The DSNH CLIST and the DB2I panels do not support this option. In assembler,
the margin option must agree with the ICTL instruction, if presented in the source.

488 Application Programming and SQL Guide

|
|



Table 64. SQL processing options (continued)

Option keyword Meaning

NEWFUN(V8|YES|NO) Indicates whether to accept the syntax for DB2 Version 8 functions.

NEWFUN(V8) Specifies that all syntax up to DB2 Version 8 will be allowed during
precompile or compile. NEWFUN(V8) is treated the same as NEWFUN(YES).

NEWFUN(YES) causes the precompiler to accept DB2 Version 8 syntax. A
successful precompilation produces a DBRM that can be bound only with Version
8 and later releases, even if the DBRM does not use any Version 8 syntax.

NEWFUN(NO) causes the precompiler to reject any syntax that DB2 Version 8
introduces. A successful precompilation produces a DBRM that can be bound with
any release of DB2, including DB2 Version 8.

During migration of DB2 Version 8 from an earlier release, the default is NO. At
the end of enabling-new-function mode, the default changes from NO to YES. If
Version 8 is a new installation of DB2, the default is YES. For information about
enabling-new-function mode during installation, see the DB2 Installation Guide.

NOFOR In static SQL, eliminates the need for the FOR UPDATE or FOR UPDATE OF
clause in DECLARE CURSOR statements. When you use NOFOR, your program
can make positioned updates to any columns that the program has DB2 authority
to update.

When you do not use NOFOR, if you want to make positioned updates to any
columns that the program has DB2 authority to update, you need to specify FOR
UPDATE with no column list in your DECLARE CURSOR statements. The FOR
UPDATE clause with no column list applies to static or dynamic SQL statements.

Whether you use or do not use NOFOR, you can specify FOR UPDATE OF with a
column list to restrict updates to only the columns named in the clause and specify
the acquisition of update locks.

You imply NOFOR when you use the option STDSQL(YES).

If the resulting DBRM is very large, you might need extra storage when you
specify NOFOR or use the FOR UPDATE clause with no column list.

NOGRAPHIC This option is no longer used for SQL statement processing. CCSID supersedes the
GRAPHIC and NOGRAPHIC SQL processing options.

Indicates the use of X'0E' and X'0F' in a string, but not as control characters.

GRAPHIC and NOGRAPHIC are mutually exclusive options. The default
(GRAPHIC or NOGRAPHIC) is chosen under MIXED DATA on Application
Programming Defaults Panel 1 when DB2 is installed.

NOOPTIONS2

NOOPTN
Suppresses the DB2 precompiler options listing.

NOPADNTSTR3 Indicates that output host variables that are NUL-terminated strings are not
padded with blanks. That is, additional blanks are not inserted before the
NUL-terminator is placed at the end of the string.

PADNTSTR and NOPADNTSTR are mutually exclusive options. The default
(PADNTSTR or NOPADNTSTR) is chosen under PAD NUL-TERMINATED on
Application Programming Defaults Panel 2 when DB2 is installed.

NOSOURCE2

NOS
Suppresses the DB2 precompiler source listing. This is the default.

NOXREF2

NOX
Suppresses the DB2 precompiler cross-reference listing. This is the default.

Chapter 21. Preparing an application program to run 489

|

#
#

|
|
|

|
|
|

|
|
|
|

#
#

|

|
|
|



Table 64. SQL processing options (continued)

Option keyword Meaning

ONEPASS1

ON
Processes in one pass, to avoid the additional processing time for making two
passes. Declarations must appear before SQL references.

Default values depend on the HOST option specified; see Table 66 on page 493.

ONEPASS and TWOPASS are mutually exclusive options.

OPTIONS1

OPTN
Lists DB2 precompiler options. This is the default.

PADNTSTR3 Indicates that output host variables that are NUL-terminated strings are padded
with blanks with the NUL-terminator placed at the end of the string.

PADNTSTR and NOPADNTSTR are mutually exclusive options. The default
(PADNTSTR or NOPADNTSTR) is chosen under PAD NUL-TERMINATED on
Application Programming Defaults Panel 2 when DB2 is installed.

PERIOD Recognizes the period (.) as the decimal point indicator in decimal or floating point
literals in the following cases:

v For static SQL statements in COBOL programs

v For dynamic SQL statements, when the value of installation parameter
DYNRULS is NO and the package or plan that contains the SQL statements has
DYNAMICRULES bind, define, or invoke behavior.

COMMA and PERIOD are mutually exclusive options. The default (COMMA or
PERIOD) is chosen under DECIMAL POINT IS on Application Programming
Defaults Panel 1 when DB2 is installed.

QUOTE1

Q
Indicates that the DB2 precompiler is to use the quotation mark (") as the string
delimiter in host language statements that it generates.

QUOTE is valid only for COBOL applications. QUOTE is not valid for either of the
following combinations of precompiler options:

v CCSID(1026) and HOST(IBMCOB)

v CCSID(1155) and HOST(IBMCOB)

The default is in the field STRING DELIMITER on Application Programming
Defaults Panel 1 when DB2 is installed. If STRING DELIMITER is the quote (") or
DEFAULT, then QUOTE is the default.

APOST and QUOTE are mutually exclusive options.

QUOTESQL Recognizes the quotation mark (") as the string delimiter and the apostrophe (') as
the SQL escape character within SQL statements. This option applies only to
COBOL.

The default is in the field SQL STRING DELIMITER on Application Programming
Defaults Panel 1 when DB2 is installed. If SQL STRING DELIMITER is the quote
(") or DEFAULT, QUOTESQL is the default.

APOSTSQL and QUOTESQL are mutually exclusive options.

SOURCE1

S
Lists DB2 precompiler source and diagnostics.

490 Application Programming and SQL Guide

#
#

|
|
|

#
#

#
#

#

#

#
#
#

#



Table 64. SQL processing options (continued)

Option keyword Meaning

SQL(ALL|DB2) Indicates whether the source contains SQL statements other than those recognized
by DB2 UDB for z/OS.

SQL(ALL) is recommended for application programs whose SQL statements must
execute on a server other that DB2 UDB for z/OS using DRDA access. SQL(ALL)
indicates that the SQL statements in the program are not necessarily for DB2 UDB
for z/OS. Accordingly, the SQL statement processor then accepts statements that
do not conform to the DB2 syntax rules. The SQL statement processor interprets
and processes SQL statements according to distributed relational database
architecture (DRDA) rules. The SQL statement processor also issues an
informational message if the program attempts to use IBM SQL reserved words as
ordinary identifiers. SQL(ALL) does not affect the limits of the SQL statement
processor.

SQL(DB2), the default, means to interpret SQL statements and check syntax for use
by DB2 UDB for z/OS. SQL(DB2) is recommended when the database server is
DB2 UDB for z/OS.

SQLFLAG1(IBM|STD
[(ssname
[,qualifier])])

This option is no longer supported.

STDSQL(NO|YES)4 Indicates to which rules the output statements should conform.

STDSQL(YES)3 indicates that the precompiled SQL statements in the source
program conform to certain rules of the SQL standard. STDSQL(NO) indicates
conformance to DB2 rules.

The default is in the field STD SQL LANGUAGE on Application Programming
Defaults Panel 2 when DB2 is installed.

STDSQL(YES) automatically implies the NOFOR option.

TIME(ISO|USA|
EUR|JIS|LOCAL)

Specifies that time output always return in a particular format, regardless of the
format that is specified as the location default. For a description of these formats,
see Chapter 2 of DB2 SQL Reference.

The default is specified in the field TIME FORMAT on Application Programming
Defaults Panel 2 when DB2 is installed.

The default format is determined by the installation defaults of the system where
the program is bound, not by the installation defaults of the system where the
program is precompiled.

You cannot use the LOCAL option unless you have a time exit routine.

TWOPASS1

TW
Processes in two passes, so that declarations need not precede references. Default
values depend on the HOST option specified; see Table 66 on page 493.

ONEPASS and TWOPASS are mutually exclusive options.

Chapter 21. Preparing an application program to run 491

#

|
|
|



Table 64. SQL processing options (continued)

Option keyword Meaning

VERSION(aaaa|AUTO) Defines the version identifier of a package, program, and the resulting DBRM.
When you specify VERSION, the SQL statement processor creates a version
identifier in the program and DBRM. This affects the size of the load module and
DBRM. DB2 uses the version identifier when you bind the DBRM to a plan or
package.

If you do not specify a version at precompile time, then an empty string is the
default version identifier. If you specify AUTO, the SQL statement processor uses
the consistency token to generate the version identifier. If the consistency token is a
timestamp, the timestamp is converted into ISO character format and used as the
version identifier. The timestamp used is based on the System/370 Store Clock
value. For information about using VERSION, see “Identifying a package version”
on page 503.

For more information about the rules for version identifiers, see in DB2 SQL
Reference .

XREF1 Includes a sorted cross-reference listing of symbols used in SQL statements in the
listing output.

Notes®:

1. This option is ignored when the DB2 coprocessor precompiles the application.

2. This option is always in effect when the DB2 coprocessor precompiles the application.

3. This option applies only for a C or C++ application.

4. You can use STDSQL(86) as in prior releases of DB2. The DB2 processor treats it the same as STDSQL(YES).

5. Precompiler options do not affect ODBC behavior.

Defaults for options of the SQL statement processor: Some SQL statement
processor options have defaults based on values specified on the Application
Programming Defaults panels. Table 65 shows those options and defaults:

Table 65. IBM-supplied installation default SQL statement processing options. The installer can change these defaults.

Install option Install default
Equivalent SQL statement
processing option

Available SQL statement
processing options

STRING DELIMITER quotation mark (") QUOTE APOST
QUOTE

SQL STRING DELIMITER quotation mark (") QUOTESQL APOSTSQL
QUOTESQL

DECIMAL POINT IS PERIOD PERIOD COMMA
PERIOD

DATE FORMAT ISO DATE(ISO) DATE(ISO|USA|
EUR|JIS|LOCAL)

DECIMAL ARITHMETIC DEC15 DEC(15) DEC(15|31)

MIXED DATA NO CCSID(n) CCSID(n)

LANGUAGE DEFAULT COBOL HOST(COBOL) HOST(ASM|C[(FOLD)]|
CPP[(FOLD)]|IBMCOB|
FORTRAN|PLI)

STD SQL LANGUAGE NO STDSQL(NO) STDSQL(YES|NO|86)

492 Application Programming and SQL Guide

#
#

#

#

#

##



Table 65. IBM-supplied installation default SQL statement processing options (continued). The installer can change
these defaults.

Install option Install default
Equivalent SQL statement
processing option

Available SQL statement
processing options

TIME FORMAT ISO TIME(ISO) TIME(IS|USA|EUR|
JIS|LOCAL)

Notes: For dynamic SQL statements, another application programming default, USE FOR DYNAMICRULES,
determines whether DB2 uses the application programming default or the SQL statement processor option for the
following install options:
v STRING DELIMITER
v SQL STRING DELIMITER
v DECIMAL POINT IS
v DECIMAL ARITHMETIC

If the value of USE FOR DYNAMICRULES is YES, then dynamic SQL statements use the application programming
defaults. If the value of USE FOR DYNAMICRULES is NO, then dynamic SQL statements in packages or plans with
bind, define, and invoke behavior use the SQL statement processor options. See “Using DYNAMICRULES to specify
behavior of dynamic SQL statements” on page 504 for an explanation of bind, define, and invoke behavior.

Some SQL statement processor options have default values based on the host
language. Some options do not apply to some languages. Table 66 shows the
language-dependent options and defaults.

Table 66. Language-dependent DB2 precompiler options and defaults

HOST value Defaults

ASM APOST1, APOSTSQL1, PERIOD1, TWOPASS, MARGINS(1,71,16)

C or CPP APOST1, APOSTSQL1, PERIOD1, ONEPASS, MARGINS(1,72)

IBMCOB QUOTE2, QUOTESQL2, PERIOD, ONEPASS1, MARGINS(8,72)1

FORTRAN APOST1, APOSTSQL1, PERIOD1, ONEPASS1, MARGINS(1,72)1

PLI APOST1, APOSTSQL1, PERIOD1, ONEPASS, MARGINS(2,72)

Notes:

1. Forced for this language; no alternative allowed.

2. The default is chosen on Application Programming Defaults Panel 1 when DB2 is installed. The IBM-supplied
installation defaults for string delimiters are QUOTE (host language delimiter) and QUOTESQL (SQL escape
character). The installer can replace the IBM-supplied defaults with other defaults. The precompiler options you
specify override any defaults in effect.

SQL statement processing defaults for dynamic statements: Generally, dynamic
statements use the defaults that are specified during installation. However, if the
value of DSNHDECP parameter DYNRULS is NO, then you can use these options
for dynamic SQL statements in packages or plans with bind, define, or invoke
behavior:
v COMMA or PERIOD
v APOST or QUOTE
v APOSTSQL or QUOTESQL
v DEC(15) or DEC(31)

Chapter 21. Preparing an application program to run 493

#
#
#
#

#
#
#
#



Translating command-level statements in a CICS program

CICS

Translating command-level statements: You can translate CICS applications
with the CICS command language translator as a part of the program
preparation process. (CICS command language translators are available only
for assembler, C, COBOL, and PL/I languages; no translator is available for
Fortran.) Prepare your CICS program in either of these sequences:

Use the DB2 precompiler first, followed by the CICS Command
Language Translator. This sequence is the preferred method of program
preparation and the one that the DB2I Program Preparation panels
support. If you use the DB2I panels for program preparation, you can
specify translator options automatically, rather than having to provide a
separate option string.
Use the CICS command language translator first, followed by the DB2
precompiler. This sequence results in a warning message from the CICS
translator for each EXEC SQL statement it encounters. The warning
messages have no effect on the result. If you are using double-byte
character sets (DBCS), precompiling is recommended before translating, as
described previously.

Program and process requirements: Use the DB2 precompiler before the
CICS translator to prevent the precompiler from mistaking CICS translator
output for graphic data.

If your source program is in COBOL, you must specify a string delimiter that
is the same for the DB2 precompiler, COBOL compiler, and CICS translator.
The defaults for the DB2 precompiler and COBOL compiler are not
compatible with the default for the CICS translator.

If the SQL statements in your source program refer to host variables that a
pointer stored in the CICS TWA addresses, you must make the host variables
addressable to the TWA before you execute those statements. For example, a
COBOL application can issue the following statement to establish
addressability to the TWA:
EXEC CICS ADDRESS

TWA (address-of-twa-area)
END-EXEC

494 Application Programming and SQL Guide



CICS (continued)
You can run CICS applications only from CICS address spaces. This
restriction applies to the RUN option on the second program DSN command
processor. All of those possibilities occur in TSO.

You can append JCL from a job created by the DB2 Program Preparation
panels to the CICS translator JCL to prepare an application program. To run
the prepared program under CICS, you might need to define programs and
transactions to CICS. Your system programmer must make the appropriate
CICS resource or table entries. For information on the required resource
entries, see Part 2 of DB2 Installation Guide and CICS Transaction Server for
z/OS Resource Definition Guide.

prefix.SDSNSAMP contains examples of the JCL used to prepare and run a
CICS program that includes SQL statements. For a list of CICS program
names and JCL member names, see Table 192 on page 1020. The set of JCL
includes:
v PL/I macro phase
v DB2 precompiling
v CICS Command Language Translation
v Compiling the host language source statements
v Link-editing the compiler output
v Binding the DBRM
v Running the prepared application.

Step 2: Compile (or assemble) and link-edit the application
If you use the DB2 precompiler, your next step in the program preparation process
is to compile and link-edit your program. As with the precompile step, you have a
choice of methods:
v DB2I panels
v The DSNH command procedure (a TSO CLIST)
v JCL procedures supplied with DB2.
v JCL procedures supplied with a host language compiler.

If you use the DB2 coprocessor, you process SQL statements as you compile your
program. You must use JCL procedures when you use the DB2 coprocessor.

The purpose of the link edit step is to produce an executable load module. To
enable your application to interface with the DB2 subsystem, you must use a
link-edit procedure that builds a load module that satisfies these requirements:

TSO and batch
Include the DB2 TSO attachment facility language interface module (DSNELI)
or DB2 call attachment facility language interface module (DSNALI).

For a program that uses 31-bit addressing, link-edit the program with the
AMODE=31 and RMODE=ANY options.

For more details, see the appropriate z/OS publication.

Chapter 21. Preparing an application program to run 495

#
#



IMS
Include the DB2 IMS (Version 1 Release 3 or later) language interface module
(DFSLI000), which contains the DSNHLI entry point. Also, the IMS RESLIB
must precede the SDSNLOAD library in the link list, JOBLIB, or STEPLIB
concatenations.

IMS and DB2 share a common alias name, DSNHLI, for the language
interface module. You must do the following when you concatenate your
libraries:
v If you use IMS, be sure to concatenate the IMS library first so that the

application program compiles with the correct IMS version of DSNHLI.
v If you run your application program only under DB2 be sure to

concatenate the DB2 library first.

For more information, see “Embedding SQL statements” on page 187.

CICS
Include the DB2 CICS language interface module (DSNCLI).

You can link DSNCLI with your program in either 24 bit or 31 bit addressing
mode (AMODE=31). If your application program runs in 31-bit addressing
mode, you should link-edit the DSNCLI stub to your application with the
attributes AMODE=31 and RMODE=ANY so that your application can run
above the 16M line. For more information on compiling and link-editing CICS
application programs, see the appropriate CICS manual.

You also need the CICS EXEC interface module appropriate for the
programming language. CICS requires that this module be the first control
section (CSECT) in the final load module.

The size of the executable load module that is produced by the link-edit step varies
depending on the values that the SQL statement processor inserts into the source
code of the program.

For more information about compiling and link-editing, see “Using JCL procedures
to prepare applications” on page 513.

For more information about link-editing attributes, see the appropriate z/OS
manuals. For details on DSNH, see Part 3 of DB2 Command Reference.

Step 3: Bind the application
You must bind the DBRM produced by the SQL statement processor to a plan or
package before your DB2 application can run. A plan can contain DBRMs, a
package list specifying packages or collections of packages, or a combination of
DBRMs and a package list. The plan must contain at least one package or at least
one directly-bound DBRM. Each package you bind can contain only one DBRM.

496 Application Programming and SQL Guide



Exception
You do not need to bind a DBRM if the only SQL statement in the program is
SET CURRENT PACKAGESET.

Because you do not need a plan or package to execute the SET CURRENT
PACKAGESET statement, the ENCODING bind option does not affect the SET
CURRENT PACKAGESET statement. An application that needs to provide a host
variable value in an encoding scheme other than the system default encoding
scheme must use the DECLARE VARIABLE statement to specify the encoding
scheme of the host variable.

You must bind plans locally, whether or not they reference packages that run
remotely. However, you must bind the packages that run at remote locations at
those remote locations.

From a DB2 requester, you can run a plan by naming it in the RUN subcommand,
but you cannot run a package directly. You must include the package in a plan and
then run the plan.

Binding a DBRM to a package
When you bind a package, you specify the collection to which the package
belongs. The collection is not a physical entity, and you do not create it; the
collection name is merely a convenient way of referring to a group of packages.

To bind a package, you must have the proper authorization.

Binding packages at a remote location: When your application accesses data
through DRDA access, you must bind packages on the systems on which they will
run. If a local stored procedure uses a cursor to access data through DRDA access,
and the cursor-related statement is bound in a separate package under the stored
procedure, you must bind this separate package both locally and remotely. In
addition, the invoker or owner of the stored procedure must be authorized to
execute both local and remote packages. At your local system you must bind a
plan whose package list includes all those packages, local and remote.

To bind a package at a remote DB2 system, you must have all the privileges or
authority there that you would need to bind the package on your local system. To
bind a package at another type of a system, such as DB2 Server for VSE & VM,
you need any privileges that system requires to execute its SQL statements and use
its data objects.

The bind process for a remote package is the same as for a local package, except
that the local communications database must be able to recognize the location
name you use as resolving to a remote location. To bind the DBRM PROGA at the
location PARIS, in the collection GROUP1, use:
BIND PACKAGE(PARIS.GROUP1)

MEMBER(PROGA)

Then, include the remote package in the package list of a local plan, say PLANB,
by using:
BIND PLAN (PLANB)

PKLIST(PARIS.GROUP1.PROGA)

Chapter 21. Preparing an application program to run 497

|
|
|
|
|
|
|
|



The ENCODING bind option has the following effect on a remote application:
v If you bind a package locally, which is recommended, and you specify the

ENCODING bind option for the local package, the ENCODING bind option for
the local package applies to the remote application.

v If you do not bind a package locally, and you specify the ENCODING bind
option for the plan, the ENCODING bind option for the plan applies to the
remote application.

v If you do not specify an ENCODING bind option for the package or plan at the
local site, the value of APPLICATION ENCODING that was specified on
installation panel DSNTIPF at the local site applies to the remote application.

When you bind or rebind, DB2 checks authorizations, reads and updates the
catalog, and creates the package in the directory at the remote site. DB2 does not
read or update catalogs or check authorizations at the local site.

If you specify the option EXPLAIN(YES) and you do not specify the option
SQLERROR(CONTINUE), then PLAN_TABLE must exist at the location specified
on the BIND or REBIND subcommand. This location could also be the default
location.

If you bind with the option COPY, the COPY privilege must exist locally. DB2
performs authorization checking, reads and updates the catalog, and creates the
package in the directory at the remote site. DB2 reads the catalog records related to
the copied package at the local site. If the local site is installed with time or date
format LOCAL, and a package is created at a remote site using the COPY option,
the COPY option causes DB2 at the remote site to convert values returned from the
remote site in ISO format, unless an SQL statement specifies a different format.

After you bind a package, you can rebind, free, or bind it with the REPLACE
option using either a local or a remote bind.

Turning an existing plan into packages to run remotely: If you have used DB2
before, you might have an existing application that you want to run at a remote
location, using DRDA access. To do that, you need to rebind the DBRMs in the
current plan as packages at the remote location. You also need a new plan that
includes those remote packages in its package list.

Follow these instructions for each remote location:
1. Choose a name for a collection to contain all the packages in the plan, say

REMOTE1. (You can use more than one collection if you like, but one is
enough.)

2. Assuming that the server is a DB2 system, at the remote location execute:
a. GRANT CREATE IN COLLECTION REMOTE1 TO authorization-name;
b. GRANT BINDADD TO authorization-name;

where authorization-name is the owner of the package.
3. Bind each DBRM as a package at the remote location, using the instructions

under “Binding packages at a remote location” on page 497. Before run time,
the package owner must have all the data access privileges needed at the
remote location. If the owner does not yet have those privileges when you are
binding, use the VALIDATE(RUN) option. The option lets you create the
package, even if the authorization checks fail. DB2 checks the privileges again
at run time.

4. Bind a new application plan at your local DB2, using these options:

498 Application Programming and SQL Guide



PKLIST (location-name.REMOTE1.*)
CURRENTSERVER (location-name)

where location-name is the value of LOCATION, in SYSIBM.LOCATIONS at
your local DB2, that denotes the remote location at which you intend to run.
You do not need to bind any DBRMs directly to that plan: the package list is
sufficient.

When you now run the existing application at your local DB2, using the new
application plan, these things happen:
v You connect immediately to the remote location named in the

CURRENTSERVER option.
v When about to run a package, DB2 searches for it in the collection REMOTE1 at

the remote location.
v Any UPDATE, DELETE, or INSERT statements in your application affect tables

at the remote location.
v Any results from SELECT statements return to your existing application

program, which processes them as though they came from your local DB2.

Binding an application plan
Use the BIND PLAN subcommand to bind DBRMs and package lists to a plan. For
BIND PLAN syntax and complete descriptions, see Part 3 of DB2 Command
Reference.

Binding DBRMs directly to a plan: A plan can contain DBRMs bound directly to
it. To bind three DBRMs—PROGA, PROGB, and PROGC—directly to plan
PLANW, use:
BIND PLAN(PLANW)

MEMBER(PROGA,PROGB,PROGC)

You can include as many DBRMs in a plan as you wish. However, if you use a
large number of DBRMs in a plan (more than 500, for example), you could have
trouble maintaining the plan. To ease maintenance, you can bind each DBRM
separately as a package, specifying the same collection for all packages bound, and
then bind a plan specifying that collection in the plan's package list. If the design
of the application prevents this method, see if your system administrator can
increase the size of the EDM pool to be at least 10 times the size of either the
largest database descriptor (DBD) or the plan, whichever is greater.

Including packages in a package list: To include packages in the package list of a
plan, list them after the PKLIST keyword of BIND PLAN. To include an entire
collection of packages in the list, use an asterisk after the collection name. For
example,
PKLIST(GROUP1.*)

To bind DBRMs directly to the plan, and also include packages in the package list,
use both MEMBER and PKLIST. The following example includes:
v The DBRMs PROG1 and PROG2
v All the packages in a collection called TEST2
v The packages PROGA and PROGC in the collection GROUP1
MEMBER(PROG1,PROG2)
PKLIST(TEST2.*,GROUP1.PROGA,GROUP1.PROGC)

You must specify MEMBER, PKLIST, or both options. The plan that results consists
of one of the following:

Chapter 21. Preparing an application program to run 499



v Programs associated with DBRMs in the MEMBER list only
v Programs associated with packages and collections identified in PKLIST only
v A combination of the specifications on MEMBER and PKLIST

Identifying packages at run time
The DB2 precompiler or DB2 coprocessor identifies each call to DB2 with a
consistency token. The same consistency token identifies the DBRM that the SQL
statement processor produces and the plan or package to which you bound the
DBRM. When you run the program, DB2 uses the consistency token in matching
the call to DB2 to the correct DBRM.

(Usually, the consistency token is in an internal DB2 format. You can override that
token if you want: see “Setting the program level” on page 503.)

You also need other identifiers. The consistency token alone uniquely identifies a
DBRM bound directly to a plan, but it does not necessarily identify a unique
package. When you bind DBRMs directly to a particular plan, you bind each one
only once. But you can bind the same DBRM to many packages, at different
locations and in different collections, and then you can include all those packages
in the package list of the same plan. All those packages will have the same
consistency token. As you might expect, there are ways to specify a particular
location or a particular collection at run time.

Identifying the location: When your program executes an SQL statement, DB2
uses the value in the CURRENT SERVER special register to determine the location
of the necessary package or DBRM. If the current server is your local DB2
subsystem and it does not have a location name, the value is blank.

You can change the value of CURRENT SERVER by using the SQL CONNECT
statement in your program. If you do not use CONNECT, the value of CURRENT
SERVER is the location name of your local DB2 subsystem (or blank, if your DB2
has no location name).

Identifying the collection: You can use the special register CURRENT PACKAGE
PATH or CURRENT PACKAGESET (if CURRENT PACKAGE PATH is not set) to
specify the collections that are to be used for package resolution. The CURRENT
PACKAGESET special register contains the name of a single collection, and the
CURRENT PACKAGE PATH special register contains a list of collection names.

If you do not set these registers, they are blank when your application begins to
run and remain blank. In this case, DB2 searches the available collections, using
methods described in “Specifying the package list for the PKLIST option of BIND
PLAN” on page 501.

However, explicitly specifying the intended collection by using the special registers
can avoid a potentially costly search through a package list with many qualifying
entries. In addition, DB2 uses the values in these special registers for applications
that do not run under a plan. How DB2 uses these special registers is described in
“Using the special registers” on page 502.

When you call a stored procedure, the special register CURRENT PACKAGESET
contains the value that you specified for the COLLID parameter when you defined
the stored procedure. When the stored procedure returns control to the calling
program, DB2 restores this register to the value that it contained before the call.

500 Application Programming and SQL Guide

#
#
#
#
#

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|



Specifying the package list for the PKLIST option of BIND PLAN: The order in
which you specify packages in a package list can affect run-time performance.
Searching for the specific package involves searching the DB2 directory, which can
be costly. When you use collection-id.* with the PKLIST keyword, you should
specify first the collections in which DB2 is most likely to find a package.

For example, assume that you perform the following bind:
BIND PLAN (PLAN1) PKLIST (COLL1.*, COLL2.*, COLL3.*, COLL4.*)

Then you execute program PROG1. DB2 does the following package search:
1. Checks to see if program PROG1 is bound as part of the plan
2. Searches for COLL1.PROG1.timestamp

3. If it does not find COLL1.PROG1.timestamp, searches for
COLL2.PROG1.timestamp

4. If it does not find COLL2.PROG1.timestamp, searches for
COLL3.PROG1.timestamp

5. If it does not find COLL3.PROG1.timestamp, searches for
COLL4.PROG1.timestamp.

When both special registers CURRENT PACKAGE PATH and CURRENT
PACKAGESET are blank: If you do not set these special registers, DB2 searches
for a DBRM or a package in one of these sequences:
v At the local location (if CURRENT SERVER is blank or names that location

explicitly), the order is:
1. All DBRMs that are bound directly to the plan.
2. All packages that are already allocated to the plan while the plan is running.
3. All unallocated packages that are explicitly named in, and all collections that

are completely included in, the package list of the plan. DB2 searches for
packages in the order that they appear in the package list.

v At a remote location, the order is:
1. All packages that are already allocated to the plan at that location while the

plan is running.
2. All unallocated packages that are explicitly named in, and all collections that

are completely included in, the package list of the plan, whose locations
match the value of CURRENT SERVER. DB2 searches for packages in the
order that they appear in the package list.

If you use the BIND PLAN option DEFER(PREPARE), DB2 does not search all
collections in the package list. See “Using bind options to improve performance
for distributed applications” on page 456 for more information.

If the order of search is not important: In many cases, DB2's order of search is not
important to you and does not affect performance. For an application that runs
only at your local DB2, you can name every package differently and include them
all in the same collection. The package list on your BIND PLAN subcommand can
read:
PKLIST (collection.*)

You can add packages to the collection even after binding the plan. DB2 lets you
bind packages having the same package name into the same collection only if their
version IDs are different.

Chapter 21. Preparing an application program to run 501



If your application uses DRDA access, you must bind some packages at remote
locations. Use the same collection name at each location, and identify your package
list as:
PKLIST (*.collection.*)

If you use an asterisk for part of a name in a package list, DB2 checks the
authorization for the package to which the name resolves at run time. To avoid the
checking at run time in the preceding example, you can grant EXECUTE authority
for the entire collection to the owner of the plan before you bind the plan.

Using the special registers: If you set the special register CURRENT PACKAGE
PATH or CURRENT PACKAGESET, DB2 skips the check for programs that are
part of a plan and uses the values in these registers for package resolution.

If you set CURRENT PACKAGE PATH, DB2 uses the value of CURRENT
PACKAGE PATH as the collection name list for package resolution. For example, if
CURRENT PACKAGE PATH contains the list COLL1, COLL2, COLL3, COLL4,
then DB2 searches for the first package that exists in the following order:

COLL1.PROG1.timestamp
COLL2.PROG1.timestamp
COLL3.PROG1.timestamp
COLL4.PROG1.timestamp

If you set CURRENT PACKAGESET and not CURRENT PACKAGE PATH, DB2
uses the value of CURRENT PACKAGESET as the collection for package
resolution. For example, if CURRENT PACKAGESET contains COLL5, then DB2
uses COLL5.PROG1.timestamp for the package search.

When CURRENT PACKAGE PATH is set, the server that receives the request
ignores the collection that is specified by the request and instead uses the value of
CURRENT PACKAGE PATH at the server to resolve the package. Specifying a
collection list with the CURRENT PACKAGE PATH special register can avoid the
need to issue multiple SET CURRENT PACKAGESET statements to switch
collections for the package search.

Table 67 shows examples of the relationship between the CURRENT PACKAGE
PATH special register and the CURRENT PACKAGESET special register.

Table 67. Scope of CURRENT PACKAGE PATH

Example What happens

SET CURRENT PACKAGESET
SELECT ... FROM T1 ...

The collection in PACKAGESET determines which
package is invoked.

SET CURRENT PACKAGE PATH
SELECT ... FROM T1 ...

The collections in PACKAGE PATH determine which
package is invoked.

SET CURRENT PACKAGESET
SET CURRENT PACKAGE PATH
SELECT ... FROM T1 ...

The collections in PACKAGE PATH determine which
package is invoked.

SET CURRENT PACKAGE PATH
CONNECT TO S2 ...
SELECT ... FROM T1 ...

PACKAGE PATH at server S2 is an empty string
because it has not been explicitly set. The values from
the PKLIST bind option of the plan that is at the
requester determine which package is invoked.1

502 Application Programming and SQL Guide

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

||

||

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|



Table 67. Scope of CURRENT PACKAGE PATH (continued)

Example What happens

SET CURRENT PACKAGE PATH
= ’A,B’

CONNECT TO S2 ...
SET CURRENT PACKAGE PATH

= ’X,Y’
SELECT ... FROM T1 ...

The collections in PACKAGE PATH that are set at
server S2 determine which package is invoked.

SET CURRENT PACKAGE PATH
SELECT ... FROM
S2.QUAL.T1 ...

Three-part table name. On implicit connection to
server S2, PACKAGE PATH at server S2 is inherited
from the local server. The collections in PACKAGE
PATH at server S2 determine which package is
invoked.

Notes:

1. When CURRENT PACKAGE PATH is set at the requester (and not at the remote server),
DB2 passes one collection at a time from the list of collections to the remote server until
a package is found or until the end of the list. Each time a package is not found at the
server, DB2 returns an error to the requester. The requester then sends the next collection
in the list to the remote server.

Identifying a package version: Sometimes, however, you want to have more than
one package with the same name available to your plan. The VERSION option
makes that possible. Using VERSION identifies your program with a specific
version of a package. If you bind the plan with PKLIST (COLLECT.*), then you can
do this:

Step number For Version 1 For Version 2

1 Precompile program 1, using
VERSION(1).

Precompile program 2, using
VERSION(2).

2 Bind the DBRM with the collection
name COLLECT and your chosen
package name (say, PACKA).

Bind the DBRM with the collection
name COLLECT and package name
PACKA.

3 Link-edit program 1 into your
application.

Link-edit program 2 into your
application.

4 Run the application; it uses
program 1 and PACKA, VERSION
1.

Run the application; it uses
program 2 and PACKA, VERSION
2.

You can do that with many versions of the program, without having to rebind the
application plan. Neither do you have to rename the plan or change any RUN
subcommands that use it.

Setting the program level: To override DB2's construction of the consistency
token, use the LEVEL (aaaa) option. DB2 uses the value you choose for aaaa to
generate the consistency token. Although we do not recommend this method for
general use and the DSNH CLIST or the DB2 Program Preparation panels do not
support it, it allows you to do the following:
1. Change the source code (but not the SQL statements) in the DB2 precompiler

output of a bound program.
2. Compile and link-edit the changed program.
3. Run the application without rebinding a plan or package.

Chapter 21. Preparing an application program to run 503

|

||

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|



Using BIND and REBIND options for packages and plans
This section discusses a few of the more complex bind and rebind options. For
syntax and complete descriptions of all of the bind and rebind options, see Part 3
of DB2 Command Reference.

Using DYNAMICRULES to specify behavior of dynamic SQL statements: The
BIND or REBIND option DYNAMICRULES determines what values apply at run
time for the following dynamic SQL attributes:
v The authorization ID that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements
v Whether dynamic SQL statements can include GRANT, REVOKE, ALTER,

CREATE, DROP, and RENAME statements

In addition to the DYNAMICRULES value, the run-time environment of a package
controls how dynamic SQL statements behave at run time. The two possible
run-time environments are:
v The package runs as part of a stand-alone program.
v The package runs as a stored procedure or user-defined function package, or

runs under a stored procedure or user-defined function.
A package that runs under a stored procedure or user-defined function is a
package whose associated program meets one of the following conditions:
– The program is called by a stored procedure or user-defined function.
– The program is in a series of nested calls that start with a stored procedure or

user-defined function.

The combination of the DYNAMICRULES value and the run-time environment
determine the values for the dynamic SQL attributes. That set of attribute values is
called the dynamic SQL statement behavior. The four behaviors are:
v Run behavior
v Bind behavior
v Define behavior
v Invoke behavior

Table 68 shows the combination of DYNAMICRULES value and run-time
environment that yield each dynamic SQL behavior.

Table 68. How DYNAMICRULES and the run-time environment determine dynamic SQL
statement behavior

DYNAMICRULES value

Behavior of dynamic SQL
statements in a stand-alone
program environment

Behavior of dynamic SQL
statements in a user-defined
function or stored procedure
environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

Note: The BIND and RUN values can be specified for packages and plans. The other
values can be specified only for packages.

504 Application Programming and SQL Guide



Table 69 shows the dynamic SQL attribute values for each type of dynamic SQL
behavior.

Table 69. Definitions of dynamic SQL statement behaviors

Dynamic SQL attribute

Setting for dynamic SQL attributes

Bind behavior Run behavior Define behavior Invoke behavior

Authorization ID Plan or package
owner

Current® SQLID User-defined
function or stored
procedure owner

Authorization ID of
invoker1

Default qualifier for
unqualified objects

Bind OWNER or
QUALIFIER value

CURRENT
SCHEMA

User-defined
function or stored
procedure owner

Authorization ID of
invoker

CURRENT SQLID2 Not applicable Applies Not applicable Not applicable

Source for application
programming options

Determined by
DSNHDECP
parameter
DYNRULS3

Install panel
DSNTIP4

Determined by
DSNHDECP
parameter
DYNRULS3

Determined by
DSNHDECP
parameter
DYNRULS3

Can execute GRANT,
REVOKE, CREATE,
ALTER, DROP, RENAME?

No Yes No No

Notes:

1. If the invoker is the primary authorization ID of the process or the CURRENT SQLID value, secondary
authorization IDs will also be checked if they are needed for the required authorization. Otherwise, only one ID,
the ID of the invoker, is checked for the required authorization.

2. DB2 uses the value of CURRENT SQLID as the authorization ID for dynamic SQL statements only for plans and
packages that have run behavior. For the other dynamic SQL behaviors, DB2 uses the authorization ID that is
associated with each dynamic SQL behavior, as shown in this table.

The value to which CURRENT SQLID is initialized is independent of the dynamic SQL behavior. For stand-alone
programs, CURRENT SQLID is initialized to the primary authorization ID. See Table 41 on page 342 and Table 79
on page 649 for information about initialization of CURRENT SQLID for user-defined functions and stored
procedures.

You can execute the SET CURRENT SQLID statement to change the value of CURRENT SQLID for packages with
any dynamic SQL behavior, but DB2 uses the CURRENT SQLID value only for plans and packages with run
behavior.

3. The value of DSNHDECP parameter DYNRULS, which you specify in field USE FOR DYNAMICRULES in
installation panel DSNTIP4, determines whether DB2 uses the SQL statement processing options or the
application programming defaults for dynamic SQL statements. See “Options for SQL statement processing” on
page 484 for more information.

For more information about DYNAMICRULES, see Chapter 2 of DB2 SQL Reference
and Part 3 of DB2 Command Reference.

Determining the optimal authorization cache size: When DB2 determines that
you have the EXECUTE privilege on a plan, package collection, stored procedure,
or user-defined function, DB2 can cache your authorization ID. When you run the
plan, package, stored procedure, or user-defined function, DB2 can check your
authorization more quickly.

Determining the authorization cache size for plans: The CACHESIZE option
(optional) allows you to specify the size of the cache to acquire for the plan. DB2
uses this cache for caching the authorization IDs of those users that are running a
plan. An authorization ID can take up to 128 bytes of storage. DB2 uses the
CACHESIZE value to determine the amount of storage to acquire for the

Chapter 21. Preparing an application program to run 505

#
#

|

|

|



authorization cache. DB2 acquires storage from the EDM storage pool. The default
CACHESIZE value is 1024 or the size set at installation time.

The size of the cache you specify depends on the number of individual
authorization IDs actively using the plan. Required overhead takes 32 bytes, and
each authorization ID takes up 8 bytes of storage. The minimum cache size is 256
bytes (enough for 28 entries and overhead information) and the maximum is 4096
bytes (enough for 508 entries and overhead information). You should specify size
in multiples of 256 bytes; otherwise, the specified value rounds up to the next
highest value that is a multiple of 256.

If you run the plan infrequently, or if authority to run the plan is granted to
PUBLIC, you might want to turn off caching for the plan so that DB2 does not use
unnecessary storage. To do this, specify a value of 0 for the CACHESIZE option.

Any plan that you run repeatedly is a good candidate for tuning using the
CACHESIZE option. Also, if you have a plan that a large number of users run
concurrently, you might want to use a larger CACHESIZE.

Determining the authorization cache size for packages: DB2 provides a single
package authorization cache for an entire DB2 subsystem. The DB2 installer sets
the size of the package authorization cache by entering a size in field PACKAGE
AUTH CACHE of DB2 installation panel DSNTIPP. A 32-KB authorization cache is
large enough to hold authorization information for about 375 package collections.

See DB2 Installation Guide for more information about setting the size of the
package authorization cache.

Determining the authorization cache size for stored procedures and user-defined
functions: DB2 provides a single routine authorization cache for an entire DB2
subsystem. The routine authorization cache stores a list of authorization IDs that
have the EXECUTE privilege on user-defined functions or stored procedures. The
DB2 installer sets the size of the routine authorization cache by entering a size in
field ROUTINE AUTH CACHE of DB2 installation panel DSNTIPP. A 32-KB
authorization cache is large enough to hold authorization information for about
380 stored procedures or user-defined functions.

See DB2 Installation Guide for more information about setting the size of the routine
authorization cache.

Specifying the SQL rules: Not only does SQLRULES specify the rules under
which a type 2 CONNECT statement executes, but it also sets the initial value of
the special register CURRENT RULES when the database server is the local DB2.
When the server is not the local DB2, the initial value of CURRENT RULES is DB2.
After binding a plan, you can change the value in CURRENT RULES in an
application program using the statement SET CURRENT RULES.

CURRENT RULES determines the SQL rules, DB2 or SQL standard, that apply to
SQL behavior at run time. For example, the value in CURRENT RULES affects the
behavior of defining check constraints using the statement ALTER TABLE on a
populated table:
v If CURRENT RULES has a value of STD and no existing rows in the table

violate the check constraint, DB2 adds the constraint to the table definition.
Otherwise, an error occurs and DB2 does not add the check constraint to the
table definition.

506 Application Programming and SQL Guide



If the table contains data and is already in a check pending status, the ALTER
TABLE statement fails.

v If CURRENT RULES has a value of DB2, DB2 adds the constraint to the table
definition, defers the enforcing of the check constraints, and places the table
space or partition in check pending status.

You can use the statement SET CURRENT RULES to control the action that the
statement ALTER TABLE takes. Assuming that the value of CURRENT RULES is
initially STD, the following SQL statements change the SQL rules to DB2, add a
check constraint, defer validation of that constraint and place the table in check
pending status, and restore the rules to STD.
EXEC SQL

SET CURRENT RULES = ’DB2’;
EXEC SQL

ALTER TABLE DSN8810.EMP
ADD CONSTRAINT C1 CHECK (BONUS <= 1000.0);

EXEC SQL
SET CURRENT RULES = ’STD’;

See “Using check constraints” on page 261 for information about check constraints.

You can also use CURRENT RULES in host variable assignments, for example:
SET :XRULE = CURRENT RULES;

You can also use CURRENT RULES as the argument of a search-condition, for
example:
SELECT * FROM SAMPTBL WHERE COL1 = CURRENT RULES;

Chapter 21. Preparing an application program to run 507



Using packages with dynamic plan selection

CICS

You can use packages and dynamic plan selection together, but when you
dynamically switch plans, the following conditions must exist:
v All special registers, including CURRENT PACKAGESET, must contain

their initial values.
v The value in the CURRENT DEGREE special register cannot have changed

during the current transaction.

The benefit of using dynamic plan selection and packages together is that you
can convert individual programs in an application containing many programs
and plans, one at a time, to use a combination of plans and packages. This
reduces the number of plans per application, and having fewer plans reduces
the effort needed to maintain the dynamic plan exit.

Assume that you develop the following programs and DBRMs:

Program Name
DBRM Name

MAIN MAIN
PROGA

PLANA
PROGB

PKGB
PROGC

PLANC

You could create packages and plans using the following bind statements:
BIND PACKAGE(PKGB) MEMBER(PKGB)
BIND PLAN(MAIN) MEMBER(MAIN,PLANA) PKLIST(*.PKGB.*)
BIND PLAN(PLANC) MEMBER(PLANC)

The following scenario illustrates thread association for a task that runs
program MAIN:

Sequence of SQL Statements
Events

1. EXEC CICS START TRANSID(MAIN)
TRANSID(MAIN) executes program MAIN.

2. EXEC SQL SELECT...
Program MAIN issues an SQL SELECT statement. The default
dynamic plan exit selects plan MAIN.

3. EXEC CICS LINK PROGRAM(PROGA)

4. EXEC SQL SELECT...
DB2 does not call the default dynamic plan exit, because the program
does not issue a sync point. The plan is MAIN.

508 Application Programming and SQL Guide



CICS (continued)

Sequence of SQL Statements
Events

5. EXEC CICS LINK PROGRAM(PROGB)

6. EXEC SQL SELECT...
DB2 does not call the default dynamic plan exit, because the program
does not issue a sync point. The plan is MAIN and the program uses
package PKGB.

7. EXEC CICS SYNCPOINT
DB2 calls the dynamic plan exit when the next SQL statement
executes.

8. EXEC CICS LINK PROGRAM(PROGC)

9. EXEC SQL SELECT...
DB2 calls the default dynamic plan exit and selects PLANC.

10. EXEC SQL SET CURRENT SQLID = ’ABC’

11. EXEC CICS SYNCPOINT
DB2 does not call the dynamic plan exit when the next SQL statement
executes, because the previous statement modifies the special register
CURRENT SQLID.

12. EXEC CICS RETURN
Control returns to program PROGB.

13. EXEC SQL SELECT...
SQLCODE -815 occurs because the plan is currently PLANC and the
program is PROGB.

Step 4: Run the application
After you complete all the previous steps, you are ready to run your application.
At this time, DB2 verifies that the information in the application plan and its
associated packages is consistent with the corresponding information in the DB2
system catalog. If any destructive changes, such as DROP or REVOKE, occur
(either to the data structures that your application accesses or to the binder's
authority to access those data structures), DB2 automatically rebinds packages or
the plan as needed.

DSN command processor
The DSN command processor is a TSO command processor that runs in TSO
foreground or under TSO in JES-initiated batch. It uses the TSO attachment facility
to access DB2. The DSN command processor provides an alternative method for
running programs that access DB2 in a TSO environment.

You can use the DSN command processor implicitly during program development
for functions such as:
v Using the declarations generator (DCLGEN)

Chapter 21. Preparing an application program to run 509



v Running the BIND, REBIND, and FREE subcommands on DB2 plans and
packages for your program

v Using SPUFI (SQL Processor Using File Input) to test some of the SQL functions
in the program

The DSN command processor runs with the TSO terminal monitor program (TMP).
Because the TMP runs in either foreground or background, DSN applications run
interactively or as batch jobs.

The DSN command processor can provide these services to a program that runs
under it:
v Automatic connection to DB2
v Attention key support
v Translation of return codes into error messages

Limitations of the DSN command processor: When using DSN services, your
application runs under the control of DSN. Because TSO executes the ATTACH
macro to start DSN, and DSN executes the ATTACH macro to start a part of itself,
your application gains control two task levels below that of TSO.

Because your program depends on DSN to manage your connection to DB2:
v If DB2 is down, your application cannot begin to run.
v If DB2 terminates, your application also terminates.
v An application can use only one plan.

If these limitations are too severe, consider having your application use the call
attachment facility or Resource Recovery Services attachment facility. For more
information about these attachment facilities, see Chapter 30, “Programming for the
call attachment facility,” on page 861 and Chapter 31, “Programming for the
Resource Recovery Services attachment facility,” on page 895.

DSN return code processing: At the end of a DSN session, register 15 contains
the highest value placed there by any DSN subcommand used in the session or by
any program run by the RUN subcommand. Your run-time environment might
format that value as a return code. The value does not, however, originate in DSN.

Running a program in TSO foreground
Use the DB2I RUN panel to run a program in TSO foreground. As an alternative to
the RUN panel, you can issue the DSN command followed by the RUN
subcommand of DSN. Before running the program, be sure to allocate any data
sets your program needs.

The following example shows how to start a TSO foreground application. The
name of the application is SAMPPGM, and ssid is the system ID:
TSO Prompt: READY
Enter: DSN SYSTEM(ssid)
DSN Prompt: DSN
Enter: RUN PROGRAM(SAMPPGM) -

PLAN(SAMPLAN) -
LIB(SAMPPROJ.SAMPLIB) -
PARMS(’/D01 D02 D03’)...

(Here the program runs and might prompt you for input)
DSN Prompt: DSN
Enter: END
TSO Prompt: READY

510 Application Programming and SQL Guide



This sequence also works in ISPF option 6. You can package this sequence in a
CLIST. DB2 does not support access to multiple DB2 subsystems from a single
address space.

The PARMS keyword of the RUN subcommand allows you to pass parameters to
the run-time processor and to your application program:
PARMS (’/D01, D02, D03’)

The slash (/) indicates that you are passing parameters. For some languages, you
pass parameters and run-time options in the form PARMS('parameters/run-time-
options). In those environments, an example of the PARMS keyword might be:
PARMS (’D01, D02, D03/’)

Check your host language publications for the correct form of the PARMS option.

Running a batch DB2 application in TSO
Most application programs written for the batch environment run under the TSO
Terminal Monitor Program (TMP) in background mode. Figure 151 shows the JCL
statements that you need in order to start such a job. The list that follows explains
each statement.

v The JOB option identifies this as a job card. The USER option specifies the DB2
authorization ID of the user.

v The EXEC statement calls the TSO Terminal Monitor Program (TMP).
v The STEPLIB statement specifies the library in which the DSN Command

Processor load modules and the default application programming defaults
module, DSNHDECP, reside. It can also reference the libraries in which user
applications, exit routines, and the customized DSNHDECP module reside. The
customized DSNHDECP module is created during installation.

v Subsequent DD statements define additional files needed by your program.
v The DSN command connects the application to a particular DB2 subsystem.
v The RUN subcommand specifies the name of the application program to run.
v The PLAN keyword specifies plan name.
v The LIB keyword specifies the library the application should access.
v The PARMS keyword passes parameters to the run-time processor and the

application program.
v END ends the DSN command processor.

Usage notes:

//jobname JOB USER=MY DB2ID
//GO EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=prefix.SDSNEXIT,DISP=SHR
// DD DSN=prefix.SDSNLOAD,DISP=SHR...
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
DSN SYSTEM (ssid)
RUN PROG (SAMPPGM) -

PLAN (SAMPLAN) -
LIB (SAMPPROJ.SAMPLIB) -
PARMS (’/D01 D02 D03’)

END
/*

Figure 151. JCL for running a DB2 application under the TSO terminal monitor program

Chapter 21. Preparing an application program to run 511



v Keep DSN job steps short.
v We recommend that you not use DSN to call the EXEC command processor to

run CLISTs that contain ISPEXEC statements; results are unpredictable.
v If your program abends or gives you a non-zero return code, DSN terminates.
v You can use a group attachment name instead of a specific ssid to connect to a

member of a data sharing group. For more information, see DB2 Data Sharing:
Planning and Administration.

For more information about using the TSO TMP in batch mode, see z/OS TSO/E
User's Guide.

Calling applications in a command procedure (CLIST)
As an alternative to the previously described foreground or batch calls to an
application, you can also run a TSO or batch application using a command
procedure (CLIST).

The following CLIST calls a DB2 application program named MYPROG. The DB2
subsystem name or group attachment name should replace ssid.

IMS
To run a message-driven program

First, be sure you can respond to the program's interactive requests for data
and that you can recognize the expected results. Then, enter the transaction
code associated with the program. Users of the transaction code must be
authorized to run the program.

To run a non-message-driven program

Submit the job control statements needed to run the program.

PROC 0 /* INVOCATION OF DSN FROM A CLIST */
DSN SYSTEM(ssid) /* INVOKE DB2 SUBSYSTEM ssid */
IF &LASTCC = 0 THEN /* BE SURE DSN COMMAND WAS SUCCESSFUL */

DO /* IF SO THEN DO DSN RUN SUBCOMMAND */
DATA /* ELSE OMIT THE FOLLOWING: */

RUN PROGRAM(MYPROG)
END

ENDDATA /* THE RUN AND THE END ARE FOR DSN */
END

EXIT

512 Application Programming and SQL Guide



CICS
To run a program

First, ensure that the corresponding entries in the SNT and RACF* control
areas allow run authorization for your application. The system administrator
is responsible for these functions; see Part 3 (Volume 1) of DB2 Administration
Guide for more information.

Also, be sure to define to CICS the transaction code assigned to your
program and the program itself.

Make a new copy of the program

Issue the NEWCOPY command if CICS has not been reinitialized since the
program was last bound and compiled.

Running a DB2 REXX application
You run DB2 REXX procedures under TSO. You do not precompile, compile,
link-edit or bind DB2 REXX procedures before you run them.

In a batch environment, you might use statements like these to invoke procedure
REXXPROG:
//RUNREXX EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSEXEC DD DISP=SHR,DSN=SYSADM.REXX.EXEC
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%REXXPROG parameters

The SYSEXEC data set contains your REXX application, and the SYSTSIN data set
contains the command that you use to invoke the application.

Using JCL procedures to prepare applications
A number of methods are available for preparing an application to run. You can:
v Use DB2 interactive (DB2I) panels, which lead you step by step through the

preparation process. See “Using ISPF and DB2 Interactive” on page 519.
v Submit a background job using JCL (which the program preparation panels can

create for you).
v Start the DSNH CLIST in TSO foreground or background.
v Use TSO prompters and the DSN command processor.
v Use JCL procedures added to your SYS1.PROCLIB (or equivalent) at DB2 install

time.

This section describes how to use JCL procedures to prepare a program. For
information about using the DSNH CLIST, the TSO DSN command processor, or
JCL procedures added to your SYS1.PROCLIB, see Part 3 of DB2 Command
Reference.

Available JCL procedures
You can precompile and prepare an application program using a DB2-supplied
procedure. DB2 has a unique procedure for each supported language, with

Chapter 21. Preparing an application program to run 513



appropriate defaults for starting the DB2 precompiler and host language compiler
or assembler. The procedures are in prefix.SDSNSAMP member DSNTIJMV, which
installs the procedures.

Table 70. Procedures for precompiling programs

Language Procedure Invocation included in...

High-level assembler DSNHASM DSNTEJ2A

C DSNHC DSNTEJ2D

C++ DSNHCPP
DSNHCPP22

DSNTEJ2E
N/A

Enterprise COBOL for z/OS DSNHICOB DSNTEJ2C1

Fortran DSNHFOR DSNTEJ2F

PL/I DSNHPLI DSNTEJ2P

SQL DSNHSQL DSNTEJ63

Notes:

1. You must customize these programs to invoke the procedures listed in this table. For
information about how to do that, see Part 2 of DB2 Installation Guide.

2. This procedure demonstrates how you can prepare an object-oriented program that
consists of two data sets or members, both of which contain SQL.

If you use the PL/I macro processor, you must not use the PL/I *PROCESS
statement in the source to pass options to the PL/I compiler. You can specify the
needed options on the PARM.PLI= parameter of the EXEC statement in the
DSNHPLI procedure.

Including code from SYSLIB data sets
To include the proper interface code when you submit the JCL procedures, use one
of the following sets of statements shown in your JCL. Alternatively, if you are
using the call attachment facility, follow the instructions given in “Accessing the
CAF language interface” on page 867.

TSO, batch, and CAF
//LKED.SYSIN DD *

INCLUDE SYSLIB(member)
/*

member must be DSNELI, except for FORTRAN, in which case member must
be DSNHFT.

514 Application Programming and SQL Guide

##

###

###

###

##
#
#
#

###

###

###

###

#

#
#

#
#
#



IMS
//LKED.SYSIN DD *

INCLUDE SYSLIB(DFSLI000)
ENTRY (specification)

/*

DFSLI000 is the module for DL/I batch attach.

ENTRY specification varies depending on the host language. Include one of the
following:

DLITCBL, for COBOL applications
PLICALLA, for PL/I applications
Your program's name, for assembler language applications.

CICS
//LKED.SYSIN DD *

INCLUDE SYSLIB(DSNCLI)
/*

For more information on required CICS modules, see “Step 2: Compile (or
assemble) and link-edit the application” on page 495.

Starting the precompiler dynamically
You can call the precompiler from an assembler program by using one of the
macro instructions ATTACH, CALL, LINK, or XCTL. The following information
supplements the description of these macro instructions given in z/OS MVS
Programming: Assembler Services Reference, Volumes 1 and 2.

To call the precompiler, specify DSNHPC as the entry point name. You can pass
three address options to the precompiler; the following sections describe their
formats. The options are addresses of:
v A precompiler option list
v A list of alternate ddnames for the data sets that the precompiler uses
v A page number to use for the first page of the compiler listing on SYSPRINT.

Precompiler option list format
The option list must begin on a 2-byte boundary. The first 2 bytes contain a binary
count of the number of bytes in the list (excluding the count field). The remainder
of the list is EBCDIC and can contain precompiler option keywords, separated by
one or more blanks, a comma, or both.

DDNAME list format
The ddname list must begin on a 2-byte boundary. The first 2 bytes contain a
binary count of the number of bytes in the list (excluding the count field). Each
entry in the list is an 8-byte field, left-justified, and padded with blanks if needed.

Table 71 gives the following sequence of entries:

Table 71. DDNAME list entries

Entry Standard ddname Usage

1 Not applicable

Chapter 21. Preparing an application program to run 515



Table 71. DDNAME list entries (continued)

Entry Standard ddname Usage

2 Not applicable

3 Not applicable

4 SYSLIB Library input

5 SYSIN Source input

6 SYSPRINT Diagnostic listing

7 Not applicable

8 SYSUT1 Work data

9 SYSUT2 Work data

10 SYSUT3 Work data

11 Not applicable

12 SYSTERM Diagnostic listing

13 Not applicable

14 SYSCIN Changed source output

15 Not applicable

16 DBRMLIB DBRM output

Page number format
A 6-byte field beginning on a 2-byte boundary contains the page number. The first
two bytes must contain the binary value 4 (the length of the remainder of the
field). The last 4 bytes contain the page number in character or zoned-decimal
format.

The precompiler adds 1 to the last page number used in the precompiler listing
and puts this value into the page-number field before returning control to the
calling routine. Thus, if you call the precompiler again, page numbering is
continuous.

516 Application Programming and SQL Guide



An alternative method for preparing a CICS program

CICS
Instead of using the DB2 Program Preparation panels to prepare your CICS program, you can tailor
CICS-supplied JCL procedures to do that. To tailor a CICS procedure, you need to add some steps and change
some DD statements. Make changes as needed to do the following:

v Process the program with the DB2 precompiler.

v Bind the application plan. You can do this any time after you precompile the program. You can bind the
program either online by the DB2I panels or as a batch step in this or another z/OS job.

v Include a DD statement in the linkage editor step to access the DB2 load library.

v Be sure the linkage editor control statements contain an INCLUDE statement for the DB2 language interface
module.

The following example illustrates the necessary changes. This example assumes the use of a COBOL program.
For any other programming language, change the CICS procedure name and the DB2 precompiler options.

//TESTC01 JOB
//*
//*********************************************************
//* DB2 PRECOMPILE THE COBOL PROGRAM
//*********************************************************

(1) //PC EXEC PGM=DSNHPC,
(1) // PARM=’HOST(COB2),XREF,SOURCE,FLAG(I),APOST’
(1) //STEPLIB DD DISP=SHR,DSN=prefix.SDSNEXIT
(1) // DD DISP=SHR,DSN=prefix.SDSNLOAD
(1) //DBRMLIB DD DISP=OLD,DSN=USER.DBRMLIB.DATA(TESTC01)
(1) //SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA,
(1) // SPACE=(800,(500,500))
(1) //SYSLIB DD DISP=SHR,DSN=USER.SRCLIB.DATA
(1) //SYSPRINT DD SYSOUT=*
(1) //SYSTERM DD SYSOUT=*
(1) //SYSUDUMP DD SYSOUT=*
(1) //SYSUT1 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
(1) //SYSUT2 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
(1) //SYSIN DD DISP=SHR,DSN=USER.SRCLIB.DATA(TESTC01)
(1) //*

Chapter 21. Preparing an application program to run 517



If you are preparing a particularly large or complex application, you can use one
of the last two techniques mentioned previously. For example, if your program
requires four of your own link-edit include libraries, you cannot prepare the
program with DB2I, because DB2I limits the number of include libraries to three,
plus language, IMS or CICS, and DB2 libraries. Therefore, you would need another
preparation method. Programs using the call attachment facility can use either of
the last two techniques mentioned previously. Be careful to use the correct
language interface.

Using JCL to prepare a program with object-oriented
extensions

If your C++ or Enterprise COBOL for z/OS and OS/390 program satisfies both of
these conditions, you need special JCL to prepare it:
v The program consists of more than one data set or member.

CICS (continued)

//********************************************************************
//*** BIND THIS PROGRAM.
//********************************************************************

(2) //BIND EXEC PGM=IKJEFT01,
(2) // COND=((4,LT,PC))
(2) //STEPLIB DD DISP=SHR,DSN=prefix.SDSNEXIT
(2) // DD DISP=SHR,DSN=prefix.SDSNLOAD
(2) //DBRMLIB DD DISP=OLD,DSN=USER.DBRMLIB.DATA(TESTC01)
(2) //SYSPRINT DD SYSOUT=*
(2) //SYSTSPRT DD SYSOUT=*
(2) //SYSUDUMP DD SYSOUT=*
(2) //SYSTSIN DD *
(2) DSN S(DSN)
(2) BIND PLAN(TESTC01) MEMBER(TESTC01) ACTION(REP) RETAIN ISOLATION(CS)
(2) END

//********************************************************************
//* COMPILE THE COBOL PROGRAM
//********************************************************************

(3) //CICS EXEC DFHEITVL
(4) //TRN.SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
(5) //LKED.SYSLMOD DD DSN=USER.RUNLIB.LOAD
(6) //LKED.CICSLOAD DD DISP=SHR,DSN=prefix.SDFHLOAD

//LKED.SYSIN DD *
(7) INCLUDE CICSLOAD(DSNCLI)

NAME TESTC01(R)
//********************************************************************

The procedure accounts for these steps:
Step 1. Precompile the program.
Step 2. Bind the application plan.
Step 3. Call the CICS procedure to translate, compile, and link-edit a COBOL program. This procedure has
several options you need to consider.
Step 4. The output of the DB2 precompiler becomes the input to the CICS command language translator.
Step 5. Reflect an application load library in the data set name of the SYSLMOD DD statement. You must
include the name of this load library in the DFHRPL DD statement of the CICS run-time JCL.
Step 6. Name the CICS load library that contains the module DSNCLI.
Step 7. Direct the linkage editor to include the CICS-DB2 language interface module (DSNCLI). In this
example, the order of the various control sections (CSECTs) is of no concern because the structure of the
procedure automatically satisfies any order requirements.

For more information about the procedure DFHEITVL, other CICS procedures, or CICS requirements for
application programs, please see the appropriate CICS manual.

518 Application Programming and SQL Guide



v More than one data set or member contains SQL statements.

You must precompile the contents of each data set or member separately, but the
prelinker must receive all of the compiler output together.

JCL procedure DSNHCPP2, which is in member DSNTIJMV of data set
DSN810.SDSNSAMP, shows you one way to do this for C++.

Using ISPF and DB2 Interactive
If you develop programs using TSO and ISPF, you can prepare them to run using
the DB2 Program Preparation panels. These panels guide you step by step through
the process of preparing your application to run. Other ways of preparing a
program to run are available, but using DB2 Interactive (DB2I) is the easiest,
because it leads you automatically from task to task.

This topic describes the panels that are associated with DB2 Program Preparation.

Important: If your C++ or IBM COBOL for z/OS program satisfies both of the
following conditions, you must use a JCL procedure to prepare it:
v The program consists of more than one data set or member.
v More than one data set or member contains SQL statements.

See “Using JCL to prepare a program with object-oriented extensions” on page 518
for more information.

You can use the TSO PROFILE command to control whether message IDs are
displayed. To view message IDs, type TSO PROFILE MSGID on the ISPF command
line. To suppress message IDs, type TSO PROFILE NOMSGID.

DB2I help
The online help facility enables you to read information about how to use DB2I in
an online DB2 book from a DB2I panel. It contains detailed information about the
fields of each of the DB2 Program Preparation panels.

For instructions on setting up DB2 online help, see the discussion of setting up
DB2 online help in Part 2 of DB2 Installation Guide.

If your site makes use of CD-ROM updates, you can make the updated books
accessible from DB2I. Select Option 10 on the DB2I Defaults panel and enter the
new book data set names. You must have write access to prefix.SDSNCLST to
perform this function.

To access DB2I HELP, press the PF key that is associated with the HELP function.
The default PF key for HELP is PF 1; however, your location might have assigned
a different PF key for HELP.

DB2I Primary Option Menu
Figure 152 shows an example of the DB2I Primary Option Menu. From this point,
you can access all of the DB2I panels without passing through panels that you do
not need. For example, to bind a program, enter the number corresponding to
BIND/REBIND/FREE to reach the BIND PLAN panel without seeing the ones
previous to it.

Chapter 21. Preparing an application program to run 519

#
#

#
#
#

|
|

|
|
|



The following descriptions explain the functions on the DB2I Primary Option
Menu.

1 SPUFI
Lets you develop and execute one or more SQL statements interactively.
For further information, see Chapter 5, “Using SPUFI to execute SQL from
your workstation,” on page 59.

2 DCLGEN
Lets you generate C, COBOL, or PL/I data declarations of tables. For
further information, see Chapter 8, “Generating declarations for your tables
using DCLGEN,” on page 131.

3 PROGRAM PREPARATION
Lets you prepare and run an application program to run. For more
information, see “DB2 Program Preparation panel” on page 522.

4 PRECOMPILE
Lets you convert embedded SQL statements into statements that your host
language can process. For further information, see “Precompile panel” on
page 529.

5 BIND/REBIND/FREE
Lets you bind, rebind, or free a package or application plan. For more
information, see “Bind/Rebind/Free selection panel” on page 532.

6 RUN
Lets you run an application program in a TSO or batch environment. For
more information, see “The Run panel” on page 556.

7 DB2 COMMANDS
Lets you issue DB2 commands. For more information about DB2
commands, see Part 3 of DB2 Command Reference.

8 UTILITIES
Lets you call DB2 utility programs. For more information, see DB2 Utility
Guide and Reference.

D DB2I DEFAULTS
Lets you set DB2I defaults. See “DB2I Defaults Panel 1” on page 527.

X EXIT
Lets you exit DB2I.

DSNEPRI DB2I PRIMARY OPTION MENU SSID: DSN
COMMAND ===> 3_

Select one of the following DB2 functions and press ENTER.

1 SPUFI (Process SQL statements)
2 DCLGEN (Generate SQL and source language declarations)
3 PROGRAM PREPARATION (Prepare a DB2 application program to run)
4 PRECOMPILE (Invoke DB2 precompiler)
5 BIND/REBIND/FREE (BIND, REBIND, or FREE plans or packages)
6 RUN (RUN an SQL program)
7 DB2 COMMANDS (Issue DB2 commands)
8 UTILITIES (Invoke DB2 utilities)
D DB2I DEFAULTS (Set global parameters)
X EXIT (Leave DB2I)

Figure 152. Initiating program preparation through DB2I. Specify Program Preparation on the
DB2I Primary Option Menu.

520 Application Programming and SQL Guide



To prepare a new application, beginning with precompilation and working through
each of the subsequent preparation steps, begin by selecting the option that
corresponds to the Program Preparation panel.

Table 72 describes each of the panels you will need to use to prepare an
application. The DB2I help contains detailed descriptions of each panel.

Table 72. DB2I panels used for program preparation

Panel name Panel description

“DB2 Program Preparation
panel” on page 522

The DB2 Program Preparation panel lets you choose specific
program preparation functions to perform. For the functions
you choose, you can also display the associated panels to
specify options for performing those functions.

This panel also lets you change the DB2I default values and
perform other precompile and prelink functions.

“DB2I Defaults Panel 1” on
page 527

DB2I Defaults Panel 1 lets you change many of the system
defaults that are set at DB2 installation time.

“DB2I Defaults Panel 2” on
page 528

DB2I Defaults Panel 2 lets you change your default job
statement and set additional COBOL options.

“Precompile panel” on page
529

The Precompile panel lets you specify values for precompile
functions.

You can reach this panel directly from the DB2I Primary
Option Menu, or from the DB2 Program Preparation panel. If
you reach this panel from the Program Preparation panel,
many of the fields contain values from the Primary and
Precompile panels.

“Bind Package panel” on
page 534

The Bind Package panel lets you change many options when
you bind a package.

You can reach this panel directly from the DB2I Primary
Option Menu, or from the DB2 Program Preparation panel. If
you reach this panel from the DB2 Program Preparation panel,
many of the fields contain values from the Primary and
Precompile panels.

“Bind Plan panel” on page
537

The Bind Plan panel lets you change options when you bind
an application plan.

You can reach this panel directly from the DB2I Primary
Option Menu, or as a part of the program preparation process.
This panel also follows the Bind Package panels.

“The Defaults for Bind or
Rebind Package or Plan
panels” on page 547

These panels let you change the defaults for BIND or REBIND
PACKAGE or PLAN.

“System Connection Types
panel” on page 551

The System Connection Types panel lets you specify a system
connection type.

This panel displays if you choose to enable or disable
connections on the Bind or Rebind Package or Plan panels.

“Panels for entering lists of
values” on page 553

These panels are list panels that lets you enter or modify an
unlimited number of values. A list panel looks similar to an
ISPF edit session and lets you scroll and use a limited set of
commands.

Chapter 21. Preparing an application program to run 521

|
|

||

||

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|



Table 72. DB2I panels used for program preparation (continued)

Panel name Panel description

“Program Preparation:
Compile, Link, and Run
panel” on page 554

This panel lets you perform the last two steps in the program
preparation process (compile and link-edit).

It also lets you do the PL/I MACRO PHASE for programs
that require this option.

For TSO programs, the panel also lets you run programs.

Table 73 describes additional panels that you can use to Rebind and Free packages
and plans. It also describes the Run panel, which you can use to run application
programs that have already been prepared.

Table 73. DB2I panels used to Rebind and Free Plans and packages and used to Run
application programs

Panel Panel description

“Bind/Rebind/Free
selection panel” on page
532

The BIND/REBIND/FREE panel lets you select the BIND,
REBIND, or FREE, PLAN, PACKAGE, or TRIGGER PACKAGE
process that you need.

“Rebind Package panel”
on page 540

The Rebind Package panel lets you change options when you
rebind a package.

“Rebind Trigger Package
panel” on page 541

The Rebind Trigger Package panel lets you change options when
you rebind a trigger package.

“Rebind Plan panel” on
page 543

The Rebind Plan panel lets you change options when you
rebind an application plan.

“Free Package panel” on
page 545

The Free Package panel lets you change options when you free a
package.

“Free Plan panel” on page
546

The Free Plan panel lets you change options when you free an
application plan.

“The Run panel” on page
556

The Run panel lets you start an application program. You
should use this panel if you have already prepared the program
and you only want to run it.

You can also run a program by using the "Program Prep:
Compile, Prelink, Link, and Run" panel.

DB2 Program Preparation panel
The Program Preparation panel lets you choose whether to perform specific
program preparation functions. For the functions you choose, you can also choose
to display the associated panels to specify options for performing those functions.
Some of the functions you can select are:
v Precompile. The panel for this function lets you control the DB2 precompiler. See

page 529.
v Bind a package. The panel for this function lets you bind your program's DBRM

to a package (see page 534), and change your defaults for binding the packages
(see page 547).

v Bind a plan. The panel for this function lets you create your program's
application plan (see page 537), and change your defaults for binding the plans
(see page 547).

v Compile, link, and run. The panel for these functions let you control the
compiler or assembler and the linkage editor. See page 554.

522 Application Programming and SQL Guide

|

||

|
|
|

|
|

|
|

|
|

|



TSO and batch
For TSO programs, you can use the program preparation programs to
control the host language run-time processor and the program itself.

The Program Preparation panel also lets you change the DB2I default values (see
page 527), and perform other precompile and prelink functions.

On the DB2 Program Preparation panel, shown in Figure 153, enter the name of the
source program data set (this example uses SAMPLEPG.COBOL) and specify the
other options you want to include. When finished, press ENTER to view the next
panel.

The following explains the functions on the DB2 Program Preparation panel and
how to fill in the necessary fields in order to start program preparation.

1 INPUT DATA SET NAME
Lets you specify the input data set name. The input data set name can be a
PDS or a sequential data set, and can also include a member name. If you
do not enclose the data set name in apostrophes, a standard TSO prefix
(user ID) qualifies the data set name.

The input data set name you specify is used to precompile, bind, link-edit,
and run the program.

2 DATA SET NAME QUALIFIER
Lets you qualify temporary data set names involved in the program
preparation process. Use any character string from 1 to 8 characters that
conforms to normal TSO naming conventions. (The default is TEMP.)

For programs that you prepare in the background or that use EDITJCL for
the PREPARATION ENVIRONMENT option, DB2 creates a data set named
tsoprefix.qualifier.CNTL to contain the program preparation JCL. The name
tsoprefix represents the prefix TSO assigns, and qualifier represents the value
you enter in the DATA SET NAME QUALIFIER field. If a data set with
this name already exists, DB2 deletes it.

DSNEPP01 DB2 PROGRAM PREPARATION SSID: DSN
COMMAND ===>_

Enter the following:
1 INPUT DATA SET NAME .... ===> SAMPLEPG.COBOL
2 DATA SET NAME QUALIFIER ===> TEMP (For building data set names)
3 PREPARATION ENVIRONMENT ===> FOREGROUND (FOREGROUND, BACKGROUND, EDITJCL)
4 RUN TIME ENVIRONMENT ... ===> TSO (TSO, CAF, CICS, IMS, RRSAF)
5 OTHER DSNH OPTIONS ..... ===>

(Optional DSNH keywords)
Select functions: Display panel? Perform function?
6 CHANGE DEFAULTS ........ ===> Y (Y/N)
7 PL/I MACRO PHASE ....... ===> N (Y/N) ===> N (Y/N)
8 PRECOMPILE ............. ===> Y (Y/N) ===> Y (Y/N)
9 CICS COMMAND TRANSLATION ===> N (Y/N)
10 BIND PACKAGE ........... ===> Y (Y/N) ===> Y (Y/N)
11 BIND PLAN............... ===> Y (Y/N) ===> Y (Y/N)
12 COMPILE OR ASSEMBLE .... ===> Y (Y/N) ===> Y (Y/N)
13 PRELINK................. ===> N (Y/N) ===> N (Y/N)
14 LINK.................... ===> N (Y/N) ===> Y (Y/N)
15 RUN..................... ===> N (Y/N) ===> Y (Y/N)

Figure 153. The DB2 Program Preparation panel. Enter the source program data set name
and other options.

Chapter 21. Preparing an application program to run 523



3 PREPARATION ENVIRONMENT
Lets you specify whether program preparation occurs in the foreground or
background. You can also specify EDITJCL, in which case you are able to
edit and then submit the job. Use:

FOREGROUND to use the values you specify on the Program
Preparation panel and to run immediately.
BACKGROUND to create and submit a file containing a DSNH CLIST
that runs immediately using the JOB control statement from either the
DB2I Defaults panel or your site's SUBMIT exit. The file is saved.
EDITJCL to create and open a file containing a DSNH CLIST in edit
mode. You can then submit the CLIST or save it.

4 RUN TIME ENVIRONMENT
Lets you specify the environment (TSO, CAF, CICS, IMS, RRSAF) in which
your program runs.

All programs are prepared under TSO, but can run in any of the
environments. If you specify CICS, IMS, or RRSAF, then you must set the
RUN field to NO because you cannot run such programs from the
Program Preparation panel. If you set the RUN field to YES, you can
specify only TSO or CAF.

(Batch programs also run under the TSO Terminal Monitor Program. You
therefore need to specify TSO in this field for batch programs.)

5 OTHER DSNH OPTIONS
Lets you specify a list of DSNH options that affect the program
preparation process, and that override options specified on other panels. If
you are using CICS, these can include options you want to specify to the
CICS command translator.

If you specify options in this field, separate them by commas. You can
continue listing options on the next line, but the total length of the option
list can be no more than 70 bytes.

For more information about those options, see DSNH in Part 3 of DB2
Command Reference.

Fields 6 through 15 let you select the function to perform and to choose whether to
show the DB2I panels for the functions you select. Use Y for YES, or N for NO.

If you are willing to accept default values for all the steps, enter N under Display
panel? for all the other preparation panels listed.

To make changes to the default values, entering Y under Display panel? for any
panel you want to see. DB2I then displays each of the panels that you request.
After all the panels display, DB2 proceeds with the steps involved in preparing
your program to run.

Variables for all functions used during program preparation are maintained
separately from variables entered from the DB2I Primary Option Menu. For
example, the bind plan variables you enter on the Program Preparation panel are
saved separately from those on any Bind Plan panel that you reach from the
Primary Option Menu.

6 CHANGE DEFAULTS
Lets you specify whether to change the DB2I defaults. Enter Y in the
Display panel? field next to this option; otherwise enter N. Minimally, you

524 Application Programming and SQL Guide



should specify your subsystem identifier and programming language on
the Defaults panel. For more information, see “DB2I Defaults Panel 1” on
page 527.

7 PL/I MACRO PHASE
Lets you specify whether to display the “Program Preparation: Compile,
Link, and Run” panel to control the PL/I macro phase by entering PL/I
options in the OPTIONS field of that panel. That panel also displays for
options COMPILE OR ASSEMBLE, LINK, and RUN.

This field applies to PL/I programs only. If your program is not a PL/I
program or does not use the PL/I macro processor, specify N in the
Perform function field for this option, which sets the Display panel? field
to the default N.

For information about PL/I options, see “Program Preparation: Compile,
Link, and Run panel” on page 554.

8 PRECOMPILE
Lets you specify whether to display the Precompile panel. To see this panel
enter Y in the Display panel? field next to this option; otherwise enter N.
For information about the Precompile panel, see “Precompile panel” on
page 529.

9 CICS COMMAND TRANSLATION
Lets you specify whether to use the CICS command translator. This field
applies to CICS programs only.

IMS and TSO
If you run under TSO or IMS, ignore this step; this allows the
Perform function field to default to N.

CICS
If you are using CICS and have precompiled your program, you must
translate your program using the CICS command translator.

The command translator does not have a separate DB2I panel. You
can specify translation options on the Other Options field of the DB2
Program Preparation panel, or in your source program if it is not an
assembler program.

Because you specified a CICS run-time environment, the Perform
function column defaults to Y. Command translation takes place
automatically after you precompile the program.

10 BIND PACKAGE
Lets you specify whether to display the Bind Package panel. To see it,
enter Y in the Display panel? field next to this option; otherwise, enter N.
For information about the panel, see “Bind Package panel” on page 534.

11 BIND PLAN
Lets you specify whether to display the Bind Plan panel. To see it, enter Y
in the Display panel? field next to this option; otherwise, enter N. For
information about the panel, see “Bind Plan panel” on page 537.

Chapter 21. Preparing an application program to run 525



12 COMPILE OR ASSEMBLE
Lets you specify whether to display the “Program Preparation: Compile,
Link, and Run” panel. To see this panel enter Y in the Display panel? field
next to this option; otherwise, enter N.

For information about the panel, see “Program Preparation: Compile, Link,
and Run panel” on page 554.

13 PRELINK
Lets you use the prelink utility to make your C, C++, or Enterprise COBOL
for z/OS program reentrant. This utility concatenates compile-time
initialization information from one or more text decks into a single
initialization unit. To use the utility, enter Y in the Display panel? field next
to this option; otherwise, enter N. If you request this step, then you must
also request the compile step and the link-edit step.

For more information about the prelink utility, see z/OS Language
Environment Programming Guide.

14 LINK
Lets you specify whether to display the “Program Preparation: Compile,
Link, and Run” panel. To see it, enter Y in the Display panel? field next to
this option; otherwise, enter N. If you specify Y in the Display panel? field
for the COMPILE OR ASSEMBLE option, you do not need to make any
changes to this field; the panel displayed for COMPILE OR ASSEMBLE is
the same as the panel displayed for LINK. You can make the changes you
want to affect the link-edit step at the same time you make the changes to
the compile step.

For information about the panel, see “Program Preparation: Compile, Link,
and Run panel” on page 554.

15 RUN
Lets you specify whether to run your program. The RUN option is
available only if you specify TSO or CAF for RUN TIME ENVIRONMENT.

If you specify Y in the Display panel? field for the COMPILE OR
ASSEMBLE or LINK option, you can specify N in this field, because the
panel displayed for COMPILE OR ASSEMBLE and for LINK is the same as
the panel displayed for RUN.

IMS and CICS
IMS and CICS programs cannot run using DB2I. If you are using IMS
or CICS, use N in these fields.

TSO and batch
If you are using TSO and want to run your program, you must enter
Y in the Perform function column next to this option. You can also
indicate that you want to specify options and values to affect the
running of your program, by entering Y in the Display panel column.

For information on the panel, see “Program Preparation: Compile,
Link, and Run panel” on page 554.

Pressing ENTER takes you to the first panel in the series you specified, in this
example to the DB2I Defaults panel. If, at any point in your progress from panel to

526 Application Programming and SQL Guide



panel, you press the END key, you return to this first panel, from which you can
change your processing specifications. Asterisks (*) in the Display panel? column of
rows 7 through 14 indicate which panels you have already examined. You can see
a panel again by writing a Y over an asterisk.

DB2I Defaults Panel 1
DB2I Defaults Panel 1 lets you change many of the system defaults set at DB2
install time. Figure 154 shows the fields that affect the processing of the other DB2I
panels.

The following explains the fields on DB2I Defaults Panel 1.

1 DB2 NAME
Lets you specify the DB2 subsystem that processes your DB2I requests. If
you specify a different DB2 subsystem, its identifier displays in the SSID
(subsystem identifier) field located at the top, right side of your screen. The
default is DSN.

2 DB2 CONNECTION RETRIES
Lets you specify the number of additional times to attempt to connect to
DB2, if DB2 is not up when the program issues the DSN command. The
program preparation process does not use this option.

Use a number from 0 to 120. The default is 0. Connections are attempted at
30-second intervals.

3 APPLICATION LANGUAGE
Lets you specify the default programming language for your application
program. You can specify any of the following:
ASM

For High Level Assembler/z/OS
C For C language
CPP

For C++
IBMCOB

For Enterprise COBOL for z/OS and OS/390. This option is the
default.

FORTRAN
For VS Fortran

DSNEOP01 DB2I DEFAULTS PANEL 1
COMMAND ===>_

Change defaults as desired:

1 DB2 NAME ............. ===> DSN (Subsystem identifier)
2 DB2 CONNECTION RETRIES ===> 0 (How many retries for DB2 connection)
3 APPLICATION LANGUAGE ===> IBMCOB (ASM, C, CPP, IBMCOB, FORTRAN, PLI)
4 LINES/PAGE OF LISTING ===> 60 (A number from 5 to 999)
5 MESSAGE LEVEL ........ ===> I (Information, Warning, Error, Severe)
6 SQL STRING DELIMITER ===> DEFAULT (DEFAULT, ’ or ")
7 DECIMAL POINT ........ ===> . (. or ,)
8 STOP IF RETURN CODE >= ===> 8 (Lowest terminating return code)
9 NUMBER OF ROWS ===> 20 (For ISPF Tables)
10 CHANGE HELP BOOK NAMES?===> NO (YES to change HELP data set names)

Figure 154. DB2I Defaults Panel 1

Chapter 21. Preparing an application program to run 527

|



PLI
For PL/I

If you specify IBMCOB, DB2 prompts you for more COBOL defaults on
panel DSNEOP02. See “DB2I Defaults Panel 2.”

You cannot specify FORTRAN for IMS or CICS programs.

4 LINES/PAGE OF LISTING
Lets you specify the number of lines to print on each page of listing or
SPUFI output. The default is 60.

5 MESSAGE LEVEL
Lets you specify the lowest level of message to return to you during the
BIND phase of the preparation process. Use:
I For all information, warning, error, and severe error messages
W For warning, error, and severe error messages
E For error and severe error messages
S For severe error messages only

6 SQL STRING DELIMITER
Lets you specify the symbol used to delimit a string in SQL statements in
COBOL programs. This option is valid only when the application language
is IBMCOB. Use:
DEFAULT

To use the default defined at installation time
' For an apostrophe
" For a quotation mark

7 DECIMAL POINT
Lets you specify how your host language source program represents
decimal separators and how SPUFI displays decimal separators in its
output. Use a comma (,) or a period (.). The default is a period (.).

8 STOP IF RETURN CODE >=
Lets you specify the smallest value of the return code (from precompile,
compile, link-edit, or bind) that will prevent later steps from running. Use:
4 To stop on warnings and more severe errors.
8 To stop on errors and more severe errors. The default is 8.

9 NUMBER OF ROWS
Lets you specify the default number of input entry rows to generate on the
initial display of ISPF panels. The number of rows with non-blank entries
determines the number of rows that appear on later displays.

10 CHANGE HELP BOOK NAMES?
Lets you change the name of the BookManager® book you reference for
online help. The default is NO.

Suppose that the default programming language is PL/I and the default number of
lines per page of program listing is 60. Your program is in COBOL, so you want to
change field 3, APPLICATION LANGUAGE. You also want to print 80 lines to the
page, so you need to change field 4, LINES/PAGE OF LISTING, as well. Figure 154
on page 527 shows the entries that you make in DB2I Defaults Panel 1 to make
these changes. In this case, pressing ENTER takes you to DB2 Defaults Panel 2.

DB2I Defaults Panel 2
After you press Enter on the DB2I Defaults Panel 1, the DB2I Defaults Panel 2 is
displayed. If you chose IBMCOB as the language on the DB2I Defaults Panel 1,

528 Application Programming and SQL Guide



three fields are displayed. Otherwise, only the first field is displayed. Figure 155
shows the DB2I Defaults Panel 2 when IBMCOB is selected.

1 DB2I JOB STATEMENT
Lets you change your default job statement. Specify a job control
statement, and optionally, a JOBLIB statement to use either in the
background or the EDITJCL program preparation environment. Use a
JOBLIB statement to specify run-time libraries that your application
requires. If your program has a SUBMIT exit routine, DB2 uses that
routine. If that routine builds a job control statement, you can leave this
field blank.

2 COBOL STRING DELIMITER
Lets you specify the symbol used to delimit a string in a COBOL statement
in a COBOL application. Use:
DEFAULT

To use the default defined at install time
' For an apostrophe
" For a quotation mark

Leave this field blank to accept the default value.

3 DBCS SYMBOL FOR DCLGEN
Lets you enter either G (the default) or N, to specify whether DCLGEN
generates a picture clause that has the form PIC G(n) DISPLAY-1 or PIC
N(n).

Leave this field blank to accept the default value.

Pressing ENTER takes you to the next panel you specified on the DB2 Program
Preparation panel, in this case, to the Precompile panel.

Precompile panel
The next step in the process is to precompile. Figure 152 on page 520, the DB2I
Primary Option Menu, shows that you can reach the Precompile panel in two
ways: you can either specify it as a part of the program preparation process from
the DB2 Program Preparation panel, or you can reach it directly from the DB2I
Primary Option Menu. The way you choose to reach the panel determines the
default values of the fields it contains. Figure 156 on page 530 shows the
Precompile panel.

DSNEOP02 DB2I DEFAULTS PANEL 2
COMMAND ===>_

Change defaults as desired:

1 DB2I JOB STATEMENT: (Optional if your site has a SUBMIT exit)
===> //USRT001A JOB (ACCOUNT),’NAME’
===> //*
===> //*
===> //*

COBOL DEFAULTS: (For IBMCOB)
2 COBOL STRING DELIMITER ===> DEFAULT (DEFAULT, ’ or ")
3 DBCS SYMBOL FOR DCLGEN ===> G (G/N - Character in PIC clause)

Figure 155. DB2I Defaults Panel 2

Chapter 21. Preparing an application program to run 529

|



The following explains the functions on the Precompile panel, and how to enter
the fields for preparing to precompile.

1 INPUT DATA SET
Lets you specify the data set name of the source program and SQL
statements to precompile.

If you reached this panel through the DB2 Program Preparation panel, this
field contains the data set name specified there. You can override it on this
panel if you wish.

If you reached this panel directly from the DB2I Primary Option Menu,
you must enter the data set name of the program you want to precompile.
The data set name can include a member name. If you do not enclose the
data set name with apostrophes, a standard TSO prefix (user ID) qualifies
the data set name.

2 INCLUDE LIBRARY
Lets you enter the name of a library containing members that the
precompiler should include. These members can contain output from
DCLGEN. If you do not enclose the name in apostrophes, a standard TSO
prefix (user ID) qualifies the name.

You can request additional INCLUDE libraries by entering DSNH CLIST
parameters of the form PnLIB(dsname), where n is 2, 3, or 4) on the OTHER
OPTIONS field of this panel or on the OTHER DSNH OPTIONS field of
the Program Preparation panel.

3 DSNAME QUALIFIER
Lets you specify a character string that qualifies temporary data set names
during precompile. Use any character string from 1 to 8 characters in
length that conforms to normal TSO naming conventions.

If you reached this panel through the DB2 Program Preparation panel, this
field contains the data set name qualifier specified there. You can override
it on this panel if you wish.

If you reached this panel from the DB2I Primary Option Menu, you can
either specify a DSNAME QUALIFIER or let the field take its default
value, TEMP.

DSNETP01 PRECOMPILE SSID: DSN
COMMAND ===>_

Enter precompiler data sets:
1 INPUT DATA SET .... ===> SAMPLEPG.COBOL
2 INCLUDE LIBRARY ... ===> SRCLIB.DATA

3 DSNAME QUALIFIER .. ===> TEMP (For building data set names)
4 DBRM DATA SET ..... ===>

Enter processing options as desired:
5 WHERE TO PRECOMPILE ===> FOREGROUND (FOREGROUND, BACKGROUND, or EDITJCL)
6 VERSION ........... ===>

(Blank, VERSION, or AUTO)
7 OTHER OPTIONS ..... ===>

Figure 156. The Precompile panel. Specify the include library, if any, that your program
should use, and any other options you need.

530 Application Programming and SQL Guide



IMS and TSO
For IMS and TSO programs, DB2 stores the precompiled source
statements (to pass to the compile or assemble step) in a data set
named tsoprefix.qualifier.suffix. A data set named
tsoprefix.qualifier.PCLIST contains the precompiler print listing.

For programs prepared in the background or that use the
PREPARATION ENVIRONMENT option EDITJCL (on the DB2
Program Preparation panel), a data set named tsoprefix.qualifier.CNTL
contains the program preparation JCL.

In these examples, tsoprefix represents the prefix TSO assigns, often
the same as the authorization ID. qualifier represents the value entered
in the DSNAME QUALIFIER field. suffix represents the output name,
which is one of the following: COBOL, FORTRAN, C, PLI, ASM,
DECK, CICSIN, OBJ, or DATA. In the example in Figure 156 on page
530, the data set tsoprefix.TEMP.COBOL contains the precompiled
source statements, and tsoprefix.TEMP.PCLIST contains the
precompiler print listing. If data sets with these names already exist,
then DB2 deletes them.

CICS
For CICS programs, the data set tosprefix.qualifier.suffix receives the
precompiled source statements in preparation for CICS command
translation.

If you do not plan to do CICS command translation, the source
statements in tsoprefix.qualifier.suffix, are ready to compile. The data set
tsoprefix.qualifier.PCLIST contains the precompiler print listing.

When the precompiler completes its work, control passes to the CICS
command translator. Because there is no panel for the translator,
translation takes place automatically. The data set
tsoprefix.qualifier.CXLIST contains the output from the command
translator.

4 DBRM DATA SET
Lets you name the DBRM library data set for the precompiler output. The
data set can also include a member name.

When you reach this panel, the field is blank. When you press ENTER,
however, the value contained in the DSNAME QUALIFIER field of the
panel, concatenated with DBRM, specifies the DBRM data set:
qualifier.DBRM.

You can enter another data set name in this field only if you allocate and
catalog the data set before doing so. This is true even if the data set name
that you enter corresponds to what is otherwise the default value of this
field.

The precompiler sends modified source code to the data set qualifier.host,
where host is the language specified in the APPLICATION LANGUAGE
field of DB2I Defaults panel 1.

Chapter 21. Preparing an application program to run 531



5 WHERE TO PRECOMPILE
Lets you indicate whether to precompile in the foreground or background.
You can also specify EDITJCL, in which case you are able to edit and then
submit the job.

If you reached this panel from the DB2 Program Preparation panel, the
field contains the preparation environment specified there. You can
override that value if you wish.

If you reached this panel directly from the DB2I Primary Option Menu,
you can either specify a processing environment or allow this field to take
its default value. Use:

FOREGROUND to immediately precompile the program with the
values you specify in these panels.
BACKGROUND to create and immediately submit to run a file
containing a DSNH CLIST using the JOB control statement from either
DB2I Defaults Panel 2 or your site's SUBMIT exit. The file is saved.
EDITJCL to create and open a file containing a DSNH CLIST in edit
mode. You can then submit the CLIST or save it.

6 VERSION
Lets you specify the version of the program and its DBRM. If the version
contains the maximum number of characters permitted (64), you must
enter each character with no intervening blanks from one line to the next.
This field is optional.

See “Advantages of packages” on page 385 for more information about this
option.

7 OTHER OPTIONS
Lets you enter any option that the DSNH CLIST accepts, which gives you
greater control over your program. The DSNH options you specify in this
field override options specified on other panels. The option list can
continue to the next line, but the total length of the list can be no more
than 70 bytes.

For more information about DSNH options, see Part 3 of DB2 Command
Reference.

Bind/Rebind/Free selection panel
The BIND/REBIND/FREE option on the DB2I PRIMARY OPTIONS MENU
(Figure 157 on page 533) lets you bind, rebind, or free plans and packages.

532 Application Programming and SQL Guide



This panel lets you select the process you need.

1 BIND PLAN
Lets you build an application plan. You must have an application plan to
allocate DB2 resources and support SQL requests during run time. If you
select this option, the Bind Plan panel displays. For more information, see
“Bind Plan panel” on page 537.

2 REBIND PLAN
Lets you rebuild an application plan when changes to it affect the plan but
the SQL statements in the program are the same. For example, you should
rebind when you change authorizations, create a new index that the plan
uses, or use RUNSTATS. If you select this option, the Rebind Plan panel
displays. For more information, see “Rebind Plan panel” on page 543.

3 FREE PLAN
Lets you delete plans from DB2. If you select this option, the Free Plan
panel displays. For more information, see “Free Plan panel” on page 546.

4 BIND PACKAGE
Lets you build a package. If you select this option, the Bind Package panel
displays. For more information, see “Bind Package panel” on page 534.

5 REBIND PACKAGE
Lets you rebuild a package when changes to it affect the package but the
SQL statements in the program are the same. For example, you should
rebind when you change authorizations, create a new index that the
package uses, or use RUNSTATS. If you select this option, the Rebind
Package panel displays. For more information, see “Rebind Package panel”
on page 540.

6 REBIND TRIGGER PACKAGE
Lets you rebuild a trigger package when you need to change options for
the package. When you execute CREATE TRIGGER, DB2 binds a trigger
package using a set of default options. You can use REBIND TRIGGER
PACKAGE to change those options. For example, you can use REBIND
TRIGGER PACKAGE to change the isolation level for the trigger package.
If you select this option, the Rebind Trigger Package panel displays. For
more information, see “Rebind Trigger Package panel” on page 541.

7 FREE PACKAGE
Lets you delete a specific version of a package, all versions of a package,

DSNEBP01 BIND/REBIND/FREE SSID: DSN
COMMAND ===>_

Select one of the following and press ENTER:

1 BIND PLAN (Add or replace an application plan)

2 REBIND PLAN (Rebind existing application plan or plans)

3 FREE PLAN (Erase application plan or plans)

4 BIND PACKAGE (Add or replace a package)

5 REBIND PACKAGE (Rebind existing package or packages)

6 REBIND TRIGGER PACKAGE (Rebind existing package or packages)

7 FREE PACKAGE (Erase a package or packages)

Figure 157. The Bind/Rebind/Free selection panel

Chapter 21. Preparing an application program to run 533



or whole collections of packages from DB2. If you select this option, the
Free Package panel displays. For more information, see “Free Package
panel” on page 545.

Bind Package panel
When you request this option, the panel displayed is the first of two Bind Package
panels. You can reach the Bind Package panel either directly from the DB2I
Primary Option Menu, or as a part of the program preparation process. If you
enter the Bind Package panel from the Program Preparation panel, many of the
Bind Package entries contain values from the Primary and Precompile panels.
Figure 158 shows the Bind Package panel.

The following information explains the functions on the Bind Package panel and
how to fill the necessary fields in order to bind your program. For more
information, see the BIND PACKAGE command in Part 3 of DB2 Command
Reference.

1 LOCATION NAME
Lets you specify the system at which to bind the package. You can use
from 1 to 16 characters to specify the location name. The location name
must be defined in the catalog table SYSIBM.LOCATIONS. The default is
the local DBMS.

2 COLLECTION-ID
Lets you specify the collection the package is in. You can use from 1 to 18
characters to specify the collection, and the first character must be
alphabetic.

3 DBRM: COPY:
Lets you specify whether you are creating a new package (DBRM) or
making a copy of a package that already exists (COPY). Use:

DBRM
To create a new package. You must specify values in the LIBRARY,
PASSWORD, and MEMBER fields.

DSNEBP07 BIND PACKAGE SSID: DSN

COMMAND ===>_

Specify output location and collection names:
1 LOCATION NAME ............. ===> (Defaults to local)
2 COLLECTION-ID ............. ===> (Required)
Specify package source (DBRM or COPY):
3 DBRM: COPY: ===> DBRM (Specify DBRM or COPY)
4 MEMBER or COLLECTION-ID ===>
5 PASSWORD or PACKAGE-ID .. ===>
6 LIBRARY or VERSION ..... ===>

(Blank, or COPY version-id)
7 ........ -- OPTIONS ..... ===> (COMPOSITE or COMMAND)
Enter options as desired:
8 CHANGE CURRENT DEFAULTS? ===> NO (NO or YES)
9 ENABLE/DISABLE CONNECTIONS? ===> NO (NO or YES)
10 OWNER OF PACKAGE (AUTHID).. ===> (Leave blank for primary ID)
11 QUALIFIER ................ ===> (Leave blank for OWNER)
12 ACTION ON PACKAGE ........ ===> REPLACE (ADD or REPLACE)
13 INCLUDE PATH? ............ ===> NO (NO or YES)
14 REPLACE VERSION .......... ===> (Replacement version-id)

Figure 158. The Bind Package panel

534 Application Programming and SQL Guide

#
#
#



COPY
To copy an existing package. You must specify values in the
COLLECTION-ID and PACKAGE-ID fields. (The VERSION field is
optional.)

4 MEMBER or COLLECTION-ID
MEMBER (for new packages): If you are creating a new package, this
option lets you specify the DBRM to bind. You can specify a member name
from 1 to 8 characters. The default name depends on the input data set
name.
v If the input data set is partitioned, the default name is the member name

of the input data set specified in the INPUT DATA SET NAME field of
the DB2 Program Preparation panel.

v If the input data set is sequential, the default name is the second
qualifier of this input data set.

COLLECTION-ID (for copying a package): If you are copying a package,
this option specifies the collection ID that contains the original package.
You can specify a collection ID from 1 to 18 characters, which must be
different from the collection ID specified on the PACKAGE ID field.

5 PASSWORD or PACKAGE-ID
PASSWORD (for new packages): If you are creating a new package, this
lets you enter password for the library you list in the LIBRARY field. You
can use this field only if you reached the Bind Package panel directly from
the DB2 Primary Option Menu.

PACKAGE-ID (for copying packages): If you are copying a package, this
option lets you specify the name of the original package. You can enter a
package ID from 1 to 8 characters.

6 LIBRARY or VERSION
LIBRARY (for new packages): If you are creating a new package, this lets
you specify the names of the libraries that contain the DBRMs specified on
the MEMBER field for the bind process. Libraries are searched in the order
specified and must in the catalog tables.

VERSION (for copying packages): If you are copying a package, this
option lets you specify the version of the original package. You can specify
a version ID from 1 to 64 characters. See “Advantages of packages” on
page 385 for more information about this option.

7 OPTIONS
Lets you specify which bind options DB2 uses when you issue BIND
PACKAGE with the COPY option. Specify:

COMPOSITE (default) to cause DB2 to use any options you specify in
the BIND PACKAGE command. For all other options, DB2 uses the
options of the copied package.
COMMAND to cause DB2 to use the options you specify in the BIND
PACKAGE command. For all other options, DB2 uses the following
values:
– For a local copy of a package, DB2 uses the defaults for the local

DB2 subsystem.
– For a remote copy of a package, DB2 uses the defaults for the server

on which the package is bound.

8 CHANGE CURRENT DEFAULTS?
Lets you specify whether to change the current defaults for binding

Chapter 21. Preparing an application program to run 535

#
#
#
#



packages. If you enter YES in this field, you see the Defaults for Bind
Package panel as your next step. You can enter your new preferences there;
for instructions, see “The Defaults for Bind or Rebind Package or Plan
panels” on page 547.

9 ENABLE/DISABLE CONNECTIONS?
Lets you specify whether you want to enable and disable system
connections types to use with this package. This is valid only if the
LOCATION NAME field names your local DB2 system.

Placing YES in this field displays a panel (shown in Figure 167 on page
552) that lets you specify whether various system connections are valid for
this application. You can specify connection names to further identify
enabled connections within a connection type. A connection name is valid
only when you also specify its corresponding connection type.

The default enables all connection types.

10 OWNER OF PACKAGE (AUTHID)
Lets you specify the primary authorization ID of the owner of the new
package. That ID is the name owning the package, and the name
associated with all accounting and trace records produced by the package.

The owner must have the privileges required to run SQL statements
contained in the package.

The default is the primary authorization ID of the bind process.

11 QUALIFIER
Lets you specify the implicit qualifier for unqualified tables, views,
indexes, and aliases. You can specify a qualifier from 1 to 8 characters. The
default is the authorization ID of the package owner.

12 ACTION ON PACKAGE
Lets you specify whether to replace an existing package or create a new
one. Use:

REPLACE (default) to replace the package named in the PACKAGE-ID
field if it already exists, and add it if it does not. (Use this option if you
are changing the package because the SQL statements in the program
changed. If only the SQL environment changes but not the SQL
statements, you can use REBIND PACKAGE.)
ADD to add the package named in the PACKAGE-ID field, only if it
does not already exist.

13 INCLUDE PATH?
Indicates whether you will supply a list of schema names that DB2
searches when it resolves unqualified distinct type, user-defined function,
and stored procedure names in SQL statements. The default is NO. If you
specify YES, DB2 displays a panel in which you specify the names of
schemas for DB2 to search.

14 REPLACE VERSION
Lets you specify whether to replace a specific version of an existing
package or create a new one. If the package and the version named in the
PACKAGE-ID and VERSION fields already exist, you must specify
REPLACE. You can specify a version ID from 1 to 64 characters. The
default version ID is that specified in the VERSION field.

536 Application Programming and SQL Guide



Bind Plan panel
The Bind Plan panel is the first of two Bind Plan panels. It specifies options in the
bind process of an application plan. Like the Precompile panel, you can reach the
Bind Plan panel either directly from the DB2I Primary Option Menu, or as a part
of the program preparation process. You must have an application plan, even if
you bind your application to packages; this panel also follows the Bind Package
panels.

If you enter the Bind Plan panel from the Program Preparation panel, many of the
Bind Plan entries contain values from the Primary and Precompile panels. See
Figure 159.

The following explains the functions on the Bind Plan panel and how to fill the
necessary fields in order to bind your program. For more information, see the
BIND PLAN command in Part 3 of DB2 Command Reference.

1 MEMBER
Lets you specify the DBRMs to include in the plan. You can specify a name
from 1 to 8 characters. You must specify MEMBER or INCLUDE
PACKAGE LIST, or both. If you do not specify MEMBER, fields 2, 3, and 4
are ignored.

The default member name depends on the input data set.
v If the input data set is partitioned, the default name is the member name

of the input data set specified in field 1 of the DB2 Program Preparation
panel.

v If the input data set is sequential, the default name is the second
qualifier of this input data set.

If you reached this panel directly from the DB2I Primary Option Menu,
you must provide values for the MEMBER and LIBRARY fields.

If you plan to use more than one DBRM, you can include the library name
and member name of each DBRM in the MEMBER and LIBRARY fields,
separating entries with commas. You can also specify more DBRMs by
using the ADDITIONAL DBRMS? field on this panel.

DSNEBP02 BIND PLAN SSID: DSN
COMMAND ===>_

Enter DBRM data set name(s):
1 MEMBER .......... ===> SAMPLEPG
2 PASSWORD ........ ===>
3 LIBRARY ......... ===> TEMP.DBRM
4 ADDITIONAL DBRMS? ........ ===> NO (YES to list more DBRMs)

Enter options as desired:
5 PLAN NAME ................ ===> SAMPLEPG (Required to create a plan)
6 CHANGE CURRENT DEFAULTS? ===> NO (NO or YES)
7 ENABLE/DISABLE CONNECTIONS?===> NO (NO or YES)
8 INCLUDE PACKAGE LIST?..... ===> NO (NO or YES)
9 OWNER OF PLAN (AUTHID) ... ===> (Leave blank for your primary ID)
10 QUALIFIER ................ ===> (For tables, views, and aliases)
11 CACHESIZE ................ ===> 0 (Blank, or value 0-4096)
12 ACTION ON PLAN ........... ===> REPLACE (REPLACE or ADD)
13 RETAIN EXECUTION AUTHORITY ===> YES (YES to retain user list)
14 CURRENT SERVER ........... ===> (Location name)
15 INCLUDE PATH? ............ ===> (NO or YES)

Figure 159. The Bind Plan panel

Chapter 21. Preparing an application program to run 537



2 PASSWORD
Lets you enter passwords for the libraries you list in the LIBRARY field.
You can use this field only if you reached the Bind Plan panel directly
from the DB2 Primary Option Menu.

3 LIBRARY
Lets you specify the name of the library or libraries that contain the
DBRMs to use for the bind process. You can specify a name up to 44
characters long.

4 ADDITIONAL DBRMS?
Lets you specify more DBRM entries if you need more room. Or, if you
reached this panel as part of the program preparation process, you can
include more DBRMs by entering YES in this field. A separate panel then
displays, where you can enter more DBRM library and member names; see
“Panels for entering lists of values” on page 553.

5 PLAN NAME
Lets you name the application plan to create. You can specify a name from
1 to 8 characters, and the first character must be alphabetic. If there are no
errors, the bind process prepares the plan and enters its description into
the EXPLAIN table.

If you reached this panel through the DB2 Program Preparation panel, the
default for this field depends on the value you entered in the INPUT
DATA SET NAME field of that panel.

If you reached this panel directly from the DB2 Primary Option Menu, you
must include a plan name if you want to create an application plan. The
default name for this field depends on the input data set:
v If the input data set is partitioned, the default name is the member

name.
v If the input data set is sequential, the default name is the second

qualifier of the data set name.

6 CHANGE CURRENT DEFAULTS?
Lets you specify whether to change the current defaults for binding plans.
If you enter YES in this field, you see the Defaults for Bind Plan panel as
your next step. You can enter your new preferences there; for instructions,
see “The Defaults for Bind or Rebind Package or Plan panels” on page 547.

7 ENABLE/DISABLE CONNECTIONS?
Lets you specify whether you want to enable and disable system
connections types to use with this package. This is valid only if the
LOCATION NAME field names your local DB2 system.

Placing YES in this field displays a panel (shown in Figure 167 on page
552) that lets you specify whether various system connections are valid for
this application. You can specify connection names to further identify
enabled connections within a connection type. A connection name is valid
only when you also specify its corresponding connection type.

The default enables all connection types.

8 INCLUDE PACKAGE LIST?
Lets you include a list of packages in the plan. If you specify YES, a
separate panel displays on which you must enter the package location,
collection name, and package name for each package to include in the plan
(see “Panels for entering lists of values” on page 553). This list is optional
if you use the MEMBER field.

538 Application Programming and SQL Guide



You can specify a location name from 1 to 16 characters, a collection ID
from 1 to 18 characters, and a package ID from 1 to 8 characters. If you
specify a location name, which is optional, it must be in the catalog table
SYSIBM.LOCATIONS; the default location is the local DBMS.

You must specify INCLUDE PACKAGE LIST? or MEMBER, or both, as
input to the bind plan.

9 OWNER OF PLAN (AUTHID)
Lets you specify the primary authorization ID of the owner of the new
plan. That ID is the name owning the plan, and the name associated with
all accounting and trace records produced by the plan.

The owner must have the privileges required to run SQL statements
contained in the plan.

10 QUALIFIER
Lets you specify the implicit qualifier for unqualified tables, views and
aliases. You can specify a name from 1 to 8 characters, which must
conform to the rules for SQL identifiers. If you leave this field blank, the
default qualifier is the authorization ID of the plan owner.

11 CACHESIZE
Lets you specify the size (in bytes) of the authorization cache. Valid values
are in the range 0 to 4096. Values that are not multiples of 256 round up to
the next highest multiple of 256. A value of 0 indicates that DB2 does not
use an authorization cache. The default is 1024.

Each concurrent user of a plan requires 8 bytes of storage, with an
additional 32 bytes for overhead. See “Determining the optimal
authorization cache size” on page 505 for more information about this
option.

12 ACTION ON PLAN
Lets you specify whether this is a new or changed application plan. Use:

REPLACE (default) to replace the plan named in the PLAN NAME
field if it already exists, and add the plan if it does not exist.
ADD to add the plan named in the PLAN NAME field, only if it does
not already exist.

13 RETAIN EXECUTION AUTHORITY
Lets you choose whether or not those users with the authority to bind or
run the existing plan are to keep that authority over the changed plan. This
applies only when you are replacing an existing plan.

If the plan ownership changes and you specify YES, the new owner grants
BIND and EXECUTE authority to the previous plan owner.

If the plan ownership changes and you do not specify YES, then everyone
but the new plan owner loses EXECUTE authority (but not BIND
authority), and the new plan owner grants BIND authority to the previous
plan owner.

14 CURRENT SERVER
Lets you specify the initial server to receive and process SQL statements in
this plan. You can specify a name from 1 to 16 characters, which you must
previously define in the catalog table SYSIBM.LOCATIONS.

If you specify a remote server, DB2 connects to that server when the first
SQL statement executes. The default is the name of the local DB2
subsystem. For more information about this option, see the bind option
CURRENTSERVER in Part 3 of DB2 Command Reference.

Chapter 21. Preparing an application program to run 539

#
#
#
#

#
#
#
#



15 INCLUDE PATH?
Indicates whether you will supply a list of schema names that DB2
searches when it resolves unqualified distinct type, user-defined function,
and stored procedure names in SQL statements. The default is NO. If you
specify YES, DB2 displays a panel in which you specify the names of
schemas for DB2 to search.

When you finish making changes to this panel, press ENTER to go to the second
of the program preparation panels, Program Prep: Compile, Link, and Run.

Rebind Package panel
The Rebind Package panel is the first of two panels. It specifies options in the
rebind process of a package. Figure 160 shows the rebind package options.

This panel lets you choose options for rebinding a package. For information about
the rebind options that these fields represent, see the REBIND PACKAGE
command in Part 3 of DB2 Command Reference.

1 Rebind all local packages
Lets you rebind all packages on the local DBMS. To do so, place an asterisk
(*) in this field; otherwise, leave it blank.

2 LOCATION NAME
Lets you specify where to bind the package. If you specify a location name,
you should use from 1 to 16 characters, and you must have defined it in
the catalog table SYSIBM.LOCATIONS.

3 COLLECTION-ID
Lets you specify the collection of the package to rebind. You must specify a
collection ID from 1 to 8 characters, or an asterisk (*) to rebind all
collections in the local DB2 system. You cannot use the asterisk to rebind a
remote collection.

4 PACKAGE-ID
Lets you specify the name of the package to rebind. You must specify a
package ID from 1 to 8 characters, or an asterisk (*) to rebind all packages
in the specified collections in the local DB2 system. You cannot use the
asterisk to rebind a remote package.

DSNEBP08 REBIND PACKAGE SSID: DSN
COMMAND ===>_

1 Rebind all local packages ===> (* to rebind all packages)

or
Enter package name(s) to be rebound:

2 LOCATION NAME ............. ===> (Defaults to local)
3 COLLECTION-ID ............. ===> (Required)
4 PACKAGE-ID ................ ===> (Required)
5 VERSION-ID ................ ===>

(*, Blank, (), or version-id)
6 ADDITIONAL PACKAGES? ...... ===> (Yes to include more packages)

Enter options as desired ...... ===>
7 CHANGE CURRENT DEFAULTS?... ===> (NO or YES)
8 OWNER OF PACKAGE (AUTHID).. ===> (SAME, new OWNER)
9 QUALIFIER ................. ===> (SAME, new QUALIFIER)
10 ENABLE/DISABLE CONNECTIONS? ===> (NO or YES)
11 INCLUDE PATH? ............. ===> (SAME, DEFAULT, or YES)

Figure 160. The Rebind Package panel

540 Application Programming and SQL Guide

#
#
#
#



5 VERSION-ID
Lets you specify the version of the package to rebind. You must specify a
version ID from 1 to 64 characters, or an asterisk (*) to rebind all versions
in the specified collections and packages in the local DB2 system. You
cannot use the asterisk to rebind a remote version.

6 ADDITIONAL PACKAGES?
Lets you indicate whether to name more packages to rebind. Use YES to
specify more packages on an additional panel, described on “Panels for
entering lists of values” on page 553. The default is NO.

7 CHANGE CURRENT DEFAULTS?
Lets you indicate whether to change the binding defaults. Use:

NO (default) to retain the binding defaults of the previous package.
YES to change the binding defaults from the previous package. For
information about the defaults for binding packages, see “The Defaults
for Bind or Rebind Package or Plan panels” on page 547.

8 OWNER OF PACKAGE (AUTHID)
Lets you change the authorization ID for the package owner. The owner
must have the required privileges to execute the SQL statements in the
package. The default is the existing package owner.

9 QUALIFIER
Lets you specify the implicit qualifier for all unqualified table names,
views, indexes, and aliases in the package. You can specify a qualifier
name from 1 to 8 characters, which must conform to the rules for the SQL
short identifier. The default is the existing qualifier name.

10 ENABLE/DISABLE CONNECTIONS?
Lets you specify whether you want to enable and disable system
connections types to use with this package. This is valid only if the
LOCATION NAME field names your local DB2 system.

Placing YES in this field displays a panel (shown in Figure 167 on page
552) that lets you specify whether various system connections are valid for
this application.

The default is the values used for the previous package.

11 INCLUDE PATH?
Indicates which one of the following actions you want to perform:
v Request that DB2 uses the same schema names as when the package was

bound for resolving unqualified distinct type, user-defined function, and
stored procedure names in SQL statements. Choose SAME to perform
this action. This is the default.

v Supply a list of schema names that DB2 searches when it resolves
unqualified distinct type, user-defined function, and stored procedure
names in SQL statements. Choose YES to perform this action.

v Request that DB2 resets the SQL path to SYSIBM, SYSFUN, SYSPROC,
and the package owner. Choose DEFAULT to perform this action.

If you specify YES, DB2 displays a panel in which you specify the names
of schemas for DB2 to search.

Rebind Trigger Package panel
The Rebind Trigger Package panel specifies options you can change when you
rebind a trigger package. Figure 161 on page 542 shows those options.

Chapter 21. Preparing an application program to run 541



This panel lets you choose options for rebinding a trigger package. For information
about the rebind options that these fields represent, see the REBIND TRIGGER
PACKAGE command in Part 3 of DB2 Command Reference.

1 Rebind all trigger packages
Lets you rebind all packages on the local DBMS. To do so, place an asterisk
(*) in this field; otherwise, leave it blank.

2 LOCATION NAME
Lets you specify where to bind the trigger package. If you specify a
location name, you should use from 1 to 16 characters, and you must have
defined it in the catalog table SYSIBM.LOCATIONS.

3 COLLECTION-ID (SCHEMA NAME)
Lets you specify the collection of the trigger package to rebind. You must
specify a collection ID from 1 to 8 characters, or an asterisk (*) to rebind all
collections in the local DB2 system. You cannot use the asterisk to rebind a
remote collection.

4 PACKAGE-ID
Lets you specify the name of the trigger package to rebind. You must
specify a package ID from 1 to 8 characters, or an asterisk (*) to rebind all
trigger packages in the specified collections in the local DB2 system. You
cannot use the asterisk to rebind a remote trigger package.

5 ISOLATION LEVEL
Lets you specify how far to isolate your application from the effects of
other running applications. The default is the value used for the old trigger
package.

Use RR, RS, CS, UR, or NC. For a description of the effects of those values,
see “The ISOLATION option” on page 412.

6 RESOURCE RELEASE TIME
Lets you specify COMMIT or DEALLOCATE to tell when to release locks
on resources. The default is that used for the old trigger package. For a
description of the effects of those values, see “The ACQUIRE and
RELEASE options” on page 408.

7 EXPLAIN PATH SELECTION
Lets you specify YES or NO for whether to obtain EXPLAIN information
about how SQL statements in the package execute. The default is the value
used for the old trigger package.

DSNEBP19 REBIND TRIGGER PACKAGE SSID: DSN
COMMAND ===>_

1 Rebind all trigger packages ===> (* to rebind all packages)

or
Enter trigger package name(s) to be rebound:

2 LOCATION NAME ............. ===> (Defaults to local)
3 COLLECTION-ID (SCHEMA NAME) ===> (Required)
4 PACKAGE-ID (TRIGGER NAME).. ===> (Required)

Enter options as desired ...... ===>
5 ISOLATION LEVEL ........... ===> SAME (SAME, RR, RS, CS, UR, or NC)
6 RESOURCE RELEASE TIME ..... ===> SAME (SAME, DEALLOCATE, or COMMIT)
7 EXPLAIN PATH SELECTION .... ===> SAME (SAME, NO, or YES)
8 DATA CURRENCY ............. ===> SAME (SAME, NO, or YES)
9 IMMEDIATE WRITE OPTION .... ===> SAME (SAME, NO, YES)

Figure 161. The Rebind Trigger Package panel

542 Application Programming and SQL Guide

#
#
#
#



The bind process inserts information into the table owner.PLAN_TABLE,
where owner is the authorization ID of the plan or package owner. If you
defined owner.DSN_STATEMNT_TABLE, DB2 also inserts information
about the cost of statement execution into that table. If you specify YES in
this field and BIND in the VALIDATION TIME field, and if you do not
correctly define PLAN_TABLE, the bind fails.

For information about EXPLAIN and creating a PLAN_TABLE, see
“Obtaining PLAN_TABLE information from EXPLAIN” on page 790.

8 DATA CURRENCY
Lets you specify YES or NO for whether you need data currency for
ambiguous cursors opened at remote locations. The default is the value
used for the old trigger package.

Data is current if the data within the host structure is identical to the data
within the base table. Data is always current for local processing. For more
information about data currency, see “Maintaining data currency by using
cursors” on page 467.

9 IMMEDIATE WRITE OPTION
Specifies when DB2 writes the changes for updated group buffer
pool-dependent pages. This field applies only to a data sharing
environment. The values that you can specify are:

SAME Choose the value of IMMEDIATE WRITE that you specified when
you bound the trigger package. SAME is the default.

NO Write the changes at or before phase 1 of the commit process. If the
transaction is rolled back later, write the additional changes that
are caused by the rollback at the end of the abort process.

PH1 is equivalent to NO.

YES Write the changes immediately after group buffer pool-dependent
pages are updated.

For more information about this option, see the bind option
IMMEDWRITE in Part 3 of DB2 Command Reference.

Rebind Plan panel
The Rebind Plan panel is the first of two panels. It specifies options in the rebind
process of an application plan. Figure 162 shows the rebind plan options.

DSNEBP03 REBIND PLAN SSID: DSN
COMMAND ===>_

Enter plan name(s) to be rebound:
1 PLAN NAME ................. ===> (* to rebind all plans)
2 ADDITIONAL PLANS? ......... ===> NO (Yes to include more plans)

Enter options as desired:
3 CHANGE CURRENT DEFAULTS?... ===> NO (NO or YES)
4 OWNER OF PLAN (AUTHID)..... ===> SAME (SAME, new OWNER)
5 QUALIFIER ................. ===> SAME (SAME, new QUALIFIER)
6 CACHESIZE ................. ===> SAME (SAME, or value 0-4096)
7 ENABLE/DISABLE CONNECTIONS? ===> NO (NO or YES)
8 INCLUDE PACKAGE LIST?...... ===> SAME (SAME, NO, or YES)
9 CURRENT SERVER ............ ===> (Location name)
10 INCLUDE PATH? ............. ===> SAME (SAME, DEFAULT, or YES)

Figure 162. The Rebind Plan panel

Chapter 21. Preparing an application program to run 543

||
|
|

|



This panel lets you specify options for rebinding your plan. For information about
the rebind options that these fields represent, see the REBIND PLAN command in
Part 3 of DB2 Command Reference.

1 PLAN NAME
Lets you name the application plan to rebind. You can specify a name from
1 to 8 characters, and the first character must be alphabetic. Do not begin
the name with DSN, because it could create name conflicts with DB2. If
there are no errors, the bind process prepares the plan and enters its
description into the EXPLAIN table.

If you leave this field blank, the bind process occurs but produces no plan.

2 ADDITIONAL PLANS?
Lets you indicate whether to name more plans to rebind. Use YES to
specify more plans on an additional panel, described at “Panels for
entering lists of values” on page 553. The default is NO.

3 CHANGE CURRENT DEFAULTS?
Lets you indicate whether to change the binding defaults. Use:

NO (default) to retain the binding defaults of the previous plan.
YES to change the binding defaults from the previous plan. For
information about the defaults for binding plans, see “The Defaults for
Bind or Rebind Package or Plan panels” on page 547.

4 OWNER OF PLAN (AUTHID)
Lets you change the authorization ID for the plan owner. The owner must
have the required privileges to execute the SQL statements in the plan. The
default is the existing plan owner.

5 QUALIFIER
Lets you specify the implicit qualifier for all unqualified table names,
views, indexes, and aliases in the plan. You can specify a qualifier name
from 1 to 8 characters, which must conform to the rules for the SQL
identifier. The default is the authorization ID.

6 CACHESIZE
Lets you specify the size (in bytes) of the authorization cache. Valid values
are in the range 0 to 4096. Values that are not multiples of 256 round up to
the next highest multiple of 256. A value of 0 indicates that DB2 does not
use an authorization cache. The default is the cache size specified for the
previous plan.

Each concurrent user of a plan requires 8 bytes of storage, with an
additional 32 bytes for overhead. See “Determining the optimal
authorization cache size” on page 505 for more information about this
option.

7 ENABLE/DISABLE CONNECTIONS?
Lets you specify whether you want to enable and disable system
connections types to use with this plan. This is valid only for rebinding on
your local DB2 system.

Placing YES in this field displays a panel (shown in Figure 167 on page
552) that lets you specify whether various system connections are valid for
this application.

The default is the values used for the previous plan.

8 INCLUDE PACKAGE LIST?
Lets you include a list of collections and packages in the plan. If you
specify YES, a separate panel displays on which you must enter the

544 Application Programming and SQL Guide

#
#
#
#



package location, collection name, and package name for each package to
include in the plan (see “Panels for entering lists of values” on page 553).
This field can either add a package list to a plan that did not have one, or
replace an existing package list.

You can specify a location name from 1 to 16 characters, a collection ID
from 1 to 18 characters, and a package ID from 1 to 8 characters. Separate
two or more package list parameters with a comma. If you specify a
location name, it must be in the catalog table SYSIBM.LOCATIONS. The
default location is the package list used for the previous plan.

9 CURRENT SERVER
Lets you specify the initial server to receive and process SQL statements in
this plan. You can specify a name from 1 to 16 characters, which you must
previously define in the catalog table SYSIBM.LOCATIONS.

If you specify a remote server, DB2 connects to that server when the first
SQL statement executes. The default is the name of the local DB2
subsystem. For more information about this option, see the bind option
CURRENTSERVER in Part 3 of DB2 Command Reference.

10 INCLUDE PATH?
Indicates which one of the following actions you want to perform:
v Request that DB2 uses the same schema names as when the plan was

bound for resolving unqualified distinct type, user-defined function, and
stored procedure names in SQL statements. Choose SAME to perform
this action. This is the default.

v Supply a list of schema names that DB2 searches when it resolves
unqualified distinct type, user-defined function, and stored procedure
names in SQL statements. Choose YES to perform this action.

v Request that DB2 resets the SQL path to SYSIBM, SYSFUN, SYSPROC,
and the plan owner. Choose DEFAULT to perform this action.

If you specify YES, DB2 displays a panel in which you specify the names
of schemas for DB2 to search.

Free Package panel
The Free Package panel is the first of two panels. It specifies options in the free
process of a package. Figure 163 shows the free package options.

This panel lets you specify options for erasing packages.

DSNEBP18 FREE PACKAGE SSID: DSN
COMMAND ===>_

1 Free ALL packages ......... ===> (* to free authorized packages)

or
Enter package name(s) to be freed:

2 LOCATION NAME ............. ===> (Defaults to local)
3 COLLECTION-ID ............. ===> (Required)
4 PACKAGE-ID ................ ===> (* to free all packages)
5 VERSION-ID ................ ===>

(*, Blank, (), or version-id)
6 ADDITIONAL PACKAGES?....... ===> (Yes to include more packages)

Figure 163. The Free Package panel

Chapter 21. Preparing an application program to run 545

#
#
#
#
#



1 Free ALL packages
Lets you free (erase) all packages for which you have authorization or to
which you have BINDAGENT authority. To do so, place an asterisk (*) in
this field; otherwise, leave it blank.

2 LOCATION NAME
Lets you specify the location name of the DBMS to free the package. You
can specify a name from 1 to 16 characters.

3 COLLECTION-ID
Lets you specify the collection from which you want to delete packages for
which you own or have BINDAGENT privileges. You can specify a name
from 1 to 18 characters, or an asterisk (*) to free all collections in the local
DB2 system. You cannot use the asterisk to free a remote collection.

4 PACKAGE-ID
Lets you specify the name of the package to free. You can specify a name
from 1 to 8 characters, or an asterisk (*) to free all packages in the specified
collections in the local DB2 system. You cannot use the asterisk to free a
remote package. The name you specify must be in the DB2 catalog tables.

5 VERSION-ID
Lets you specify the version of the package to free. You can specify an
identifier from 1 to 64 characters, or an asterisk (*) to free all versions of
the specified collections and packages in the local DB2 system. You cannot
use the asterisk to free a remote version.

6 ADDITIONAL PACKAGES?
Lets you indicate whether to name more packages to free. Use YES to
specify more packages on an additional panel, described in “Panels for
entering lists of values” on page 553. The default is NO.

Free Plan panel
The Free Plan panel is the first of two panels. It specifies options in the free
process of an application plan. Figure 164 shows the free plan options.

This panel lets you specify options for freeing plans.

1 PLAN NAME
Lets you name the application plan to delete from DB2. Use an asterisk to
free all plans for which you have BIND authority. You can specify a name
from 1 to 8 characters, and the first character must be alphabetic.

If there are errors, the free process terminates for that plan and continues
with the next plan.

2 ADDITIONAL PLANS?
Lets you indicate whether to name more plans to free. Use YES to specify
more plans on an additional panel, described in “Panels for entering lists
of values” on page 553. The default is NO.

DSNEBP09 FREE PLAN SSID: DSN
COMMAND ===>_

Enter plan name(s) to be freed:
1 PLAN NAME ............ ===> (* to free all authorized plans)
2 ADDITIONAL PLANS? .... ===> (Yes to include more plans)

Figure 164. The Free Plan panel

546 Application Programming and SQL Guide

#
#
#
#



The Defaults for Bind or Rebind Package or Plan panels
On this panel, enter new defaults for binding the package.

This panel lets you change your defaults for BIND PACKAGE options. With a few
minor exceptions, the options on this panel are the same as the options for the
defaults for rebinding a package. However, the defaults for REBIND PACKAGE
are different from those shown in the preceding figure, and you can specify SAME
in any field to specify the values used the last time the package was bound. For
rebinding, the default value for all fields is SAME.

On this panel, enter new defaults for binding your plan.

This panel lets you change your defaults for options of BIND PLAN. The options
on this panel are mostly the same as the options for the defaults for rebinding a

DSNEBP10 DEFAULTS FOR BIND PACKAGE SSID: DSN
COMMAND ===> _

Change default options as necessary:

1 ISOLATION LEVEL ......... ===> (RR, RS, CS, UR, or NC)
2 VALIDATION TIME ......... ===> (RUN or BIND)
3 RESOURCE RELEASE TIME ... ===> (COMMIT or DEALLOCATE)
4 EXPLAIN PATH SELECTION .. ===> (NO or YES)
5 DATA CURRENCY ........... ===> (NO or YES)
6 PARALLEL DEGREE ......... ===> (1 or ANY)
7 SQLERROR PROCESSING ..... ===> (NOPACKAGE or CONTINUE)
8 REOPTIMIZE FOR INPUT VARS ===> (ALWAYS, NONE, or ONCE)
9 DEFER PREPARE ........... ===> (NO OR YES)
10 KEEP DYN SQL PAST COMMIT ===> (NO or YES)
11 DBPROTOCOL .............. ===> (DRDA OR PRIVATE)
12 APPLICATION ENCODING ... ===> (Blank, ASCII, EBCDIC,

UNICODE, or ccsid)
13 OPTIMIZATION HINT ...... ===> (Blank or ’hint-id’)
14 IMMEDIATE WRITE ......... ===> (YES, NO)
15 DYNAMIC RULES ........... ===> (RUN, BIND, DEFINE,

or INVOKE)

Figure 165. The Defaults for Bind Package panel

DSNEBP10 DEFAULTS FOR BIND PLAN SSID: DSN
COMMAND ===>

Change default options as necessary:

1 ISOLATION LEVEL ......... ===> RR (RR, RS, CS, or UR)
2 VALIDATION TIME ......... ===> RUN (RUN or BIND)
3 RESOURCE RELEASE TIME ... ===> COMMIT (COMMIT or DEALLOCATE)
4 EXPLAIN PATH SELECTION .. ===> NO (NO or YES)
5 DATA CURRENCY ........... ===> NO (NO or YES)
6 PARALLEL DEGREE ......... ===> 1 (1 or ANY)
7 RESOURCE ACQUISITION TIME ===> USE (USE or ALLOCATE)
8 REOPTIMIZE FOR INPUT VARS ===> NONE (ALWAYS, NONE, ONCE)
9 DEFER PREPARE ........... ===> NO (NO or YES)
10 KEEP DYN SQL PAST COMMIT. ===> NO (NO or YES)
11 DBPROTOCOL .............. ===> (Blank, DRDA, OR PRIVATE)
12 APPLICATION ENCODING ... ===> (Blank, ASCII, EBCDIC,

UNICODE, or ccsid)
13 OPTIMIZATION HINT ...... ===> (Blank or ’hint-id’)
14 IMMEDIATE WRITE ......... ===> NO (YES, NO)
15 DYNAMIC RULES ........... ===> RUN (RUN or BIND)
16 SQLRULES................. ===> DB2 (DB2 or STD)
17 DISCONNECT .............. ===> EXPLICIT (EXPLICIT, AUTOMATIC,

or CONDITIONAL)

Figure 166. The Defaults for Bind Plan panel

Chapter 21. Preparing an application program to run 547

|

|
|
|

|

|



package. However, for REBIND PLAN defaults, you can specify SAME in any field
to specify the values used the last time the plan was bound. For rebinding, the
default value for all fields is SAME.

Explanations of panel fields: The fields in panels Defaults for Bind Package and
Defaults for Bind Plan are:

1 ISOLATION LEVEL
Lets you specify how far to isolate your application from the effects of
other running applications. The default is the value used for the old plan
or package if you are replacing an existing one.

Use RR, RS, CS, or UR. For a description of the effects of those values, see
“The ISOLATION option” on page 412.

2 VALIDATION TIME
Lets you specify RUN or BIND to tell whether to check authorization at
run time or at bind time. The default is that used for the old plan or
package, if you are replacing it. For more information about this option,
see the bind option VALIDATE in Part 3 of DB2 Command Reference.

3 RESOURCE RELEASE TIME
Lets you specify COMMIT or DEALLOCATE to tell when to release locks
on resources. The default is that used for the old plan or package, if you
are replacing it. For a description of the effects of those values, see “The
ACQUIRE and RELEASE options” on page 408.

4 EXPLAIN PATH SELECTION
Lets you specify YES or NO for whether to obtain EXPLAIN information
about how SQL statements in the package execute. The default is NO.

The bind process inserts information into the table owner.PLAN_TABLE,
where owner is the authorization ID of the plan or package owner. If you
defined owner.DSN_STATEMNT_TABLE, DB2 also inserts information
about the cost of statement execution into that table. If you specify YES in
this field and BIND in the VALIDATION TIME field, and if you do not
correctly define PLAN_TABLE, the bind fails.

For information about EXPLAIN and creating a PLAN_TABLE, see
“Obtaining PLAN_TABLE information from EXPLAIN” on page 790.

5 DATA CURRENCY
Lets you specify YES or NO for whether you need data currency for
ambiguous cursors opened at remote locations.

Data is current if the data within the host structure is identical to the data
within the base table. Data is always current for local processing. For more
information about data currency, see “Maintaining data currency by using
cursors” on page 467.

6 PARALLEL DEGREE
Lets you specify ANY to run queries using parallel processing (when
possible) or 1 to request that DB2 not execute queries in parallel. See
Chapter 28, “Parallel operations and query performance,” on page 847 for
more information about this option.

8 REOPTIMIZE FOR INPUT VARS
Specifies whether DB2 determines access paths at bind time and again at
execution time for statements that contain:
v Input host variables
v Parameter markers

548 Application Programming and SQL Guide



v Special registers

If you specify ALWAYS, DB2 determines the access paths again at
execution time. When you specify ALWAYS for this option, you must also
specify YES for DEFER PREPARE, or you will receive a bind error. If you
specify ONCE, DB2 determines the access path at the first execution or
open time. It saves and continues to use that access path for that specific
statement until the statement is invalidated or removed from the dynamic
statement cache or until the statement needs to be prepared again. The
default, NONE, specifies that DB2 does not determine the access path at
bind time using input host variables, parameter markers, or special
registers.

9 DEFER PREPARE
Lets you defer preparation of dynamic SQL statements until DB2
encounters the first OPEN, DESCRIBE, or EXECUTE statement that refers
to those statements. Specify YES to defer preparation of the statement. For
information about using this option, see “Using bind options to improve
performance for distributed applications” on page 456.

10 KEEP DYN SQL PAST COMMIT
Specifies whether DB2 keeps dynamic SQL statements after commit points.
YES causes DB2 to keep dynamic SQL statements after commit points. An
application can execute a PREPARE statement for a dynamic SQL
statement once and execute that statement after later commit points
without executing PREPARE again. For more information, see
“Performance of static and dynamic SQL” on page 597.

11 DBPROTOCOL
Specifies whether DB2 uses DRDA protocol or DB2 private protocol to
execute statements that contain 3-part names. For more information, see
Chapter 20, “Planning to access distributed data,” on page 441.

12 APPLICATION ENCODING
Specifies the application encoding scheme to be used:

blank Indicates that all host variables in static SQL statements are
encoded using the encoding scheme in the DEF
ENCODING SCHEME field of installation panel DSNTIPF.

ASCII Indicates that the CCSIDs for all host variables in static
SQL statements are determined by the values in the ASCII
CODED CHAR SET and MIXED DATA fields of
installation panel DSNTIPF.

EBCDIC Indicates that the CCSIDs for all host variables in static
SQL statements are determined by the values in the
EBCDIC CODED CHAR SET and MIXED DATA fields of
installation panel DSNTIPF.

UNICODE Indicates that the CCSIDs of all host variables in static SQL
statements are determined by the value in the UNICODE
CCSID field of installation panel DSNTIPF.

ccsid Specifies a CCSID that determines the set of CCSIDs that
are used for all host variables in static SQL statements. If
you specify ccsid, this value should be a mixed CCSID. For
Unicode, the mixed CCSID is a UTF-8 CCSID. DB2 derives
the SBCS and DBCS CCSIDs.

Chapter 21. Preparing an application program to run 549

|
|
|
|
|
|
|
|



13 OPTIMIZATION HINT
Specifies whether you want to use optimization hints to determine access
paths. Specify hint-id to indicate that you want DB2 to use the optimization
hints in owner.PLAN_TABLE, where owner is the authorization ID of the
plan or package owner. hint-id is a delimited string of up to 8 characters
that DB2 compares to the value of OPTHINT in owner.PLAN_TABLE to
determine the rows to use for optimization hints. If you specify a nonblank
value for hint-id, DB2 uses optimization hints only if the value of field
OPTIMIZATION HINTS on installation panel DSNTIP8 is YES.

Blank means that you do not want DB2 to use optimization hints. This is
the default. For more information, see Part 5 (Volume 2) of DB2
Administration Guide.

14 IMMEDIATE WRITE
Specifies when DB2 writes the changes for updated group buffer
pool-dependent pages. This field applies only to a data sharing
environment. The values that you can specify are:

NO Write the changes at or before phase 1 of the commit process. If the
transaction is rolled back later, write the additional changes that
are caused by the rollback at the end of the abort process. NO is
the default.

PH1 is equivalent to NO.

YES Write the changes immediately after group buffer pool-dependent
pages are updated.

For more information about this option, see the bind option
IMMEDWRITE in Part 3 of DB2 Command Reference.

15 DYNAMIC RULES
For plans, lets you specify whether run-time (RUN) or bind-time (BIND)
rules apply to dynamic SQL statements at run time.

For packages, lets you specify whether run-time (RUN) or bind-time
(BIND) rules apply to dynamic SQL statements at run time. For packages
that run under an active user-defined function or stored procedure
environment, the INVOKEBIND, INVOKERUN, DEFINEBIND, and
DEFINERUN options indicate who must have authority to execute
dynamic SQL statements in the package.

For packages, the default rules for a package on the local server are the
same as the rules for the plan to which the package appends at run time.
For a package on the remote server, the default is RUN.

If you specify rules for a package that are different from the rules for the
plan, the SQL statements for the package use the rules you specify for that
package. If a package that is bound with DEFINEBIND or INVOKEBIND
is not executing under an active stored procedure or user-defined function
environment, SQL statements for that package use BIND rules. If a package
that is bound with DEFINERUN or INVOKERUN is not executing under
an active stored procedure or user-defined function environment, SQL
statements for that package use RUN rules.

For more information, see “Using DYNAMICRULES to specify behavior of
dynamic SQL statements” on page 504.

For packages:

550 Application Programming and SQL Guide

|

||
|
|
|

|



7 SQLERROR PROCESSING
Lets you specify CONTINUE to continue to create a package after finding
SQL errors, or NOPACKAGE to avoid creating a package after finding SQL
errors.

For plans:

7 RESOURCE ACQUISITION TIME
Lets you specify when to acquire locks on resources. Use:

USE (default) to open table spaces and acquire locks only when the
program bound to the plan first uses them.
ALLOCATE to open all table spaces and acquire all locks when you
allocate the plan. This value has no effect on dynamic SQL.

For a description of the effects of those values, see “The ACQUIRE and
RELEASE options” on page 408.

16 SQLRULES
Lets you specify whether a CONNECT (Type 2) statement executes
according to DB2 rules (DB2) or the SQL standard (STD). For information,
see “Specifying the SQL rules” on page 506.

17 DISCONNECT
Lets you specify which remote connections end during a commit or a
rollback. Regardless of what you specify, all connections in the
released-pending state end during commit.

Use:
EXPLICIT to end connections in the release-pending state only at
COMMIT or ROLLBACK
AUTOMATIC to end all remote connections
CONDITIONAL to end remote connections that have no open cursors
WITH HOLD associated with them.

See the DISCONNECT option of the BIND PLAN subcommand in Part 3
of DB2 Command Reference for more information about these values.

System Connection Types panel
This panel displays if you enter YES for ENABLE/DISABLE CONNECTIONS? on
the Bind or Rebind Package or Plan panels. For the Bind or Rebind Package panel,
the REMOTE option does not display as it does in the following panel.

Chapter 21. Preparing an application program to run 551



To enable or disable connection types (that is, allow or prevent the connection from
running the package or plan), enter the following information.

1 ENABLE ALL CONNECTION TYPES?
Lets you enter an asterisk (*) to enable all connections. After that entry, you
can ignore the rest of the panel.

2 ENABLE/DISABLE SPECIFIC CONNECTION TYPES
Lets you specify a list of types to enable or disable; you cannot enable
some types and disable others in the same operation. If you list types to
enable, enter E; that disables all other connection types. If you list types to
disable, enter D; that enables all other connection types. For more
information about this option, see the bind options ENABLE and DISABLE
in Part 3 of DB2 Command Reference.

For each connection type that follows, enter Y (yes) if it is on your list, N
(no) if it is not. The connection types are:
v BATCH for a TSO connection
v DB2CALL for a CAF connection
v RRSAF for an RRSAF connection
v CICS for a CICS connection
v IMS for all IMS connections: DLIBATCH, IMSBMP, and IMSMPP
v DLIBATCH for a DL/I Batch Support Facility connection
v IMSBMP for an IMS connection to a BMP region
v IMSMPP for an IMS connection to an MPP or IFP region
v REMOTE for remote location names and LU names

For each connection type that has a second arrow, under SPECIFY
CONNECTION NAMES?, enter Y if you want to list specific connection
names of that type. Leave N (the default) if you do not. If you use Y in
any of those fields, you see another panel on which you can enter the
connection names. For more information, see “Panels for entering lists of
values” on page 553.

If you use the DISPLAY command under TSO on this panel, you can determine
what you have currently defined as “enabled” or “disabled” in your ISPF
DSNSPFT library (member DSNCONNS). The information does not reflect the
current state of the DB2 Catalog.

If you type DISPLAY ENABLED on the command line, you get the connection
names that are currently enabled for your TSO connection types. For example:

DSNEBP13 SYSTEM CONNECTION TYPES FOR BIND ... SSID: DSN
COMMAND ===>

Select system connection types to be Enabled/Disabled:

1 ENABLE ALL CONNECTION TYPES? ===> (* to enable all types)
or
2 ENABLE/DISABLE SPECIFIC CONNECTION TYPES ===> (E/D)

BATCH ....... ===> (Y/N) SPECIFY CONNECTION NAMES?
DB2CALL ..... ===> (Y/N)
RRSAF ....... ===> (Y/N)
CICS ........ ===> (Y/N) ===> N (Y/N)
IMS ......... ===> (Y/N)
DLIBATCH .... ===> (Y/N) ===> N (Y/N)
IMSBMP ...... ===> (Y/N) ===> N (Y/N)
IMSMPP ...... ===> (Y/N) ===> N (Y/N)
REMOTE ...... ===> (Y/N) ===> N (Y/N)

Figure 167. The System Connection Types panel

552 Application Programming and SQL Guide



Display OF ALL connection name(s) to be ENABLED

CONNECTION SUBSYSTEM
CICS1 ENABLED
CICS2 ENABLED
CICS3 ENABLED
CICS4 ENABLED
DLI1 ENABLED
DLI2 ENABLED
DLI3 ENABLED
DLI4 ENABLED
DLI5 ENABLED

Panels for entering lists of values
Some fields in DB2I panels are associated with command keywords that accept
multiple values. Those fields lead you to a list panel that lets you enter or modify
a an unlimited number of values. A list panel looks like an ISPF edit session and
lets you scroll and use a limited set of commands.

The format of each list panel varies, depending on the content and purpose for the
panel. Figure 168 is a generic sample of a list panel:

For the syntax of specifying names on a list panel, see Part 3 of DB2 Command
Reference for the type of name you need to specify.

All of the list panels let you enter limited commands in two places:
v On the system command line, prefixed by ====>

v In a special command area, identified by """"

On the system command line, you can use:

END Saves all entered variables, exits the table, and continues to process.

CANCEL
Discards all entered variables, terminates processing, and returns to the
previous panel.

SAVE Saves all entered variables and remains in the table.

In the special command area, you can use:

Inn Insert nn lines after this one.

Dnn Delete this and the following lines for nn lines.

Rnn Repeat this line nn number of times.

panelid Specific subcommand function SSID: DSN
COMMAND ===>_ SCROLL ===>

Subcommand operand values:

CMD
"""" value ...
"""" value ...
""""
""""
""""
""""

Figure 168. Generic example of a DB2I list panel

Chapter 21. Preparing an application program to run 553



The default for nn is 1.

When you finish with a list panel, specify END to same the current panel values
and continue processing.

Program Preparation: Compile, Link, and Run panel
The second of the Program Preparation panels ( Figure 169) lets you do the last
two steps in the program preparation process (compile and link-edit), as well as
the PL/I MACRO PHASE for programs requiring this option. For TSO programs,
the panel also lets you run programs.

1,2 INCLUDE LIBRARY
Lets you specify up to two libraries containing members for the compiler
to include. The members can also be output from DCLGEN. You can leave
these fields blank if you wish. There is no default.

3 OPTIONS
Lets you specify compiler, assembler, or PL/I macro processor options. You
can also enter a list of compiler or assembler options by separating entries
with commas, blanks, or both. You can leave these fields blank if you wish.
There is no default.

4,5,6 INCLUDE LIBRARY
Lets you enter the names of up to three libraries containing members for
the linkage editor to include. You can leave these fields blank if you wish.
There is no default.

7 LOAD LIBRARY
Lets you specify the name of the library to hold the load module. The
default value is RUNLIB.LOAD.

If the load library specified is a PDS, and the input data set is a PDS, the
member name specified in INPUT DATA SET NAME field of the Program
Preparation panel is the load module name. If the input data set is
sequential, the second qualifier of the input data set is the load module
name.

You must fill in this field if you request LINK or RUN on the Program
Preparation panel.

DSNEPP02 PROGRAM PREP: COMPILE, PRELINK, LINK, AND RUN SSID: DSN
COMMAND ===>_

Enter compiler or assembler options:
1 INCLUDE LIBRARY ===> SRCLIB.DATA
2 INCLUDE LIBRARY ===>
3 OPTIONS ....... ===> NUM, OPTIMIZE, ADV

Enter linkage editor options:
4 INCLUDE LIBRARY ===> SAMPLIB.COBOL
5 INCLUDE LIBRARY ===>
6 INCLUDE LIBRARY ===>
7 LOAD LIBRARY .. ===> RUNLIB.LOAD
8 PRELINK OPTIONS ===>
9 LINK OPTIONS... ===>
Enter run options:
10 PARAMETERS .... ===> D01, D02, D03/
11 SYSIN DATA SET ===> TERM
12 SYSPRINT DS ... ===> TERM

Figure 169. The Program Preparation: Compile, Link, and Run panel

554 Application Programming and SQL Guide



8 PRELINK OPTIONS
Lets you enter a list of prelinker options. Separate items in the list with
commas, blanks, or both. You can leave this field blank if you wish. There
is no default.

The prelink utility applies only to programs using C, C++, and Enterprise
COBOL for z/OS. See z/OS Language Environment Programming Guide for
more information about prelinker options.

9 LINK OPTIONS
Lets you enter a list of link-edit options. Separate items in the list with
commas, blanks, or both.

To prepare a program that uses 31-bit addressing and runs above the
16-megabyte line, specify the following link-edit options: AMODE=31,
RMODE=ANY.

10 PARAMETERS
Lets you specify a list of parameters you want to pass either to your host
language run-time processor, or to your application. Separate items in the
list with commas, blanks, or both. You can leave this field blank.

If you are preparing an IMS or CICS program, you must leave this field
blank; you cannot use DB2I to run IMS and CICS programs.

Use a slash (/) to separate the options for your run-time processor from
those for your program.
v For PL/I and Fortran, run-time processor parameters must appear on

the left of the slash, and the application parameters must appear on the
right.
run-time processor parameters / application parameters

v For COBOL, reverse this order. Run-time processor parameters must
appear on the right of the slash, and the application parameters must
appear on the left.

v For assembler and C, there is no supported run-time environment, and
you need not use a slash to pass parameters to the application program.

11 SYSIN DATA SET
Lets you specify the name of a SYSIN (or in Fortran, FT05F001) data set for
your application program, if it needs one. If you do not enclose the data
set name in apostrophes, a standard TSO prefix (user ID) and suffix is
added to it. The default for this field is TERM.

If you are preparing an IMS or CICS program, you must leave this field
blank; you cannot use DB2I to run IMS and CICS programs.

12 SYSPRINT DS
Lets you specify the names of a SYSPRINT (or in Fortran, FT06F001) data
set for your application program, if it needs one. If you do not enclose the
data set name in apostrophes, a standard TSO prefix (user ID) and suffix is
added to it. The default for this field is TERM.

If you are preparing an IMS or CICS program, you must leave this field
blank; you cannot use DB2I to run IMS and CICS programs.

Your application could need other data sets besides SYSIN and SYSPRINT. If so,
remember to catalog and allocate them before you run your program.

Chapter 21. Preparing an application program to run 555



When you press ENTER after entering values in this panel, DB2 compiles and
link-edits the application. If you specified in the DB2 Program Preparation panel
that you want to run the application, DB2 also runs the application.

The Run panel
You can reach the Run panel only through the DB2I Primary Options Menu. The
Run panel enables you to start an application program that can contain SQL
statements. You can accomplish the same task using the “Program Preparation:
Compile, Link, and Run” panel. You should use this panel if you have already
prepared the program and simply want to run it. Figure 170 shows the run
options.

This panel lets you run existing application programs.

1 DATA SET NAME
Lets you specify the name of the partitioned data set that contains the load
module. If the module is in a data set that the operating system can find,
you can specify the member name only. There is no default.

If you do not enclose the name in apostrophes, a standard TSO prefix (user
ID) and suffix (.LOAD) is added.

2 PASSWORD
Lets you specify the data set password if needed. The RUN processor does
not check whether you need a password. If you do not enter a required
password, your program does not run.

3 PARAMETERS
Lets you specify a list of parameters you want to pass either to your host
language run-time processor, or to your application. You should separate
items in the list with commas, blanks, or both. You can leave this field
blank.

Use a slash (/) to separate the options for your run-time processor from
those for your program.
v For PL/I and Fortran, run-time processor parameters must appear on

the left of the slash, and the application parameters must appear on the
right.
run-time processor parameters / application parameters

v For COBOL, reverse this order. Run-time processor parameters must
appear on the right of the slash, and the application parameters must
appear on the left.

v For assembler and C, there is no supported run-time environment, and
you need not use the slash to pass parameters to the application
program.

DSNERP01 RUN SSID: DSN
COMMAND ===>_

Enter the name of the program you want to run:
1 DATA SET NAME ===>
2 PASSWORD..... ===> (Required if data set is password protected)

Enter the following as desired:
3 PARAMETERS .. ===>
4 PLAN NAME ... ===> (Required if different from program name)
5 WHERE TO RUN ===> (FOREGROUND, BACKGROUND, or EDITJCL)

Figure 170. The Run panel

556 Application Programming and SQL Guide



4 PLAN NAME
Lets you specify the name of the plan to which the program is bound. The
default is the member name of the program.

5 WHERE TO RUN
Lets you indicate whether to run in the foreground or background. You can
also specify EDITJCL, in which case you are able to edit the job control
statement before you run the program. Use:

FOREGROUND to immediately run the program in the foreground
with the specified values.
BACKGROUND to create and immediately submit to run a file
containing a DSNH CLIST using the JOB control statement from either
DB2I Defaults Panel 2 or your site's SUBMIT exit. The program runs in
the background.
EDITJCL to create and open a file containing a DSNH CLIST in edit
mode. You can then submit the CLIST or save it. The program runs in
the background.

Running Command Processors
To run a command processor (CP), use the following commands from the
TSO ready prompt or as a TSO TMP:
DSN SYSTEM (DB2-subsystem-name)
RUN CP PLAN (plan-name)

The RUN subcommand prompts you for more input. The end the DSN
processor, use the END command.

Chapter 21. Preparing an application program to run 557



558 Application Programming and SQL Guide



Chapter 22. Testing an application program

This chapter discusses how to set up a test environment, test SQL statements,
debug your programs, and read output from the precompiler. It contains the
following sections:
v “Establishing a test environment”
v “Testing SQL statements using SPUFI” on page 562
v “Debugging your program” on page 562
v “Locating the problem” on page 568

Establishing a test environment
This section describes how to design a test data structure and how to fill tables
with test data.

CICS
Before you run an application, ensure that the corresponding entries in the
SNT and RACF control areas authorize your application to run. The system
administrator is responsible for these functions; see Part 3 (Volume 1) of DB2
Administration Guide for more information on the functions.

In addition, ensure that the program and its transaction code are defined in
the CICS CSD.

Designing a test data structure
When you test an application that accesses DB2 data, you should have DB2 data
available for testing. To do this, you can create test tables and views.

Test Views of Existing Tables: If your application does not change a set of DB2
data and the data exists in one or more production-level tables, you might
consider using a view of existing tables.
Test Tables: To create a test table, you need a database and table space. Talk
with your DBA to make sure that a database and table spaces are available for
your use.
If the data that you want to change already exists in a table, consider using the
LIKE clause of CREATE TABLE. If you want others besides yourself to have
ownership of a table for test purposes, you can specify a secondary ID as the
owner of the table. You can do this with the SET CURRENT SQLID statement;
for details, see Chapter 5 of DB2 SQL Reference. See Part 3 (Volume 1) of DB2
Administration Guide for more information about authorization IDs.

If your location has a separate DB2 system for testing, you can create the test
tables and views on the test system, then test your program thoroughly on that
system. This chapter assumes that you do all testing on a separate system, and that
the person who created the test tables and views has an authorization ID of TEST.
The table names are TEST.EMP, TEST.PROJ and TEST.DEPT.

Analyzing application data needs
To design test tables and views, first analyze your application's data needs.

© Copyright IBM Corp. 1983, 2012 559



1. List the data your application accesses and describe how it accesses each data
item. For example, suppose you are testing an application that accesses the
DSN8810.EMP, DSN8810.DEPT, and DSN8810.PROJ tables. You might record
the information about the data as shown in Table 74.

Table 74. Description of the application's data

Table or view name Insert rows? Delete rows? Column name Data type
Update
access?

DSN8810.EMP No No EMPNO CHAR(6) No

LASTNAME VARCHAR(15) No

WORKDEPT CHAR(3) Yes

PHONENO CHAR(4) Yes

JOB DECIMAL(3) Yes

DSN8810.DEPT No No DEPTNO CHAR(3) No

MGRNO CHAR (6) No

DSN8810.PROJ Yes Yes PROJNO CHAR(6) No

DEPTNO CHAR(3) Yes

RESPEMP CHAR(6) Yes

PRSTAFF DECIMAL(5,2) Yes

PRSTDATE DECIMAL(6) Yes

PRENDATE DECIMAL(6) Yes

2. Determine the test tables and views you need to test your application.
Create a test table on your list when either:
v The application modifies data in the table
v You need to create a view based on a test table because your application

modifies the view's data.
To continue the example, create these test tables:
v TEST.EMP, with the following format:

EMPNO LASTNAME WORKDEPT PHONENO JOB
...

...
...

...
...

v TEST.PROJ, with the same columns and format as DSN8810.PROJ, because
the application inserts rows into the DSN8810.PROJ table.

To support the example, create a test view of the DSN8810.DEPT table.
v TEST.DEPT view, with the following format:

DEPTNO MGRNO
...

...

Because the application does not change any data in the DSN8810.DEPT table,
you can base the view on the table itself (rather than on a test table). However,
a safer approach is to have a complete set of test tables and to test the program
thoroughly using only test data.

560 Application Programming and SQL Guide



Obtaining authorization
Before you can create a table, you need to be authorized to create tables and to use
the table space in which the table is to reside. You must also have authority to
bind and run programs you want to test. Your DBA can grant you the
authorization needed to create and access tables and to bind and run programs.

If you intend to use existing tables and views (either directly or as the basis for a
view), you need privileges to access those tables and views. Your DBA can grant
those privileges.

To create a view, you must have authorization for each table and view on which
you base the view. You then have the same privileges over the view that you have
over the tables and views on which you based the view. Before trying the
examples, have your DBA grant you the privileges to create new tables and views
and to access existing tables. Obtain the names of tables and views you are
authorized to access (as well as the privileges you have for each table) from your
DBA. See Chapter 2, “Working with tables and modifying data,” on page 19 for
more information about creating tables and views.

Creating a comprehensive test structure
The following SQL statements shows how to create a complete test structure to
contain a small table named SPUFINUM. The test structure consists of:
v A storage group named SPUFISG
v A database named SPUFIDB
v A table space named SPUFITS in SPUFIDB and using SPUFISG
v A table named SPUFINUM within the table space SPUFITS
CREATE STOGROUP SPUFISG

VOLUMES (user-volume-number)
VCAT DSNCAT ;

CREATE DATABASE SPUFIDB ;

CREATE TABLESPACE SPUFITS
IN SPUFIDB
USING STOGROUP SPUFISG ;

CREATE TABLE SPUFINUM
( XVAL CHAR(12) NOT NULL,

ISFLOAT FLOAT,
DEC30 DECIMAL(3,0),
DEC31 DECIMAL(3,1),
DEC32 DECIMAL(3,2),
DEC33 DECIMAL(3,3),
DEC10 DECIMAL(1,0),
DEC11 DECIMAL(1,1),
DEC150 DECIMAL(15,0),
DEC151 DECIMAL(15,1),
DEC1515 DECIMAL(15,15) )

IN SPUFIDB.SPUFITS ;

For details about each CREATE statement, see DB2 SQL Reference.

Filling the tables with test data
You can put test data into a table in several ways:
v INSERT ... VALUES (an SQL statement) puts one row into a table each time the

statement executes. For information about the INSERT statement, see “Inserting
rows: INSERT” on page 27.

Chapter 22. Testing an application program 561



v INSERT ... SELECT (an SQL statement) obtains data from an existing table
(based on a SELECT clause) and puts it into the table identified with the
INSERT statement. For information about this technique, see “Inserting rows
into a table from another table” on page 29.

v The LOAD utility obtains data from a sequential file (a non-DB2 file), formats it
for a table, and puts it into a table. For more details about the LOAD utility, see
DB2 Utility Guide and Reference.

v The DB2 sample UNLOAD program (DSNTIAUL) can unload data from a table
or view and build control statements for the LOAD utility. See Appendix C,
“Running the productivity-aid sample programs,” on page 1021 for more
information about the sample UNLOAD program.

v The UNLOAD utility can unload data from a table and build control statements
for the LOAD utility. See Part 2 of DB2 Utility Guide and Reference for more
information about the UNLOAD utility.

Testing SQL statements using SPUFI
You can use SPUFI (an interface between ISPF and DB2) to test SQL statements in
a TSO/ISPF environment. With SPUFI panels you can put SQL statements into a
data set that DB2 subsequently executes. The SPUFI Main panel has several
functions that permit you to:
v Name an input data set to hold the SQL statements passed to DB2 for execution
v Name an output data set to contain the results of executing the SQL statements
v Specify SPUFI processing options.

SQL statements executed under SPUFI operate on actual tables (in this case, the
tables you have created for testing). Consequently, before you access DB2 data:
v Make sure that all tables and views your SQL statements refer to exist
v If the tables or views do not exist, create them (or have your database

administrator create them). You can use SPUFI to issue the CREATE statements
used to create the tables and views you need for testing.

For more information about how to use SPUFI, see Chapter 5, “Using SPUFI to
execute SQL from your workstation,” on page 59.

Debugging your program
Many sites have guidelines regarding what to do if your program abends. The
following sections suggest some common guidelines:
v “Debugging programs in TSO”
v “Debugging programs in IMS” on page 563
v “Debugging programs in CICS” on page 564

Debugging programs in TSO
Documenting the errors returned from test helps you investigate and correct
problems in the program. The following information can be useful:
v The application plan name of the program
v The input data being processed
v The failing SQL statement and its function
v The contents of the SQLCA (SQL communication area) and, if your program

accepts dynamic SQL statements, the SQLDA (SQL descriptor area)
v The date and time of day

562 Application Programming and SQL Guide



v The abend code and any error messages

When your program encounters an error that does not result in an abend, it can
pass all the required error information to a standard error routine. Online
programs might also send an error message to the terminal.

Language test facilities
For information about the compiler or assembler test facilities, see the publications
for the compiler or CODE/370. The compiler publications include information
about the appropriate debugger for the language you are using.

The TSO TEST command
The TSO TEST command is especially useful for debugging assembler programs.

The following example is a command procedure (CLIST) that runs a DB2
application named MYPROG under TSO TEST, and sets an address stop at the
entry to the program. The DB2 subsystem name in this example is DB4.
PROC 0
TEST ’prefix.SDSNLOAD(DSN)’ CP
DSN SYSTEM(DB4)
AT MYPROG.MYPROG.+0 DEFER
GO
RUN PROGRAM(MYPROG) LIBRARY(’L186331.RUNLIB.LOAD(MYPROG)’)

For more information about the TEST command, see z/OS TSO/E Command
Reference.

ISPF Dialog Test is another option to help you in the task of debugging.

Debugging programs in IMS
Documenting the errors returned from test helps you investigate and correct
problems in the program. The following information can be useful:
v The program's application plan name
v The input message being processed
v The name of the originating logical terminal
v The failing statement and its function
v The contents of the SQLCA (SQL communication area) and, if your program

accepts dynamic SQL statements, the SQLDA (SQL descriptor area)
v The date and time of day
v The program's PSB name
v The transaction code that the program was processing
v The call function (that is, the name of a DL/I function)
v The contents of the PCB that the program's call refers to
v If a DL/I database call was running, the SSAs, if any, that the call used
v The abend completion code, abend reason code, and any dump error messages.

When your program encounters an error, it can pass all the required error
information to a standard error routine. Online programs can also send an error
message to the originating logical terminal.

Chapter 22. Testing an application program 563



An interactive program also can send a message to the master terminal operator
giving information about the program's termination. To do that, the program
places the logical terminal name of the master terminal in an express PCB and
issues one or more ISRT calls.

Some sites run a BMP at the end of the day to list all the errors that occurred
during the day. If your location does this, you can send a message using an
express PCB that has its destination set for that BMP.

Batch Terminal Simulator (BTS): The Batch Terminal Simulator (BTS) allows you to
test IMS application programs. BTS traces application program DL/I calls and SQL
statements, and simulates data communication functions. It can make a TSO
terminal appear as an IMS terminal to the terminal operator, allowing the end user
to interact with the application as though it were online. The user can use any
application program under the user's control to access any database (whether DL/I
or DB2) under the user's control. Access to DB2 databases requires BTS to operate
in batch BMP or TSO BMP mode.

Debugging programs in CICS
Documenting the errors returned from test helps you investigate and correct
problems in the program. The following information can be useful:
v The program's application plan name
v The input data being processed
v The ID of the originating logical terminal
v The failing SQL statement and its function
v The contents of the SQLCA (SQL communication area) and, if your program

accepts dynamic SQL statements, the SQLDA (SQL descriptor area)
v The date and time of day
v Data peculiar to CICS that you should record
v Abend code and dump error messages
v Transaction dump, if produced.

Using CICS facilities, you can have a printed error record; you can also print the
SQLCA (and SQLDA) contents.

Debugging aids for CICS
CICS provides the following aids to the testing, monitoring, and debugging of
application programs:

Execution (Command Level) Diagnostic Facility (EDF). EDF shows CICS
commands for all releases of CICS. See “CICS execution diagnostic facility” on
page 565 for more information. If you are using an earlier version of CICS, the
CALL TO RESOURCE MANAGER DSNCSQL screen displays a status of
"ABOUT TO EXECUTE" or "COMMAND EXECUTION COMPLETE."
Abend recovery. You can use the HANDLE ABEND command to deal with
abend conditions, and the ABEND command to cause a task to abend.
Trace facility. A trace table can contain entries showing the execution of various
CICS commands, SQL statements, and entries generated by application
programs; you can have it written to main storage and, optionally, to an
auxiliary storage device.
Dump facility. You can specify areas of main storage to dump onto a sequential
data set, either tape or disk, for subsequent offline formatting and printing with
a CICS utility program.

564 Application Programming and SQL Guide



Journals. For statistical or monitoring purposes, facilities can create entries in
special data sets called journals. The system log is a journal.
Recovery. When an abend occurs, CICS restores certain resources to their
original state so that the operator can easily resubmit a transaction for restart.
You can use the SYNCPOINT command to subdivide a program so that you
only need to resubmit the uncompleted part of a transaction.

For more details about each of these topics, see CICS Transaction Server for z/OS
Application Programming Reference.

CICS execution diagnostic facility
The CICS execution diagnostic facility (EDF) traces SQL statements in an
interactive debugging mode, enabling application programmers to test and debug
programs online without changing the program or the program preparation
procedure.

EDF intercepts the running application program at various points and displays
helpful information about the statement type, input and output variables, and any
error conditions after the statement executes. It also displays any screens that the
application program sends, making it possible to converse with the application
program during testing just as a user would on a production system.

EDF displays essential information before and after an SQL statement, while the
task is in EDF mode. This can be a significant aid in debugging CICS transaction
programs containing SQL statements. The SQL information that EDF displays is
helpful for debugging programs and for error analysis after an SQL error or
warning. Using this facility reduces the amount of work you need to do to write
special error handlers.

EDF before execution: Figure 171 is an example of an EDF screen before it executes
an SQL statement. The names of the key information fields on this panel are in
boldface.

The DB2 SQL information in this screen is as follows:

TRANSACTION: XC05 PROGRAM: TESTC05 TASK NUMBER: 0000668 DISPLAY: 00
STATUS: ABOUT TO EXECUTE COMMAND
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL INSERT
DBRM=TESTC05, STMT=00368, SECT=00004
IVAR 001: TYPE=CHAR, LEN=00007, IND=000 AT X’03C92810’

DATA=X’F0F0F9F4F3F4F2’
IVAR 002: TYPE=CHAR, LEN=00007, IND=000 AT X’03C92817’

DATA=X’F0F1F3F3F7F5F1’
IVAR 003: TYPE=CHAR, LEN=00004, IND=000 AT X’03C9281E’

DATA=X’E7C3F0F5’
IVAR 004: TYPE=CHAR, LEN=00040, IND=000 AT X’03C92822’

DATA=X’E3C5E2E3C3F0F540E2C9D4D7D3C540C4C2F240C9D5E2C5D9E3404040’...
IVAR 005: TYPE=SMALLINT, LEN=00002, IND=000 AT X’03C9284A’

DATA=X’0001’

OFFSET:X’001ECE’ LINE:UNKNOWN EIBFN=X’1002’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 171. EDF screen before a DB2 SQL statement

Chapter 22. Testing an application program 565



v EXEC SQL statement type

This is the type of SQL statement to execute. The SQL statement can be any
valid SQL statement, such as COMMIT, DROP TABLE, EXPLAIN, FETCH, or
OPEN.

v DBRM=dbrm name

The name of the database request module (DBRM) currently processing. The
DBRM, created by the DB2 precompiler, contains information about an SQL
statement.

v STMT=statement number

This is the DB2 precompiler-generated statement number. The source and error
message listings from the precompiler use this statement number, and you can
use it to determine which statement is processing. This number is a source line
counter that includes host language statements. A statement number greater than
32,767 displays as 0.

v SECT=section number

The section number of the plan that the SQL statement uses.

SQL statements containing input host variables: The IVAR (input host variables)
section and its attendant fields only appear when the executing statement contains
input host variables.

The host variables section includes the variables from predicates, the values used
for inserting or updating, and the text of dynamic SQL statements being prepared.
The address of the input variable is AT 'nnnnnnnn'.

Additional host variable information:
v TYPE=data type

Specifies the data type for this host variable. The basic data types include
character string, graphic string, binary integer, floating-point, decimal, date,
time, and timestamp. For additional information, see “Data types” on page 4.

v LEN=length

Length of the host variable.
v IND=indicator variable status number

Represents the indicator variable associated with this particular host variable. A
value of zero indicates that no indicator variable exists. If the value for the
selected column is null, DB2 puts a negative value in the indicator variable for
this host variable. For additional information, see “Using indicator variables
with host variables” on page 83.

v DATA=host variable data

The data, displayed in hexadecimal format, associated with this host variable. If
the data exceeds what can display on a single line, three periods (...) appear at
the far right to indicate more data is present.

EDF after execution: Figure 172 on page 567 shows an example of the first EDF
screen displayed after the executing an SQL statement. The names of the key
information fields on this panel are in boldface.

566 Application Programming and SQL Guide



The DB2 SQL information in this screen is as follows:
v P.AUTH=primary authorization ID

The primary DB2 authorization ID.
v S.AUTH=secondary authorization ID

If the RACF list of group options is not active, then DB2 uses the connected
group name that the CICS attachment facility supplies as the secondary
authorization ID. If the RACF list of group options is active, then DB2 ignores
the connected group name that the CICS attachment facility supplies, but the
value appears in the DB2 list of secondary authorization IDs.

v PLAN=plan name

The name of plan that is currently running. The PLAN represents the control
structure produced during the bind process and used by DB2 to process SQL
statements encountered while the application is running.

v SQL Communication Area (SQLCA)
The SQLCA contains information about errors, if any occur. After returning from
DB2, the information is available. DB2 uses the SQLCA to give an application
program information about the executing SQL statements.

Plus signs (+) on the left of the screen indicate that you can see additional EDF
output by using PF keys to scroll the screen forward or back.

The OVAR (output host variables) section and its attendant fields only appear
when the executing statement returns output host variables.

Figure 173 on page 568 contains the rest of the EDF output for our example.

TRANSACTION: XC05 PROGRAM: TESTC05 TASK NUMBER: 0000698 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL FETCH P.AUTH=SYSADM , S.AUTH=
PLAN=TESTC05, DBRM=TESTC05, STMT=00346, SECT=00001
SQL COMMUNICATION AREA:
SQLCABC = 136 AT X’03C92789’
SQLCODE = 000 AT X’03C9278D’
SQLERRML = 000 AT X’03C92791’
SQLERRMC = ’’ AT X’03C92793’
SQLERRP = ’DSN’ AT X’03C927D9’
SQLERRD(1-6) = 000, 000, 00000, -1, 00000, 000 AT X’03C927E1’
SQLWARN(0-A) = ’_ _ _ _ _ _ _ _ _ _ _’ AT X’03C927F9’
SQLSTATE = 00000 AT X’03C92804’

+ OVAR 001: TYPE=INTEGER, LEN=00004, IND=000 AT X’03C920A0’
DATA=X’00000001’

OFFSET:X’001D14’ LINE:UNKNOWN EIBFN=X’1802’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 172. EDF screen after a DB2 SQL statement

Chapter 22. Testing an application program 567



The attachment facility automatically displays SQL information while in the EDF
mode. (You can start EDF as outlined in the appropriate CICS application
programmer's reference manual.) If this is not the case, contact your installer and
see Part 2 of DB2 Installation Guide.

Locating the problem
If your program does not run correctly, you need to isolate the problem. If the DB2
did not invalidate the program's application plan, you should check the following
items:
v Output from the precompiler which consists of errors and warnings. Ensure that

you have resolved all errors and warnings.
v Output from the compiler or assembler. Ensure that you have resolved all error

messages.
v Output from the linkage editor.

– Have you resolved all external references?
– Have you included all necessary modules in the correct order?
– Did you include the correct language interface module? The correct language

interface module is:
- DSNELI for TSO
- DFSLI000 for IMS
- DSNCLI for CICS
- DSNALI for the call attachment facility.

– Did you specify the correct entry point to your program?
v Output from the bind process.

– Have you resolved all error messages?
– Did you specify a plan name? If not, the bind process assumes you want to

process the DBRM for diagnostic purposes, but do not want to produce an
application plan.

– Have you specified all the DBRMs and packages associated with the
programs that make up the application and their partitioned data set (PDS)
names in a single application plan?

TRANSACTION: XC05 PROGRAM: TESTC05 TASK NUMBER: 0000698 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER DSNCSQL
+ OVAR 002: TYPE=CHAR, LEN=00008, IND=000 AT X’03C920B0’

DATA=X’C8F3E3E3C1C2D3C5’
OVAR 003: TYPE=CHAR, LEN=00040, IND=000 AT X’03C920B8’

DATA=X’C9D5C9E3C9C1D340D3D6C1C440404040404040404040404040404040’...

OFFSET:X’001D14’ LINE:UNKNOWN EIBFN=X’1802’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 173. EDF screen after a DB2 SQL statement, continued

568 Application Programming and SQL Guide



v Your JCL.

IMS

– If you are using IMS, have you included the DL/I option statement in
the correct format?

– Have you included the region size parameter in the EXEC statement? Does it
specify a region size large enough for the storage required for the DB2
interface, the TSO, IMS, or CICS system, and your program?

– Have you included the names of all data sets (DB2 and non-DB2) that the
program requires?

v Your program.
You can also use dumps to help localize problems in your program. For
example, one of the more common error situations occurs when your program is
running and you receive a message that it abended. In this instance, your test
procedure might be to capture a TSO dump. To do so, you must allocate a
SYSUDUMP or SYSABEND dump data set before calling DB2. When you press
the ENTER key (after the error message and READY message), the system
requests a dump. You then need to FREE the dump data set.

Analyzing error and warning messages from the precompiler
Under some circumstances, the statements that the DB2 precompiler generates can
produce compiler or assembly error messages. You must know why the messages
occur when you compile DB2-produced source statements. For more information
about warning messages, see the following host language sections:
v “Coding SQL statements in an assembler application” on page 143
v “Coding SQL statements in a C or C++ application” on page 158
v “Coding SQL statements in a COBOL application” on page 186
v “Coding SQL statements in a Fortran application” on page 220
v “Coding SQL statements in a PL/I application” on page 230.

SYSTERM output from the precompiler
The DB2 precompiler provides SYSTERM output when you allocate the ddname
SYSTERM. If you use the Program Preparation panels to prepare and run your
program, DB2I allocates SYSTERM according to the TERM option you specify.

The SYSTERM output provides a brief summary of the results from the
precompiler, all error messages that the precompiler generated, and the statement
in error, when possible. Sometimes, the error messages by themselves are not
enough. In such cases, you can use the line number provided in each error
message to locate the failing source statement.

Figure 174 on page 570 shows the format of SYSTERM output.

Chapter 22. Testing an application program 569



Notes for Figure 174:

1. Error message.
2. Source SQL statement.
3. Summary statements of source statistics.
4. Summary statement of the number of errors detected.
5. Summary statement indicating the number of errors detected but not printed.

That value might occur if you specify a FLAG option other than I.
6. Storage requirement statement telling you how many bytes of working storage

that the DB2 precompiler actually used to process your source statements. That
value helps you determine the storage allocation requirements for your
program.

7. Return code: 0 = success, 4 = warning, 8 = error, 12 = severe error, and 16 =
unrecoverable error.

SYSPRINT output from the precompiler
SYSPRINT output is what the DB2 precompiler provides when you use a
procedure to precompile your program. See Table 70 on page 514 for a list of JCL
procedures that DB2 provides.

When you use the Program Preparation panels to prepare and run your program,
DB2 allocates SYSPRINT according to TERM option you specify (on line 12 of the
PROGRAM PREPARATION: COMPILE, PRELINK, LINK, AND RUN panel). As an
alternative, when you use the DSNH command procedure (CLIST), you can specify
PRINT(TERM) to obtain SYSPRINT output at your terminal, or you can specify
PRINT(qualifier) to place the SYSPRINT output into a data set named
authorizationid.qualifier.PCLIST. Assuming that you do not specify PRINT as LEAVE,
NONE, or TERM, DB2 issues a message when the precompiler finishes, telling you
where to find your precompiler listings. This helps you locate your diagnostics
quickly and easily.

The SYSPRINT output can provide information about your precompiled source
module if you specify the options SOURCE and XREF when you start the DB2
precompiler.

The format of SYSPRINT output is as follows:
v A list of the DB2 precompiler options (Figure 175) that are in effect during the

precompilation (if you did not specify NOOPTIONS).

DB2 SQL PRECOMPILER MESSAGES

DSNH104I E DSNHPARS LINE 32 COL 26 ILLEGAL SYMBOL "X" VALID SYMBOLS ARE:, FROM1

SELECT VALUE INTO HIPPO X;2

DB2 SQL PRECOMPILER STATISTICS
SOURCE STATISTICS3

SOURCE LINES READ: 36
NUMBER OF SYMBOLS: 15
SYMBOL TABLE BYTES EXCLUDING ATTRIBUTES: 1848

THERE WERE 1 MESSAGES FOR THIS PROGRAM.4

THERE WERE 0 MESSAGES SUPPRESSED BY THE FLAG OPTION.5

111664 BYTES OF STORAGE WERE USED BY THE PRECOMPILER.6

RETURN CODE IS 87

Figure 174. DB2 precompiler SYSTERM output

570 Application Programming and SQL Guide



Notes for Figure 175:

1. This section lists the options specified at precompilation time. This list does
not appear if one of the precompiler option is NOOPTIONS.

2. This section lists the options that are in effect, including defaults, forced
values, and options you specified. The DB2 precompiler overrides or ignores
any options you specify that are inappropriate for the host language.

v A listing (Figure 176) of your source statements (only if you specified the
SOURCE option).

Notes for Figure 176:

– The left column of sequence numbers, which the DB2 precompiler generates,
is for use with the symbol cross-reference listing, the precompiler error
messages, and the BIND error messages.

DB2 SQL PRECOMPILER Version 8

OPTIONS SPECIFIED: HOST(PLI),XREF,SOURCE1

OPTIONS USED - SPECIFIED OR DEFAULTED2

APOST
APOSTSQL
CONNECT(2)
DEC(15)
FLAG(I)
HOST(PLI)
NOT KATAKANA
LINECOUNT(60)
MARGINS(2,72)
ONEPASS
OPTIONS
PERIOD
SOURCE
STDSQL(NO)
SQL(DB2)
XREF

Figure 175. DB2 precompiler SYSPRINT output: Options section

DB2 SQL PRECOMPILER TMN5P40:PROCEDURE OPTIONS (MAIN): PAGE 2

1 TMN5P40:PROCEDURE OPTIONS(MAIN) ; 00000100
2 /*******************************************************00000200
3 * program description and prologue 00000300

...
1324 /*************************************************/ 00132400
1325 /* GET INFORMATION ABOUT THE PROJECT FROM THE */ 00132500
1326 /* PROJECT TABLE. */ 00132600
1327 /*************************************************/ 00132700
1328 EXEC SQL SELECT ACTNO, PREQPROJ, PREQACT 00132800
1329 INTO PROJ_DATA 00132900
1330 FROM TPREREQ 00133000
1331 WHERE PROJNO = :PROJ_NO; 00133100
1332 00133200
1333 /*************************************************/ 00133300
1334 /* PROJECT IS FINISHED. DELETE IT. */ 00133400
1335 /*************************************************/ 00133500
1336 00133600
1337 EXEC SQL DELETE FROM PROJ 00133700
1338 WHERE PROJNO = :PROJ_NO; 00133800

...
1523 END; 00152300

Figure 176. DB2 precompiler SYSPRINT output: Source statements section

Chapter 22. Testing an application program 571

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



– The right column of sequence numbers come from the sequence numbers
supplied with your source statements.

v A list (Figure 177) of the symbolic names used in SQL statements (this listing
appears only if you specify the XREF option).

Notes for Figure 177:

DATA NAMES
Identifies the symbolic names used in source statements. Names enclosed in
quotation marks (") or apostrophes (') are names of SQL entities such as
tables, columns, and authorization IDs. Other names are host variables.

DEFN
Is the number of the line that the precompiler generates to define the name.
**** means that the object was not defined or the precompiler did not
recognize the declarations.

REFERENCE
Contains two kinds of information: what the source program defines the
symbolic name to be, and which lines refer to the symbolic name. If the
symbolic name refers to a valid host variable, the list also identifies the data
type or STRUCTURE.

v A summary (Figure 178) of the errors detected by the DB2 precompiler and a list
of the error messages generated by the precompiler.

Notes for Figure 178:

DB2 SQL PRECOMPILER SYMBOL CROSS-REFERENCE LISTING PAGE 29

DATA NAMES DEFN REFERENCE

"ACTNO" **** FIELD
1328

"PREQACT" **** FIELD
1328

"PREQPROJ" **** FIELD
1328

"PROJNO" **** FIELD
1331 1338

...

PROJ_DATA 495 CHARACTER(35)
1329

PROJ_NO 496 CHARACTER(3)
1331 1338

"TPREREQ" **** TABLE
1330 1337

Figure 177. DB2 precompiler SYSPRINT output: Symbol cross-reference section

DB2 SQL PRECOMPILER STATISTICS

SOURCE STATISTICS
SOURCE LINES READ: 15231

NUMBER OF SYMBOLS: 1282

SYMBOL TABLE BYTES EXCLUDING ATTRIBUTES: 64323

THERE WERE 1 MESSAGES FOR THIS PROGRAM.4

THERE WERE 0 MESSAGES SUPPRESSED.5

65536 BYTES OF STORAGE WERE USED BY THE PRECOMPILER.6

RETURN CODE IS 8.7

DSNH104I E LINE 590 COL 64 ILLEGAL SYMBOL: ’X’; VALID SYMBOLS ARE:,FROM8

Figure 178. DB2 precompiler SYSPRINT output: Summary section

572 Application Programming and SQL Guide



1. Summary statement indicating the number of source lines.
2. Summary statement indicating the number of symbolic names in the symbol

table (SQL names and host names).
3. Storage requirement statement indicating the number of bytes for the symbol

table.
4. Summary statement indicating the number of messages printed.
5. Summary statement indicating the number of errors detected but not printed.

You might get this statement if you specify the option FLAG.
6. Storage requirement statement indicating the number of bytes of working

storage actually used by the DB2 precompiler to process your source
statements.

7. Return code 0 = success, 4 = warning, 8 = error, 12 = severe error, and 16 =
unrecoverable error.

8. Error messages (this example detects only one error).

Chapter 22. Testing an application program 573



574 Application Programming and SQL Guide



Chapter 23. Processing DL/I batch applications

This chapter describes DB2 support for DL/I batch applications under these
headings:
v “Planning to use DL/I batch applications”
v “Program design considerations ” on page 576
v “Input and output data sets for DL/I batch jobs” on page 578
v “Preparation guidelines for DL/I batch programs” on page 580
v “Restart and recovery ” on page 582

Planning to use DL/I batch applications
Features and functions of DB2 DL/I batch support tells what you can do in a DL/I
batch program. “Requirements for using DB2 in a DL/I batch job” on page 576
tells, in general, what you must do to make it happen.

Features and functions of DB2 DL/I batch support
A batch DL/I program can issue:
v Any IMS batch call, except ROLS, SETS, and SYNC calls. ROLS and SETS calls

provide intermediate backout point processing, which DB2 does not support.
The SYNC call provides commit point processing without identifying the
commit point with a value. IMS does not allow a SYNC call in batch, and
neither does the DB2 DL/I batch support.
Issuing a ROLS, SETS or SYNC call in an application program causes a system
abend X'04E' with the reason code X'00D44057' in register 15.

v GSAM calls.
v IMS system services calls.
v Any SQL statements, except COMMIT and ROLLBACK. IMS and CICS

environments do not allow those SQL statements; however, IMS and CICS do
allow ROLLBACK TO SAVEPOINT. You can use the IMS CHKP call to commit
data and the IMS ROLL or ROLB to roll back changes.
Issuing a COMMIT statement causes SQLCODE -925; issuing a ROLLBACK
statement causes SQLCODE -926. Those statements also return SQLSTATE
'2D521'.

v Any call to a standard or traditional access method (for example, QSAM, VSAM,
and so on).

The restart capabilities for DB2 and IMS databases, as well as for sequential data
sets accessed through GSAM, are available through the IMS Checkpoint and
Restart facility.

DB2 allows access to both DB2 and DL/I data through the use of the following
DB2 and IMS facilities:
v IMS synchronization calls, which commit and abend units of recovery
v The DB2 IMS attachment facility, which handles the two-phase commit protocol

and allows both systems to synchronize a unit of recovery during a restart after
a failure

v The IMS log, used to record the instant of commit.

© Copyright IBM Corp. 1983, 2012 575



In a data sharing environment, DL/I batch supports group attachment. You can
specify a group attachment name instead of a subsystem name in the SSN
parameter of the DDITV02 data set for the DL/I batch job. See “DB2 DL/I batch
input” on page 578 for information about the SSN parameter and the DDITV02
data set.

Requirements for using DB2 in a DL/I batch job
Using DB2 in a DL/I batch job requires the following changes to the application
program and the job step JCL:
v You must add SQL statements to your application program to gain access to DB2

data. You must then precompile the application program and bind the resulting
DBRM into a plan or package, as described in Chapter 21, “Preparing an
application program to run,” on page 471.

v Before you run the application program, use JOBLIB, STEPLIB, or link book to
access the DB2 load library, so that DB2 modules can be loaded.

v In a data set that is specified by a DDITV02 DD statement, specify the program
name and plan name for the application, and the connection name for the DL/I
batch job.
In an input data set or in a subsystem member, specify information about the
connection between DB2 and IMS. The input data set name is specified with a
DDITV02 DD statement. The subsystem member name is specified by the
parameter SSM= on the DL/I batch invocation procedure. For detailed
information about the contents of the subsystem member and the DDITV02 data
set, see “DB2 DL/I batch input” on page 578.

v Optionally specify an output data set using the DDOTV02 DD statement. You
might need this data set to receive messages from the IMS attachment facility
about indoubt and diagnostic information.

Authorization
When the batch application tries to run the first SQL statement, DB2 checks
whether the authorization ID has the EXECUTE privilege for the plan. DB2 uses
the same ID for later authorization checks and also identifies records from the
accounting and performance traces.

The primary authorization ID is the value of the USER parameter on the job
statement, if that is available. It is the TSO logon name if the job is submitted.
Otherwise, it is the IMS PSB name. In that case, however, the ID must not begin
with the string “SYSADM” because this string causes the job to abend. The batch
job is rejected if you try to change the authorization ID in an exit routine.

Program design considerations
Using DL/I batch can affect your application design and programming in the areas
described in the sections that follow.

Address spaces
A DL/I batch region is independent of both the IMS control region and the CICS
address space. The DL/I batch region loads the DL/I code into the application
region along with the application program.

576 Application Programming and SQL Guide



Commits
Commit IMS batch applications frequently so that you do not use resources for an
extended time. If you need coordinated commits for recovery, see Part 4 (Volume
1) of DB2 Administration Guide.

SQL statements and IMS calls
You cannot use the SQL COMMIT and ROLLBACK statements, which return an
SQL error code. You also cannot use ROLS, SETS, and SYNC calls, which cause the
application program to abend.

Checkpoint calls
Write your program with SQL statements and DL/I calls, and use checkpoint calls.
All checkpoints issued by a batch application program must be unique. The
frequency of checkpoints depends on the application design. At a checkpoint, DL/I
positioning is lost, DB2 cursors are closed (with the possible exception of cursors
defined as WITH HOLD), commit duration locks are freed (again with some
exceptions), and database changes are considered permanent to both IMS and DB2.

Application program synchronization
You can design an application program without using IMS checkpoints. In that
case, if the program abends before completing, DB2 backs out any updates, and
you can use the IMS batch backout utility to back out the DL/I changes.

You can also have IMS dynamically back out the updates within the same job. You
must specify the BKO parameter as 'Y' and allocate the IMS log to DASD.

You could have a problem if the system fails after the program terminates, but
before the job step ends. If you do not have a checkpoint call before the program
ends, DB2 commits the unit of work without involving IMS. If the system fails
before DL/I commits the data, then the DB2 data is out of synchronization with
the DL/I changes. If the system fails during DB2 commit processing, the DB2 data
could be indoubt.

Recommendation: Always issue a symbolic checkpoint at the end of any update
job to coordinate the commit of the outstanding unit of work for IMS and DB2.
When you restart the application program, you must use the XRST call to obtain
checkpoint information and resolve any DB2 indoubt work units.

Checkpoint and XRST considerations
If you use an XRST call, DB2 assumes that any checkpoint issued is a symbolic
checkpoint. The options of the symbolic checkpoint call differ from the options of a
basic checkpoint call. Using the incorrect form of the checkpoint call can cause
problems.

If you do not use an XRST call, then DB2 assumes that any checkpoint call issued
is a basic checkpoint.

Checkpoint IDs must be EBCDIC characters to make restart easier.

When an application program needs to be restartable, you must use symbolic
checkpoint and XRST calls. If you use an XRST call, it must be the first IMS call
issued and must occur before any SQL statement. Also, you must use only one
XRST call.

Chapter 23. Processing DL/I batch applications 577



Synchronization call abends
If the application program contains an incorrect IMS synchronization call (CHKP,
ROLB, ROLL, or XRST), causing IMS to issue a bad status code in the PCB, DB2
abends the application program. Be sure to test these calls before placing the
programs in production.

Input and output data sets for DL/I batch jobs
Two data sets need your attention:
v DDITV02 for input
v DDOTV02 for output.

DB2 DL/I batch input
Before you can run a DL/I batch job, you need to provide values for a number of
input parameters. The input parameters are positional and delimited by commas.

You can specify values for the following parameters using a DDITV02 data set or a
subsystem member:
SSN,LIT,ESMT,RTT,REO,CRC

You can specify values for the following parameters only in a DDITV02 data set:
CONNECTION_NAME,PLAN,PROG

If you use the DDITV02 data set and specify a subsystem member, the values in
the DDITV02 DD statement override the values in the specified subsystem
member. If you provide neither, DB2 abends the application program with system
abend code X'04E' and a unique reason code in register 15.

DDITV02 is the DD name for a data set that has DCB options of LRECL=80 and
RECFM=F or FB.

A subsystem member is a member in the IMS procedure library. Its name is
derived by concatenating the value of the SSM parameter to the value of the
IMSID parameter. You specify the SSM parameter and the IMSID parameter when
you invoke the DLIBATCH procedure, which starts the DL/I batch processing
environment.

The meanings of the input parameters are:

Field Content

SSN The name of the DB2 subsystem is required. You must specify a name in
order to make a connection to DB2.

The SSN value can be from one to four characters long.

If the value in the SSN parameter is the name of an active subsystem in
the data sharing group, the application attaches to that subsystem. If the
SSN parameter value is not the name of an active subsystem, but the value
is a group attachment name, the application attaches to an active DB2
subsystem in the data sharing group. See Chapter 2 of DB2 Data Sharing:
Planning and Administration for more information about group attachment.

LIT DB2 requires a language interface token to route SQL statements when
operating in the online IMS environment. Because a batch application

578 Application Programming and SQL Guide



program can only connect to one DB2 system, DB2 does not use the LIT
value. It is recommended that you specify the value as SYS1; however, you
can omit it (enter SSN,,ESMT).

The LIT value can be from zero to four characters long.

ESMT The name of the DB2 initialization module, DSNMIN10, is required.

The ESMT value must be eight characters long.

RTT Specifying the resource translation table is optional.

The RTT can be from zero to eight characters long.

REO The region error option determines what to do if DB2 is not operational or
the plan is not available. There are three options:
v R, the default, results in returning an SQL return code to the application

program. The most common SQLCODE issued in this case is -923
(SQLSTATE '57015').

v Q results in an abend in the batch environment; however, in the online
environment, it places the input message in the queue again.

v A results in an abend in both the batch environment and the online
environment.

If the application program uses the XRST call, and if coordinated recovery
is required on the XRST call, then REO is ignored. In that case, the
application program terminates abnormally if DB2 is not operational.

The REO value can be from zero to one character long.

CRC Because DB2 commands are not supported in the DL/I batch environment,
the command recognition character is not used at this time.

The CRC value can be from zero to one character long.

CONNECTION_NAME
The connection name is optional. It represents the name of the job step that
coordinates DB2 activities. If you do not specify this option, the connection
name defaults are:

Type of Application Default Connection Name

Batch job Job name

Started task Started task name

TSO user TSO authorization ID

If a batch update job fails, you must use a separate job to restart the batch
job. The connection name used in the restart job must be the same as the
name used in the batch job that failed. Alternatively, if the default
connection name is used, the restart job must have the same job name as
the batch update job that failed.

DB2 requires unique connection names. If two applications try to connect
with the same connection name, the second application program fails to
connect to DB2.

The CONNECTION_NAME value can be from 1 to 8 characters long.

PLAN The DB2 plan name is optional. If you do not specify the plan name, then
the application program module name is checked against the optional
resource translation table. If there is a match in the resource translation

Chapter 23. Processing DL/I batch applications 579



table, the translated name is used as the DB2 plan name. If there is no
match, then the application program module name is used as the plan
name.

The PLAN value can be from 0 to 8 characters long.

PROG The application program name is required. It identifies the application
program that is to be loaded and to receive control.

The PROG value can be from 1 to 8 characters long.

Example: An example of the fields in the record is shown below:
DSN,SYS1,DSNMIN10,,R,-,BATCH001,DB2PLAN,PROGA

DB2 DL/I batch output
In an online IMS environment, DB2 sends unsolicited status messages to the
master terminal operator (MTO) and records on indoubt processing and diagnostic
information to the IMS log. In a batch environment, DB2 sends this information to
the output data set specified in the DDOTV02 DD statement. The output data set
should have DCB options of RECFM=V or VB, LRECL=4092, and BLKSIZE of at
least LRECL + 4. If the DD statement is missing, DB2 issues the message IEC130I
and continues processing without any output.

You might want to save and print the data set, as the information is useful for
diagnostic purposes. You can use the IMS module, DFSERA10, to print the
variable-length data set records in both hexadecimal and character format.

Preparation guidelines for DL/I batch programs
Use the following guidelines when you prepare a program to access DB2 and DL/I
in a batch program:
v “Precompiling ”
v “Binding ”
v “Link-editing ” on page 581
v “Loading and running ” on page 581

Precompiling
When you add SQL statements to an application program, you must precompile
the application program and bind the resulting DBRM into a plan or package, as
described in Chapter 21, “Preparing an application program to run,” on page 471.

Binding
The owner of the plan or package must have all the privileges required to execute
the SQL statements embedded in it. Before a batch program can issue SQL
statements, a DB2 plan must exist.

You can specify the plan name to DB2 in one of the following ways:
v In the DDITV02 input data set.
v In subsystem member specification.
v By default; the plan name is then the application load module name specified in

DDITV02.

DB2 passes the plan name to the IMS attach package. If you do not specify a plan
name in DDITV02, and a resource translation table (RTT) does not exist or the

580 Application Programming and SQL Guide



name is not in the RTT, then DB2 uses the passed name as the plan name. If the
name exists in the RTT, then the name translates to the plan specified for the RTT.

Recommendation: Give the DB2 plan the same name as that of the application
load module, which is the IMS attach default. The plan name must be the same as
the program name.

Link-editing
DB2 has language interface routines for each unique supported environment. DB2
requires the IMS language interface routine for DL/I batch. It is also necessary to
have DFSLI000 link-edited with the application program.

Loading and running
To run a program using DB2, you need a DB2 plan. The bind process creates the
DB2 plan. DB2 first verifies whether the DL/I batch job step can connect to batch
job DB2. Then DB2 verifies whether the application program can access DB2 and
enforce user identification of batch jobs accessing DB2.

There are two ways to submit DL/I batch applications to DB2:
v The DL/I batch procedure can run module DSNMTV01 as the application

program. DSNMTV01 loads the “real” application program. See “Submitting a
DL/I batch application using DSNMTV01” for an example of JCL used to
submit a DL/I batch application by this method.

v The DL/I batch procedure can run your application program without using
module DSNMTV01. To accomplish this, do the following:
– Specify SSM= in the DL/I batch procedure.
– In the batch region of your application's JCL, specify the following:

- MBR=application-name
- SSM=DB2 subsystem name

See “Submitting a DL/I batch application without using DSNMTV01” on page
582 for an example of JCL used to submit a DL/I batch application by this
method.

Submitting a DL/I batch application using DSNMTV01
The following skeleton JCL example illustrates a COBOL application program,
IVP8CP22, that runs using DB2 DL/I batch support.
v The first step uses the standard DLIBATCH IMS procedure.
v The second step shows how to use the DFSERA10 IMS program to print the

contents of the DDOTV02 output data set.
//ISOCS04 JOB 3000,ISOIR,MSGLEVEL=(1,1),NOTIFY=ISOIR,
// MSGCLASS=T,CLASS=A
//JOBLIB DD DISP=SHR,
// DSN=prefix.SDSNLOAD
//* ******************************************************************
//*
//* THE FOLLOWING STEP SUBMITS COBOL JOB IVP8CP22, WHICH UPDATES
//* BOTH DB2 AND DL/I DATABASES.
//*
//* ******************************************************************
//UPDTE EXEC DLIBATCH,DBRC=Y,LOGT=SYSDA,COND=EVEN,
// MBR=DSNMTV01,PSB=IVP8CA,BKO=Y,IRLM=N//G.STEPLIB DD
// DD
// DD DSN=prefix.SDSNLOAD,DISP=SHR
// DD DSN=prefix.RUNLIB.LOAD,DISP=SHR
// DD DSN=SYS1.COB2LIB,DISP=SHR
// DD DSN=IMS.PGMLIB,DISP=SHR

Chapter 23. Processing DL/I batch applications 581



//G.STEPCAT DD DSN=IMSCAT,DISP=SHR
//G.DDOTV02 DD DSN=&TEMP1,DISP=(NEW,PASS,DELETE),
// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)
//G.DDITV02 DD *

SSDQ,SYS1,DSNMIN10,,A,-,BATCH001,,IVP8CP22
/*
//***************************************************************
//*** ALWAYS ATTEMPT TO PRINT OUT THE DDOTV02 DATA SET ***
//***************************************************************
//STEP3 EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=&TEMP1,DISP=(OLD,DELETE)
//SYSIN DD *
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*
//

Submitting a DL/I batch application without using DSNMTV01
The skeleton JCL in the following example illustrates a COBOL application
program, IVP8CP22, that runs using DB2 DL/I batch support.
//TEPCTEST JOB ’USER=ADMF001’,MSGCLASS=A,MSGLEVEL=(1,1),
// TIME=1440,CLASS=A,USER=SYSADM,PASSWORD=SYSADM
//*******************************
//BATCH EXEC DLIBATCH,PSB=IVP8CA,MBR=IVP8CP22,
// BKO=Y,DBRC=N,IRLM=N,SSM=SSDQ
//*******************************
//SYSPRINT DD SYSOUT=A
//REPORT DD SYSOUT=*
//G.DDOTV02 DD DSN=&TEMP,DISP=(NEW,PASS,DELETE),
// SPACE=(CYL,(10,1),RLSE),
// UNIT=SYSDA,DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)
//G.DDITV02 DD *
SSDQ,SYS1,DSNMIN10,,Q,",DSNMTES1,,IVP8CP22
//G.SYSIN DD *
/*
//****************************************************
//* ALWAYS ATTEMPT TO PRINT OUT THE DDOTV02 DATA SET
//****************************************************
//PRTLOG EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSUT1 DD DSN=&TEMP,DISP=(OLD,DELETE)
//SYSIN DD *
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*

Restart and recovery
To restart a batch program that updates data, you must first run the IMS batch
backout utility, followed by a restart job indicating the last successful checkpoint
ID.
v Sample JCL for the utility is in “JCL example of a batch backout” on page 583.
v Sample JCL for a restart job is in “JCL example of restarting a DL/I batch job”

on page 583.
v For guidelines on finding the last successful checkpoint, see “Finding the DL/I

batch checkpoint ID” on page 584.

582 Application Programming and SQL Guide



JCL example of a batch backout
The skeleton JCL example that follows illustrates a batch backout for PSB=IVP8CA.
//ISOCS04 JOB 3000,ISOIR,MSGLEVEL=(1,1),NOTIFY=ISOIR,
// MSGCLASS=T,CLASS=A
//* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//* *
//* BACKOUT TO LAST CHKPT. *
//* IF RC=0028 LOG WITH NO-UPDATE *
//* *
//* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *
//BACKOUT EXEC PGM=DFSRRC00,
// PARM=’DLI,DFSBBO00,IVP8CA,,,,,,,,,,,Y,N,,Y’,
// REGION=2600K,COND=EVEN |
//* ---> DBRC ON
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//STEPCAT DD DSN=IMSCAT,DISP=SHR
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//*
//* IMSLOGR DD data set is required
//* IEFRDER DD data set is required
//DFSVSAMP DD *
OPTIONS,LTWA=YES
2048,7
1024,7
/*
//SYSIN DD DUMMY
/*

JCL example of restarting a DL/I batch job
Operational procedures can restart a DL/I batch job step for an application
program using IMS XRST and symbolic CHKP calls.

You cannot restart A BMP application program in a DB2 DL/I batch environment.
The symbolic checkpoint records are not accessed, causing an IMS user abend
U0102.

To restart a batch job that terminated abnormally or prematurely, find the
checkpoint ID for the job on the z/OS system log or from the SYSOUT listing of
the failing job. Before you restart the job step, place the checkpoint ID in the
CKPTID=value option of the DLIBATCH procedure, then submit the job. If the
default connection name is used (that is, you did not specify the connection name
option in the DDITV02 input data set), the job name of the restart job must be the
same as the failing job. Refer to the following skeleton example, in which the last
checkpoint ID value was IVP80002:
//ISOCS04 JOB 3000,OJALA,MSGLEVEL=(1,1),NOTIFY=OJALA,
// MSGCLASS=T,CLASS=A
//* ******************************************************************
//*
//* THE FOLLOWING STEP RESTARTS COBOL PROGRAM IVP8CP22, WHICH UPDATES
//* BOTH DB2 AND DL/I DATABASES, FROM CKPTID=IVP80002.
//*
//* ******************************************************************
//RSTRT EXEC DLIBATCH,DBRC=Y,COND=EVEN,LOGT=SYSDA,
// MBR=DSNMTV01,PSB=IVP8CA,BKO=Y,IRLM=N,CKPTID=IVP80002
//G.STEPLIB DD
// DD
// DD DSN=prefix.SDSNLOAD,DISP=SHR
// DD DSN=prefix.RUNLIB.LOAD,DISP=SHR
// DD DSN=SYS1.COB2LIB,DISP=SHR
// DD DSN=IMS.PGMLIB,DISP=SHR

Chapter 23. Processing DL/I batch applications 583



//* other program libraries
//* G.IEFRDER data set required
//G.STEPCAT DD DSN=IMSCAT,DISP=SHR
//* G.IMSLOGR data set required
//G.DDOTV02 DD DSN=&TEMP2,DISP=(NEW,PASS,DELETE),
// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)
//G.DDITV02 DD *

DB2X,SYS1,DSNMIN10,,A,-,BATCH001,,IVP8CP22
/*
//***************************************************************
//*** ALWAYS ATTEMPT TO PRINT OUT THE DDOTV02 DATA SET ***
//***************************************************************
//STEP8 EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=&TEMP2,DISP=(OLD,DELETE)
//SYSIN DD *
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*
//

Finding the DL/I batch checkpoint ID
When an application program issues an IMS CHKP call, IMS sends the checkpoint
ID to the z/OS console and the SYSOUT listing in message DFS0540I. IMS also
records the checkpoint ID in the type X'41' IMS log record. Symbolic CHKP calls
also create one or more type X'18' records on the IMS log. XRST uses the type X'18'
log records to reposition DL/I databases and return information to the application
program.

During the commit process the application program checkpoint ID is passed to
DB2. If a failure occurs during the commit process, creating an indoubt work unit,
DB2 remembers the checkpoint ID. You can use the following techniques to find
the last checkpoint ID:
v Look at the SYSOUT listing for the job step to find message DFS0540I, which

contains the checkpoint IDs issued. Use the last checkpoint ID listed.
v Look at the z/OS console log to find message(s) DFS0540I containing the

checkpoint ID issued for this batch program. Use the last checkpoint ID listed.
v Submit the IMS Batch Backout utility to back out the DL/I databases to the last

(default) checkpoint ID. When the batch backout finishes, message DFS395I
provides the last valid IMS checkpoint ID. Use this checkpoint ID on restart.

v When restarting DB2, the operator can issue the command -DISPLAY
THREAD(*) TYPE(INDOUBT) to obtain a possible indoubt unit of work
(connection name and checkpoint ID). If you restarted the application program
from this checkpoint ID, it could work because the checkpoint is recorded on the
IMS log; however, it could fail with an IMS user abend U102 because IMS did
not finish logging the information before the failure. In that case, restart the
application program from the previous checkpoint ID.

DB2 performs one of two actions automatically when restarted, if the failure occurs
outside the indoubt period: it either backs out the work unit to the prior
checkpoint, or it commits the data without any assistance. If the operator then
issues the following command, no work unit information is displayed:
-DISPLAY THREAD(*) TYPE(INDOUBT)

584 Application Programming and SQL Guide



Part 6. Additional programming techniques
Chapter 24. Coding dynamic SQL in application programs . . . . . . . . . . . . . . . . . . 595
Choosing between static and dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . 595

Flexibility of static SQL with host variables . . . . . . . . . . . . . . . . . . . . . . . 596
Flexibility of dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Limitations of dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Dynamic SQL processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Performance of static and dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . 597

Static SQL statements with no input host variables . . . . . . . . . . . . . . . . . . . . 597
Static SQL statements with input host variables . . . . . . . . . . . . . . . . . . . . . 597
Dynamic SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Caching dynamic SQL statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
Using the dynamic statement cache . . . . . . . . . . . . . . . . . . . . . . . . . . 599

Conditions for statement sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 600
Using the statement cache table . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Keeping prepared statements after commit points . . . . . . . . . . . . . . . . . . . . . 601

Limiting dynamic SQL with the resource limit facility . . . . . . . . . . . . . . . . . . . . . 603
Writing an application to handle reactive governing . . . . . . . . . . . . . . . . . . . . 604
Writing an application to handle predictive governing. . . . . . . . . . . . . . . . . . . . 604

Handling the +495 SQLCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Using predictive governing and down-level DRDA requesters . . . . . . . . . . . . . . . . . 605
Using predictive governing and enabled requesters. . . . . . . . . . . . . . . . . . . . . 605

Choosing a host language for dynamic SQL applications . . . . . . . . . . . . . . . . . . . . 605
Dynamic SQL for non-SELECT statements. . . . . . . . . . . . . . . . . . . . . . . . . 605

Dynamic execution using EXECUTE IMMEDIATE . . . . . . . . . . . . . . . . . . . . . 606
Declaring the host variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

Dynamic execution using PREPARE and EXECUTE . . . . . . . . . . . . . . . . . . . . 607
Using parameter markers with PREPARE and EXECUTE . . . . . . . . . . . . . . . . . . 608
Using the PREPARE statement . . . . . . . . . . . . . . . . . . . . . . . . . . 608
Using the EXECUTE statement . . . . . . . . . . . . . . . . . . . . . . . . . . 609
Preparing and executing the example DELETE statement . . . . . . . . . . . . . . . . . . 609
Using more than one parameter marker . . . . . . . . . . . . . . . . . . . . . . . 609

Dynamic execution of a multiple-row INSERT statement . . . . . . . . . . . . . . . . . . . 610
Using EXECUTE with host variable arrays . . . . . . . . . . . . . . . . . . . . . . 610
Using EXECUTE with a descriptor . . . . . . . . . . . . . . . . . . . . . . . . . 610

Using DESCRIBE INPUT to put parameter information in an SQLDA . . . . . . . . . . . . . . 612
Dynamic SQL for fixed-list SELECT statements . . . . . . . . . . . . . . . . . . . . . . . 612

Declaring a cursor for the statement name. . . . . . . . . . . . . . . . . . . . . . . . 613
Preparing the statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Opening the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Fetching rows from the result table . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Closing the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Dynamic SQL for varying-list SELECT statements . . . . . . . . . . . . . . . . . . . . . . 615
What your application program must do . . . . . . . . . . . . . . . . . . . . . . . . 615
Preparing a varying-list SELECT statement . . . . . . . . . . . . . . . . . . . . . . . 615

An SQL descriptor area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
Obtaining information about the SQL statement . . . . . . . . . . . . . . . . . . . . . 616
Declaring a cursor for the statement . . . . . . . . . . . . . . . . . . . . . . . . . 617
Preparing the statement using the minimum SQLDA . . . . . . . . . . . . . . . . . . . 617
SQLN determines what SQLVAR gets . . . . . . . . . . . . . . . . . . . . . . . . 617
If the statement is not a SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . 618
Acquiring storage for a second SQLDA if needed . . . . . . . . . . . . . . . . . . . . 618
Describing the SELECT statement again . . . . . . . . . . . . . . . . . . . . . . . 619
Acquiring storage to hold a row . . . . . . . . . . . . . . . . . . . . . . . . . . 619
Putting storage addresses in the SQLDA . . . . . . . . . . . . . . . . . . . . . . . 621
Changing the CCSID for retrieved data. . . . . . . . . . . . . . . . . . . . . . . . 621
Using column labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

© Copyright IBM Corp. 1983, 2012 585

##

||
||
||



Describing tables with LOB and distinct type columns . . . . . . . . . . . . . . . . . . 623
Executing a varying-list SELECT statement dynamically . . . . . . . . . . . . . . . . . . . 625

Open the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Fetch rows from the result table . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Close the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Executing arbitrary statements with parameter markers . . . . . . . . . . . . . . . . . . . 626
When the number and types of parameters are known . . . . . . . . . . . . . . . . . . 626
When the number and types of parameters are not known . . . . . . . . . . . . . . . . . 626
Using the SQLDA with EXECUTE or OPEN . . . . . . . . . . . . . . . . . . . . . . 627

How bind options REOPT(ALWAYS) and REOPT(ONCE) affect dynamic SQL. . . . . . . . . . . . 627
Using dynamic SQL in COBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Chapter 25. Using stored procedures for client/server processing . . . . . . . . . . . . . . . 631
Introduction to stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
An example of a simple stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . 632
Setting up the stored procedures environment . . . . . . . . . . . . . . . . . . . . . . . 636

Defining your stored procedure to DB2. . . . . . . . . . . . . . . . . . . . . . . . . 637
Passing environment information to the stored procedure . . . . . . . . . . . . . . . . . 638
Example of a stored procedure definition . . . . . . . . . . . . . . . . . . . . . . . 640

Refreshing the stored procedures environment (for system administrators) . . . . . . . . . . . . . 641
Moving stored procedures to a WLM-established environment (for system administrators) . . . . . . . 642

Writing and preparing an external stored procedure . . . . . . . . . . . . . . . . . . . . . 643
Language requirements for the stored procedure and its caller . . . . . . . . . . . . . . . . . 643
Calling other programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
Using reentrant code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
Writing a stored procedure as a main program or subprogram . . . . . . . . . . . . . . . . . 645
Restrictions on a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 648
Using COMMIT and ROLLBACK statements in a stored procedure . . . . . . . . . . . . . . . 648
Using special registers in a stored procedure . . . . . . . . . . . . . . . . . . . . . . . 649
Accessing other sites in a stored procedure . . . . . . . . . . . . . . . . . . . . . . . 651
Writing a stored procedure to access IMS databases . . . . . . . . . . . . . . . . . . . . 652
Writing a stored procedure to return result sets to a DRDA client . . . . . . . . . . . . . . . . 652
Preparing a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
Binding the stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
Writing a REXX stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 656

Writing and preparing an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . . . 659
Comparison of an SQL procedure and an external procedure . . . . . . . . . . . . . . . . . 660
Statements that you can include in a procedure body . . . . . . . . . . . . . . . . . . . . 661
Declaring and using variables, parameters, and conditions in an SQL procedure . . . . . . . . . . . 663
Parameter style for an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . . . 664
Terminating statements in an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . 664
Handling SQL conditions in an SQL procedure . . . . . . . . . . . . . . . . . . . . . . 665

Using handlers in an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . . 665
Using the RETURN statement for the procedure status . . . . . . . . . . . . . . . . . . 667
Using SIGNAL or RESIGNAL to raise a condition . . . . . . . . . . . . . . . . . . . . 667
Forcing errors in an SQL procedure when called by a trigger . . . . . . . . . . . . . . . . 669

Examples of SQL procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
Preparing an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

Using the DB2 UDB for z/OS SQL procedure processor to prepare an SQL procedure . . . . . . . . 672
Using JCL to prepare an SQL procedure . . . . . . . . . . . . . . . . . . . . . . . 682
Sample programs to help you prepare and run SQL procedures . . . . . . . . . . . . . . . 682

Writing and preparing an application to use stored procedures . . . . . . . . . . . . . . . . . . 683
Forms of the CALL statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
Authorization for executing stored procedures . . . . . . . . . . . . . . . . . . . . . . 685
Linkage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

Example of stored procedure linkage convention GENERAL . . . . . . . . . . . . . . . . 688
Example of stored procedure linkage convention GENERAL WITH NULLS . . . . . . . . . . . 691
Example of stored procedure linkage convention SQL . . . . . . . . . . . . . . . . . . . 696
Special considerations for C . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
Special considerations for PL/I . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Using indicator variables to speed processing . . . . . . . . . . . . . . . . . . . . . . 705

586 Application Programming and SQL Guide

||

##

||
||

||



Declaring data types for passed parameters . . . . . . . . . . . . . . . . . . . . . . . 705
Writing a DB2 UDB for z/OS client program or SQL procedure to receive result sets . . . . . . . . . 710
Accessing transition tables in a stored procedure . . . . . . . . . . . . . . . . . . . . . 716
Calling a stored procedure from a REXX procedure . . . . . . . . . . . . . . . . . . . . 716
Preparing a client program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

Running a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
How DB2 determines which version of a stored procedure to run . . . . . . . . . . . . . . . . 722
Using a single application program to call different versions of a stored procedure . . . . . . . . . . 722
Running multiple stored procedures concurrently . . . . . . . . . . . . . . . . . . . . . 724
Multiple instances of a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . 724
Accessing non-DB2 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

Testing a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
Debugging the stored procedure as a stand-alone program on a workstation . . . . . . . . . . . . 727
Debugging with the Debug Tool and IBM VisualAge COBOL . . . . . . . . . . . . . . . . . 727
Debugging an SQL procedure or C language stored procedure with the Debug Tool and C/C++ Productivity
Tools for z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
Debugging with Debug Tool for z/OS interactively and in batch mode . . . . . . . . . . . . . . 729
Using the MSGFILE run-time option . . . . . . . . . . . . . . . . . . . . . . . . . 730
Using driver applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
Using SQL INSERT statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

Chapter 26. Tuning your queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
General tips and questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Is the query coded as simply as possible? . . . . . . . . . . . . . . . . . . . . . . . . 733
Are all predicates coded correctly? . . . . . . . . . . . . . . . . . . . . . . . . . . 733
Are there subqueries in your query?. . . . . . . . . . . . . . . . . . . . . . . . . . 734
Does your query involve aggregate functions? . . . . . . . . . . . . . . . . . . . . . . 735
Do you have an input variable in the predicate of an SQL query? . . . . . . . . . . . . . . . . 736
Do you have a problem with column correlation? . . . . . . . . . . . . . . . . . . . . . 736
Can your query be written to use a noncolumn expression? . . . . . . . . . . . . . . . . . . 736
Can materialized query tables help your query performance? . . . . . . . . . . . . . . . . . 736
Does the query contain encrypted data? . . . . . . . . . . . . . . . . . . . . . . . . 737

Writing efficient predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
Properties of predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

Predicate types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
Indexable and nonindexable predicates . . . . . . . . . . . . . . . . . . . . . . . . 739
Stage 1 and stage 2 predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
Boolean term (BT) predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Predicates in the ON clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
General rules about predicate evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 741

Order of evaluating predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
Summary of predicate processing. . . . . . . . . . . . . . . . . . . . . . . . . . . 742
Examples of predicate properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
Predicate filter factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748

Default filter factors for simple predicates . . . . . . . . . . . . . . . . . . . . . . . 749
Filter factors for uniform distributions . . . . . . . . . . . . . . . . . . . . . . . . 749
Interpolation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750
Filter factors for all distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 751
Using multiple filter factors to determine the cost of a query . . . . . . . . . . . . . . . . 753

Column correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
How to detect column correlation . . . . . . . . . . . . . . . . . . . . . . . . . 754
Impacts of column correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
What to do about column correlation . . . . . . . . . . . . . . . . . . . . . . . . 756

DB2 predicate manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
Predicate modifications for IN-list predicates . . . . . . . . . . . . . . . . . . . . . . 757
Removal of pre-evaluated predicates . . . . . . . . . . . . . . . . . . . . . . . . 757
When DB2 simplifies join operations . . . . . . . . . . . . . . . . . . . . . . . . 758
Predicates generated through transitive closure . . . . . . . . . . . . . . . . . . . . . 760

Predicates with encrypted data . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
Using host variables efficiently . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

Changing the access path at run time . . . . . . . . . . . . . . . . . . . . . . . . . 762

Part 6.Additional programming techniques 587

##

||

||
||

||

##

||

||



The REOPT(ALWAYS) bind option . . . . . . . . . . . . . . . . . . . . . . . . . 763
The REOPT(ONCE) bind option . . . . . . . . . . . . . . . . . . . . . . . . . . 764
The REOPT(NONE) bind option . . . . . . . . . . . . . . . . . . . . . . . . . . 765

Rewriting queries to influence access path selection . . . . . . . . . . . . . . . . . . . . 765
Writing efficient subqueries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

Correlated subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
Noncorrelated subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

Single-value subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
Multiple-value subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

When DB2 transforms a subquery into a join . . . . . . . . . . . . . . . . . . . . . . . 771
Subquery tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

Using scrollable cursors efficiently . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
Writing efficient queries on tables with data-partitioned secondary indexes. . . . . . . . . . . . . . 774
Special techniques to influence access path selection . . . . . . . . . . . . . . . . . . . . . 776

Obtaining information about access paths . . . . . . . . . . . . . . . . . . . . . . . . 777
Fetching a limited number of rows: FETCH FIRST n ROWS ONLY . . . . . . . . . . . . . . . 777
Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS . . . . . . . . . . . . . 778
Favoring index access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
Using a subsystem parameter to control outer join processing . . . . . . . . . . . . . . . . . 780
Using the CARDINALITY clause to improve the performance of queries with user-defined table function
references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Reducing the number of matching columns . . . . . . . . . . . . . . . . . . . . . . . 782
Creating indexes for efficient star-join processing . . . . . . . . . . . . . . . . . . . . . 783

Recommendations for creating indexes for star-join queries . . . . . . . . . . . . . . . . . 783
Determining the order of columns in an index for a star schema design . . . . . . . . . . . . . 784

Rearranging the order of tables in a FROM clause . . . . . . . . . . . . . . . . . . . . . 786
Updating catalog statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
Using a subsystem parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

Using a subsystem parameter to favor matching index access . . . . . . . . . . . . . . . . 787
Using a subsystem parameter to optimize queries with IN-list predicates . . . . . . . . . . . . 788
Using a subsystem parameter to control the weighting I/O cost and CPU cost . . . . . . . . . . 788

Chapter 27. Using EXPLAIN to improve SQL performance . . . . . . . . . . . . . . . . . . 789
Obtaining PLAN_TABLE information from EXPLAIN . . . . . . . . . . . . . . . . . . . . . 790

EXPLAIN tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Creating PLAN_TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Populating and maintaining a plan table . . . . . . . . . . . . . . . . . . . . . . . . 798

Executing the SQL statement EXPLAIN . . . . . . . . . . . . . . . . . . . . . . . 799
Binding with the option EXPLAIN(YES) . . . . . . . . . . . . . . . . . . . . . . . 799
Maintaining a plan table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

Reordering rows from a plan table . . . . . . . . . . . . . . . . . . . . . . . . . . 799
Retrieving rows for a plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
Retrieving rows for a package . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

Asking questions about data access . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
Is access through an index? (ACCESSTYPE is I, I1, N or MX) . . . . . . . . . . . . . . . . . 801
Is access through more than one index? (ACCESSTYPE=M) . . . . . . . . . . . . . . . . . . 801
How many columns of the index are used in matching? (MATCHCOLS=n) . . . . . . . . . . . . 802
Is the query satisfied using only the index? (INDEXONLY=Y) . . . . . . . . . . . . . . . . . 802
Is direct row access possible? (PRIMARY_ACCESSTYPE = D) . . . . . . . . . . . . . . . . . 803

Which predicates qualify for direct row access? . . . . . . . . . . . . . . . . . . . . . 803
Reverting to ACCESSTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
Using direct row access and other access methods . . . . . . . . . . . . . . . . . . . . 804
Example: Coding with row IDs for direct row access . . . . . . . . . . . . . . . . . . . 805

Is a view or nested table expression materialized? . . . . . . . . . . . . . . . . . . . . . 806
Was a scan limited to certain partitions? (PAGE_RANGE=Y) . . . . . . . . . . . . . . . . . 806
What kind of prefetching is expected? (PREFETCH = L, S, D, or blank) . . . . . . . . . . . . . . 807
Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C, or X) . . . . . . . . . . . 807
Are sorts performed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
Is a subquery transformed into a join? . . . . . . . . . . . . . . . . . . . . . . . . . 808
When are aggregate functions evaluated? (COLUMN_FN_EVAL) . . . . . . . . . . . . . . . . 808
How many index screening columns are used? . . . . . . . . . . . . . . . . . . . . . . 808

588 Application Programming and SQL Guide

||
||
||

||

||
##
|
||

||
##

##

||



Is a complex trigger WHEN clause used? (QBLOCKTYPE=TRIGGR) . . . . . . . . . . . . . . . 809
Interpreting access to a single table . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

Table space scans (ACCESSTYPE=R PREFETCH=S) . . . . . . . . . . . . . . . . . . . . 809
Table space scans of nonsegmented table spaces . . . . . . . . . . . . . . . . . . . . . 810
Table space scans of segmented table spaces . . . . . . . . . . . . . . . . . . . . . . 810
Table space scans of partitioned table spaces . . . . . . . . . . . . . . . . . . . . . . 810
Table space scans and sequential prefetch . . . . . . . . . . . . . . . . . . . . . . . 810

Index access paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
Matching index scan (MATCHCOLS>0) . . . . . . . . . . . . . . . . . . . . . . . 811
Index screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0) . . . . . . . . . . . . . . . 812
IN-list index scan (ACCESSTYPE=N) . . . . . . . . . . . . . . . . . . . . . . . . 812
Multiple index access (ACCESSTYPE is M, MX, MI, or MU). . . . . . . . . . . . . . . . . 812
One-fetch access (ACCESSTYPE=I1) . . . . . . . . . . . . . . . . . . . . . . . . . 814
Index-only access (INDEXONLY=Y) . . . . . . . . . . . . . . . . . . . . . . . . . 814
Equal unique index (MATCHCOLS=number of index columns) . . . . . . . . . . . . . . . 814

UPDATE using an index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
Interpreting access to two or more tables (join) . . . . . . . . . . . . . . . . . . . . . . . 815

Definitions and examples of join operations . . . . . . . . . . . . . . . . . . . . . . . 815
Nested loop join (METHOD=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

Method of joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
Performance considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
When nested loop join is used. . . . . . . . . . . . . . . . . . . . . . . . . . . 818

Merge scan join (METHOD=2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
Method of joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
Performance considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
When merge scan join is used . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

Hybrid join (METHOD=4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
Method of joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
Possible results from EXPLAIN for hybrid join . . . . . . . . . . . . . . . . . . . . . 823
Performance considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
When hybrid join is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Star join (JOIN_TYPE=’S’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
Example of a star schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
When star join is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
Dedicated virtual memory pool for star join operations . . . . . . . . . . . . . . . . . . 828

Interpreting data prefetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
Sequential prefetch (PREFETCH=S) . . . . . . . . . . . . . . . . . . . . . . . . . . 830
Dynamic prefetch (PREFETCH=D) . . . . . . . . . . . . . . . . . . . . . . . . . . 831
List prefetch (PREFETCH=L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

The access method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
When list prefetch is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
Bind time and execution time thresholds . . . . . . . . . . . . . . . . . . . . . . . 832

Sequential detection at execution time . . . . . . . . . . . . . . . . . . . . . . . . . 832
When sequential detection is used . . . . . . . . . . . . . . . . . . . . . . . . . 832
How to tell whether sequential detection was used . . . . . . . . . . . . . . . . . . . . 833
How to tell if sequential detection might be used . . . . . . . . . . . . . . . . . . . . 833

Determining sort activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
Sorts of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

Sorts for group by and order by . . . . . . . . . . . . . . . . . . . . . . . . . . 834
Sorts to remove duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
Sorts used in join processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
Sorts needed for subquery processing . . . . . . . . . . . . . . . . . . . . . . . . 835

Sorts of RIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
The effect of sorts on OPEN CURSOR . . . . . . . . . . . . . . . . . . . . . . . . . 835

Processing for views and nested table expressions . . . . . . . . . . . . . . . . . . . . . . 836
Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
Materialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836

Two steps of materialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
When views or table expressions are materialized . . . . . . . . . . . . . . . . . . . . 837

Using EXPLAIN to determine when materialization occurs . . . . . . . . . . . . . . . . . . 839

Part 6.Additional programming techniques 589

||

||

||



Using EXPLAIN to determine UNION activity and query rewrite . . . . . . . . . . . . . . . . 840
Performance of merge versus materialization . . . . . . . . . . . . . . . . . . . . . . . 842

Estimating a statement's cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
Creating a statement table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
Populating and maintaining a statement table . . . . . . . . . . . . . . . . . . . . . . 845
Retrieving rows from a statement table . . . . . . . . . . . . . . . . . . . . . . . . . 845
The implications of cost categories . . . . . . . . . . . . . . . . . . . . . . . . . . 846

Chapter 28. Parallel operations and query performance . . . . . . . . . . . . . . . . . . . 847
Comparing the methods of parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . 848
Enabling parallel processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
Restrictions for parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
Interpreting EXPLAIN output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

A method for examining PLAN_TABLE columns for parallelism . . . . . . . . . . . . . . . . 852
PLAN_TABLE examples showing parallelism. . . . . . . . . . . . . . . . . . . . . . . 853

Tuning parallel processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
Disabling query parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Chapter 29. Programming for the Interactive System Productivity Facility . . . . . . . . . . . . 857
Using ISPF and the DSN command processor . . . . . . . . . . . . . . . . . . . . . . . 857
Invoking a single SQL program through ISPF and DSN . . . . . . . . . . . . . . . . . . . . 858
Invoking multiple SQL programs through ISPF and DSN. . . . . . . . . . . . . . . . . . . . 859
Invoking multiple SQL programs through ISPF and CAF . . . . . . . . . . . . . . . . . . . . 859

Chapter 30. Programming for the call attachment facility . . . . . . . . . . . . . . . . . . 861
CAF capabilities and requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 861

CAF capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
Task capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
Programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
Tracing facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
Program preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862

CAF requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
Program size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
Use of LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
Using CAF in IMS batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
Run environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
Running DSN applications under CAF . . . . . . . . . . . . . . . . . . . . . . . . 863

How to use CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
Summary of connection functions . . . . . . . . . . . . . . . . . . . . . . . . . . 866

Implicit connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
Accessing the CAF language interface . . . . . . . . . . . . . . . . . . . . . . . . . 867

Explicit load of DSNALI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
Link-editing DSNALI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868

General properties of CAF connections . . . . . . . . . . . . . . . . . . . . . . . . . 868
Task termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
DB2 abend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869

CAF function descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
Register conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
Call DSNALI parameter list . . . . . . . . . . . . . . . . . . . . . . . . . . . 869

CONNECT: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
OPEN: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876
CLOSE: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
DISCONNECT: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . 879
TRANSLATE: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
Summary of CAF behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

Sample scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
A single task with implicit connections . . . . . . . . . . . . . . . . . . . . . . . . . 883
A single task with explicit connections . . . . . . . . . . . . . . . . . . . . . . . . . 884
Several tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

Exit routines from your application . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
Attention exit routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

590 Application Programming and SQL Guide



Recovery routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
Error messages and dsntrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
CAF return codes and reason codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
Program examples for CAF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886

Sample JCL for using CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
Sample assembler code for using CAF . . . . . . . . . . . . . . . . . . . . . . . . . 887
Loading and deleting the CAF language interface . . . . . . . . . . . . . . . . . . . . . 887
Connecting to DB2 for CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
Checking return codes and reason codes for CAF . . . . . . . . . . . . . . . . . . . . . 889
Using dummy entry point DSNHLI for CAF . . . . . . . . . . . . . . . . . . . . . . . 891
Variable declarations for CAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

Chapter 31. Programming for the Resource Recovery Services attachment facility . . . . . . . . . 895
RRSAF capabilities and requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 895

RRSAF capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
Task capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
Programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
Tracing facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
Program preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896

RRSAF requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
Program size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897
Use of LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897
Commit and rollback operations . . . . . . . . . . . . . . . . . . . . . . . . . . 897
Run environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897

How to use RRSAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898
Summary of connection functions . . . . . . . . . . . . . . . . . . . . . . . . . . 898
Implicit connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899
Accessing the RRSAF language interface . . . . . . . . . . . . . . . . . . . . . . . . 900

Explicit Load of DSNRLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902
Link-editing DSNRLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902

General properties of RRSAF connections . . . . . . . . . . . . . . . . . . . . . . . . 902
Task termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903
DB2 abend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903

Summary of RRSAF behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
RRSAF function descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

Register conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905
Parameter conventions for function calls . . . . . . . . . . . . . . . . . . . . . . . . 906
IDENTIFY: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908
SWITCH TO: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 909

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910
SIGNON: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
AUTH SIGNON: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . 916

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
CONTEXT SIGNON: Syntax and usage. . . . . . . . . . . . . . . . . . . . . . . . . 920

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
SET_ID: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
SET_CLIENT_ID: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . 925

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
CREATE THREAD: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . 928

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
TERMINATE THREAD: Syntax and usage. . . . . . . . . . . . . . . . . . . . . . . . 930

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
TERMINATE IDENTIFY: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . 931

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932
TRANSLATE: Syntax and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 933

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
RRSAF connection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934

Example of a single task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934

Part 6.Additional programming techniques 591

||

||
||



Example of multiple tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
Example of calling SIGNON to reuse a DB2 thread . . . . . . . . . . . . . . . . . . . . . 935
Example of switching DB2 threads between tasks . . . . . . . . . . . . . . . . . . . . . 935

RRSAF return codes and reason codes . . . . . . . . . . . . . . . . . . . . . . . . . . 936
Program examples for RRSAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936

Sample JCL for using RRSAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
Loading and deleting the RRSAF language interface . . . . . . . . . . . . . . . . . . . . 937
Using dummy entry point DSNHLI for RRSAF . . . . . . . . . . . . . . . . . . . . . . 937
Connecting to DB2 for RRSAF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 938

Chapter 32. CICS-specific programming techniques . . . . . . . . . . . . . . . . . . . . 941
Controlling the CICS attachment facility from an application . . . . . . . . . . . . . . . . . . 941
Improving thread reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
Detecting whether the CICS attachment facility is operational . . . . . . . . . . . . . . . . . . 941

Chapter 33. WebSphere MQ with DB2 . . . . . . . . . . . . . . . . . . . . . . . . . 943
WebSphere MQ messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943

WebSphere MQ message handling . . . . . . . . . . . . . . . . . . . . . . . . . . 943
WebSphere MQ message handling with the MQI . . . . . . . . . . . . . . . . . . . . 944
WebSphere MQ message handling with the AMI . . . . . . . . . . . . . . . . . . . . 945

WebSphere MQ functions and stored procedures . . . . . . . . . . . . . . . . . . . . . . 946
Commit environment for AMI-based DB2 MQ functions and stored procedures . . . . . . . . . . . 950

Single-phase commit in WebSphere MQ . . . . . . . . . . . . . . . . . . . . . . . 950
Two-phase commit in WebSphere MQ . . . . . . . . . . . . . . . . . . . . . . . . 951

DB2 MQ tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
Converting applications to use the MQI functions . . . . . . . . . . . . . . . . . . . . . 960
How to use WebSphere MQ functions . . . . . . . . . . . . . . . . . . . . . . . . . 961

Basic messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
Sending messages with WebSphere MQ . . . . . . . . . . . . . . . . . . . . . . . 962
Retrieving messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
Application-to-application connectivity . . . . . . . . . . . . . . . . . . . . . . . 964

Asynchronous messaging in DB2 UDB for z/OS and OS/390 . . . . . . . . . . . . . . . . . . 968
MQListener in DB2 for OS/390 and z/OS . . . . . . . . . . . . . . . . . . . . . . . . 969
Configuring and running MQListener in DB2 UDB for OS/390 and z/OS . . . . . . . . . . . . . 970

Configuring MQListener to run in the DB2 environment . . . . . . . . . . . . . . . . . . 970
Configuring Websphere MQ for MQListener . . . . . . . . . . . . . . . . . . . . . . 971

Configuring MQListener tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
MQListener error processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974
Creating a sample stored procedure to use with MQListener . . . . . . . . . . . . . . . . . 975
MQListener examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976

Chapter 34. Using DB2 as a web services consumer and provider . . . . . . . . . . . . . . . 979
DB2 as a web services consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979

The SOAPHTTPV and SOAPHTTPC user-defined functions . . . . . . . . . . . . . . . . . . 979
The SOAPHTTPNV and SOAPHTTPNC user-defined functions . . . . . . . . . . . . . . . . 980
SQLSTATEs for DB2 as a web services consumer . . . . . . . . . . . . . . . . . . . . . 981

DB2 as a web services provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982

Chapter 35. Programming techniques: Questions and answers . . . . . . . . . . . . . . . . 985
Providing a unique key for a table . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
Scrolling through previously retrieved data . . . . . . . . . . . . . . . . . . . . . . . . 985

Using a scrollable cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
Using a ROWID or identity column . . . . . . . . . . . . . . . . . . . . . . . . . . 986

Scrolling through a table in any direction . . . . . . . . . . . . . . . . . . . . . . . . . 987
Updating data as it is retrieved from the database . . . . . . . . . . . . . . . . . . . . . . 988
Updating previously retrieved data . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
Updating thousands of rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
Retrieving thousands of rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
Using SELECT * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
Optimizing retrieval for a small set of rows . . . . . . . . . . . . . . . . . . . . . . . . 989
Adding data to the end of a table . . . . . . . . . . . . . . . . . . . . . . . . . . . 990

592 Application Programming and SQL Guide

||
||
||
##
||
##
||
||
||
##
##
||
||
||
||
||
##
##
##
##
##
##
##
##
##

##



Translating requests from end users into SQL statements . . . . . . . . . . . . . . . . . . . . 990
Changing the table definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 990
Storing data that does not have a tabular format . . . . . . . . . . . . . . . . . . . . . . 991
Finding a violated referential or check constraint . . . . . . . . . . . . . . . . . . . . . . 991

Part 6.Additional programming techniques 593



594 Application Programming and SQL Guide



Chapter 24. Coding dynamic SQL in application programs

Before you decide to use dynamic SQL, you should consider whether using static
SQL or dynamic SQL is the best technique for your application.

For most DB2 users, static SQL, which is embedded in a host language program
and bound before the program runs, provides a straightforward, efficient path to
DB2 data. You can use static SQL when you know before run time what SQL
statements your application needs to execute.

Dynamic SQL prepares and executes the SQL statements within a program, while
the program is running. Four types of dynamic SQL are:
v Interactive SQL

A user enters SQL statements through SPUFI. DB2 prepares and executes those
statements as dynamic SQL statements.

v Embedded dynamic SQL
Your application puts the SQL source in host variables and includes PREPARE
and EXECUTE statements that tell DB2 to prepare and run the contents of those
host variables at run time. You must precompile and bind programs that include
embedded dynamic SQL.

v Deferred embedded SQL
Deferred embedded SQL statements are neither fully static nor fully dynamic.
Like static statements, deferred embedded SQL statements are embedded within
applications, but like dynamic statements, they are prepared at run time. DB2
processes deferred embedded SQL statements with bind-time rules. For example,
DB2 uses the authorization ID and qualifier determined at bind time as the plan
or package owner. Deferred embedded SQL statements are used for DB2 private
protocol access to remote data.

v Dynamic SQL executed through ODBC functions
Your application contains ODBC function calls that pass dynamic SQL
statements as arguments. You do not need to precompile and bind programs
that use ODBC function calls. See DB2 ODBC Guide and Reference for information
about ODBC.

This chapter contains the following sections:
v “Choosing between static and dynamic SQL”
v “Caching dynamic SQL statements” on page 598
v “Limiting dynamic SQL with the resource limit facility” on page 603
v “Choosing a host language for dynamic SQL applications” on page 605
v “Dynamic SQL for non-SELECT statements” on page 605
v “Dynamic SQL for fixed-list SELECT statements” on page 612
v “Dynamic SQL for varying-list SELECT statements” on page 615

Choosing between static and dynamic SQL
This section contains the following information to help you decide whether you
should use dynamic SQL statements in your application:
v “Flexibility of static SQL with host variables” on page 596
v “Flexibility of dynamic SQL” on page 596
v “Limitations of dynamic SQL” on page 596
v “Dynamic SQL processing” on page 596

© Copyright IBM Corp. 1983, 2012 595



v “Performance of static and dynamic SQL” on page 597

Flexibility of static SQL with host variables
When you use static SQL, you cannot change the form of SQL statements unless
you make changes to the program. However, you can increase the flexibility of
static statements by using host variables.

Example: In the following example, the UPDATE statement can update the salary
of any employee. At bind time, you know that salaries must be updated, but you
do not know until run time whose salaries should be updated, and by how much.
01 IOAREA.

02 EMPID PIC X(06).
02 NEW-SALARY PIC S9(7)V9(2) COMP-3....

(Other declarations)
READ CARDIN RECORD INTO IOAREA

AT END MOVE ’N’ TO INPUT-SWITCH....
(Other COBOL statements)
EXEC SQL

UPDATE DSN8810.EMP
SET SALARY = :NEW-SALARY
WHERE EMPNO = :EMPID

END-EXEC.

The statement (UPDATE) does not change, nor does its basic structure, but the
input can change the results of the UPDATE statement.

Flexibility of dynamic SQL
What if a program must use different types and structures of SQL statements? If
there are so many types and structures that it cannot contain a model of each one,
your program might need dynamic SQL.

One example of such a program is the DB2 Query Management Facility (DB2
QMF), which provides an alternative interface to DB2 that accepts almost any SQL
statement. SPUFI is another example; it accepts SQL statements from an input data
set, and then processes and executes them dynamically.

Limitations of dynamic SQL
You cannot use some of the SQL statements dynamically. For information about
which DB2 SQL statements you can dynamically prepare, see the table in
Appendix H, “Characteristics of SQL statements in DB2 UDB for z/OS,” on page
1117.

Dynamic SQL processing
A program that provides for dynamic SQL accepts as input, or generates, an SQL
statement in the form of a character string. You can simplify the programming if
you can plan the program not to use SELECT statements, or to use only those that
return a known number of values of known types. In the most general case, in
which you do not know in advance about the SQL statements that will execute, the
program typically takes these steps:
1. Translates the input data, including any parameter markers, into an SQL

statement
2. Prepares the SQL statement to execute and acquires a description of the result

table

596 Application Programming and SQL Guide



3. Obtains, for SELECT statements, enough main storage to contain retrieved data
4. Executes the statement or fetches the rows of data
5. Processes the information returned
6. Handles SQL return codes.

Performance of static and dynamic SQL
To access DB2 data, an SQL statement requires an access path. Two big factors in
the performance of an SQL statement are the amount of time that DB2 uses to
determine the access path at run time and whether the access path is efficient. DB2
determines the access path for a statement at either of these times:
v When you bind the plan or package that contains the SQL statement
v When the SQL statement executes

The time at which DB2 determines the access path depends on these factors:
v Whether the statement is executed statically or dynamically
v Whether the statement contains input host variables

Static SQL statements with no input host variables
For static SQL statements that do not contain input host variables, DB2 determines
the access path when you bind the plan or package. This combination yields the
best performance because the access path is already determined when the program
executes.

Static SQL statements with input host variables
For static SQL statements that have input host variables, the time at which DB2
determines the access path depends on which bind option you specify:
REOPT(NONE), REOPT(ONCE), or REOPT(ALWAYS). REOPT(NONE) is the
default.

If you specify REOPT(NONE), DB2 determines the access path at bind time, just as
it does when there are no input variables.

DB2 ignores REOPT(ONCE) for static SQL statements because DB2 can cache only
dynamic SQL statements

If you specify REOPT(ALWAYS), DB2 determines the access path at bind time and
again at run time, using the values in these types of input variables:
v Host variables
v Parameter markers
v Special registers

This means that DB2 must spend extra time determining the access path for
statements at run time, but if DB2 determines a significantly better access path
using the variable values, you might see an overall performance improvement. In
general, using REOPT(ALWAYS) can make static SQL statements with input
variables perform like dynamic SQL statements with constants. For more
information about using REOPT(ALWAYS) to change access paths, see “Using host
variables efficiently” on page 762.

Dynamic SQL statements
For dynamic SQL statements, DB2 determines the access path at run time, when
the statement is prepared. This can make the performance worse than that of static
SQL statements. However, if you execute the same SQL statement often, you can

Chapter 24. Coding dynamic SQL in application programs 597

|
|
|
|

|

|
|

|

|

|



use the dynamic statement cache to decrease the number of times that those
dynamic statements must be prepared. See “Performance of static and dynamic
SQL” on page 597 for more information.

Dynamic SQL statements with input host variables: When you bind applications
that contain dynamic SQL statements with input host variables, use either the
REOPT(ALWAYS) or REOPT(ONCE) option.

Use REOPT(ALWAYS) when you are not using the dynamic statement cache. DB2
determines the access path for statements at each EXECUTE or OPEN of the
statement. This ensure the best access path for a statement, but using
REOPT(ALWAYS) can increase the cost of frequently used dynamic SQL
statements.

Use REOPT(ONCE) when you are using the dynamic statements cache. DB2
determines and the access path for statements only at the first EXECUTE or OPEN
of the statement. It saves that access path in the dynamic statement cache and uses
it until the statement is invalidated or removed from the cache. This reuse of the
access path reduces the cost of frequently used dynamic SQL statements that
contain input host variables.

You should code your PREPARE statements to minimize overhead. With both
REOPT(ALWAYS) and REOPT(ONCE), DB2 prepares an SQL statement at the same
time as it processes OPEN or EXECUTE for the statement. That is, DB2 processes
the statement as if you specify DEFER(PREPARE). However, in the following cases,
DB2 prepares the statement twice:
v If you execute the DESCRIBE statement before the PREPARE statement in your

program
v If you use the PREPARE statement with the INTO parameter

For the first prepare, DB2 determines the access path without using input variable
values. For the second prepare, DB2 uses the input variable values to determine
the access path. This extra prepare can decrease performance.

If you specify REOPT(ALWAYS), DB2 prepares the statement twice each time it is
run.

If you specify REOPT(ONCE), DB2 prepares the statement twice only when the
statement has never been saved in the cache. If the statement has been prepared
and saved in the cache, DB2 will use the saved version of the statement to
complete the DESCRIBE statement.

For a statement that uses a cursor, you can avoid the double prepare by placing
the DESCRIBE statement after the OPEN statement in your program.

If you use predictive governing, and a dynamic SQL statement that is bound with
either REOPT(ALWAYS) or REOPT(ONCE) exceeds a predictive governing warning
threshold, your application does not receive a warning SQLCODE. However, it will
receive an error SQLCODE from the OPEN or EXECUTE statement.

Caching dynamic SQL statements
As the DB2 ability to optimize SQL has improved, the cost of preparing a dynamic
SQL statement has grown. Applications that use dynamic SQL might be forced to
pay this cost more than once. When an application performs a commit operation, it
must issue another PREPARE statement if that SQL statement is to be executed

598 Application Programming and SQL Guide

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|

|
|

|
|
|
|

|
|
|



again. For a SELECT statement, the ability to declare a cursor WITH HOLD
provides some relief but requires that the cursor be open at the commit point.
WITH HOLD also causes some locks to be held for any objects that the prepared
statement is dependent on. Also, WITH HOLD offers no relief for SQL statements
that are not SELECT statements.

DB2 can save prepared dynamic statements in a cache. The cache is a dynamic
statement cache pool that all application processes can use to save and retrieve
prepared dynamic statements. After an SQL statement has been prepared and is
automatically saved in the cache, subsequent prepare requests for that same SQL
statement can avoid the costly preparation process by using the statement that is in
the cache. Statements that are saved in the cache can be shared among different
threads, plans, or packages.

Example: Assume that your application program contains a dynamic SQL
statement, STMT1, which is prepared and executed multiple times. If you are using
the dynamic statement cache when STMT1 is prepared for the first time, it is
placed in the cache. When your application program encounters the identical
PREPARE statement for STMT1, DB2 uses the already prepared STMT1 that is
saved in the dynamic statement cache. The following example shows the identical
STMT1 that might appear in your application program:
PREPARE STMT1 FROM ... Statement is prepared and the prepared
EXECUTE STMT1 statement is put in the cache.
COMMIT...
PREPARE STMT1 FROM ... Identical statement. DB2 uses the prepared
EXECUTE STMT1 statement from the cache.
COMMIT...

Eligible statements: The following SQL statements can be saved in the cache:
SELECT
UPDATE
INSERT
DELETE

Distributed and local SQL statements are eligible to be saved. Prepared, dynamic
statements that use DB2 private protocol access are also eligible to be saved.

Restrictions: Even though static statements that use DB2 private protocol access
are dynamic at the remote site, those statements can not be saved in the cache.

Statements in plans or packages that are bound with REOPT(ALWAYS) can not be
saved in the cache. Statements in plans and packages that are bound with
REOPT(ONCE) can be saved in the cache. See “How bind options
REOPT(ALWAYS) and REOPT(ONCE) affect dynamic SQL” on page 627 for more
information about REOPT(ALWAYS) and REOPT(ONCE).

Prepared statements cannot be shared among data sharing members. Because each
member has its own EDM pool, a cached statement on one member is not
available to an application that runs on another member.

Using the dynamic statement cache
To enable the dynamic statement cache to save prepared statements, specify YES
on the CACHE DYNAMIC SQL field of installation panel DSNTIP8. See Part 2 of
DB2 Installation Guide for more information.

Chapter 24. Coding dynamic SQL in application programs 599

|
|

|
|
|
|
|
|
|

|
|
|

|

|
|



Conditions for statement sharing
Suppose that S1 and S2 are source statements, and P1 is the prepared version of
S1. P1 is in the dynamic statement cache.

The following conditions must be met before DB2 can use statement P1 instead of
preparing statement S2:
v S1 and S2 must be identical. The statements must pass a character by character

comparison and must be the same length. If the PREPARE statement for either
statement contains an ATTRIBUTES clause, DB2 concatenates the values in the
ATTRIBUTES clause to the statement string before comparing the strings. That
is, if A1 is the set of attributes for S1 and A2 is the set of attributes for S2, DB2
compares S1||A1 to S2||A2.
If the statement strings are not identical, DB2 cannot use the statement in the
cache.
For example, assume that S1 and S2 are specified as follows:
’UPDATE EMP SET SALARY=SALARY+50’

In this case, DB2 can use P1 instead of preparing S2.
However, assume that S1 is specified as follows:
’UPDATE EMP SET SALARY=SALARY+50’

Assume also that S2 is specified as follows:
’UPDATE EMP SET SALARY=SALARY+50 ’

In this case, DB2 cannot use P1 for S2. DB2 prepares S2 and saves the prepared
version of S2 in the cache.

v The authorization ID that was used to prepare S1 must be used to prepare S2:
– When a plan or package has run behavior, the authorization ID is the current

SQLID value.
For secondary authorization IDs:
- The application process that searches the cache must have the same

secondary authorization ID list as the process that inserted the entry into
the cache or must have a superset of that list.

- If the process that originally prepared the statement and inserted it into the
cache used one of the privileges held by the primary authorization ID to
accomplish the prepare, that ID must either be part of the secondary
authorization ID list of the process searching the cache, or it must be the
primary authorization ID of that process.

– When a plan or package has bind behavior, the authorization ID is the plan
owner's ID. For a DDF server thread, the authorization ID is the package
owner's ID.

– When a package has define behavior, then the authorization ID is the
user-defined function or stored procedure owner.

– When a package has invoke behavior, then the authorization ID is the
authorization ID under which the statement that invoked the user-defined
function or stored procedure executed.

For an explanation of bind, run, define, and invoke behavior, see “Using
DYNAMICRULES to specify behavior of dynamic SQL statements” on page 504.

v When the plan or package that contains S2 is bound, the values of these bind
options must be the same as when the plan or package that contains S1 was
bound:

CURRENTDATA

600 Application Programming and SQL Guide



DYNAMICRULES
ISOLATION
SQLRULES
QUALIFIER

v When S2 is prepared, the values of the following special registers must be the
same as when S1 was prepared:

CURRENT DEGREE
CURRENT RULES
CURRENT PRECISION
CURRENT REFRESH AGE
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

Exception: If you set the CACHEDYN_FREELOCAL subsystem parameter to 1 and
a storage shortage occurs, DB2 frees the cached dynamic statements. In this case,
DB2 cannot use P1 instead of preparing statement S2, because P1 no longer exists
in the statement cache.

Using the statement cache table
The EXPLAIN STATEMENT CACHE ALL statement puts statement cache
information into the DSN_STATEMENT_CACHE_TABLE table for all queries in
the cache that qualify based on the user's SQLID. If the SQLID has SYSADM
authority, all statements are put into the table.

The EXPLAIN STATEMENT CACHE ALL statement is useful because it allows you
to see all of the statements in the cache and to concentrate on improving specific
statements for specific performance characteristics. The statement can be used as
part of an online monitoring strategy because EXPLAIN STATEMENT CACHE
ALL provides DSN_STATEMENT_CACHE_TABLE with a snapshot of the cache.

Example: If you are concerned about CPU time, you can select from the
STAT_CPU column in the DSN_STATEMENT_CACHE_TABLE table to identify the
queries that consume the most CPU time. Then you can work to improve the
performance of those specific queries. For information about creating the
DSN_STATEMENT_CACHE_TABLE table and about the columns in the table, see
DB2 SQL Reference.

Keeping prepared statements after commit points
The bind option KEEPDYNAMIC(YES) lets you hold dynamic statements past a
commit point for an application process. An application can issue a PREPARE for a
statement once and omit subsequent PREPAREs for that statement. Figure 179
illustrates an application that is written to use KEEPDYNAMIC(YES).

PREPARE STMT1 FROM ... Statement is prepared.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT...
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT

Figure 179. Writing dynamic SQL to use the bind option KEEPDYNAMIC(YES)

Chapter 24. Coding dynamic SQL in application programs 601

|
|

#
#
#
#

#

#
#
#
#

#
#
#
#
#

#
#
#
#
#
#



To understand how the KEEPDYNAMIC bind option works, you need to
differentiate between the executable form of a dynamic SQL statement, which is
the prepared statement, and the character string form of the statement, which is
the statement string.

Relationship between KEEPDYNAMIC(YES) and statement caching: When the
dynamic statement cache is not active, and you run an application bound with
KEEPDYNAMIC(YES), DB2 saves only the statement string for a prepared
statement after a commit operation. On a subsequent OPEN, EXECUTE, or
DESCRIBE, DB2 must prepare the statement again before performing the requested
operation. Figure 180 illustrates this concept.

When the dynamic statement cache is active, and you run an application bound
with KEEPDYNAMIC(YES), DB2 retains a copy of both the prepared statement
and the statement string. The prepared statement is cached locally for the
application process. In general, the statement is globally cached in the EDM pool,
to benefit other application processes. If the application issues an OPEN,
EXECUTE, or DESCRIBE after a commit operation, the application process uses its
local copy of the prepared statement to avoid a prepare and a search of the cache.
Figure 181 illustrates this process.

The local instance of the prepared SQL statement is kept in ssnmDBM1 storage
until one of the following occurs:
v The application process ends.
v A rollback operation occurs.
v The application issues an explicit PREPARE statement with the same statement

name.
If the application does issue a PREPARE for the same SQL statement name that
has a kept dynamic statement associated with it, the kept statement is discarded
and DB2 prepares the new statement.

PREPARE STMT1 FROM ... Statement is prepared and put in memory.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT DB2 prepares the statement again....
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT

Figure 180. Using KEEPDYNAMIC(YES) when the dynamic statement cache is not active

PREPARE STMT1 FROM ... Statement is prepared and put in memory.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT DB2 uses the prepared statement in memory....
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT DB2 uses the prepared statement in memory....
PREPARE STMT1 FROM ... Again, no PREPARE needed.
COMMIT DB2 uses the prepared statement in memory.

Figure 181. Using KEEPDYNAMIC(YES) when the dynamic statement cache is active

602 Application Programming and SQL Guide

#
#
####
#
####
#
####
#
#



v The statement is removed from memory because the statement has not been
used recently, and the number of kept dynamic SQL statements reaches the
subsystem default as set during installation.

Handling implicit prepare errors: If a statement is needed during the lifetime of an
application process, and the statement has been removed from the local cache, DB2
might be able to retrieve it from the global cache. If the statement is not in the
global cache, DB2 must implicitly prepare the statement again. The application
does not need to issue a PREPARE statement. However, if the application issues an
OPEN, EXECUTE, or DESCRIBE for the statement, the application must be able to
handle the possibility that DB2 is doing the prepare implicitly. Any error that
occurs during this prepare is returned on the OPEN, EXECUTE, or DESCRIBE.

How KEEPDYNAMIC affects applications that use distributed data: If a requester
does not issue a PREPARE after a COMMIT, the package at the DB2 UDB for z/OS
server must be bound with KEEPDYNAMIC(YES). If both requester and server are
DB2 UDB for z/OS subsystems, the DB2 requester assumes that the
KEEPDYNAMIC value for the package at the server is the same as the value for
the plan at the requester.

The KEEPDYNAMIC option has performance implications for DRDA clients that
specify WITH HOLD on their cursors:
v If KEEPDYNAMIC(NO) is specified, a separate network message is required

when the DRDA client issues the SQL CLOSE for the cursor.
v If KEEPDYNAMIC(YES) is specified, the DB2 UDB for z/OS server

automatically closes the cursor when SQLCODE +100 is detected, which means
that the client does not have to send a separate message to close the held cursor.
This reduces network traffic for DRDA applications that use held cursors. It also
reduces the duration of locks that are associated with the held cursor.

Using RELEASE(DEALLOCATE) with KEEPDYNAMIC(YES): See 409 for
information about interactions between bind options RELEASE(DEALLOCATE)
and KEEPDYNAMIC(YES).

Considerations for data sharing: If one member of a data sharing group has
enabled the cache but another has not, and an application is bound with
KEEPDYNAMIC(YES), DB2 must implicitly prepare the statement again if the
statement is assigned to a member without the cache. This can mean a slight
reduction in performance.

Limiting dynamic SQL with the resource limit facility
The resource limit facility (or governor) limits the amount of CPU time an SQL
statement can take, which prevents SQL statements from making excessive
requests. The predictive governing function of the resource limit facility provides
an estimate of the processing cost of SQL statements before they run. To predict
the cost of an SQL statement, you execute EXPLAIN to put information about the
statement cost in DSN_STATEMNT_TABLE. See “Estimating a statement's cost” on
page 842 for information about creating, populating, and interpreting the contents
of DSN_STATEMNT_TABLE.

The governor controls only the dynamic SQL manipulative statements SELECT,
UPDATE, DELETE, and INSERT. Each dynamic SQL statement used in a program
is subject to the same limits. The limit can be a reactive governing limit or a
predictive governing limit. If the statement exceeds a reactive governing limit, the

Chapter 24. Coding dynamic SQL in application programs 603



statement receives an error SQL code. If the statement exceeds a predictive
governing limit, it receives a warning or error SQL code. “Writing an application to
handle predictive governing” explains more about predictive governing SQL codes.

Your system administrator can establish the limits for individual plans or packages,
for individual users, or for all users who do not have personal limits.

Follow the procedures defined by your location for adding, dropping, or
modifying entries in the resource limit specification table. For more information
about the resource limit specification tables, see Part 5 (Volume 2) of DB2
Administration Guide.

Writing an application to handle reactive governing
When a dynamic SQL statement exceeds a reactive governing threshold, the
application program receives SQLCODE -905. The application must then determine
what to do next.

If the failed statement involves an SQL cursor, the cursor's position remains
unchanged. The application can then close that cursor. All other operations with
the cursor do not run and the same SQL error code occurs.

If the failed SQL statement does not involve a cursor, then all changes that the
statement made are undone before the error code returns to the application. The
application can either issue another SQL statement or commit all work done so far.

Writing an application to handle predictive governing
If your installation uses predictive governing, you need to modify your
applications to check for the +495 and -495 SQLCODEs that predictive governing
can generate after a PREPARE statement executes. The +495 SQLCODE in
combination with deferred prepare requires that DB2 do some special processing to
ensure that existing applications are not affected by this new warning SQLCODE.

For information about setting up the resource limit facility for predictive
governing, see Part 5 (Volume 2) of DB2 Administration Guide.

Handling the +495 SQLCODE
If your requester uses deferred prepare, the presence of parameter markers
determines when the application receives the +495 SQLCODE. When parameter
markers are present, DB2 cannot do PREPARE, OPEN, and FETCH processing in
one message. If SQLCODE +495 is returned, no OPEN or FETCH processing occurs
until your application requests it.
v If there are parameter markers, the +495 is returned on the OPEN (not the

PREPARE).
v If there are no parameter markers, the +495 is returned on the PREPARE.

Normally with deferred prepare, the PREPARE, OPEN, and first FETCH of the
data are returned to the requester. For a predictive governor warning of +495, you
would ideally like to have the option to choose beforehand whether you want the
OPEN and FETCH of the data to occur. For down-level requesters, you do not
have this option.

604 Application Programming and SQL Guide



Using predictive governing and down-level DRDA requesters
If SQLCODE +495 is returned to the requester, OPEN processing continues but the
first block of data is not returned with the OPEN. Thus, if your application does
not continue with the query, you have already incurred the performance cost of
OPEN processing.

Using predictive governing and enabled requesters
If your application does not defer the prepare, SQLCODE +495 is returned to the
requester and OPEN processing does not occur.

If your application does defer prepare processing, the application receives the +495
at its usual time (OPEN or PREPARE). If you have parameter markers with
deferred prepare, you receive the +495 at OPEN time as you normally do.
However, an additional message is exchanged.

Recommendation: Do not use deferred prepare for applications that use parameter
markers and that are predictively governed at the server side.

Choosing a host language for dynamic SQL applications
Programs that use dynamic SQL are usually written in assembler, C, PL/I, REXX,
and COBOL. You can write non-SELECT and fixed-list SELECT statements in any
of the DB2 supported languages. A program containing a varying-list SELECT
statement is more difficult to write in Fortran, because the program cannot run
without the help of a subroutine to manage address variables (pointers) and
storage allocation.

All SQL in REXX programs is dynamic SQL. For information about how to write
SQL REXX applications, see “Coding SQL statements in a REXX application” on
page 249

Most of the examples in this section are in PL/I. “Using dynamic SQL in COBOL”
on page 629 shows techniques for using COBOL. Longer examples in the form of
complete programs are available in the sample applications:

DSNTEP2
Processes both SELECT and non-SELECT statements dynamically. (PL/I).

DSNTIAD
Processes only non-SELECT statements dynamically. (Assembler).

DSNTIAUL
Processes SELECT statements dynamically. (Assembler).

Library prefix.SDSNSAMP contains the sample programs. You can view the
programs online, or you can print them using ISPF, IEBPTPCH, or your own
printing program.

Dynamic SQL for non-SELECT statements
The easiest way to use dynamic SQL is not to use SELECT statements dynamically.
Because you do not need to dynamically allocate any main storage, you can write
your program in any host language, including COBOL and Fortran. For a sample
program written in C that contains dynamic SQL with non-SELECT statements, see
Figure 279 on page 1046.

Chapter 24. Coding dynamic SQL in application programs 605



Your program must take the following steps:
1. Include an SQLCA. The requirements for an SQL communications area

(SQLCA) are the same as for static SQL statements. For REXX, DB2 includes the
SQLCA automatically.

2. Load the input SQL statement into a data area. The procedure for building or
reading the input SQL statement is not discussed here; the statement depends
on your environment and sources of information. You can read in complete
SQL statements, or you can get information to build the statement from data
sets, a user at a terminal, previously set program variables, or tables in the
database.
If you attempt to execute an SQL statement dynamically that DB2 does not
allow, you get an SQL error.

3. Execute the statement. You can use either of these methods:
v “Dynamic execution using EXECUTE IMMEDIATE”
v “Dynamic execution using PREPARE and EXECUTE” on page 607.

4. Handle any errors that might result. The requirements are the same as those for
static SQL statements. The return code from the most recently executed SQL
statement appears in the host variables SQLCODE and SQLSTATE or
corresponding fields of the SQLCA. See “Checking the execution of SQL
statements” on page 91 for information about the SQLCA and the fields it
contains.

Dynamic execution using EXECUTE IMMEDIATE
Suppose that you design a program to read SQL DELETE statements, similar to
these, from a terminal:
DELETE FROM DSN8810.EMP WHERE EMPNO = ’000190’
DELETE FROM DSN8810.EMP WHERE EMPNO = ’000220’

After reading a statement, the program is to run it immediately.

Recall that you must prepare (precompile and bind) static SQL statements before
you can use them. You cannot prepare dynamic SQL statements in advance. The
SQL statement EXECUTE IMMEDIATE causes an SQL statement to prepare and
execute, dynamically, at run time.

Declaring the host variable
Before you prepare and execute an SQL statement, you can read it into a host
variable. If the maximum length of the SQL statement is 32 KB, declare the host
variable as a character or graphic host variable according to the following rules for
the host languages:
v In assembler, COBOL and C, you must declare a string host variable as a

varying-length string.
v In Fortran, it must be a fixed-length string variable.
v In PL/I, it can be a fixed- or varying-length string variable, or any PL/I

expression that evaluates to a character string.

If the length is greater than 32 KB, you must declare the host variable as a CLOB
or DBCLOB, and the maximum is 2 MB.

For more information about declaring character-string host variables, see Chapter 9,
“Embedding SQL statements in host languages,” on page 143.

606 Application Programming and SQL Guide

|
|
|
|

|
|

|

|
|

|
|



Example: Using a varying-length character host variable: This excerpt is from a C
program that reads a DELETE statement into the host variable dstring and executes
the statement:
EXEC SQL BEGIN DECLARE SECTION;

...
struct VARCHAR {

short len;
char s[40];
} dstring;

EXEC SQL END DECLARE SECTION;
...
/* Read a DELETE statement into the host variable dstring. */
gets(dstring);
EXEC SQL EXECUTE IMMEDIATE :dstring;
...

EXECUTE IMMEDIATE causes the DELETE statement to be prepared and executed
immediately.

Declaring a CLOB or DBLOB host variable: You declare CLOB and DBCLOB host
variables according to the rules described in “Declaring LOB host variables and
LOB locators” on page 302.

The precompiler generates a structure that contains two elements, a 4-byte length
field and a data field of the specified length. The names of these fields vary
depending on the host language:
v In PL/I, assembler, and Fortran, the names are variable_LENGTH and

variable_DATA.
v In COBOL, the names are variable–LENGTH and variable–DATA.
v In C, the names are variable.LENGTH and variable.DATA.

Example: Using a CLOB host variable: This excerpt is from a C program that
copies an UPDATE statement into the host variable string1 and executes the
statement:
EXEC SQL BEGIN DECLARE SECTION;

...
SQL TYPE IS CLOB(4k) string1;

EXEC SQL END DECLARE SECTION;
...
/* Copy a statement into the host variable string1. */
strcpy(string1.data, "UPDATE DSN8610.EMP SET SALARY = SALARY * 1.1");
string1.length = 44;
EXEC SQL EXECUTE IMMEDIATE :string1;
...

EXECUTE IMMEDIATE causes the UPDATE statement to be prepared and
executed immediately.

Dynamic execution using PREPARE and EXECUTE
Suppose that you want to execute DELETE statements repeatedly using a list of
employee numbers. Consider how you would do it if you could write the DELETE
statement as a static SQL statement:
< Read a value for EMP from the list. >
DO UNTIL (EMP = 0);

EXEC SQL
DELETE FROM DSN8810.EMP WHERE EMPNO = :EMP ;

< Read a value for EMP from the list. >
END;

Chapter 24. Coding dynamic SQL in application programs 607

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|



The loop repeats until it reads an EMP value of 0.

If you know in advance that you will use only the DELETE statement and only the
table DSN8810.EMP, you can use the more efficient static SQL. Suppose further
that several different tables have rows that are identified by employee numbers,
and that users enter a table name as well as a list of employee numbers to delete.
Although variables can represent the employee numbers, they cannot represent the
table name, so you must construct and execute the entire statement dynamically.
Your program must now do these things differently:
v Use parameter markers instead of host variables
v Use the PREPARE statement
v Use EXECUTE instead of EXECUTE IMMEDIATE

Using parameter markers with PREPARE and EXECUTE
Dynamic SQL statements cannot use host variables. Therefore, you cannot
dynamically execute an SQL statement that contains host variables. Instead,
substitute a parameter marker, indicated by a question mark (?), for each host
variable in the statement.

You can indicate to DB2 that a parameter marker represents a host variable of a
certain data type by specifying the parameter marker as the argument of a CAST
function. When the statement executes, DB2 converts the host variable to the data
type in the CAST function. A parameter marker that you include in a CAST
function is called a typed parameter marker. A parameter marker without a CAST
function is called an untyped parameter marker.

Recommendation: Because DB2 can evaluate an SQL statement with typed
parameter markers more efficiently than a statement with untyped parameter
markers, use typed parameter markers whenever possible. Under certain
circumstances you must use typed parameter markers. See Chapter 5 of DB2 SQL
Reference for rules for using untyped or typed parameter markers.

Example using parameter markers: Suppose that you want to prepare this
statement:
DELETE FROM DSN8810.EMP WHERE EMPNO = :EMP;

You need to prepare a string like this:
DELETE FROM DSN8810.EMP WHERE EMPNO = CAST(? AS CHAR(6))

You associate host variable :EMP with the parameter marker when you execute the
prepared statement. Suppose that S1 is the prepared statement. Then the EXECUTE
statement looks like this:
EXECUTE S1 USING :EMP;

Using the PREPARE statement
Before you prepare an SQL statement, you can assign it to a host variable. If the
length of the statement is greater than 32 KB, you must declare the host variable as
a CLOB or DBCLOB. For more information about declaring the host variable, see
“Declaring the host variable” on page 606.

You can think of PREPARE and EXECUTE as an EXECUTE IMMEDIATE done in
two steps. The first step, PREPARE, turns a character string into an SQL statement,
and then assigns it a name of your choosing.

608 Application Programming and SQL Guide



Example using the PREPARE statement: Assume that the character host variable
:DSTRING has the value “DELETE FROM DSN8810.EMP WHERE EMPNO = ?”.
To prepare an SQL statement from that string and assign it the name S1, write:
EXEC SQL PREPARE S1 FROM :DSTRING;

The prepared statement still contains a parameter marker, for which you must
supply a value when the statement executes. After the statement is prepared, the
table name is fixed, but the parameter marker allows you to execute the same
statement many times with different values of the employee number.

Using the EXECUTE statement
The EXECUTE statement executes a prepared SQL statement by naming a list of
one or more host variables, one or more host variable arrays, or a host structure.
This list supplies values for all of the parameter markers.

After you prepare a statement, you can execute it many times within the same unit
of work. In most cases, COMMIT or ROLLBACK destroys statements prepared in a
unit of work. Then, you must prepare them again before you can execute them
again. However, if you declare a cursor for a dynamic statement and use the
option WITH HOLD, a commit operation does not destroy the prepared statement
if the cursor is still open. You can execute the statement in the next unit of work
without preparing it again.

Example using the EXECUTE statement: To execute the prepared statement S1 just
once, using a parameter value contained in the host variable :EMP, write:
EXEC SQL EXECUTE S1 USING :EMP;

Preparing and executing the example DELETE statement
The example in this section began with a DO loop that executed a static SQL
statement repeatedly:
< Read a value for EMP from the list. >
DO UNTIL (EMP = 0);

EXEC SQL
DELETE FROM DSN8810.EMP WHERE EMPNO = :EMP ;

< Read a value for EMP from the list. >
END;

You can now write an equivalent example for a dynamic SQL statement:
< Read a statement containing parameter markers into DSTRING.>
EXEC SQL PREPARE S1 FROM :DSTRING;
< Read a value for EMP from the list. >
DO UNTIL (EMPNO = 0);

EXEC SQL EXECUTE S1 USING :EMP;
< Read a value for EMP from the list. >
END;

The PREPARE statement prepares the SQL statement and calls it S1. The EXECUTE
statement executes S1 repeatedly, using different values for EMP.

Using more than one parameter marker
The prepared statement (S1 in the example) can contain more than one parameter
marker. If it does, the USING clause of EXECUTE specifies a list of variables or a
host structure. The variables must contain values that match the number and data
types of parameters in S1 in the proper order. You must know the number and
types of parameters in advance and declare the variables in your program, or you
can use an SQLDA (SQL descriptor area).

Chapter 24. Coding dynamic SQL in application programs 609

|



Dynamic execution of a multiple-row INSERT statement
Suppose that you want to repeatedly execute a multiple-row INSERT statement
using a list of activity IDs, activity keywords, and activity descriptions that are
provided by the user. A static SQL INSERT statement that inserts multiple rows of
data into the activity table looks similar to the following statement:
EXEC SQL

INSERT INTO DSN8810.ACT
VALUES (:hva_actno, :hva_actkwd, :hva_actdesc)
FOR :num_rows ROWS;

You might be entering the rows of data into different tables or entering different
numbers of rows, so you want to construct the INSERT statement dynamically.
This section describes the following methods to execute a multiple-row INSERT
statement dynamically:
v By using host variable arrays that contain the data to be inserted
v By using a descriptor to describe the host variable arrays that contain the data

Using EXECUTE with host variable arrays
You can use the CAST function to explicitly assign a type to parameter markers
that represent host variable arrays. For the activity table, the string for the INSERT
statement that is to be prepared looks like this:
INSERT INTO DSN8810.ACT

VALUES (CAST(? AS SMALLINT), CAST(? AS CHAR(6)), CAST(? AS VARCHAR(20)))

You must specify the FOR n ROWS clause on the EXECUTE statement.

Preparing and executing the statement: The code to prepare and execute the
INSERT statement looks like this:
/* Copy the INSERT string into the host variable sqlstmt */
strcpy(sqlstmt, "INSERT INTO DSN8810.ACT VALUES (CAST(? AS SMALLINT),");
strcat(sqlstmt, " CAST(? AS CHAR(6)), CAST(? AS VARCHAR(20)))");

/* Copy the INSERT attributes into the host variable attrvar */
strcpy(attrvar, "FOR MULTIPLE ROWS");

/* Prepare and execute my_insert using the host variable arrays */
EXEC SQL PREPARE my_insert ATTRIBUTES :attrvar FROM :sqlstmt;
EXEC SQL EXECUTE my_insert USING :hva1, :hva2, :hva3 FOR :num_rows ROWS;

Each host variable in the USING clause of the EXECUTE statement represents an
array of values for the corresponding column of the target of the INSERT
statement. You can vary the number of rows, specified by num_rows in the
example, without needing to prepare the INSERT statement again.

Using EXECUTE with a descriptor
You can use an SQLDA structure to specify data types and other information about
parameters markers. The string for the INSERT statement that is to be prepared
looks like this:
INSERT INTO DSN8810.ACT VALUES (?, ?, ?)

You must specify the FOR n ROWS clause on the EXECUTE statement.

Setting the fields in the SQLDA: Assume that your program includes the
standard SQLDA structure declaration and declarations for the program variables
that point to the SQLDA structure. Before the INSERT statement is prepared and
executed, you must set the fields in the SQLDA structure for your INSERT
statement. For C application programs, the code to set the fields looks like this:

610 Application Programming and SQL Guide

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|



strcpy(sqldaptr->sqldaid,"SQLDA");
sqldaptr->sqldabc = 192; /* number of bytes of storage allocated for the SQLDA */
sqldaptr->sqln = 4; /* number of SQLVAR occurrences */
sqldaptr->sqld = 4;
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0])); /* Point to first SQLVAR */
varptr->sqltype = 500; /* data type SMALLINT */
varptr->sqllen = 2;
varptr->sqldata = (char *) hva1;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 1); /* Point to next SQLVAR */
varptr->sqltype = 452; /* data type CHAR(6) */
varptr->sqllen = 6;
varptr->sqldata = (char *) hva2;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 2); /* Point to next SQLVAR */
varptr->sqltype = 448; /* data type VARCHAR(20) */
varptr->sqllen = 20;
varptr->sqldata = (char *) hva3;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);

The SQLDA structure has these fields:
v SQLDABC indicates the number of bytes of storage that are allocated for the

SQLDA. The storage includes a 16-byte header and 44 bytes for each SQLVAR
field. The value is SQLN x 44 + 16, or 192 for this example.

v SQLN is the number of SQLVAR occurrences, plus one for use by DB2 for the
host variable that contains the number n in the FOR n ROWS clause.

v SQLD is the number of variables in the SQLDA that are used by DB2 when
processing the INSERT statement.

v An SQLVAR occurrence specifies the attributes of an element of a host variable
array that corresponds to a value provided for a target column of the INSERT.
Within each SQLVAR:
– SQLTYPE indicates the data type of the elements of the host variable array.
– SQLLEN indicates the length of a single element of the host variable array.
– SQLDATA points to the corresponding host variable array. Assume that your

program allocates the dynamic variable arrays hva1, hva2, and hva3.
– SQLNAME has two parts: the LENGTH and the DATA. The LENGTH is 8.

The first two bytes of the DATA field is X'0000'. Bytes 5 and 6 of the DATA
field are a flag indicating whether the variable is an array or a FOR n ROWS
value. Bytes 7 and 8 are a two-byte binary integer representation of the
dimension of the array.

For more information about the SQLDA, see “Dynamic SQL for varying-list
SELECT statements” on page 615. For a complete layout of the SQLDA and the
descriptions given by the INCLUDE statement, see Appendix E of DB2 SQL
Reference.

Preparing and executing the statement: The code to prepare and execute the
INSERT statement looks like this:
/* Copy the INSERT string into the host variable sqlstmt */
strcpy(sqlstmt, "INSERT INTO DSN8810.ACT VALUES (?, ?, ?)");

/* Copy the INSERT attributes into the host variable attrvar */
strcpy(attrvar, "FOR MULTIPLE ROWS");

Chapter 24. Coding dynamic SQL in application programs 611

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

|

|
|
|

|
|

|
|

|
|
|

|

|

|
|

#
#
#
#
#

|
|
|
|

|
|

|
|
|
|
|
|



/* Prepare and execute my_insert using the descriptor */
EXEC SQL PREPARE my_insert ATTRIBUTES :attrvar FROM :sqlstmt;
EXEC SQL EXECUTE my_insert USING DESCRIPTOR :*sqldaptr FOR :num_rows ROWS;

The host variable in the USING clause of the EXECUTE statement names the
SQLDA that describes the parameter markers in the INSERT statement.

Using DESCRIBE INPUT to put parameter information in an
SQLDA

You can use the DESCRIBE INPUT statement to let DB2 put the data type
information for parameter markers in an SQLDA.

Before you execute DESCRIBE INPUT, you must allocate an SQLDA with enough
instances of SQLVAR to represent all parameter markers in the SQL statements you
want to describe.

After you execute DESCRIBE INPUT, you code the application in the same way as
any other application in which you execute a prepared statement using an SQLDA.
First, you obtain the addresses of the input host variables and their indicator
variables and insert those addresses into the SQLDATA and SQLIND fields. Then
you execute the prepared SQL statement.

Example using the SQLDA: Suppose that you want to execute this statement
dynamically:
DELETE FROM DSN8810.EMP WHERE EMPNO = ?

The code to set up an SQLDA, obtain parameter information using DESCRIBE
INPUT, and execute the statement looks like this:
SQLDAPTR=ADDR(INSQLDA); /* Get pointer to SQLDA */
SQLDAID=’SQLDA’; /* Fill in SQLDA eye-catcher */
SQLDABC=LENGTH(INSQLDA); /* Fill in SQLDA length */
SQLN=1; /* Fill in number of SQLVARs */
SQLD=0; /* Initialize # of SQLVARs used */
DO IX=1 TO SQLN; /* Initialize the SQLVAR */

SQLTYPE(IX)=0;
SQLLEN(IX)=0;
SQLNAME(IX)=’’;

END;
SQLSTMT=’DELETE FROM DSN8810.EMP WHERE EMPNO = ?’;
EXEC SQL PREPARE SQLOBJ FROM SQLSTMT;
EXEC SQL DESCRIBE INPUT SQLOBJ INTO :INSQLDA;
SQLDATA(1)=ADDR(HVEMP); /* Get input data address */
SQLIND(1)=ADDR(HVEMPIND); /* Get indicator address */
EXEC SQL EXECUTE SQLOBJ USING DESCRIPTOR :INSQLDA;

Dynamic SQL for fixed-list SELECT statements
A fixed-list SELECT statement returns rows that contain a known number of values
of a known type. When you use one, you know in advance exactly what kinds of
host variables you need to declare to store the results. (The contrasting situation, in
which you do not know in advance what host-variable structure you might need,
is in the section “Dynamic SQL for varying-list SELECT statements” on page 615.)

The term “fixed-list” does not imply that you must know in advance how many
rows of data will be returned. However, you must know the number of columns
and the data types of those columns. A fixed-list SELECT statement returns a result
table that can contain any number of rows; your program looks at those rows one
at a time, using the FETCH statement. Each successive fetch returns the same

612 Application Programming and SQL Guide

|
|
|

|
|



number of values as the last, and the values have the same data types each time.
Therefore, you can specify host variables as you do for static SQL.

An advantage of the fixed-list SELECT is that you can write it in any of the
programming languages that DB2 supports. Varying-list dynamic SELECT
statements require assembler, C, PL/I, and COBOL.

For a sample program that is written in C and that illustrates dynamic SQL with
fixed-list SELECT statements, see Figure 279 on page 1046.

To execute a fixed-list SELECT statement dynamically, your program must:
1. Include an SQLCA.
2. Load the input SQL statement into a data area.

The preceding two steps are exactly the same as described under “Dynamic
SQL for non-SELECT statements” on page 605.

3. Declare a cursor for the statement name as described in “Declaring a cursor for
the statement name.”

4. Prepare the statement, as described in “Preparing the statement.”
5. Open the cursor, as described in “Opening the cursor” on page 614.
6. Fetch rows from the result table, as described in “Fetching rows from the result

table” on page 614.
7. Close the cursor, as described in “Closing the cursor” on page 614.
8. Handle any resulting errors. This step is the same as for static SQL, except for

the number and types of errors that can result.

Example: Suppose that your program retrieves last names and phone numbers by
dynamically executing SELECT statements of this form:
SELECT LASTNAME, PHONENO FROM DSN8810.EMP

WHERE ... ;

The program reads the statements from a terminal, and the user determines the
WHERE clause.

As with non-SELECT statements, your program puts the statements into a
varying-length character variable; call it DSTRING. Eventually you prepare a
statement from DSTRING, but first you must declare a cursor for the statement
and give it a name.

Declaring a cursor for the statement name
Dynamic SELECT statements cannot use INTO. Therefore, you must use a cursor
to put the results into host variables.

Example: When you declare the cursor, use the statement name (call it STMT), and
give the cursor itself a name (for example, C1):
EXEC SQL DECLARE C1 CURSOR FOR STMT;

Preparing the statement
Prepare a statement (STMT) from DSTRING.

Example: This is one possible PREPARE statement:
EXEC SQL PREPARE STMT FROM :DSTRING ATTRIBUTES :ATTRVAR;

Chapter 24. Coding dynamic SQL in application programs 613



ATTRVAR contains attributes that you want to add to the SELECT statement, such
as FETCH FIRST 10 ROWS ONLY or OPTIMIZE for 1 ROW. In general, if the
SELECT statement has attributes that conflict with the attributes in the PREPARE
statement, the attributes on the SELECT statement take precedence over the
attributes on the PREPARE statement. However, in this example, the SELECT
statement in DSTRING has no attributes specified, so DB2 uses the attributes in
ATTRVAR for the SELECT statement.

As with non-SELECT statements, the fixed-list SELECT could contain parameter
markers. However, this example does not need them.

To execute STMT, your program must open the cursor, fetch rows from the result
table, and close the cursor. The following sections describe how to do those steps.

Opening the cursor
The OPEN statement evaluates the SELECT statement named STMT.

Example: Without parameter markers, use this statement:
EXEC SQL OPEN C1;

If STMT contains parameter markers, you must use the USING clause of OPEN to
provide values for all of the parameter markers in STMT.

Example: If four parameter markers are in STMT, you need the following
statement:
EXEC SQL OPEN C1 USING :PARM1, :PARM2, :PARM3, :PARM4;

Fetching rows from the result table
Example: Your program could repeatedly execute a statement such as this:
EXEC SQL FETCH C1 INTO :NAME, :PHONE;

The key feature of this statement is the use of a list of host variables to receive the
values returned by FETCH. The list has a known number of items (in this case,
two items, :NAME and :PHONE) of known data types (both are character strings,
of lengths 15 and 4, respectively).

You can use this list in the FETCH statement only because you planned the
program to use only fixed-list SELECTs. Every row that cursor C1 points to must
contain exactly two character values of appropriate length. If the program is to
handle anything else, it must use the techniques described under “Dynamic SQL
for varying-list SELECT statements” on page 615.

Closing the cursor
This step is the same as for static SQL.

Example: A WHENEVER NOT FOUND statement in your program can name a
routine that contains this statement:
EXEC SQL CLOSE C1;

614 Application Programming and SQL Guide



Dynamic SQL for varying-list SELECT statements
A varying-list SELECT statement returns rows containing an unknown number of
values of unknown type. When you use one, you do not know in advance exactly
what kinds of host variables you need to declare in order to store the results. (For
the much simpler situation, in which you do know, see “Dynamic SQL for
fixed-list SELECT statements” on page 612.) Because the varying-list SELECT
statement requires pointer variables for the SQL descriptor area, you cannot issue
it from a Fortran program. A Fortran program can call a subroutine written in a
language that supports pointer variables (such as PL/I or assembler), if you need
to use a varying-list SELECT statement.

What your application program must do
To execute a varying-list SELECT statement dynamically, your program must
follow these steps:
1. Include an SQLCA.

DB2 performs this step for a REXX procedure.
2. Load the input SQL statement into a data area.

Those first two steps are exactly the same as described under “Dynamic SQL
for non-SELECT statements” on page 605; the next step is new:

3. Prepare and execute the statement. This step is more complex than for fixed-list
SELECTs. For details, see “Preparing a varying-list SELECT statement” and
“Executing a varying-list SELECT statement dynamically” on page 625. It
involves the following steps:
a. Include an SQLDA (SQL descriptor area).

DB2 performs this step for a REXX procedure.
b. Declare a cursor and prepare the variable statement.
c. Obtain information about the data type of each column of the result table.
d. Determine the main storage needed to hold a row of retrieved data.

You do not perform this step for a REXX procedure.
e. Put storage addresses in the SQLDA to tell where to put each item of

retrieved data.
f. Open the cursor.
g. Fetch a row.
h. Eventually close the cursor and free main storage.

Additional complications exist for statements with parameter markers.
4. Handle any errors that might result.

Preparing a varying-list SELECT statement
Suppose that your program dynamically executes SQL statements, but this time
without any limits on their form. Your program reads the statements from a
terminal, and you know nothing about them in advance. They might not even be
SELECT statements.

As with non-SELECT statements, your program puts the statements into a
varying-length character variable; call it DSTRING. Your program goes on to
prepare a statement from the variable and then give the statement a name; call it
STMT.

Chapter 24. Coding dynamic SQL in application programs 615



Now, the program must find out whether the statement is a SELECT. If it is, the
program must also find out how many values are in each row, and what their data
types are. The information comes from an SQL descriptor area (SQLDA).

An SQL descriptor area
The SQLDA is a structure that is used to communicate with your program, and
storage for it is usually allocated dynamically at run time.

To include the SQLDA in a PL/I or C program, use:
EXEC SQL INCLUDE SQLDA;

For assembler, use this in the storage definition area of a CSECT:
EXEC SQL INCLUDE SQLDA

For COBOL, use:
EXEC SQL INCLUDE SQLDA END-EXEC.

You cannot include an SQLDA in a Fortran or REXX program.

For a complete layout of the SQLDA and the descriptions given by INCLUDE
statements, see Appendix E of DB2 SQL Reference.

Obtaining information about the SQL statement
An SQLDA can contain a variable number of occurrences of SQLVAR, each of
which is a set of five fields that describe one column in the result table of a
SELECT statement.

The number of occurrences of SQLVAR depends on the following factors:
v The number of columns in the result table you want to describe.
v Whether you want the PREPARE or DESCRIBE to put both column names and

labels in your SQLDA. This is the option USING BOTH in the PREPARE or
DESCRIBE statement.

v Whether any columns in the result table are LOB types or distinct types.

Table 75 shows the minimum number of SQLVAR instances you need for a result
table that contains n columns.

Table 75. Minimum number of SQLVARs for a result table with n columns

Type of DESCRIBE and contents of result
table Not USING BOTH USING BOTH

No distinct types or LOBs n 2*n

Distinct types but no LOBs 2*n 3*n

LOBs but no distinct types 2*n 2*n

LOBs and distinct types 2*n 3*n

An SQLDA with n occurrences of SQLVAR is referred to as a single SQLDA, an
SQLDA with 2*n occurrences of SQLVAR a double SQLDA, an SQLDA with 3*n
occurrences of SQLVAR a triple SQLDA.

A program that admits SQL statements of every kind for dynamic execution has
two choices:
v Provide the largest SQLDA that it could ever need. The maximum number of

columns in a result table is 750, so an SQLDA for 750 columns occupies 33 016

616 Application Programming and SQL Guide



bytes for a single SQLDA, 66 016 bytes for a double SQLDA, or 99 016 bytes for
a triple SQLDA. Most SELECT statements do not retrieve 750 columns, so the
program does not usually use most of that space.

v Provide a smaller SQLDA, with fewer occurrences of SQLVAR. From this the
program can find out whether the statement was a SELECT and, if it was, how
many columns are in its result table. If more columns are in the result than the
SQLDA can hold, DB2 returns no descriptions. When this happens, the program
must acquire storage for a second SQLDA that is long enough to hold the
column descriptions, and ask DB2 for the descriptions again. Although this
technique is more complicated to program than the first, it is more general.
How many columns should you allow? You must choose a number that is large
enough for most of your SELECT statements, but not too wasteful of space; 40 is
a good compromise. To illustrate what you must do for statements that return
more columns than allowed, the example in this discussion uses an SQLDA that
is allocated for at least 100 columns.

Declaring a cursor for the statement
As before, you need a cursor for the dynamic SELECT. For example, write:
EXEC SQL

DECLARE C1 CURSOR FOR STMT;

Preparing the statement using the minimum SQLDA
Suppose that your program declares an SQLDA structure with the name
MINSQLDA, having 100 occurrences of SQLVAR and SQLN set to 100. To prepare
a statement from the character string in DSTRING and also enter its description
into MINSQLDA, write this:
EXEC SQL PREPARE STMT FROM :DSTRING;
EXEC SQL DESCRIBE STMT INTO :MINSQLDA;

Equivalently, you can use the INTO clause in the PREPARE statement:
EXEC SQL

PREPARE STMT INTO :MINSQLDA FROM :DSTRING;

Do not use the USING clause in either of these examples. At the moment, only the
minimum SQLDA is in use. Figure 182 shows the contents of the minimum
SQLDA in use.

SQLN determines what SQLVAR gets
The SQLN field, which you must set before using DESCRIBE (or PREPARE INTO),
tells how many occurrences of SQLVAR the SQLDA is allocated for. If DESCRIBE
needs more than that, the results of the DESCRIBE depend on the contents of the
result table. Let n indicate the number of columns in the result table. Then:
v If the result table contains at least one distinct type column but no LOB

columns, you do not specify USING BOTH, and n<=SQLN<2*n, then DB2
returns base SQLVAR information in the first n SQLVAR occurrences, but no
distinct type information. Base SQLVAR information includes:
– Data type code
– Length attribute (except for LOBs)
– Column name or label
– Host variable address

Header SQLDAID SQLDABC 100 SQLD

Figure 182. The minimum SQLDA structure

Chapter 24. Coding dynamic SQL in application programs 617



– Indicator variable address
v Otherwise, if SQLN is less than the minimum number of SQLVARs specified in

Table 75 on page 616, then DB2 returns no information in the SQLVARs.

Regardless of whether your SQLDA is big enough, whenever you execute
DESCRIBE, DB2 returns the following values, which you can use to build an
SQLDA of the correct size:
v SQLD is 0 if the SQL statement is not a SELECT. Otherwise, SQLD is the

number of columns in the result table. The number of SQLVAR occurrences you
need for the SELECT depends on the value in the seventh byte of SQLDAID.

v The seventh byte of SQLDAID is 2 if each column in the result table requires
two SQLVAR entries. The seventh byte of SQLDAID is 3 if each column in the
result table requires three SQLVAR entries.

If the statement is not a SELECT
To find out if the statement is a SELECT, your program can query the SQLD field
in MINSQLDA. If the field contains 0, the statement is not a SELECT, the
statement is already prepared, and your program can execute it. If no parameter
markers are in the statement, you can use:
EXEC SQL EXECUTE STMT;

(If the statement does contain parameter markers, you must use an SQL descriptor
area; for instructions, see “Executing arbitrary statements with parameter markers”
on page 626.)

Acquiring storage for a second SQLDA if needed
Now you can allocate storage for a second, full-size SQLDA; call it FULSQLDA.
Figure 183 shows its structure.

Figure 183. The full-size SQLDA structure

618 Application Programming and SQL Guide



FULSQLDA has a fixed-length header of 16 bytes in length, followed by a
varying-length section that consists of structures with the SQLVAR format. If the
result table contains LOB columns or distinct type columns, a varying-length
section that consists of structures with the SQLVAR2 format follows the structures
with SQLVAR format. All SQLVAR structures and SQLVAR2 structures are 44 bytes
long. See Appendix E ofDB2 SQL Reference for details about the two SQLVAR
formats. The number of SQLVAR and SQLVAR2 elements you need is in the SQLD
field of MINSQLDA, and the total length you need for FULSQLDA (16 + SQLD *
44) is in the SQLDABC field of MINSQLDA. Allocate that amount of storage.

Describing the SELECT statement again
After allocating sufficient space for FULSQLDA, your program must take these
steps:
1. Put the total number of SQLVAR and SQLVAR2 occurrences in FULSQLDA into

the SQLN field of FULSQLDA. This number appears in the SQLD field of
MINSQLDA.

2. Describe the statement again into the new SQLDA:
EXEC SQL DESCRIBE STMT INTO :FULSQLDA;

After the DESCRIBE statement executes, each occurrence of SQLVAR in the
full-size SQLDA (FULSQLDA in our example) contains a description of one
column of the result table in five fields. If an SQLVAR occurrence describes a LOB
column or distinct type column, the corresponding SQLVAR2 occurrence contains
additional information specific to the LOB or distinct type.

Figure 184 shows an SQLDA that describes two columns that are not LOB columns
or distinct type columns. See “Describing tables with LOB and distinct type
columns” on page 623 for an example of describing a result table with LOB
columns or distinct type columns.

Acquiring storage to hold a row
Before fetching rows of the result table, your program must:
1. Analyze each SQLVAR description to determine how much space you need for

the column value.
2. Derive the address of some storage area of the required size.
3. Put this address in the SQLDATA field.

If the SQLTYPE field indicates that the value can be null, the program must also
put the address of an indicator variable in the SQLIND field. The following figures
show the SQL descriptor area after you take certain actions.

In Figure 185, the DESCRIBE statement inserted all the values except the first
occurrence of the number 200. The program inserted the number 200 before it
executed DESCRIBE to tell how many occurrences of SQLVAR to allow. If the
result table of the SELECT has more columns than this, the SQLVAR fields describe
nothing.

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 8816 200 200

452 3 Undefined 0 8 WORKDEPT

453 4 Undefined 0 7 PHONENO

Figure 184. Contents of FULSQLDA after executing DESCRIBE

Chapter 24. Coding dynamic SQL in application programs 619



The first SQLVAR pertains to the first column of the result table (the WORKDEPT
column). SQLVAR element 1 contains fixed-length character strings and does not
allow null values (SQLTYPE=452); the length attribute is 3. For information about
SQLTYPE values, see Appendix E of DB2 SQL Reference.

Figure 186 shows the SQLDA after your program acquires storage for the column
values and their indicators, and puts the addresses in the SQLDATA fields of the
SQLDA.

Figure 187 shows the SQLDA after your program executes a FETCH statement.

Table 76 describes the values in the descriptor area.

Table 76. Values inserted in the SQLDA

Value Field Description

SQLDA SQLDAID An “eye-catcher”

8816 SQLDABC The size of the SQLDA in bytes (16 + 44 * 200)

200 SQLN The number of occurrences of SQLVAR, set by the
program

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 8816 200 200

452 3 Undefined 0 8 WORKDEPT

453 4 Undefined 0 7 PHONENO

Figure 185. SQL descriptor area after executing DESCRIBE

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 8816 200 200

452 3 Addr FLDA Addr FLDAI WORKDEPT

453 4 Addr FLDB Addr FLDBI 7 PHONENO

8

FLDA

CHAR(3)

FLDB

CHAR(4) FLDAI FLDBI

Indicator variables

(halfword)

Figure 186. SQL descriptor area after analyzing descriptions and acquiring storage

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 8816 200 200

452 3 Addr FLDA Addr FLDAI WORKDEPT

453 4 Addr FLDB Addr FLDBI 7 PHONENO

8

FLDA

CHAR(3)

FLDB

CHAR(4) FLDAI FLDBI

Indicator variables

(halfword)

E11 4502 0 0

Figure 187. SQL descriptor area after executing FETCH

620 Application Programming and SQL Guide



Table 76. Values inserted in the SQLDA (continued)

Value Field Description

200 SQLD The number of occurrences of SQLVAR actually used
by the DESCRIBE statement

452 SQLTYPE The value of SQLTYPE in the first occurrence of
SQLVAR. It indicates that the first column contains
fixed-length character strings, and does not allow
nulls.

3 SQLLEN The length attribute of the column

Undefined or
CCSID value

SQLDATA Bytes 3 and 4 contain the CCSID of a string column.
Undefined for other types of columns.

Undefined SQLIND

8 SQLNAME The number of characters in the column name

WORKDEPT SQLNAME+2 The column name of the first column

Putting storage addresses in the SQLDA
After analyzing the description of each column, your program must replace the
content of each SQLDATA field with the address of a storage area large enough to
hold values from that column. Similarly, for every column that allows nulls, the
program must replace the content of the SQLIND field. The content must be the
address of a halfword that you can use as an indicator variable for the column.
The program can acquire storage for this purpose, of course, but the storage areas
used do not have to be contiguous.

Figure 186 on page 620 shows the content of the descriptor area before the
program obtains any rows of the result table. Addresses of fields and indicator
variables are already in the SQLVAR.

Changing the CCSID for retrieved data
All DB2 string data has an encoding scheme and CCSID associated with it. When
you select string data from a table, the selected data generally has the same
encoding scheme and CCSID as the table. If the application uses some method,
such as issuing the DECLARE VARIABLE statement, to change the CCSID of the
selected data, the data is converted from the CCSID of the table to the CCSID that
is specified by the application.

You can set the default application encoding scheme for a plan or package by
specifying the value in the APPLICATION ENCODING field of the panel
DEFAULTS FOR BIND PACKAGE or DEFAULTS FOR BIND PLAN. The default
application encoding scheme for the DB2 subsystem is the value that was specified
in the APPLICATION ENCODING field of installation panel DSNTIPF.

If you want to retrieve the data in an encoding scheme and CCSID other than the
default values, you can use one of the following techniques:
v For dynamic SQL, set the CURRENT APPLICATION ENCODING SCHEME

special register before you execute the SELECT statements. For example, to set
the CCSID and encoding scheme for retrieved data to the default CCSID for
Unicode, execute this SQL statement:
EXEC SQL SET CURRENT APPLICATION ENCODING SCHEME =’UNICODE’;

The initial value of this special register is the application encoding scheme that
is determined by the BIND option.

Chapter 24. Coding dynamic SQL in application programs 621



v For static and dynamic SQL statements that use host variables and host variable
arrays, use the DECLARE VARIABLE statement to associate CCSIDs with the
host variables into which you retrieve the data. See “Changing the coded
character set ID of host variables” on page 85 for information about this
technique.

v For static and dynamic SQL statements that use a descriptor, set the CCSID for
the retrieved data in the SQLDA. The following text describes that technique.

To change the encoding scheme for SQL statements that use a descriptor, set up the
SQLDA, and then make these additional changes to the SQLDA:
1. Put the character + in the sixth byte of field SQLDAID.
2. For each SQLVAR entry:
v Set the length field of SQLNAME to 8.
v Set the first two bytes of the data field of SQLNAME to X'0000'.
v Set the third and fourth bytes of the data field of SQLNAME to the CCSID,

in hexadecimal, in which you want the results to display, or to X'0000'.
X'0000' indicates that DB2 should use the default CCSID. If you specify a
nonzero CCSID, it must meet one of the following conditions:
– A row in catalog table SYSSTRINGS has a matching value for OUTCCSID.
– The Unicode conversion services support conversion to that CCSID. See

z/OS C/C++ Programming Guide for information about the conversions
supported.

If you are modifying the CCSID to retrieve the contents of an ASCII,
EBCDIC, or Unicode table on a DB2 UDB for z/OS system, and you
previously executed a DESCRIBE statement on the SELECT statement that
you are using to retrieve the data, the SQLDATA fields in the SQLDA that
you used for the DESCRIBE contain the ASCII or Unicode CCSID for that
table. To set the data portion of the SQLNAME fields for the SELECT, move
the contents of each SQLDATA field in the SQLDA from the DESCRIBE to
each SQLNAME field in the SQLDA for the SELECT. If you are using the
same SQLDA for the DESCRIBE and the SELECT, be sure to move the
contents of the SQLDATA field to SQLNAME before you modify the
SQLDATA field for the SELECT.

For REXX, you set the CCSID in the stem.n.SQLUSECCSID field instead of
setting the SQLDAID and SQLNAME fields.

For example, suppose that the table that contains WORKDEPT and PHONENO is
defined with CCSID ASCII. To retrieve data for columns WORKDEPT and
PHONENO in ASCII CCSID 437 (X'01B5'), change the SQLDA as shown in
Figure 188.

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA+ 8816 200 200

452 3 Addr FLDA Addr FLDAI

453 4 Addr FLDB Addr FLDBI 8

8

FLDA

CHAR(3)

FLDB

CHAR(4) FLDAI FLDBI

Indicator variables

(halfword)

X’000001B500000000’

X’000001B500000000’

Figure 188. SQL descriptor area for retrieving data in ASCII CCSID 437

622 Application Programming and SQL Guide

#
#

#
#



Using column labels
By default, DESCRIBE describes each column in the SQLNAME field by the
column name. You can tell it to use column labels instead by writing:
EXEC SQL

DESCRIBE STMT INTO :FULSQLDA USING LABELS;

In this case, SQLNAME contains nothing for a column with no label. If you prefer
to use labels wherever they exist, but column names where there are no labels,
write USING ANY. (Some columns, such as those derived from functions or
expressions, have neither name nor label; SQLNAME contains nothing for those
columns. For example, if you use a UNION to combine two columns that do not
have the same name and do not use a label, SQLNAME contains a string of length
zero.)

You can also write USING BOTH to obtain the name and the label when both
exist. However, to obtain both, you need a second set of occurrences of SQLVAR in
FULSQLDA. The first set contains descriptions of all the columns using names; the
second set contains descriptions using labels. This means that you must allocate a
longer SQLDA for the second DESCRIBE statement ((16 + SQLD * 88 bytes) instead
of (16 + SQLD * 44)). You must also put double the number of columns (SLQD * 2)
in the SQLN field of the second SQLDA. Otherwise, if not enough space is
available, DESCRIBE does not enter descriptions of any of the columns.

Describing tables with LOB and distinct type columns
In general, the steps you perform when you prepare an SQLDA to select rows
from a table with LOB or distinct type columns are similar to the steps you
perform if the table has no columns of this type. The only difference is that you
need to analyze some additional fields in the SQLDA for LOB or distinct type
columns.

To illustrate this, suppose that you want to execute this SELECT statement:
SELECT USER, A_DOC FROM DOCUMENTS;

The USER column cannot contain nulls and is of distinct type ID, defined like this:
CREATE DISTINCT TYPE SCHEMA1.ID AS CHAR(20);

The A_DOC column can contain nulls and is of type CLOB(1M).

The result table for this statement has two columns, but you need four SQLVAR
occurrences in your SQLDA because the result table contains a LOB type and a
distinct type. Suppose that you prepare and describe this statement into
FULSQLDA, which is large enough to hold four SQLVAR occurrences. FULSQLDA
looks like Figure 189.

The next steps are the same as for result tables without LOBs or distinct types:

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 2 192 4 4

452 20 Undefined 0 4 USER

409 0 Undefined 0 5 A_DOC

SQLVAR2 element 1 (44 bytes)

SQLVAR2 element 2 (44 bytes) 1 048 576

SCH1.ID7

SYSIBM.CLOB11

Figure 189. SQL descriptor area after describing a CLOB and distinct type

Chapter 24. Coding dynamic SQL in application programs 623

#
#
#
#
#
#
#



1. Analyze each SQLVAR description to determine the maximum amount of space
you need for the column value.
For a LOB type, retrieve the length from the SQLLONGL field instead of the
SQLLEN field.

2. Derive the address of some storage area of the required size.
For a LOB data type, you also need a 4-byte storage area for the length of the
LOB data. You can allocate this 4-byte area at the beginning of the LOB data or
in a different location.

3. Put this address in the SQLDATA field.
For a LOB data type, if you allocated a separate area to hold the length of the
LOB data, put the address of the length field in SQLDATAL. If the length field
is at beginning of the LOB data area, put 0 in SQLDATAL.

4. If the SQLTYPE field indicates that the value can be null, the program must
also put the address of an indicator variable in the SQLIND field.

Figure 190 shows the contents of FULSQLDA after you fill in pointers to the
storage locations.

Figure 191 on page 625 shows the contents of FULSQLDA after you execute a
FETCH statement.

Figure 190. SQL descriptor area after analyzing CLOB and distinct type descriptions and
acquiring storage

624 Application Programming and SQL Guide



Executing a varying-list SELECT statement dynamically
You can easily retrieve rows of the result table using a varying-list SELECT
statement. The statements differ only a little from those for the fixed-list example.

Open the cursor
If the SELECT statement contains no parameter marker, this step is simple enough.
For example:
EXEC SQL OPEN C1;

For cases when there are parameter markers, see “Executing arbitrary statements
with parameter markers” on page 626 below.

Fetch rows from the result table
This statement differs from the corresponding one for the case of a fixed-list select.
Write:
EXEC SQL

FETCH C1 INTO DESCRIPTOR :FULSQLDA;

The key feature of this statement is the clause INTO DESCRIPTOR :FULSQLDA.
That clause names an SQL descriptor area in which the occurrences of SQLVAR
point to other areas. Those other areas receive the values that FETCH returns. It is
possible to use that clause only because you previously set up FULSQLDA to look
like Figure 185 on page 620.

Figure 187 on page 620 shows the result of the FETCH. The data areas identified in
the SQLVAR fields receive the values from a single row of the result table.

Successive executions of the same FETCH statement put values from successive
rows of the result table into these same areas.

Close the cursor
This step is the same as for the fixed-list case. When no more rows need to be
processed, execute the following statement:
EXEC SQL CLOSE C1;

Figure 191. SQL descriptor area after executing FETCH on a table with CLOB and distinct
type columns

Chapter 24. Coding dynamic SQL in application programs 625

#
#

#
#
#
#
#



When COMMIT ends the unit of work containing OPEN, the statement in STMT
reverts to the unprepared state. Unless you defined the cursor using the WITH
HOLD option, you must prepare the statement again before you can reopen the
cursor.

Executing arbitrary statements with parameter markers
Consider, as an example, a program that executes dynamic SQL statements of
several kinds, including varying-list SELECT statements, any of which might
contain a variable number of parameter markers. This program might present your
users with lists of choices: choices of operation (update, select, delete); choices of
table names; choices of columns to select or update. The program also allows the
users to enter lists of employee numbers to apply to the chosen operation. From
this, the program constructs SQL statements of several forms, one of which looks
like this:
SELECT .... FROM DSN8810.EMP

WHERE EMPNO IN (?,?,?,...?);

The program then executes these statements dynamically.

When the number and types of parameters are known
In the preceding example, you do not know in advance the number of parameter
markers, and perhaps the kinds of parameter they represent. You can use
techniques described previously if you know the number and types of parameters,
as in the following examples:
v If the SQL statement is not SELECT, name a list of host variables in the

EXECUTE statement:
WRONG: EXEC SQL EXECUTE STMT;

RIGHT: EXEC SQL EXECUTE STMT USING :VAR1, :VAR2, :VAR3;

v If the SQL statement is SELECT, name a list of host variables in the OPEN
statement:
WRONG: EXEC SQL OPEN C1;

RIGHT: EXEC SQL OPEN C1 USING :VAR1, :VAR2, :VAR3;

In both cases, the number and types of host variables named must agree with the
number of parameter markers in STMT and the types of parameter they represent.
The first variable (VAR1 in the examples) must have the type expected for the first
parameter marker in the statement, the second variable must have the type
expected for the second marker, and so on. There must be at least as many
variables as parameter markers.

When the number and types of parameters are not known
When you do not know the number and types of parameters, you can adapt the
SQL descriptor area. Your program can include an unlimited number of SQLDAs,
and you can use them for different purposes. Suppose that an SQLDA, arbitrarily
named DPARM, describes a set of parameters.

The structure of DPARM is the same as that of any other SQLDA. The number of
occurrences of SQLVAR can vary, as in previous examples. In this case, every
parameter marker must have one SQLVAR. Each occurrence of SQLVAR describes
one host variable that replaces one parameter marker at run time. DB2 replaces the
parameter markers when a non-SELECT statement executes or when a cursor is
opened for a SELECT statement.

626 Application Programming and SQL Guide



You must fill in certain fields in DPARM before using EXECUTE or OPEN; you
can ignore the other fields.

Field Use when describing host variables for parameter markers

SQLDAID The seventh byte indicates whether more than one SQLVAR entry
is used for each parameter marker. If this byte is not blank, at least
one parameter marker represents a distinct type or LOB value, so
the SQLDA has more than one set of SQLVAR entries.

You do not set this field for a REXX SQLDA.

SQLDABC The length of the SQLDA, which is equal to SQLN * 44 + 16. You
do not set this field for a REXX SQLDA.

SQLN The number of occurrences of SQLVAR allocated for DPARM. You
do not set this field for a REXX SQLDA.

SQLD The number of occurrences of SQLVAR actually used. This number
must not be less than the number of parameter markers. In each
occurrence of SQLVAR, put information in the following fields:
SQLTYPE, SQLLEN, SQLDATA, SQLIND.

SQLTYPE The code for the type of variable, and whether it allows nulls.

SQLLEN The length of the host variable.

SQLDATA The address of the host variable.

For REXX, this field contains the value of the host variable.

SQLIND The address of an indicator variable, if needed.

For REXX, this field contains a negative number if the value in
SQLDATA is null.

SQLNAME Ignore.

Using the SQLDA with EXECUTE or OPEN
To indicate that the SQLDA called DPARM describes the host variables substituted
for the parameter markers at run time, use a USING DESCRIPTOR clause with
EXECUTE or OPEN.
v For a non-SELECT statement, write:

EXEC SQL EXECUTE STMT USING DESCRIPTOR :DPARM;

v For a SELECT statement, write:
EXEC SQL OPEN C1 USING DESCRIPTOR :DPARM;

How bind options REOPT(ALWAYS) and REOPT(ONCE) affect
dynamic SQL

When you specify the bind option REOPT(ALWAYS), DB2 reoptimizes the access
path at run time for SQL statements that contain host variables, parameter
markers, or special registers. The option REOPT(ALWAYS) has the following effects
on dynamic SQL statements:
v When you specify the option REOPT(ALWAYS), DB2 automatically uses

DEFER(PREPARE), which means that DB2 waits to prepare a statement until it
encounters an OPEN or EXECUTE statement.

v When you execute a DESCRIBE statement and then an EXECUTE statement on a
non-SELECT statement, DB2 prepares the statement twice: Once for the
DESCRIBE statement and once for the EXECUTE statement. DB2 uses the values
in the input variables only during the second PREPARE. These multiple

Chapter 24. Coding dynamic SQL in application programs 627

|

|

|

|

|



PREPAREs can cause performance to degrade if your program contains many
dynamic non-SELECT statements. To improve performance, consider putting the
code that contains those statements in a separate package and then binding that
package with the option REOPT(NONE).

v If you execute a DESCRIBE statement before you open a cursor for that
statement, DB2 prepares the statement twice. If, however, you execute a
DESCRIBE statement after you open the cursor, DB2 prepares the statement only
once. To improve the performance of a program bound with the option
REOPT(ALWAYS), execute the DESCRIBE statement after you open the cursor.
To prevent an automatic DESCRIBE before a cursor is opened, do not use a
PREPARE statement with the INTO clause.

v If you use predictive governing for applications bound with REOPT(ALWAYS),
DB2 does not return a warning SQLCODE when dynamic SQL statements
exceed the predictive governing warning threshold. DB2 does return an error
SQLCODE when dynamic SQL statements exceed the predictive governing error
threshold. DB2 returns the error SQLCODE for an EXECUTE or OPEN
statement.

When you specify the bind option REOPT(ONCE), DB2 optimizes the access path
only once, at the first EXECUTE or OPEN, for SQL statements that contain host
variables, parameter markers, or special registers. The option REOPT(ONCE) has
the following effects on dynamic SQL statements:
v When you specify the option REOPT(ONCE), DB2 automatically uses

DEFER(PREPARE), which means that DB2 waits to prepare a statement until it
encounters an OPEN or EXECUTE statement.

v When DB2 prepares a statement using REOPT(ONCE), it saves the access path
in the dynamic statement cache. This access path is used each time the statement
is run, until the statement that is in the cache is invalidated (or removed from
the cache) and needs to be rebound.

v The DESCRIBE statement has the following effects on dynamic statements that
are bound with REOPT(ONCE):
– When you execute a DESCRIBE statement before an EXECUTE statement on a

non-SELECT statement, DB2 prepares the statement twice if it is not already
saved in the cache: Once for the DESCRIBE statement and once for the
EXECUTE statement. DB2 uses the values of the input variables only during
the second time the statement is prepared. It then saves the statement in the
cache. If you execute a DESCRIBE statement before an EXECUTE statement
on a non-SELECT statement that has already been saved in the cache, DB2
prepares the non-SELECT statement only for the DESCRIBE statement.

– If you execute DESCRIBE on a statement before you open a cursor for that
statement, DB2 always prepares the statement on DESCRIBE. However, DB2
will not prepare the statement again on OPEN if the statement has already
been saved in the cache. If you execute DESCRIBE on a statement after you
open a cursor for that statement, DB2 prepared the statement only once if it is
not already saved in the cache. If the statement is already saved in the cache
and you execute DESCRIBE after you open a cursor for that statement, DB2
does not prepare the statement, it used the statement that is saved in the
cache.

To improve the performance of a program that is bound with REOPT(ONCE),
execute the DESCRIBE statement after you open a cursor. To prevent an
automatic DESCRIBE before a cursor is opened, do not use a PREPARE
statement with the INTO clause.

628 Application Programming and SQL Guide

|

|

|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|



v If you use predictive governing for applications that are bound with
REOPT(ONCE), DB2 does not return a warning SQLCODE when dynamic SQL
statements exceed the predictive governing warning threshold. DB2 does return
an error SQLCODE when dynamic SQL statements exceed the predictive
governing error threshold. DB2 returns the error SQLCODE for an EXECUTE or
OPEN statement.

Using dynamic SQL in COBOL
You can use all forms of dynamic SQL in all supported versions of COBOL. For a
detailed description and a working example of the method, see “Sample COBOL
dynamic SQL program” on page 1033.

Chapter 24. Coding dynamic SQL in application programs 629

|
|
|
|
|
|



630 Application Programming and SQL Guide



Chapter 25. Using stored procedures for client/server
processing

This chapter covers the following topics:
v “Introduction to stored procedures”
v “An example of a simple stored procedure” on page 632
v “Setting up the stored procedures environment” on page 636
v “Writing and preparing an external stored procedure” on page 643
v “Writing and preparing an SQL procedure” on page 659
v “Writing and preparing an application to use stored procedures” on page 683
v “Running a stored procedure” on page 721
v “Testing a stored procedure” on page 727

This chapter contains information that applies to all stored procedures and specific
information about stored procedures in languages other than Java. For information
about writing, preparing, and running Java stored procedures, see DB2 Application
Programming Guide and Reference for Java.

Introduction to stored procedures
A stored procedure is a compiled program, stored at a DB2 local or remote server,
that can execute SQL statements. A typical stored procedure contains two or more
SQL statements and some manipulative or logical processing in a host language. A
client application program uses the SQL statement CALL to invoke the stored
procedure.

Consider using stored procedures for a client/server application that does at least
one of the following things:
v Executes multiple remote SQL statements.

Remote SQL statements can create many network send and receive operations,
which results in increased processor costs.
Stored procedures can encapsulate many of your application's SQL statements
into a single message to the DB2 server, reducing network traffic to a single send
and receive operation for a series of SQL statements.
Locks on DB2 tables are not held across network transmissions, which reduces
contention for resources at the server.

v Accesses tables from a dynamic SQL environment where table privileges for the
application that is running are undesirable.
Stored procedures allow static SQL authorization from a dynamic environment.

v Accesses host variables for which you want to guarantee security and integrity.
Stored procedures remove SQL applications from the workstation, which
prevents workstation users from manipulating the contents of sensitive SQL
statements and host variables.

v Creates a result set of rows to return to the client application.

Figure 192 on page 632 and Figure 193 on page 632 illustrate the difference
between using stored procedures and not using stored procedures for processing in
a client/server environment.

Figure 192 on page 632 shows processing without using stored procedures. A client
application embeds SQL statements and communicates with the server separately

© Copyright IBM Corp. 1983, 2012 631



for each statement. This results in increased network traffic and processor costs.

Figure 193 shows processing with stored procedures. The same series of SQL
statements that are illustrated in Figure 192 uses a single send and receive
operation, reducing network traffic and the cost of processing these statements.

An example of a simple stored procedure
Suppose that an application runs on a workstation client and calls a stored
procedure A on the DB2 server at location LOCA. Stored procedure A performs the
following operations:

Client DB2 for z/OS

EXEC SQL SELECT …

EXEC SQL UPDATE …

EXEC SQL INSERT …
Perform SQL processing

Perform SQL processing

Perform SQL processing

Figure 192. Processing without stored procedures

Client EXEC SQL
CALL PROCX

z/OS system

DB2 stored
procedures region

EXEC SQL
DECLARE C1...

EXEC SQL
OPEN C1...

EXEC SQL
UPDATE...

EXEC SQL
INSERT...

PROCX end

DB2

Schedule
PROCX

Perform SQL

Perform SQL

Perform SQL

Return values
and result set
to client

Figure 193. Processing with stored procedures

632 Application Programming and SQL Guide



1. Receives a set of parameters containing the data for one row of the employee to
project activity table (DSN8810.EMPPROJACT). These parameters are input
parameters in the SQL statement CALL:
v EMP: employee number
v PRJ: project number
v ACT: activity ID
v EMT: percent of employee's time required
v EMS: date the activity starts
v EME: date the activity is due to end

2. Declares a cursor, C1, with the option WITH RETURN, that is used to return a
result set containing all rows in EMPPROJACT to the workstation application
that called the stored procedure.

3. Queries table EMPPROJACT to determine whether a row exists where columns
PROJNO, ACTNO, EMSTDATE, and EMPNO match the values of parameters
PRJ, ACT, EMS, and EMP. (The table has a unique index on those columns.
There is at most one row with those values.)

4. If the row exists, executes an SQL statement UPDATE to assign the values of
parameters EMT and EME to columns EMPTIME and EMENDATE.

5. If the row does not exist (SQLCODE +100), executes an SQL statement INSERT
to insert a new row with all the values in the parameter list.

6. Opens cursor C1. This causes the result set to be returned to the caller when
the stored procedure ends.

7. Returns two parameters, containing these values:
v A code to identify the type of SQL statement last executed: UPDATE or

INSERT.
v The SQLCODE from that statement.

Figure 194 on page 634 illustrates the steps that are involved in executing this
stored procedure.

Chapter 25. Using stored procedures for client/server processing 633



Notes to Figure 194:

1. The workstation application uses the SQL CONNECT statement to create a
conversation with DB2.

2. DB2 creates a DB2 thread to process SQL requests.

1

2

3

4

5

6

7

8

9

10

EXEC SQL

CONNECT TO

LOCA;

EXEC SQL

CALL A(:EMP,

:PRJ,:ACT,:EMT,

:EMS,:EME,

:TYPE,:CODE);

EXEC SQL

COMMIT;

(or ROLLBACK)

Receive result set

Control returns

to application

Result of

COMMIT or

ROLLBACK

Notes User Workstation DB2 System DB2 Stored Procedures

Address Space

Create Thread

Get information

from SYSIBM.

SYSROUTINES

Prepare

parameter list and

pass control to

stored procedure

Stored Procedure A

EXEC SQL

DECLARE C1 CURSOR

WITH RETURN

FOR SELECT * FROM

EMPPROJACT;

USE SQL UPDATE to

update EMPPROJACT

with input parameter

values

If SQLCODE=+100,

use SQL INSERT to

add a row with the

values in the

parameter list

EXEC SQL OPEN C1;

Return output parameters

:TYPE and :CODE and

a result set that contains

all rows in EMPPROJACT

Figure 194. Stored procedure overview

634 Application Programming and SQL Guide



3. The SQL statement CALL tells the DB2 server that the application is going to
run a stored procedure. The calling application provides the necessary
parameters.

4. The plan for the client application contains information from catalog table
SYSROUTINES about stored procedure A. DB2 caches all rows in the table
associated with A, so future references to A do not require I/O to the table.

5. DB2 passes information about the request to the stored procedures address
space, and the stored procedure begins execution.

6. The stored procedure executes SQL statements.
DB2 verifies that the owner of the package or plan containing the SQL
statement CALL has EXECUTE authority for the package associated with the
DB2 stored procedure.
One of the SQL statements opens a cursor that has been declared WITH
RETURN. This causes a result set to be returned to the workstation
application when the procedure ends.
Any SQLCODE that is issued within an external stored procedure is not
returned to the workstation application in the SQLCA (as the result of the
CALL statement).

7. If an error is not encountered, the stored procedure assigns values to the
output parameters and exits.
Control returns to the DB2 stored procedures address space, and from there to
the DB2 system. If the stored procedure definition contains COMMIT ON
RETURN NO, DB2 does not commit or roll back any changes from the SQL in
the stored procedure until the calling program executes an explicit COMMIT
or ROLLBACK statement. If the stored procedure definition contains
COMMIT ON RETURN YES, and the stored procedure executed successfully,
DB2 commits all changes.

8. Control returns to the calling application, which receives the output
parameters and the result set. DB2 then:
v Closes all cursors that the stored procedure opened, except those that the

stored procedure opened to return result sets.
v Discards all SQL statements that the stored procedure prepared.
v Reclaims the working storage that the stored procedure used.
The application can call more stored procedures, or it can execute more SQL
statements. DB2 receives and processes the COMMIT or ROLLBACK request.
The COMMIT or ROLLBACK operation covers all SQL operations, whether
executed by the application or by stored procedures, for that unit of work.
If the application involves IMS or CICS, similar processing occurs based on
the IMS or CICS sync point rather than on an SQL COMMIT or ROLLBACK
statement.

9. DB2 returns a reply message to the application describing the outcome of the
COMMIT or ROLLBACK operation.

10. The workstation application executes the following steps to retrieve the
contents of table EMPPROJACT, which the stored procedure has returned in a
result set:
a. Declares a result set locator for the result set being returned.
b. Executes the ASSOCIATE LOCATORS statement to associate the result set

locator with the result set.
c. Executes the ALLOCATE CURSOR statement to associate a cursor with the

result set.
d. Executes the FETCH statement with the allocated cursor multiple times to

retrieve the rows in the result set.

Chapter 25. Using stored procedures for client/server processing 635

|



Setting up the stored procedures environment
This section discusses the tasks that must be performed before stored procedures
can run. Most of this information is for system administrators, but application
programmers should read “Defining your stored procedure to DB2” on page 637.
That section explains how to use the CREATE PROCEDURE statement to define a
stored procedure to DB2.

The system administrator needs to perform these tasks to prepare the DB2
subsystem to run stored procedures:
v Move existing stored procedures to a WLM environment, or set up WLM

environments for new stored procedures.
You can run only existing stored procedures in a DB2-established stored
procedure address space; the support for this type of address space is being
deprecated. If you are currently using DB2-established address spaces, see
“Moving stored procedures to a WLM-established environment (for system
administrators)” on page 642 for information about what needs to be done.

v Define JCL procedures for the stored procedures address spaces.
Member DSNTIJMV of data set DSN810.SDSNSAMP contains sample JCL
procedures for starting WLM-established and DB2-established address spaces. If
you enter a WLM procedure name or a DB2 procedure name in installation
panel DSNTIPX, DB2 customizes a JCL procedure for you. See Part 2 of DB2
Installation Guide for details.

v For WLM-established address spaces, define WLM application environments for
groups of stored procedures and associate a JCL startup procedure with each
application environment.
See Part 5 (Volume 2) of DB2 Administration Guide for information about how to
do this.

v If you plan to execute stored procedures that use the ODBA interface to access
IMS databases, modify the startup procedures for the address spaces in which
those stored procedures will run in the following way:
– Add the data set name of the IMS data set that contains the ODBA callable

interface code (usually IMS.RESLIB) to the end of the STEPLIB concatenation.
– After the STEPLIB DD statement, add a DFSRESLB DD statement that names

the IMS data set that contains the ODBA callable interface code.
v If you plan to execute LANGUAGE JAVA stored procedures, set up the JCL and

install the software prerequisites, as described in DB2 Application Programming
Guide and Reference for Java.

v Install Language Environment and the appropriate compilers.
See z/OS Language Environment Customization for information about installing
Language Environment.
See “Language requirements for the stored procedure and its caller” on page 643
for minimum compiler and Language Environment requirements.

The system administrator needs to perform these tasks for each stored procedure:
v Be sure that the library in which the stored procedure resides is the STEPLIB

concatenation of the startup procedure for the stored procedures address space.
v Use the CREATE PROCEDURE statement to define the stored procedure to DB2

and ALTER PROCEDURE to modify the definition.
See “Defining your stored procedure to DB2” on page 637 for details.

v Perform security tasks for the stored procedure.

636 Application Programming and SQL Guide

|
|

|
|
|
|
|



See Part 3 of DB2 Administration Guide for more information.

Defining your stored procedure to DB2
Before a stored procedure can run, you must define it to DB2. Use the SQL
statement CREATE PROCEDURE to define a stored procedure to DB2. To alter the
definition, use the ALTER PROCEDURE statement.

Table 77 lists the characteristics of a stored procedure and the CREATE
PROCEDURE and ALTER PROCEDURE parameters that correspond to those
characteristics.

Table 77. Characteristics of a stored procedure

Characteristic CREATE/ALTER PROCEDURE parameter

Stored procedure name
Parameter declarations

PROCEDURE

Parameter types and encoding schemes PROCEDURE

External name EXTERNAL NAME

Language LANGUAGE ASSEMBLE
LANGUAGE C
LANGUAGE COBOL
LANGUAGE JAVA
LANGUAGE PLI
LANGUAGE REXX
LANGUAGE SQL

Deterministic or not deterministic NOT DETERMINISTIC
DETERMINISTIC

Types of SQL statements in the stored procedure NO SQL
CONTAINS SQL
READS SQL DATA
MODIFIES SQL DATA

Parameter style PARAMETER STYLE SQL1

PARAMETER STYLE GENERAL
PARAMETER STYLE GENERAL WITH NULLS
PARAMETER STYLE JAVA

Address space for stored procedures FENCED

Package collection NO COLLID
COLLID collection-id

WLM environment WLM ENVIRONMENT name
WLM ENVIRONMENT name,*

How long a stored procedure can run ASUTIME NO LIMIT
ASUTIME LIMIT integer

Load module stays in memory STAY RESIDENT NO
STAY RESIDENT YES

Program type PROGRAM TYPE MAIN
PROGRAM TYPE SUB 2

Security SECURITY DB2
SECURITY USER
SECURITY DEFINER

Run-time options RUN OPTIONS options3

Maximum number of returned result sets DYNAMIC RESULT SETS integer

Chapter 25. Using stored procedures for client/server processing 637

|



Table 77. Characteristics of a stored procedure (continued)

Characteristic CREATE/ALTER PROCEDURE parameter

Commit work on return from stored procedure COMMIT ON RETURN YES
COMMIT ON RETURN NO

Call with null arguments CALLED ON NULL INPUT

Pass DB2 environment information NO DBINFO
DBINFO4

Encoding scheme for all string parameters PARAMETER CCSID EBCDIC
PARAMETER CCSID ASCII
PARAMETER CCSID UNICODE

For procedures that are defined as LANGUAGE C or
LANGUAGE SQL procedures, the representation of
VARCHAR parameters.

PARAMETER VARCHAR NULTERM
PARAMETER VARCHAR STRUCTURE5

Number of abnormal terminations before the stored
procedure is stopped

STOP AFTER SYSTEM DEFAULT FAILURES
STOP AFTER n FAILURES
CONTINUE AFTER FAILURE

Notes:

1. This value is invalid for a REXX stored procedure.

2. This value is ignored for a REXX stored procedure. Specifying PROGRAM TYPE SUB with REXX will not result
in an error; however, a value of MAIN will be stored in the DB2 catalog and used at runtime.

3. This value is ignored for a REXX stored procedure.

4. DBINFO is valid only with PARAMETER STYLE SQL.

5. The PARAMETER VARCHAR clause can be specified in CREATE PROCEDURE statements only.

For a complete explanation of the parameters in a CREATE PROCEDURE or
ALTER PROCEDURE statement, see Chapter 2 of DB2 SQL Reference.

Passing environment information to the stored procedure
If you specify the DBINFO parameter when you define a stored procedure with
PARAMETER STYLE SQL, DB2 passes a structure to the stored procedure that
contains environment information. Because the structure is also used for
user-defined functions, some fields in the structure are not used for stored
procedures. The DBINFO structure includes the following information:

Location name length
An unsigned 2-byte integer field. It contains the length of the location name in
the next field.

Location name
A 128-byte character field. It contains the name of the location to which the
invoker is currently connected.

Authorization ID length
An unsigned 2-byte integer field. It contains the length of the authorization ID
in the next field.

Authorization ID
A 128-byte character field. It contains the authorization ID of the application
from which the stored procedure is invoked, padded on the right with blanks.
If this stored procedure is nested within other routines (user-defined functions
or stored procedures), this value is the authorization ID of the application that
invoked the highest-level routine.

638 Application Programming and SQL Guide

#
#
#

|
|

|
|

|

#

|



Subsystem code page
A 48-byte structure that consists of 10 integer fields and an eight-byte reserved
area. These fields provide information about the CCSIDs of the subsystem from
which the stored procedure is invoked.

Table qualifier length
An unsigned 2-byte integer field. This field contains 0.

Table qualifier
A 128-byte character field. This field is not used for stored procedures.

Table name length
An unsigned 2-byte integer field. This field contains 0.

Table name
A 128-byte character field. This field is not used for stored procedures.

Column name length
An unsigned 2-byte integer field. This field contains 0.

Column name
A 128-byte character field. This field is not used for stored procedures.

Product information
An 8-byte character field that identifies the product on which the stored
procedure executes. This field has the form pppvvrrm, where:
v ppp is a 3-byte product code:

ARI DB2 Server for VSE & VM

DSN DB2 UDB for z/OS

QSQ DB2 UDB for iSeries

SQL DB2 UDB for Linux, UNIX, and Windows
v vv is a two-digit version identifier.
v rr is a two-digit release identifier.
v m is a one-digit maintenance level identifier.

Reserved area
2 bytes.

Operating system
A 4-byte integer field. It identifies the operating system on which the program
that invokes the user-defined function runs. The value is one of these:

0 Unknown

1 OS/2

3 Windows

4 AIX®

5 Windows NT

6 HP-UX

7 Solaris

8 z/OS

13 Siemens Nixdorf

15 Windows 95

16 SCO UNIX

Chapter 25. Using stored procedures for client/server processing 639

|
|



18 Linux

19 DYNIX/ptx

24 Linux for S/390

25 Linux for zSeries

26 Linux/IA64

27 Linux/PPC

28 Linux/PPC64

29 Linux/AMD64

400 iSeries

Number of entries in table function column list
An unsigned 2-byte integer field. This field contains 0.

Reserved area
26 bytes.

Table function column list pointer
This field is not used for stored procedures.

Unique application identifier
This field is a pointer to a string that uniquely identifies the application's
connection to DB2. The string is regenerated at for each connection to DB2.

The string is the LUWID, which consists of a fully-qualified LU network name
followed by a period and an LUW instance number. The LU network name
consists of a one- to eight-character network ID, a period, and a one- to
eight-character network LU name. The LUW instance number consists of 12
hexadecimal characters that uniquely identify the unit of work.

Reserved area
20 bytes.

See “Linkage conventions ” on page 686 for an example of coding the DBINFO
parameter list in a stored procedure.

Example of a stored procedure definition
Suppose that you write and prepare a stored procedure that has these
characteristics:
v The name is B.
v It takes two parameters:

– An integer input parameter named V1
– A character output parameter of length 9 named V2

v It is written in the C language.
v It contains no SQL statements.
v The same input always produces the same output.
v The load module name is SUMMOD.
v The package collection name is SUMCOLL.
v It should run for no more than 900 CPU service units.
v The parameters can have null values.
v It should be deleted from memory when it completes.
v The Language Environment run-time options it needs are:

MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)

640 Application Programming and SQL Guide

||

||

||

||

||

||

||

||

|



v It is part of the WLM application environment named PAYROLL.
v It runs as a main program.
v It does not access non-DB2 resources, so it does not need a special RACF

environment.
v It can return at most 10 result sets.
v When control returns to the client program, DB2 should not commit updates

automatically.

This CREATE PROCEDURE statement defines the stored procedure to DB2:
CREATE PROCEDURE B(IN V1 INTEGER, OUT V2 CHAR(9))

LANGUAGE C
DETERMINISTIC
NO SQL
EXTERNAL NAME SUMMOD
COLLID SUMCOLL
ASUTIME LIMIT 900
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS ’MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)’
WLM ENVIRONMENT PAYROLL
PROGRAM TYPE MAIN
SECURITY DB2
DYNAMIC RESULT SETS 10
COMMIT ON RETURN NO;

Later, you need to make the following changes to the stored procedure definition:
v It selects data from DB2 tables but does not modify DB2 data.
v The parameters can have null values, and the stored procedure can return a

diagnostic string.
v The length of time the stored procedure runs should not be limited.
v If the stored procedure is called by another stored procedure or a user-defined

function, the stored procedure uses the WLM environment of the caller.

Execute this ALTER PROCEDURE statement to make the necessary changes:
ALTER PROCEDURE B

READS SQL DATA
ASUTIME NO LIMIT
PARAMETER STYLE SQL
WLM ENVIRONMENT (PAYROLL,*);

Refreshing the stored procedures environment (for system
administrators)

Depending on what has changed in a stored procedures environment, you might
need to perform one or more of these tasks:
v Refresh Language Environment.

Do this when someone has modified a load module for a stored procedure, and
that load module is cached in a stored procedures address space. When you
refresh Language Environment, the cached load module is purged. On the next
invocation of the stored procedure, the new load module is loaded.

v Restart a stored procedures address space.
You might stop and then start a stored procedures address space because you
need to make a change to the startup JCL for a stored procedures address space.

The method that you use to perform these tasks depends on whether you are
using WLM-established or DB2-established address spaces.

Chapter 25. Using stored procedures for client/server processing 641

|



For DB2-established address spaces: Use the DB2 commands START PROCEDURE
and STOP PROCEDURE to perform all of these tasks.

For WLM-established address spaces:

v If WLM is operating in goal mode:
– Use this z/OS command to refresh a WLM environment when you need to

load a new version of a stored procedure. Refreshing the WLM environment
starts a new instance of each address space that is active for this WLM
environment. Existing address spaces stop when the current requests that are
executing in those address spaces complete.
VARY WLM,APPLENV=name,REFRESH

name is the name of a WLM application environment associated with a group
of stored procedures. When you execute this command, you affect all stored
procedures that are associated with the application environment.
You can call the DB2-supplied stored procedure WLM_REFRESH to refresh a
WLM environment from a remote workstation. For information about
WLM_REFRESH, see “WLM environment refresh stored procedure
(WLM_REFRESH)” on page 1133.

– Use this z/OS command to stop all stored procedures address spaces that are
associated with WLM application environment name. The address spaces stop
when the current requests that are executing in those address spaces
complete.
VARY WLM,APPLENV=name,QUIESCE

– Use this z/OS command to start all stored procedures address spaces that are
associated with WLM application environment name. New address spaces
start when all JCL changes are established. Until that time, work requests that
use the new address spaces are queued.
VARY WLM,APPLENV=name,RESUME

See z/OS MVS Planning: Workload Management for more information about the
command VARY WLM.

v If WLM is operating in compatibility mode:
– Use this z/OS command to stop a WLM-established stored procedures

address space.
CANCEL address-space-name

– Use this z/OS command to start a WLM-established stored procedures
address space.
START address-space-name

In compatibility mode, you must stop and start stored procedures address
spaces when you refresh Language Environment.

Moving stored procedures to a WLM-established environment
(for system administrators)

If you have existing stored procedures that use DB2-established address spaces,
you need to move as many as possible to a WLM environment. To move stored
procedures from a DB2-established environment to a WLM-established
environment, follow these steps:
1. Define JCL procedures for the stored procedures address spaces.

Member DSNTIJMV of data set DSN810.SDSNSAMP contains sample JCL
procedures for starting WLM-established address spaces.

642 Application Programming and SQL Guide

|
|



2. Define WLM application environments for groups of stored procedures and
associate a JCL startup procedure with each application environment.
See Part 5 (Volume 2) of DB2 Administration Guide for information about how to
do this.

3. Enter the DB2 command STOP PROCEDURE(*) to stop all activity in the
DB2-established stored procedures address space.

4. For each stored procedure, execute ALTER PROCEDURE with the WLM
ENVIRONMENT parameter to specify the name of the application
environment.

5. Relink all of your existing stored procedures with DSNRLI, the language
interface module for the Resource Recovery Services attachment facility
(RRSAF). Use JCL and linkage editor control statements similar to those shown
in Figure 195.

6. If WLM is operating in compatibility mode, start the new WLM-established
stored procedures address spaces by using this z/OS command:
START address-space-name

If WLM is operating in goal mode, the address spaces start automatically.

Writing and preparing an external stored procedure
A stored procedure is a DB2 application program that runs in a stored procedures
address space.

Two types of stored procedures are external stored procedures and SQL procedures:
v External stored procedures are written in a host language. The source code for

an external stored procedure is separate from the definition for the stored
procedure. An external stored procedure is much like any other SQL application.
It can include static or dynamic SQL statements, IFI calls, and DB2 commands
issued through IFI.

v SQL procedures are written using SQL procedures statements, which are part of
a CREATE PROCEDURE statement.

This section discusses writing and preparing external stored procedures. “Writing
and preparing an SQL procedure” on page 659 discusses writing and preparing
SQL procedures.

Language requirements for the stored procedure and its caller
You can write an external stored procedure in Assembler, C, C++, COBOL, Java,
REXX, or PL/I. All programs must be designed to run using Language

//LINKRRS EXEC PGM=IEWL,
// PARM=’LIST,XREF,MAP’
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=USER.RUNLIB.LOAD
// DD DISP=SHR,DSN=DSN810.SDSNLOAD
//SYSLMOD DD DISP=SHR,DSN=USER.RUNLIB.LOAD
//SYSUT1 DD SPACE=(1024,(50,50)),UNIT=SYSDA
//SYSLIN DD *
ENTRY STORPROC
REPLACE DSNALI
INCLUDE SYSLIB(DSNRLI)
INCLUDE SYSLMOD(STORPROC)
NAME STORPROC(R)

Figure 195. Linking existing stored procedures with RRSAF

Chapter 25. Using stored procedures for client/server processing 643

#
#
#
#
#
#
#
#
#
#
#
#
#



Environment. Your COBOL and C++ stored procedures can contain object-oriented
extensions. See “Coding considerations for C and C++” on page 186 and “Coding
considerations for object-oriented extensions in COBOL” on page 219 for
information about including object-oriented extensions in SQL applications. For a
list of the minimum compiler and Language Environment requirements, see DB2
Release Planning Guide.For information about writing Java stored procedures, see
DB2 Application Programming Guide and Reference for Java. For information about
writing REXX stored procedures, see “Writing a REXX stored procedure” on page
656.

The program that calls the stored procedure can be in any language that supports
the SQL CALL statement. ODBC applications can use an escape clause to pass a
stored procedure call to DB2.

Calling other programs
A stored procedure can consist of more than one program, each with its own
package. Your stored procedure can call other programs, stored procedures, or
user-defined functions. Use the facilities of your programming language to call
other programs.

If the stored procedure calls other programs that contain SQL statements, each of
those called programs must have a DB2 package. The owner of the package or
plan that contains the CALL statement must have EXECUTE authority for all
packages that the other programs use.

When a stored procedure calls another program, DB2 determines which collection
the called program's package belongs to in one of the following ways:
v If the stored procedure definition contains COLLID collection-id, DB2 uses

collection-id.
v If the stored procedure executes SET CURRENT PACKAGE PATH and contains

the NO COLLID option, the called program's package comes from the list of
collections in the CURRENT PACKAGE PATH special register. For example, if
CURRENT PACKAGE PATH contains the list COLL1, COLL2, COLL3, COLL4,
DB2 searches for the first package (in the order of the list) that exists in these
collections.

v If the stored procedure does not execute SET CURRENT PACKAGE PATH and
instead executes SET CURRENT PACKAGESET, the called program's package
comes from the collection that is specified in the CURRENT PACKAGESET
special register.

v If the stored procedure does not execute SET CURRENT PACKAGE PATH, SET
CURRENT PACKAGESET, and if the stored procedure definition contains the
NO COLLID option, DB2 uses the collection ID of the package that contains the
SQL statement CALL.
When control returns from the stored procedure, DB2 restores the value of the
CURRENT PACKAGESET special register to the value it contained before the
client program executed the SQL statement CALL.

Using reentrant code
Whenever possible, prepare your stored procedures to be reentrant. Using
reentrant stored procedures can lead to improved performance for the following
reasons:
v A reentrant stored procedure does not have to be loaded into storage every time

it is called.

644 Application Programming and SQL Guide

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|



v A single copy of the stored procedure can be shared by multiple tasks in the
stored procedures address space. This decreases the amount of virtual storage
used for code in the stored procedures address space.

To prepare a stored procedure as reentrant, compile it as reentrant and link-edit it
as reentrant and reusable.

For instructions on compiling programs to be reentrant, see the appropriate
language manual. For information about using the binder to produce reentrant and
reusable load modules, see z/OS MVS: Program Management User's Guide and
Reference.

To make a reentrant stored procedure remain resident in storage, specify STAY
RESIDENT YES in the CREATE PROCEDURE or ALTER PROCEDURE statement
for the stored procedure.

If your stored procedure cannot be reentrant, link-edit it as non-reentrant and
non-reusable. The non-reusable attribute prevents multiple tasks from using a
single copy of the stored procedure at the same time. A non-reentrant stored
procedure must not remain in storage. You therefore need to specify STAY
RESIDENT NO in the CREATE PROCEDURE or ALTER PROCEDURE statement
for the stored procedure.

Writing a stored procedure as a main program or subprogram
A stored procedure that runs in a WLM-established address space and uses
Language Environment Release 1.7 or a subsequent release can be either a main
program or a subprogram. A stored procedure that runs as a subprogram can
perform better because Language Environment does less processing for it.

In general, a subprogram must do the following extra tasks that Language
Environment performs for a main program:
v Initialization and cleanup processing
v Allocating and freeing storage
v Closing all open files before exiting

When you code stored procedures as subprograms, follow these rules:
v Follow the language rules for a subprogram. For example, you cannot perform

I/O operations in a PL/I subprogram.
v Avoid using statements that terminate the Language Environment enclave when

the program ends. Examples of such statements are STOP or EXIT in a PL/I
subprogram, or STOP RUN in a COBOL subprogram. If the enclave terminates
when a stored procedure ends, and the client program calls another stored
procedure that runs as a subprogram, Language Environment must build a new
enclave. As a result, the benefits of coding a stored procedure as a subprogram
are lost.

v In COBOL stored procedures that are defined as PROGRAM TYPE SUB and
STAY RESIDENT YES, if you use stored procedure parameters as host variables,
set the SQL-INIT-FLAG variable to 0. This variable is generated by the DB2
precompiler. Setting it to 0 ensures that the SQLDA is updated with the current
addresses.

Table 78 on page 646 summarizes the characteristics that define a main program
and a subprogram.

Chapter 25. Using stored procedures for client/server processing 645

#
#
#
#

#
#
#
#
#



Table 78. Characteristics of main programs and subprograms

Language Main program Subprogram

Assembler MAIN=YES is specified in the
invocation of the CEEENTRY
macro.

MAIN=NO is specified in the
invocation of the CEEENTRY
macro.

C Contains a main() function. Pass
parameters to it through argc and
argv.

A fetchable function. Pass
parameters to it explicitly.

COBOL A COBOL program that ends with
GOBACK

A dynamically loaded subprogram
that ends with GOBACK

PL/I Contains a procedure declared with
OPTIONS(MAIN)

A procedure declared with
OPTIONS(FETCHABLE)

Figure 196 shows an example of coding a C stored procedure as a subprogram.

/******************************************************************/
/* This C subprogram is a stored procedure that uses linkage */
/* convention GENERAL and receives 3 parameters. */
/******************************************************************/
#pragma linkage(cfunc,fetchable)
#include <stdlib.h>
void cfunc(char p1[11],long *p2,short *p3)
{

/****************************************************************/
/* Declare variables used for SQL operations. These variables */
/* are local to the subprogram and must be copied to and from */
/* the parameter list for the stored procedure call. */
/****************************************************************/
EXEC SQL BEGIN DECLARE SECTION;

char parm1[11];
long int parm2;
short int parm3;

EXEC SQL END DECLARE SECTION;

Figure 196. A C stored procedure coded as a subprogram (Part 1 of 2)

646 Application Programming and SQL Guide



Figure 197 shows an example of coding a C++ stored procedure as a subprogram.

/*************************************************************/
/* Receive input parameter values into local variables. */
/*************************************************************/
strcpy(parm1,p1);
parm2 = *p2;
parm3 = *p3;
/*************************************************************/
/* Perform operations on local variables. */
/*************************************************************/

...
/*************************************************************/
/* Set values to be passed back to the caller. */
/*************************************************************/
strcpy(parm1,"SETBYSP");
parm2 = 100;
parm3 = 200;
/*************************************************************/
/* Copy values to output parameters. */
/*************************************************************/
strcpy(p1,parm1);
*p2 = parm2;
*p3 = parm3;

}

Figure 196. A C stored procedure coded as a subprogram (Part 2 of 2)

/******************************************************************/
/* This C++ subprogram is a stored procedure that uses linkage */
/* convention GENERAL and receives 3 parameters. */
/* The extern statement is required. */
/******************************************************************/
extern "C" void cppfunc(char p1[11],long *p2,short *p3);
#pragma linkage(cppfunc,fetchable)
#include <stdlib.h>
EXEC SQL INCLUDE SQLCA;
void cppfunc(char p1[11],long *p2,short *p3)
{

/****************************************************************/
/* Declare variables used for SQL operations. These variables */
/* are local to the subprogram and must be copied to and from */
/* the parameter list for the stored procedure call. */
/****************************************************************/
EXEC SQL BEGIN DECLARE SECTION;

char parm1[11];
long int parm2;
short int parm3;

EXEC SQL END DECLARE SECTION;

Figure 197. A C++ stored procedure coded as a subprogram (Part 1 of 2)

Chapter 25. Using stored procedures for client/server processing 647



A stored procedure that runs in a DB2-established address space must contain a
main program.

Restrictions on a stored procedure
Do not include explicit attachment facility calls in a stored procedure. Stored
procedures running in a DB2-established address space use call attachment facility
(CAF) calls implicitly. Stored procedures running in a WLM-established address
space use Resource Recovery Services attachment facility (RRSAF) calls implicitly.
If a stored procedure makes an explicit attachment facility call, DB2 rejects the call.

Do not include SRRCMIT or SRRBACK service calls in a WLM-managed stored
procedure. If a WLM-managed stored procedure invokes either SRRCMIT or
SRRBACK, DB2 puts the transaction in a must roll back state and the CALL
statement returns SQLCODE -919.

Using COMMIT and ROLLBACK statements in a stored
procedure

When you execute COMMIT or ROLLBACK statements in your stored procedure,
DB2 commits or rolls back all changes within the unit of work. These changes
include changes that the client application made before it called the stored
procedure, as well as DB2 work that the stored procedure does.

A stored procedure that includes COMMIT or ROLLBACK statements must be
defined with the CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA
clause. There is no interaction between the COMMIT ON RETURN clause in a
stored procedure definition and COMMIT or ROLLBACK statements in the stored
procedure code. If you specify COMMIT ON RETURN YES when you define the
stored procedure, DB2 issues a COMMIT when control returns from the stored
procedure. This occurs regardless of whether the stored procedure contains
COMMIT or ROLLBACK statements.

/*************************************************************/
/* Receive input parameter values into local variables. */
/*************************************************************/
strcpy(parm1,p1);
parm2 = *p2;
parm3 = *p3;
/*************************************************************/
/* Perform operations on local variables. */
/*************************************************************/

...
/*************************************************************/
/* Set values to be passed back to the caller. */
/*************************************************************/
strcpy(parm1,"SETBYSP");
parm2 = 100;
parm3 = 200;
/*************************************************************/
/* Copy values to output parameters. */
/*************************************************************/
strcpy(p1,parm1);
*p2 = parm2;
*p3 = parm3;

}

Figure 197. A C++ stored procedure coded as a subprogram (Part 2 of 2)

648 Application Programming and SQL Guide

#
#
#
#



A ROLLBACK statement has the same effect on cursors in a stored procedure as it
has on cursors in stand-alone programs. A ROLLBACK statement closes all open
cursors. A COMMIT statement in a stored procedure closes cursors that are not
declared WITH HOLD, and leaves cursors open that are declared WITH HOLD.
The effect of COMMIT or ROLLBACK on cursors applies to cursors that are
declared in the calling application, as well as cursors that are declared in the stored
procedure.

Under the following conditions, you cannot include COMMIT or ROLLBACK
statements in a stored procedure:
v The stored procedure is nested within a trigger or a user-defined function.
v The stored procedure is called by a client that uses two-phase commit

processing.
v The client program uses a type 2 connection to connect to the remote server that

contains the stored procedure.
v DB2 is not the commit coordinator.

If a COMMIT or ROLLBACK statement in a stored procedure violates any of the
previous conditions, DB2 puts the transaction in a must-rollback state, and the
CALL statement returns a −751 SQLCODE.

Using special registers in a stored procedure
You can use all special registers in a stored procedure. However, you can modify
only some of those special registers. After a stored procedure completes, DB2
restores all special registers to the values they had before invocation.

Table 79 shows information that you need to use special registers in a stored
procedure.

Table 79. Characteristics of special registers in a stored procedure

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Procedure can
use SET to
modify?

CURRENT CLIENT_ACCTNG Inherited from invoking
application

Inherited from invoking
application

Not applicable5

CURRENT
CLIENT_APPLNAME

Inherited from invoking
application

Inherited from invoking
application

Not applicable5

CURRENT CLIENT_USERID Inherited from invoking
application

Inherited from invoking
application

Not applicable5

CURRENT
CLIENT_WRKSTNNAME

Inherited from invoking
application

Inherited from invoking
application

Not applicable5

CURRENT APPLICATION
ENCODING SCHEME

The value of bind option
ENCODING for the stored
procedure package1

The value of bind option
ENCODING for the stored
procedure package1

Yes

CURRENT DATE New value for each SQL
statement in the stored
procedure package2

New value for each SQL
statement in the stored
procedure package2

Not applicable5

CURRENT DEGREE Inherited from invoking
application3

The value of field CURRENT
DEGREE on installation panel
DSNTIP8

Yes

CURRENT LOCALE LC_CTYPE Inherited from invoking
application

The value of field CURRENT
DEGREE on installation panel
DSNTIP8

Yes

Chapter 25. Using stored procedures for client/server processing 649

||
|
|
|
|

|
|

|

|
|

|

|



Table 79. Characteristics of special registers in a stored procedure (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Procedure can
use SET to
modify?

CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION

Inherited from invoking
application

The value of field CURRENT
MAINT TYPES on installation
panel DSNTIP8

Yes

CURRENT MEMBER New value for each SET
host-variable=CURRENT
MEMBER statement

New value for each SET
host-variable=CURRENT
MEMBER statement

No

CURRENT OPTIMIZATION
HINT

The value of bind option
OPTHINT for the stored
procedure package or inherited
from invoking application6

The value of bind option
OPTHINT for the stored
procedure package

Yes

CURRENT PACKAGESET Inherited from invoking
application4

Inherited from invoking
application4

Yes

CURRENT PACKAGE PATH Inherited from invoking
application9

Inherited from invoking
application9

Yes

CURRENT PATH The value of bind option PATH
for the stored procedure
package or inherited from
invoking application6

The value of bind option PATH
for the stored procedure
package

Yes

CURRENT PRECISION Inherited from invoking
application

The value of field DECIMAL
ARITHMETIC on installation
panel DSNTIP4

Yes

CURRENT REFRESH AGE Inherited from invoking
application

The value of field CURRENT
REFRESH AGE on installation
panel DSNTIP8

Yes

CURRENT RULES Inherited from invoking
application

The value of bind option
SQLRULES for the stored
procedure package

Yes

CURRENT SCHEMA Inherited from invoking
application

The value of CURRENT SQLID
when the stored procedure is
entered

Yes

CURRENT SERVER Inherited from invoking
application

Inherited from invoking
application

Yes

CURRENT SQLID The primary authorization ID of
the application process or
inherited from invoking
application7

The primary authorization ID of
the application process

Yes8

CURRENT TIME New value for each SQL
statement in the stored
procedure package2

New value for each SQL
statement in the stored
procedure package2

Not applicable5

CURRENT TIMESTAMP New value for each SQL
statement in the stored
procedure package2

New value for each SQL
statement in the stored
procedure package2

Not applicable5

CURRENT TIMEZONE Inherited from invoking
application

Inherited from invoking
application

Not applicable5

ENCRYPTION PASSWORD Inherited from invoking
application

A string of 0 length Yes

USER Primary authorization ID of the
application process

Primary authorization ID of the
application process

Not applicable5

650 Application Programming and SQL Guide

|
|
|

|

|

|

|



Table 79. Characteristics of special registers in a stored procedure (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Procedure can
use SET to
modify?

Notes:

1. If the ENCODING bind option is not specified, the initial value is the value that was specified in field
APPLICATION ENCODING of installation panel DSNTIPF.

2. If the stored procedure is invoked within the scope of a trigger, DB2 uses the timestamp for the triggering SQL
statement as the timestamp for all SQL statements in the function package.

3. DB2 allows parallelism at only one level of a nested SQL statement. If you set the value of the CURRENT
DEGREE special register to ANY, and parallelism is disabled, DB2 ignores the CURRENT DEGREE value.

4. If the stored procedure definer specifies a value for COLLID in the CREATE PROCEDURE statement, DB2 sets
CURRENT PACKAGESET to the value of COLLID.

5. Not applicable because no SET statement exists for the special register.

6. If a program within the scope of the invoking application issues a SET statement for the special register before the
stored procedure is invoked, the special register inherits the value from the SET statement. Otherwise, the special
register contains the value that is set by the bind option for the stored procedure package.

7. If a program within the scope of the invoking application issues a SET CURRENT SQLID statement before the
stored procedure is invoked, the special register inherits the value from the SET statement. Otherwise, CURRENT
SQLID contains the authorization ID of the application process.

8. If the stored procedure package uses a value other than RUN for the DYNAMICRULES bind option, the SET
CURRENT SQLID statement can be executed but does not affect the authorization ID that is used for the dynamic
SQL statements in the stored procedure package. The DYNAMICRULES value determines the authorization ID
that is used for dynamic SQL statements. See “Using DYNAMICRULES to specify behavior of dynamic SQL
statements” on page 504 for more information about DYNAMICRULES values and authorization IDs.

9. If the stored procedure definer specifies a value for COLLID in the CREATE PROCEDURE statement, DB2 sets
CURRENT PACKAGE PATH to an empty string.

Accessing other sites in a stored procedure
Stored procedures can access tables at other DB2 locations using three-part object
names or CONNECT statements. If you use CONNECT statements, you use DRDA
access to access tables. If you use three-part object names or aliases for three-part
object names, the distributed access method depends on the value of
DBPROTOCOL you specified when you bound the stored procedure package. If
you did not specify the DBPROTOCOL bind parameter, the distributed access
method depends on the value of field DATABASE PROTOCOL on installation
panel DSNTIP5. A value of PRIVATE tells DB2 to use DB2 private protocol access
to access remote data for the stored procedure. DRDA tells DB2 to use DRDA
access.

When a local DB2 application calls a stored procedure, the stored procedure cannot
have DB2 private protocol access to any DB2 sites already connected to the calling
program by DRDA access.

The local DB2 application cannot use DRDA access to connect to any location that
the stored procedure has already accessed using DB2 private protocol access.
Before making the DB2 private protocol connection, the local DB2 application must
first execute the RELEASE statement to terminate the DB2 private protocol
connection, and then commit the unit of work.

See “Using three-part table names to access distributed data” on page 448 for
information about using three-part names to connect to a remote location.

Chapter 25. Using stored procedures for client/server processing 651



Writing a stored procedure to access IMS databases
IMS Open Database Access (ODBA) support lets a DB2 stored procedure connect
to an IMS DBCTL or IMS DB/DC system and issue DL/I calls to access IMS
databases.

ODBA support uses RRS for syncpoint control of DB2 and IMS resources.
Therefore, stored procedures that use ODBA can run only in WLM-established
stored procedures address spaces.

When you write a stored procedure that uses ODBA, follow the rules for writing
an IMS application program that issues DL/I calls. See IMS Application
Programming: Database Manager and IMS Application Programming: Transaction
Manager for information about writing DL/I applications.

IMS work that is performed in a stored procedure is in the same commit scope as
the stored procedure. As with any other stored procedure, the calling application
commits work.

A stored procedure that uses ODBA must issue a DPSB PREP call to deallocate a
PSB when all IMS work under that PSB is complete. The PREP keyword tells IMS
to move inflight work to an indoubt state. When work is in the indoubt state, IMS
does not require activation of syncpoint processing when the DPSB call is executed.
IMS commits or backs out the work as part of RRS two-phase commit when the
stored procedure caller executes COMMIT or ROLLBACK.

A sample COBOL stored procedure and client program demonstrate accessing IMS
data using the ODBA interface. The stored procedure source code is in member
DSN8EC1 and is prepared by job DSNTEJ61. The calling program source code is in
member DSN8EC1 and is prepared and executed by job DSNTEJ62. All code is in
data set DSN810.SDSNSAMP.

The startup procedure for a stored procedures address space in which stored
procedures that use ODBA run must include a DFSRESLB DD statement and an
extra data set in the STEPLIB concatenation. See “Setting up the stored procedures
environment” on page 636 for more information.

Writing a stored procedure to return result sets to a DRDA
client

Your stored procedure can return multiple query result sets to a DRDA client if the
following conditions are satisfied:
v The client supports the DRDA code points used to return query result sets.
v The value of DYNAMIC RESULT SETS in the stored procedure definition is

greater than 0.

For each result set you want returned, your stored procedure must:
v Declare a cursor with the option WITH RETURN.
v Open the cursor.
v If the cursor is scrollable, ensure that the cursor is positioned before the first row

of the result table.
v Leave the cursor open.

When the stored procedure ends, DB2 returns the rows in the query result set to
the client.

652 Application Programming and SQL Guide



DB2 does not return result sets for cursors that are closed before the stored
procedure terminates. The stored procedure must execute a CLOSE statement for
each cursor associated with a result set that should not be returned to the DRDA
client.

Example: Declaring a cursor to return a result set: Suppose you want to return a
result set that contains entries for all employees in department D11. First, declare a
cursor that describes this subset of employees:
EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR

SELECT * FROM DSN8810.EMP
WHERE WORKDEPT=’D11’;

Then, open the cursor:
EXEC SQL OPEN C1;

DB2 returns the result set and the name of the SQL cursor for the stored procedure
to the client.

Use meaningful cursor names for returning result sets: The name of the cursor that
is used to return result sets is made available to the client application through
extensions to the DESCRIBE statement. See “Writing a DB2 UDB for z/OS client
program or SQL procedure to receive result sets” on page 710 for more
information.

Use cursor names that are meaningful to the DRDA client application, especially
when the stored procedure returns multiple result sets.

Objects from which you can return result sets: You can use any of these objects in
the SELECT statement that is associated with the cursor for a result set:
v Tables, synonyms, views, created temporary tables, declared temporary tables,

and aliases defined at the local DB2 subsystem
v Tables, synonyms, views, created temporary tables, and aliases defined at remote

DB2 UDB for z/OS systems that are accessible through DB2 private protocol
access

Returning a subset of rows to the client: If you execute FETCH statements with a
result set cursor, DB2 does not return the fetched rows to the client program. For
example, if you declare a cursor WITH RETURN and then execute the statements
OPEN, FETCH, and FETCH, the client receives data beginning with the third row
in the result set. If the result set cursor is scrollable and you fetch rows with it, you
need to position the cursor before the first row of the result table after you fetch
the rows and before the stored procedure ends.

Using a temporary table to return result sets: You can use a created temporary
table or declared temporary table to return result sets from a stored procedure.
This capability can be used to return nonrelational data to a DRDA client.

For example, you can access IMS data from a stored procedure in the following
way:
v Use APPC/MVS to issue an IMS transaction.
v Receive the IMS reply message, which contains data that should be returned to

the client.
v Insert the data from the reply message into a temporary table.

Chapter 25. Using stored procedures for client/server processing 653



v Open a cursor against the temporary table. When the stored procedure ends, the
rows from the temporary table are returned to the client.

Preparing a stored procedure
There are a number of tasks that must be completed before a stored procedure can
run on a z/OS server. You share these tasks with your system administrator. Part 2
of DB2 Installation Guide and “Defining your stored procedure to DB2” on page 637
describe what the system administrator needs to do.

Complete the following steps:
1. Precompile and compile the application.

You can compile COBOL stored procedures with either the DYNAM option or
the NODYNAM option. If you use DYNAM, ensure that the correct DB2
language interface module is loaded dynamically by performing one of the
following actions:
v Use the ATTACH(RRSAF) precompiler option.
v Copy the DSNRLI module into a load library that is concatenated in front of

the DB2 libraries. Use the member name DSNHLI.
2. Link-edit the application. Your stored procedure must either link-edit or load

one of these language interface modules:

DSNALI
The language interface module for the call attachment facility. Link-edit
or load this module if your stored procedure runs in a DB2-established
address space. For more information, see “Accessing the CAF language
interface” on page 867.

DSNRLI
The language interface module for the Resource Recovery Services
attachment facility. Link-edit or load this module if your stored
procedure runs in a WLM-established address space. If the stored
procedure references LOBs or distinct types, you must link-edit or load
DSNRLI. For more information, see “Accessing the RRSAF language
interface” on page 900.

If your stored procedure runs in a WLM-established address space, you must
specify the parameter AMODE(31) when you link-edit it.

3. Bind the DBRM to DB2 using the command BIND PACKAGE. Stored
procedures require only a package at the server. You do not need to bind a
plan. For more information, see “Binding the stored procedure” on page 655.

4. Define the stored procedure to DB2.
5. Use GRANT EXECUTE to authorize the appropriate users to use the stored

procedure. For example,
GRANT EXECUTE ON PROCEDURE SPSCHEMA.STORPRCA TO JONES;

That allows an application running under authorization ID JONES to call stored
procedure SPSCHEMA.STORPRCA.

Preparing a stored procedure to run as an authorized program: If your stored
procedure runs in a WLM-established address space, you can run it as a z/OS
authorized program. To prepare a stored procedure to run as an authorized
program, do these additional things:
v When you link-edit the stored procedure:

– Indicate that the load module can use restricted system services by specifying
the parameter value AC=1.

654 Application Programming and SQL Guide

#
#
#
#

#

#
#



– Put the load module for the stored procedure in an APF-authorized library.
v Be sure that the stored procedure runs in an address space with a startup

procedure in which all libraries in the STEPLIB concatenation are
APF-authorized. Specify an application environment WLM ENVIRONMENT
parameter of the CREATE PROCEDURE or ALTER PROCEDURE statement for
the stored procedure that ensures that the stored procedure runs in an address
space with this characteristic.

Binding the stored procedure
A stored procedure does not require a DB2 plan. A stored procedure runs under
the caller's thread, using the plan from the client program that calls it.

The calling application can use a DB2 package or plan to execute the CALL
statement. The stored procedure must use a DB2 package as Figure 198 shows.

When you bind a stored procedure:
v Use the command BIND PACKAGE to bind the stored procedure. If you use the

option ENABLE to control access to a stored procedure package, you must
enable the system connection type of the application that executes the CALL
statement.

v The package for the stored procedure does not need to be bound with the plan
for the program that calls it.

v The owner of the package that contains the SQL statement CALL must have the
EXECUTE privilege on all packages that the stored procedure accesses, including
packages named in SET CURRENT PACKAGESET.

The following must exist at the server, as shown in Figure 198:
v A plan or package containing the SQL statement CALL. This package is

associated with the client program.
v A package associated with the stored procedure.

The server program might use more than one package. These packages come from
two sources:
v A DBRM that you bind several times into several versions of the same package,

all with the same package name, which can then reside in different collections.

Client Program DB2 System Address Space

User ID=yyyy User ID=yyyy User ID=xxxx

Program A

..

.

EXEC SQL

CALL B

Package

A

Package

B

CALL B

Program

B

Figure 198. Stored procedures run-time environment

Chapter 25. Using stored procedures for client/server processing 655



Your stored procedure can switch from one version to another by using the
statement SET CURRENT PACKAGESET.

v A package associated with another program that contains SQL statements that
the stored procedure calls.
Important: A package for a subprogram that contains SQL statements must exist
at the location where the stored procedure is defined and at the location where
the SQL statements are executed.

Writing a REXX stored procedure
A REXX stored procedure is much like any other REXX procedure and follows the
same rules as stored procedures in other languages. It receives input parameters,
executes REXX commands, optionally executes SQL statements, and returns at
most one output parameter. A REXX stored procedure is different from other REXX
procedures in the following ways:
v A REXX stored procedure cannot execute the ADDRESS DSNREXX CONNECT

and ADDRESS DSNREXX DISCONNECT commands. When you execute SQL
statements in your stored procedure, DB2 establishes the connection for you.

v A REXX stored procedure must run in a WLM-established stored procedures
address space.

Unlike other stored procedures, you do not prepare REXX stored procedures for
execution. REXX stored procedures run using one of four packages that are bound
during the installation of DB2 REXX Language Support. The current isolation level
at which the stored procedure runs depends on the package that DB2 uses when
the stored procedure runs:

Package name Isolation level

DSNREXRR Repeatable read (RR)

DSNREXRS Read stability (RS)

DSNREXCS Cursor stability (CS)

DSNREXUR Uncommitted read (UR)

Figure 200 on page 657 shows an example of a REXX stored procedure that
executes DB2 commands. The stored procedure performs the following actions:
v Receives one input parameter, which contains a DB2 command.
v Calls the IFI COMMAND function to execute the command.
v Extracts the command result messages from the IFI return area and places the

messages in a created temporary table. Each row of the temporary table contains
a sequence number and the text of one message.

v Opens a cursor to return a result set that contains the command result messages.
v Returns the unformatted contents of the IFI return area in an output parameter.

Figure 199 on page 657 shows the definition of the stored procedure.

656 Application Programming and SQL Guide

#
#
#

|
|
|



Figure 200 shows the COMMAND stored procedure that executes DB2 commands.

CREATE PROCEDURE COMMAND(IN CMDTEXT VARCHAR(254), OUT CMDRESULT VARCHAR(32704))
LANGUAGE REXX
EXTERNAL NAME COMMAND
NO COLLID
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS ’TRAP(ON)’
WLM ENVIRONMENT WLMENV1
SECURITY DB2
DYNAMIC RESULT SETS 1
COMMIT ON RETURN NO;

Figure 199. Definition for REXX stored procedure COMMAND

/* REXX */
PARSE UPPER ARG CMD /* Get the DB2 command text */

/* Remove enclosing quotes */
IF LEFT(CMD,2) = ""’" & RIGHT(CMD,2) = "’"" THEN
CMD = SUBSTR(CMD,2,LENGTH(CMD)-2)
ELSE
IF LEFT(CMD,2) = """’" & RIGHT(CMD,2) = "’""" THEN
CMD = SUBSTR(CMD,3,LENGTH(CMD)-4)
COMMAND = SUBSTR("COMMAND",1,18," ")

/****************************************************************/
/* Set up the IFCA, return area, and output area for the */
/* IFI COMMAND call. */
/****************************************************************/

IFCA = SUBSTR(’00’X,1,180,’00’X)
IFCA = OVERLAY(D2C(LENGTH(IFCA),2),IFCA,1+0)
IFCA = OVERLAY("IFCA",IFCA,4+1)
RTRNAREASIZE = 262144 /*1048572*/
RTRNAREA = D2C(RTRNAREASIZE+4,4)LEFT(’ ’,RTRNAREASIZE,’ ’)
OUTPUT = D2C(LENGTH(CMD)+4,2)||’0000’X||CMD
BUFFER = SUBSTR(" ",1,16," ")

/****************************************************************/
/* Make the IFI COMMAND call. */
/****************************************************************/

ADDRESS LINKPGM "DSNWLIR COMMAND IFCA RTRNAREA OUTPUT"
WRC = RC
RTRN= SUBSTR(IFCA,12+1,4)
REAS= SUBSTR(IFCA,16+1,4)
TOTLEN = C2D(SUBSTR(IFCA,20+1,4))

/****************************************************************/
/* Set up the host command environment for SQL calls. */
/****************************************************************/

"SUBCOM DSNREXX" /* Host cmd env available? */
IF RC THEN /* No--add host cmd env */

S_RC = RXSUBCOM(’ADD’,’DSNREXX’,’DSNREXX’)

Figure 200. Example of a REXX stored procedure: COMMAND (Part 1 of 3)

Chapter 25. Using stored procedures for client/server processing 657



/****************************************************************/
/* Set up SQL statements to insert command output messages */
/* into a temporary table. */
/****************************************************************/

SQLSTMT=’INSERT INTO SYSIBM.SYSPRINT(SEQNO,TEXT) VALUES(?,?)’
ADDRESS DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
IF SQLCODE ¬= 0 THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL PREPARE S1 FROM :SQLSTMT"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/****************************************************************/
/* Extract messages from the return area and insert them into */
/* the temporary table. */
/****************************************************************/

SEQNO = 0
OFFSET = 4+1
DO WHILE ( OFFSET < TOTLEN )

LEN = C2D(SUBSTR(RTRNAREA,OFFSET,2))
SEQNO = SEQNO + 1
TEXT = SUBSTR(RTRNAREA,OFFSET+4,LEN-4-1)
ADDRESS DSNREXX "EXECSQL EXECUTE S1 USING :SEQNO,:TEXT"
IF SQLCODE ¬= 0 THEN CALL SQLCA
OFFSET = OFFSET + LEN

END
/****************************************************************/
/* Set up a cursor for a result set that contains the command */
/* output messages from the temporary table. */
/****************************************************************/

SQLSTMT=’SELECT SEQNO,TEXT FROM SYSIBM.SYSPRINT ORDER BY SEQNO’
ADDRESS DSNREXX "EXECSQL DECLARE C2 CURSOR FOR S2"
IF SQLCODE ¬= 0 THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL PREPARE S2 FROM :SQLSTMT"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/****************************************************************/
/* Open the cursor to return the message output result set to */
/* the caller. */
/****************************************************************/

ADDRESS DSNREXX "EXECSQL OPEN C2"
IF SQLCODE ¬= 0 THEN CALL SQLCA
S_RC = RXSUBCOM(’DELETE’,’DSNREXX’,’DSNREXX’) /* REMOVE CMD ENV */
EXIT SUBSTR(RTRNAREA,1,TOTLEN+4)

Figure 200. Example of a REXX stored procedure: COMMAND (Part 2 of 3)

658 Application Programming and SQL Guide



Writing and preparing an SQL procedure
An SQL procedure is a stored procedure in which the source code for the
procedure is in an SQL CREATE PROCEDURE statement. The part of the CREATE
PROCEDURE statement that contains the code is called the procedure body.

Creating an SQL procedure involves writing the source statements for the SQL
procedure, creating the executable form of the SQL procedure, and defining the
SQL procedure to DB2. There are two ways to create an SQL procedure:
v Use the IBM DB2 Development Center product to specify the source statements

for the SQL procedure, define the SQL procedure to DB2, and prepare the SQL
procedure for execution.

/****************************************************************/
/* Routine to display the SQLCA */
/****************************************************************/

SQLCA:
SAY ’SQLCODE =’SQLCODE
SAY ’SQLERRMC =’SQLERRMC
SAY ’SQLERRP =’SQLERRP
SAY ’SQLERRD =’SQLERRD.1’,’,

|| SQLERRD.2’,’,
|| SQLERRD.3’,’,
|| SQLERRD.4’,’,
|| SQLERRD.5’,’,
|| SQLERRD.6

SAY ’SQLWARN =’SQLWARN.0’,’,
|| SQLWARN.1’,’,
|| SQLWARN.2’,’,
|| SQLWARN.3’,’,
|| SQLWARN.4’,’,
|| SQLWARN.5’,’,
|| SQLWARN.6’,’,
|| SQLWARN.7’,’,
|| SQLWARN.8’,’,
|| SQLWARN.9’,’,
|| SQLWARN.10

SAY ’SQLSTATE=’SQLSTATE
SAY ’SQLCODE =’SQLCODE
EXIT ’SQLERRMC =’SQLERRMC’;’ ,
|| ’SQLERRP =’SQLERRP’;’ ,
|| ’SQLERRD =’SQLERRD.1’,’,

|| SQLERRD.2’,’,
|| SQLERRD.3’,’,
|| SQLERRD.4’,’,
|| SQLERRD.5’,’,
|| SQLERRD.6’;’ ,

|| ’SQLWARN =’SQLWARN.0’,’,
|| SQLWARN.1’,’,
|| SQLWARN.2’,’,
|| SQLWARN.3’,’,
|| SQLWARN.4’,’,
|| SQLWARN.5’,’,
|| SQLWARN.6’,’,
|| SQLWARN.7’,’,
|| SQLWARN.8’,’,
|| SQLWARN.9’,’,
|| SQLWARN.10’;’ ,

|| ’SQLSTATE=’SQLSTATE’;’

Figure 200. Example of a REXX stored procedure: COMMAND (Part 3 of 3)

Chapter 25. Using stored procedures for client/server processing 659



v Write a CREATE PROCEDURE statement for the SQL procedure. Then use one
of the methods in “Preparing an SQL procedure” on page 671 to define the SQL
procedure to DB2 and create an executable procedure.

This section discusses how to write a and prepare an SQL procedure. The
following topics are included:
v “Comparison of an SQL procedure and an external procedure”
v “Statements that you can include in a procedure body” on page 661
v “Terminating statements in an SQL procedure” on page 664
v “Handling SQL conditions in an SQL procedure” on page 665
v “Examples of SQL procedures” on page 669
v “Preparing an SQL procedure” on page 671

For information about the syntax of the CREATE PROCEDURE statement and the
procedure body, see DB2 SQL Reference.

Comparison of an SQL procedure and an external procedure
Like an external stored procedure, an SQL procedure consists of a stored procedure
definition and the code for the stored procedure program.

An external stored procedure definition and an SQL procedure definition specify
the following common information:
v The procedure name.
v Input and output parameter attributes.
v The language in which the procedure is written. For an SQL procedure, the

language is SQL.
v Information that will be used when the procedure is called, such as run-time

options, length of time that the procedure can run, and whether the procedure
returns result sets.

An external stored procedure and an SQL procedure share the same rules for the
use of COMMIT and ROLLBACK statements in a procedure. For information about
the restrictions for the use of these statements and their effect, see “Using
COMMIT and ROLLBACK statements in a stored procedure” on page 648.

An external stored procedure and an SQL stored procedure differ in the way that
they handle errors.
v For an external stored procedure, DB2 does not return SQL conditions in the

SQLCA to the workstation application. If you use PARAMETER STYLE SQL
when you define an external procedure, you can set SQLSTATE to indicate an
error before the procedure ends. For valid SQLSTATE values, see “Passing
parameter values to and from a user-defined function” on page 321.

v For an SQL stored procedure, DB2 automatically returns SQL conditions in the
SQLCA when the procedure does not include a RETURN statement or a handler.
For information about the various ways to handle errors in an SQL stored
procedure, see “Handling SQL conditions in an SQL procedure” on page 665.

An external stored procedure and an SQL procedure also differ in the way that
they specify the code for the stored procedure. An external stored procedure
definition specifies the name of the stored procedure program. An SQL procedure
definition contains the source code for the stored procedure.

For an external stored procedure, you define the stored procedure to DB2 by
executing the CREATE PROCEDURE statement. You change the definition of the

660 Application Programming and SQL Guide

|



stored procedure by executing the ALTER PROCEDURE statement. For an SQL
procedure, you define the stored procedure to DB2 by preprocessing a CREATE
PROCEDURE statement, then executing the CREATE PROCEDURE statement
dynamically. As with an external stored procedure, you change the definition by
executing the ALTER PROCEDURE statement. You cannot change the procedure
body with the ALTER PROCEDURE statement. See “Preparing an SQL procedure”
on page 671 for more information about defining an SQL procedure to DB2.

Figure 201 shows a definition for an external stored procedure that is written in
COBOL. The stored procedure program, which updates employee salaries, is called
UPDSAL.

Notes to Figure 201:

�1� The stored procedure name is UPDATESALARY1.

�2� The two parameters have data types of CHAR(10) and
DECIMAL(6,2). Both are input parameters.

�3� LANGUAGE COBOL indicates that this is an external procedure,
so the code for the stored procedure is in a separate, COBOL
program.

�4� The name of the load module that contains the executable stored
procedure program is UPDSAL.

Figure 202 shows a definition for an equivalent SQL procedure.

Notes to Figure 202:

�1� The stored procedure name is UPDATESALARY1.

�2� The two parameters have data types of CHAR(10) and
DECIMAL(6,2). Both are input parameters.

�3� LANGUAGE SQL indicates that this is an SQL procedure, so a
procedure body follows the other parameters.

�4� The procedure body consists of a single SQL UPDATE statement,
which updates rows in the employee table.

Statements that you can include in a procedure body
A procedure body consists of a single simple or compound statement. The types of
statements that you can include in a procedure body are:

CREATE PROCEDURE UPDATESALARY1 �1�
(IN EMPNUMBR CHAR(10), �2�
IN RATE DECIMAL(6,2))
LANGUAGE COBOL �3�
EXTERNAL NAME UPDSAL; �4�

Figure 201. Example of an external stored procedure definition

CREATE PROCEDURE UPDATESALARY1 �1�
(IN EMPNUMBR CHAR(10), �2�
IN RATE DECIMAL(6,2))
LANGUAGE SQL �3�
EXTERNAL NAME ’USALARY1’
UPDATE EMP �4�
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPNUMBR

Figure 202. Example of an SQL procedure definition

Chapter 25. Using stored procedures for client/server processing 661

#



Assignment statement
Assigns a value to an output parameter or to an SQL variable, which is a
variable that is defined and used only within a procedure body. The right side
of an assignment statement can include SQL built-in functions.

CALL statement
Calls another stored procedure. This statement is similar to the CALL
statement described in Chapter 5 of DB2 SQL Reference, except that the
parameters must be SQL variables, parameters for the SQL procedure, or
constants.

CASE statement
Selects an execution path based on the evaluation of one or more conditions.
This statement is similar to the CASE expression, which is described in
Chapter 2 of DB2 SQL Reference.

GET DIAGNOSTICS statement
Obtains information about the previous SQL statement that was executed. An
example of its usage is shown in “Using GET DIAGNOSTICS in a handler” on
page 666.

GOTO statement
Transfers program control to a labelled statement.

IF statement
Selects an execution path based on the evaluation of a condition.

ITERATE statement
Transfers program control to beginning of a labelled loop.

LEAVE statement
Transfers program control out of a loop or a block of code.

LOOP statement
Executes a statement or group of statements multiple times.

REPEAT statement
Executes a statement or group of statements until a search condition is true.

WHILE statement
Repeats the execution of a statement or group of statements while a specified
condition is true.

Compound statement
Can contain one or more of any of the other types of statements in this list. In
addition, a compound statement can contain SQL variable declarations,
condition handlers, or cursor declarations.

The order of statements in a compound statement must be:
1. SQL variable and condition declarations
2. Cursor declarations
3. Handler declarations
4. Procedure body statements (CALL, CASE, IF, LOOP, REPEAT, WHILE,

SQL)

SQL statement
A subset of the SQL statements that are described in Chapter 5 of DB2 SQL
Reference. Certain SQL statements are valid in a compound statement, but not
valid if the SQL statement is the only statement in the procedure body.
Appendix C of DB2 SQL Reference lists the SQL statements that are valid in an
SQL procedure.

662 Application Programming and SQL Guide

|
|



SIGNAL statement
Enables an SQL procedure to raise a condition with a specific SQLSTATE and
message text. This statement is described in “Using SIGNAL or RESIGNAL to
raise a condition” on page 667.

RESIGNAL statement
Enables a condition handler within an SQL procedure to raise a condition with
a specific SQLSTATE and message text, or to return the same condition that
activated the handler. This statement is described in “Using SIGNAL or
RESIGNAL to raise a condition” on page 667.

RETURN statement
Returns an integer status value for the SQL procedure. This statement is
described in “Using the RETURN statement for the procedure status” on page
667.

See the discussion of the procedure body in DB2 SQL Reference for detailed
descriptions and syntax of each of these statements.

Declaring and using variables, parameters, and conditions in
an SQL procedure

To store data that you use only within an SQL procedure, you can declare SQL
variables. SQL variables are the equivalent of host variables in external stored
procedures. SQL variables can have the same data types and lengths as SQL
procedure parameters. For a discussion of data types and lengths, see the CREATE
PROCEDURE discussion in Chapter 5 of DB2 SQL Reference.

The general form of an SQL variable declaration is:
DECLARE SQL-variable-name data-type;

The general form of a declaration for an SQL variable that you use as a result set
locator is:
DECLARE SQL-variable-name data-type RESULT_SET_LOCATOR VARYING;

SQL variables have these restrictions:
v SQL variable names can be up to 128 bytes in length. They can include

alphanumeric characters and the underscore character. Condition names and
label names also have these restrictions.

v Because DB2 folds all SQL variables to uppercase, you cannot declare two SQL
variables that are the same except for case. For example, you cannot declare two
SQL variables named varx and VARX.

v Although it is not recommended, you can specify an SQL reserved word as the
name of an SQL parameter, SQL variable, or SQL condition in some contexts. If
you specify a reserved word as the name of an SQL parameter, SQL variable, or
SQL condition in a context where its use could be ambiguous, specify the name
as a delimited identifier.

v When you use an SQL variable in an SQL statement, do not precede the variable
with a colon.

v When you call a user-defined function from an SQL procedure, and the
user-defined function definition includes parameters of type CHAR, you need to
cast the corresponding parameter values in the user-defined function invocation
to CHAR to ensure that DB2 invokes the correct function. For example, suppose
that an SQL procedure calls user-defined function CVRTNUM, which takes one

Chapter 25. Using stored procedures for client/server processing 663

|
|
|
|

|
|
|
|
|

|
|
|
|

#

#

#
#
#

#
#
#
#
#



input parameter of type CHAR(6). Also suppose that you declare SQL variable
EMPNUMBR in the SQL procedure. When you invoke CVRTNUM, cast
EMPNUMBR to CHAR:
UPDATE EMP
SET EMPNO=CVRTNUM(CHAR(EMPNUMBR))
WHERE EMPNO = EMPNUMBR;

v Within a procedure body, the following rules apply to IN, OUT, and INOUT
parameters:
– You can use a parameter that you define as IN on the left or right side of an

assignment statement. However, if you assign a value to an IN parameter,
you cannot pass the new value back to the caller. The IN parameter has the
same value before and after the SQL procedure is called.

– You can use a parameter that you define as OUT on the left or right side of
an assignment statement. The last value that you assign to the parameter is
the value that is returned to the caller.

– You can use a parameter that you define as INOUT on the left or right side of
an assignment statement. The caller determines the first value of the INOUT
parameter, and the last value that you assign to the parameter is the value
that is returned to the caller.

You can perform any operations on SQL variables that you can perform on host
variables in SQL statements.

Qualifying SQL variable names and other object names is a good way to avoid
ambiguity. Use the following guidelines to determine when to qualify variable
names:
v When you use an SQL procedure parameter in the procedure body, qualify the

parameter name with the procedure name.
v Specify a label for each compound statement, and qualify SQL variable names in

the compound statement with that label.
v Qualify column names with the associated table or view names.

Recommendation: Because the way that DB2 determines the qualifier for
unqualified names might change in the future, qualify all SQL variable names to
avoid changing your code later.

Parameter style for an SQL procedure
DB2 supports only the GENERAL WITH NULLS linkage convention for SQL
procedures. This means that when you call an SQL procedure, you must include an
indicator variable with each parameter in the CALL statement. See “Linkage
conventions ” on page 686 for more information about stored procedure linkage
conventions.

Terminating statements in an SQL procedure
The way that you terminate a statement in an SQL procedure depends on the use
of the statement in that procedure:
v A procedure body has no terminating character. Therefore, if an SQL procedure

statement is the outermost of a set of nested statements, or if the statement is the
only statement in the procedure body, that statement does not have a
terminating character.

v If a statement is nested within other statements in the procedure body, that
statement ends with a semicolon.

664 Application Programming and SQL Guide



Handling SQL conditions in an SQL procedure
You can handle SQL errors and SQL warnings in an SQL procedure by using the
following techniques:
v You can include statements called handlers to tell the procedure to perform some

other action when an error occurs; see “Using handlers in an SQL procedure.”
v You can include a RETURN statement in an SQL procedure to return an integer

status value to the caller; see “Using the RETURN statement for the procedure
status” on page 667.

v If you do not include a handler or a RETURN statement in the SQL procedure,
DB2 automatically returns any SQL conditions to the caller in the SQLCA.

v You can include a SIGNAL statement or a RESIGNAL statement to raise a
specific SQLSTATE and to define the message text for that SQLSTATE; see
“Using SIGNAL or RESIGNAL to raise a condition” on page 667.

v You can force a negative SQLCODE to be returned by a procedure if a trigger
calls the procedure; see “Forcing errors in an SQL procedure when called by a
trigger” on page 669.

Using handlers in an SQL procedure
If an SQL error occurs when an SQL procedure executes, the SQL procedure ends
unless you include statements called handlers to tell the procedure to perform
some other action.

Handlers are similar to WHENEVER statements in external SQL application
programs. Handlers tell the SQL procedure what to do when an SQL error or SQL
warning occurs, or when no more rows are returned from a query. In addition, you
can declare handlers for specific SQLSTATEs. You can refer to an SQLSTATE by its
number in a handler, or you can declare a name for the SQLSTATE and then use
that name in the handler.

The general form of a handler declaration is:
DECLARE handler-type HANDLER FOR condition SQL-procedure-statement;

In general, the way that a handler works is that when an error occurs that matches
condition, the SQL-procedure-statement executes. When the SQL-procedure-statement
completes, DB2 performs the action that is indicated by handler-type.

Types of handlers: The handler type determines what happens after the
completion of the SQL-procedure-statement. You can declare the handler type to be
either CONTINUE or EXIT:

CONTINUE
Specifies that after SQL-procedure-statement completes, execution continues with
the statement after the statement that caused the error.

EXIT
Specifies that after SQL-procedure-statement completes, execution continues at
the end of the compound statement that contains the handler.

Example: CONTINUE handler: This handler sets flag at_end when no more rows
satisfy a query. The handler then causes execution to continue after the statement
that returned no rows.
DECLARE CONTINUE HANDLER FOR NOT FOUND SET at_end=1;

Chapter 25. Using stored procedures for client/server processing 665

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|



Example: EXIT handler: This handler places the string 'Table does not exist' into
output parameter OUT_BUFFER when condition NO_TABLE occurs. NO_TABLE is
previously declared as SQLSTATE 42704 (name is an undefined name). The handler
then causes the SQL procedure to exit the compound statement in which the
handler is declared.
DECLARE NO_TABLE CONDITION FOR ’42704’;...
DECLARE EXIT HANDLER FOR NO_TABLE
SET OUT_BUFFER=’Table does not exist’;

Referencing SQLCODE and SQLSTATE in a handler: When an SQL error or
warning occurs in an SQL procedure, you might want a handler to reference the
SQLCODE or SQLSTATE value and assign the value to an output parameter to be
passed back to the caller.

Before you can reference SQLCODE or SQLSTATE values in a handler, you must
declare the SQLCODE and SQLSTATE as SQL variables. The definitions are:
DECLARE SQLCODE INTEGER;
DECLARE SQLSTATE CHAR(5);

If you want to pass the SQLCODE or SQLSTATE values to the caller, your SQL
procedure definition needs to include output parameters for those values. After an
error occurs, and before control returns to the caller, you can assign the value of
SQLCODE or SQLSTATE to the corresponding output parameter.

Example: Assigning SQLCODE to output parameter: Include assignment
statements in an SQLEXCEPTION handler to assign the SQLCODE value to an
output parameter:
CREATE PROCEDURE UPDATESALARY1
(IN EMPNUMBR CHAR(6),
OUT SQLCPARM INTEGER)
LANGUAGE SQL...
BEGIN:
DECLARE SQLCODE INTEGER;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET SQLCPARM = SQLCODE;...

Every statement in an SQL procedure sets the SQLCODE and SQLSTATE.
Therefore, if you need to preserve SQLCODE or SQLSTATE values after a
statement executes, use a simple assignment statement to assign the SQLCODE
and SQLSTATE values to other variables. A statement like the following one does
not preserve SQLCODE:
IF (1=1) THEN SET SQLCDE = SQLCODE;

Because the IF statement is true, the SQLCODE value is reset to 0, and you lose the
previous SQLCODE value.

Using GET DIAGNOSTICS in a handler: You can include a GET DIAGNOSTICS
statement in a handler to retrieve error or warning information. If you include GET
DIAGNOSTICS, it must be the first statement that is specified in the handler.

Example: Using GET DIAGNOSTICS to retrieve message text: Suppose that you
create an SQL procedure, named divide1, that computes the result of the division
of two integers. You include GET DIAGNOSTICS to return the text of the division
error message as an output parameter:

666 Application Programming and SQL Guide

|

|
|
|

|
|
|
|



CREATE PROCEDURE divide1
(IN numerator INTEGER, IN denominator INTEGER,
OUT divide_result INTEGER, OUT divide_error VARCHAR(70))
LANGUAGE SQL
BEGIN

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
GET DIAGNOSTICS CONDITION 1 divide_error = MESSAGE_TEXT;

SET divide_result = numerator / denominator;
END

Using the RETURN statement for the procedure status
You can use the RETURN statement in an SQL procedure to return an integer
status value. If you include a RETURN statement, DB2 sets the SQLCODE in the
SQLCA to 0, and the caller must retrieve the return status of the procedure in
either of the following ways:
v By using the RETURN_STATUS item of GET DIAGNOSTICS to retrieve the

return value of the RETURN statement
v By retrieving SQLERRD(0) of the SQLCA, which contains the return value of the

RETURN statement

If you do not include a RETURN statement in an SQL procedure, by default, DB2
sets the return status to 0 for an SQLCODE that is greater than or equal to 0, and
to -1 for an SQLCODE less than 0.

Example: Using GET DIAGNOSTICS to retrieve the return status: Suppose that
you create an SQL procedure, named TESTIT, that calls another SQL procedure,
named TRYIT. The TRYIT procedure returns a status value, and the TESTIT
procedure retrieves that value with the RETURN_STATUS item of GET
DIAGNOSTICS:
CREATE PROCEDURE TESTIT ()

LANGUAGE SQL
A1:BEGIN
DECLARE RETVAL INTEGER DEFAULT 0;

...
CALL TRYIT;
GET DIAGNOSTICS RETVAL = RETURN_STATUS;
IF RETVAL <> 0 THEN

...
LEAVE A1;

ELSE
...

END IF;
END A1

Using SIGNAL or RESIGNAL to raise a condition
You can use either a SIGNAL or RESIGNAL statement to raise a condition with a
specific SQLSTATE and message text within an SQL procedure. The SIGNAL and
RESIGNAL statements differ in the following ways:
v You can use the SIGNAL statement anywhere within an SQL procedure. You

must specify the SQLSTATE value. In addition, you can use the SIGNAL
statement in a trigger body. For information about using the SIGNAL statement
in a trigger, see “Trigger body” on page 285.

v You can use the RESIGNAL statement only within a handler of an SQL
procedure. If you do not specify the SQLSTATE value, DB2 uses the same
SQLSTATE value that activated the handler.

You can use any valid SQLSTATE value in a SIGNAL or RESIGNAL statement;
however, using the range of SQLSTATE values reserved for applications is
recommended.

Chapter 25. Using stored procedures for client/server processing 667

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|



Using the SIGNAL statement in an SQL procedure: You can use the SIGNAL
statement anywhere within an SQL procedure. The following example uses an
ORDERS table and a CUSTOMERS table that are defined in the following way:
CREATE TABLE ORDERS

(ORDERNO INTEGER NOT NULL,
PARTNO INTEGER NOT NULL,
ORDER_DATE DATE DEFAULT,
CUSTNO INTEGER NOT NULL,
QUANTITY SMALLINT NOT NULL,
CONSTRAINT REF_CUSTNO FOREIGN KEY (CUSTNO)

REFERENCES CUSTOMERS (CUSTNO) ON DELETE RESTRICT,
PRIMARY KEY (ORDERNO,PARTNO));

CREATE TABLE CUSTOMERS
(CUSTNO INTEGER NOT NULL,
CUSTNAME VARCHAR(30),
CUSTADDR VARCHAR(80),
PRIMARY KEY (CUSTNO));

Example: Using SIGNAL to set message text: Suppose that you have an SQL
procedure for an order system that signals an application error when a customer
number is not known to the application. The ORDERS table has a foreign key to
the CUSTOMERS table, which requires that the CUSTNO exist in the CUSTOMERS
table before an order can be inserted:
CREATE PROCEDURE submit_order

(IN ONUM INTEGER, IN PNUM INTEGER,
IN CNUM INTEGER, IN QNUM INTEGER)
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’23503’
SIGNAL SQLSTATE ’75002’

SET MESSAGE_TEXT = ’Customer number is not known’;
INSERT INTO ORDERS (ORDERNO, PARTNO, CUSTNO, QUANTITY)

VALUES (ONUM, PNUM, CNUM, QNUM);
END

In this example, the SIGNAL statement is in the handler. However, you can use the
SIGNAL statement to invoke a handler when a condition occurs that will result in
an error; see the example in “Using the RESIGNAL statement in a handler.”

Using the RESIGNAL statement in a handler: You can use a RESIGNAL
statement to assign an SQLSTATE value (to the condition that activated the
handler) that is different from the SQLSTATE value that DB2 defined for that
condition.

Example: Using RESIGNAL to set an SQLSTATE value: Suppose that you create an
SQL procedure, named divide2, that computes the result of the division of two
integers. You include SIGNAL to invoke the handler with an overflow condition
that is caused by a zero divisor, and you include RESIGNAL to set a different
SQLSTATE value for that overflow condition:
CREATE PROCEDURE divide2

(IN numerator INTEGER, IN denominator INTEGER,
OUT divide_result INTEGER)
LANGUAGE SQL
BEGIN

DECLARE overflow CONDITION FOR SQLSTATE ’22003’;
DECLARE CONTINUE HANDLER FOR overflow

RESIGNAL SQLSTATE ’22375’;
IF denominator = 0 THEN

SIGNAL overflow;

668 Application Programming and SQL Guide

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|



ELSE
SET divide_result = numerator / denominator;

END IF;
END

Forcing errors in an SQL procedure when called by a trigger
Suppose that a trigger in your application invokes an SQL stored procedure, and
the body of the procedure contains an SQL statement that returns a warning. In
some circumstances, you might want the procedure to return a negative SQLCODE
so that the trigger will fail.

You can force a negative SQLCODE by issuing a COMMIT or ROLLBACK
statement within the procedure. These statements are accepted at CREATE
PROCEDURE time, but, at run time, they violate the restriction that COMMIT and
ROLLBACK statements are not allowed in procedures that are called from a
trigger. For information about restrictions for the use of these statements, see
“Using COMMIT and ROLLBACK statements in a stored procedure” on page 648.

Examples of SQL procedures
This section contains examples of how to use each of the statements that can
appear in an SQL procedure body.

Example: CASE statement: The following SQL procedure demonstrates how to use
a CASE statement. The procedure receives an employee's ID number and rating as
input parameters. The CASE statement modifies the employee's salary and bonus,
using a different UPDATE statement for each of the possible ratings.
CREATE PROCEDURE UPDATESALARY2
(IN EMPNUMBR CHAR(6),
IN RATING INT)
LANGUAGE SQL
MODIFIES SQL DATA
CASE RATING
WHEN 1 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.10, BONUS = 1000
WHERE EMPNO = EMPNUMBR;

WHEN 2 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.05, BONUS = 500
WHERE EMPNO = EMPNUMBR;

ELSE
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.03, BONUS = 0
WHERE EMPNO = EMPNUMBR;

END CASE

Example: Compound statement with nested IF and WHILE statements: The
following example shows a compound statement that includes an IF statement, a
WHILE statement, and assignment statements. The example also shows how to
declare SQL variables, cursors, and handlers for classes of error codes.

The procedure receives a department number as an input parameter. A WHILE
statement in the procedure body fetches the salary and bonus for each employee in
the department, and uses an SQL variable to calculate a running total of employee
salaries for the department. An IF statement within the WHILE statement tests for
positive bonuses and increments an SQL variable that counts the number of
bonuses in the department. When all employee records in the department have
been processed, the FETCH statement that retrieves employee records receives
SQLCODE 100. A NOT FOUND condition handler makes the search condition for

Chapter 25. Using stored procedures for client/server processing 669

|
|
|
|

|



the WHILE statement false, so execution of the WHILE statement ends.
Assignment statements then assign the total employee salaries and the number of
bonuses for the department to the output parameters for the stored procedure.

If any SQL statement in the procedure body receives a negative SQLCODE, the
SQLEXCEPTION handler receives control. This handler sets output parameter
DEPTSALARY to NULL and ends execution of the SQL procedure. When this
handler is invoked, the SQLCODE and SQLSTATE are set to 0.
CREATE PROCEDURE RETURNDEPTSALARY
(IN DEPTNUMBER CHAR(3),
OUT DEPTSALARY DECIMAL(15,2),
OUT DEPTBONUSCNT INT)
LANGUAGE SQL
READS SQL DATA
P1: BEGIN

DECLARE EMPLOYEE_SALARY DECIMAL(9,2);
DECLARE EMPLOYEE_BONUS DECIMAL(9,2);
DECLARE TOTAL_SALARY DECIMAL(15,2) DEFAULT 0;
DECLARE BONUS_CNT INT DEFAULT 0;
DECLARE END_TABLE INT DEFAULT 0;
DECLARE C1 CURSOR FOR
SELECT SALARY, BONUS FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = DEPTNUMBER;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET END_TABLE = 1;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
SET DEPTSALARY = NULL;
OPEN C1;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;
WHILE END_TABLE = 0 DO
SET TOTAL_SALARY = TOTAL_SALARY + EMPLOYEE_SALARY + EMPLOYEE_BONUS;
IF EMPLOYEE_BONUS > 0 THEN
SET BONUS_CNT = BONUS_CNT + 1;
END IF;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;
END WHILE;
CLOSE C1;
SET DEPTSALARY = TOTAL_SALARY;
SET DEPTBONUSCNT = BONUS_CNT;

END P1

Example: Compound statement with dynamic SQL statements: The following
example shows a compound statement that includes dynamic SQL statements.

The procedure receives a department number (P_DEPT) as an input parameter. In
the compound statement, three statement strings are built, prepared, and executed:
v The first statement string executes a DROP statement to ensure that the table to

be created does not already exist. This table is named DEPT_deptno_T, where
deptno is the value of input parameter P_DEPT.

v The next statement string executes a CREATE statement to create
DEPT_deptno_T.

v The third statement string inserts rows for employees in department deptno into
DEPT_deptno_T.

Just as statement strings that are prepared in host language programs cannot
contain host variables, statement strings in SQL procedures cannot contain SQL
variables or stored procedure parameters. Therefore, the third statement string
contains a parameter marker that represents P_DEPT. When the prepared
statement is executed, parameter P_DEPT is substituted for the parameter marker.

670 Application Programming and SQL Guide



CREATE PROCEDURE CREATEDEPTTABLE (IN P_DEPT CHAR(3))
LANGUAGE SQL
EXTERNAL NAME ’CTDEPTTB’
BEGIN
DECLARE STMT CHAR(1000);
DECLARE MESSAGE CHAR(20);
DECLARE TABLE_NAME CHAR(30);
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET MESSAGE = ’ok’;
SET TABLE_NAME = ’DEPT_’||P_DEPT||’_T’;
SET STMT = ’DROP TABLE ’||TABLE_NAME;
PREPARE S1 FROM STMT;
EXECUTE S1;
SET STMT = ’CREATE TABLE ’||TABLE_NAME||
’( EMPNO CHAR(6) NOT NULL, ’||
’FIRSTNME VARCHAR(6) NOT NULL, ’||
’MIDINIT CHAR(1) NOT NULL, ’||
’LASTNAME CHAR(15) NOT NULL, ’||
’SALARY DECIMAL(9,2))’;
PREPARE S2 FROM STMT;
EXECUTE S2;
SET STMT = ’INSERT INTO ’||TABLE_NAME ||
’SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY ’||
’FROM EMPLOYEE ’||
’WHERE WORKDEPT = ?’;
PREPARE S3 FROM STMT;
EXECUTE S3 USING P_DEPT;
END

Preparing an SQL procedure
After you create the source statements for an SQL procedure, you need to prepare
the procedure to run. This process involves three basic tasks:
v Using the DB2 SQL precompiler to convert the SQL procedure source statements

into a C language program
v Creating an executable load module and a DB2 package from the C language

program
This task includes:
– Precompiling the C language program to generate a DBRM and a modified C

language program
– Binding the DBRM to generate a DB2 package

v Defining the stored procedure to DB2
This task is done by executing the CREATE PROCEDURE statement for the SQL
procedure statically or dynamically. If you prepare an SQL procedure through
the SQL procedure processor or the IBM DB2 Development Center, this task is
performed for you.

The three methods available for preparing an SQL procedure to run are:
v Using IBM DB2 Development Center, which runs on Windows NT, Windows 95,

Windows 98, Windows 2000, and AIX.
v Using the DB2 UDB for z/OS SQL procedure processor. See “Using the DB2

UDB for z/OS SQL procedure processor to prepare an SQL procedure” on page
672.

v Using JCL. See “Using JCL to prepare an SQL procedure” on page 682.

To run an SQL procedure, you must call it from a client program, using the SQL
CALL statement. See the description of the CALL statement in Chapter 2 of DB2
SQL Reference for more information.

Chapter 25. Using stored procedures for client/server processing 671

#



To debug an SQL procedure, you must prepare and call it from a client
development platform that includes the SQL Debugger feature. For additional
information about IBM DB2 Development Center, see http://
publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp.

Using the DB2 UDB for z/OS SQL procedure processor to
prepare an SQL procedure
The SQL procedure processor, DSNTPSMP, is a REXX stored procedure that you
can use to prepare an SQL procedure for execution. You can also use DSNTPSMP
to perform selected steps in the preparation process or delete an existing SQL
procedure. DSNTPSMP is the only preparation method that supports the SQL
Debugger.

DSNTPSMP requires that the default EBCDIC CCSID that is used by DB2 also be
compatible with the C compiler. Using an incompatible CCSID results in
compile-time errors. Examples of incompatible CCSIDs include 290, 930, 1026, and
1155.

The following sections contain information about invoking DSNTPSMP.

Environment for calling and running DSNTPSMP: You can invoke DSNTPSMP
only through an SQL CALL statement in an application program or through IBM
DB2 Development Center.

Before you can run DSNTPSMP, you need to perform the following steps to set up
the DSNTPSMP environment:
1. Install DB2 UDB for z/OS REXX Language Support feature.

Contact your IBM service representative for more information.
2. If you plan to call DSNTPSMP directly, write and prepare an application

program that executes an SQL CALL statement for DSNTPSMP.
See “Invoking DSNTPSMP in an application program” on page 675 for more
information.
If you plan to invoke DSNTPSMP through the IBM DB2 Development Center,
see the following URL for information about installing and using the IBM DB2
Development Center.
http://www.redbooks.ibm.com/abstracts/sg247083.html

3. Set up a WLM environment in which to run DSNTPSMP. See Part 5 (Volume 2)
of DB2 Administration Guide for general information about setting up WLM
application environments for stored procedures and “Setting up a WLM
application environment for DSNTPSMP” for specific information for
DSNTPSMP.

Setting up a WLM application environment for DSNTPSMP: You must run
DSNTPSMP in a WLM-established stored procedures address space. You should
run only DSNTPSMP in that address space, and you must limit the address space
to run only one task concurrently (see the first note for Figure 203 on page 673 for
information regarding NUMTCB).

Figure 203 on page 673 shows sample JCL for a startup procedure for the address
space in which DSNTPSMP runs.

672 Application Programming and SQL Guide

#
#
#
#

|
|

#
#
#
#

#

|
|
|
|
|

|
|
|



Notes to Figure 203:

�1� APPLENV specifies the application environment in which
DSNTPSMP runs. To ensure that DSNTPSMP always uses the
correct data sets and parameters for preparing each SQL procedure,
you can set up different application environments for preparing
different types of SQL procedures. For example, if all payroll
applications use the same set of data sets during program
preparation, you could set up an application environment called
PAYROLL for preparing only payroll applications. The startup
procedure for PAYROLL would point to the data sets that are used
for payroll applications.

DB2SSN specifies the DB2 subsystem name.

//DSN8WLMP PROC DB2SSN=DSN,NUMTCB=1,APPLENV=WLMTPSMP �1�
//*
//WLMTPSMP EXEC PGM=DSNX9WLM,TIME=1440, �2�
// PARM=’&DB2SSN,&NUMTCB,&APPLENV’,
// REGION=0M,DYNAMNBR=10
//STEPLIB DD DISP=SHR,DSN=DSN810.SDSNEXIT �3�
// DD DISP=SHR,DSN=DSN810.SDSNLOAD
// DD DISP=SHR,DSN=CBC.SCCNCMP
// DD DISP=SHR,DSN=CEE.SCEERUN
//SYSEXEC DD DISP=SHR,DSN=DSN810.SDSNCLST �4�
//SYSTSPRT DD SYSOUT=A
//CEEDUMP DD SYSOUT=A
//SYSABEND DD DUMMY
//*
//SQLDBRM DD DISP=SHR,DSN=DSN810.DBRMLIB.DATA �5�
//SQLCSRC DD DISP=SHR,DSN=USER.PSMLIB.DATA �6�
//SQLLMOD DD DISP=SHR,DSN=DSN810.RUNLIB.LOAD �7�
//SQLLIBC DD DISP=SHR,DSN=CEE.SCEEH.H �8�
// DD DISP=SHR,DSN=CEE.SCEEH.SYS.H
//SQLLIBL DD DISP=SHR,DSN=CEE.SCEELKED �9�
// DD DISP=SHR,DSN=DSN810.SDSNLOAD
//SYSMSGS DD DISP=SHR,DSN=CEE.SCEEMSGP(EDCPMSGE) �10�
//* DSNTPSMP Configuration File - CFGTPSMP (optional)
//* A site-provided sequential dataset or member, used to
//* define customized operation of DSNTPSMP in this APPLENV
//*
//*CFGTPSMP DD DISP=SHR,DSN= �11�
//*
//SQLSRC DD UNIT=SYSALLDA,SPACE=(800,(20,20)), �12�
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SQLPRINT DD UNIT=SYSALLDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SQLTERM DD UNIT=SYSALLDA,SPACE=(4000,(20,20)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SQLOUT DD UNIT=SYSALLDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SQLCPRT DD UNIT=SYSALLDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SQLUT1 DD UNIT=SYSALLDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SQLUT2 DD UNIT=SYSALLDA,SPACE=(16000,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SQLCIN DD UNIT=SYSALLDA,SPACE=(8000,(20,20))
//SQLLIN DD UNIT=SYSALLDA,SPACE=(3200,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSMOD DD UNIT=SYSALLDA,SPACE=(8000,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SQLDUMMY DD DUMMY

Figure 203. Startup procedure for a WLM address space in which DSNTPSMP runs

Chapter 25. Using stored procedures for client/server processing 673

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|
|
|
|
|
|
|

|



NUMTCB specifies the number of programs that can run
concurrently in the address space. You should always set NUMTCB
to 1 to ensure that executions of DSNTPSMP occur serially.

�2� WLMTPSMP specifies the address space in which DSNTPSMP
runs.

DYNAMNBR allows for dynamic allocation.

�3� STEPLIB specifies the Language Environment run-time library that
DSNTPSMP uses when it runs.

�4� SYSEXEC specifies the library that contains DSNTPSMP.

�5� SQLDBRM specifies the library into which DSNTPSMP puts the
DBRM that it generates when it precompiles your SQL procedure.

�6� SQLCSRC specifies the library into which DSNTPSMP puts the C
source code that it generates from the SQL procedure source code.
This data set should have a logical record length of 80.

�7� SQLLMOD specifies the library into which DSNTPSMP puts the
load module that it generates when it compiles and link-edits your
SQL procedure.

�8� SQLLIBC specifies the library that contains standard C header files.
This library is used during compilation of the generated C
program.

�9� SQLLIBL specifies the following libraries, which DSNTPSMP uses
when it link-edits the SQL procedure:
v Language Environment link-edit library
v DB2 load library

�10� SYSMSGS specifies the library that contains messages that are used
by the C prelink-edit utility.

�11� CFGTPSMP specifies an optional data set that you can use to
customize DSNTPSMP, including specifying the compiler level. For
details on all of the options that you can set in this file and how to
set them, see the DSNTPSMP CLIST comments.

�12� The DD statements that follow describe work file data sets that are
used by DSNTPSMP.

Authorizations to execute DSNTPSMP: You must have the following
authorizations to invoke DSNTPSMP:
v Procedure privilege to run application programs that invoke the stored

procedure:
EXECUTE ON PROCEDURE SYSPROC.DSNTPSMP

v Collection privilege to use BIND to create packages in the specified collection:
CREATE ON COLLECTION collection-id

You can use an asterisk (*) as the identifier for a collection.
v Package privilege to use BIND or REBIND to bind packages in the specified

collection:
BIND ON PACKAGE collection-id.*

v System privilege to use BIND with the ADD option to create packages and
plans:

BINDADD
v Schema privilege to create, alter, or drop stored procedures in the specified

schema:

674 Application Programming and SQL Guide

|
|
|

||
|

|

||
|

||

||
|

||
|
|

||
|
|

||
|
|

||
|
|
|

||
|

##
#
#
#

||
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|



CREATEIN, ALTERIN, DROPIN ON SCHEMA schema-name

The BUILDOWNER authorization id must have the CREATEIN privilege on the
schema. You can use an asterisk (*) as the identifier for a schema.

v Table privileges to select or delete from, insert into, or update these tables:
SELECT ON TABLE SYSIBM.SYSROUTINES
SELECT ON TABLE SYSIBM.SYSPARMS
SELECT, INSERT, UPDATE, DELETE ON TABLE
SYSIBM.SYSROUTINES_SRC
SELECT, INSERT, UPDATE, DELETE ON TABLE
SYSIBM.SYSROUTINES_OPTS
ALL ON TABLE SYSIBM.SYSPSMOUT

In addition, the authorizations must include any privileges required for the SQL
statements that are contained within the SQL procedure-body. These privileges must
be associated with the OWNER authorization-id that is specified in your bind
options. The default owner is the user that is invoking DSNTPSMP.

Invoking DSNTPSMP in an application program: In an application program,
you can invoke DSNTPSMP through an SQL CALL statement. To prepare the
program that calls DSNTPSMP, you need to precompile, compile, and link-edit the
application program as usual, and then bind a package for that program.

Figure 204 and Figure 205 shows the syntax of invoking DSNTPSMP through the
SQL CALL statement:

Note: You must specify:
v The DSNTPSMP parameters in the order listed
v The empty string if an optional parameter is not required for the function
v The options in the order: bind, compiler, precompiler, prelink, and link

The DSNTPSMP parameters are:

�� CALL SYSPROC.DSNTPSMP ( function , SQL-procedure-name , SQL-procedure-source ,
empty-string

�

� bind-options ,
empty-string

compiler-options ,
empty-string

precompiler-options ,
empty-string

�

� prelink-options ,
empty-string

link-options ,
empty-string

alter-statement ,
empty-string

�

� source-data-set-name ,
empty-string

build-owner ,
empty-string

build-utility ,
empty-string

return-code ) ��

Figure 204. DSNTPSMP syntax

�� �

,

' option ' ��

Figure 205. CALL DSNTPSMP bind-options, compiler-options, precompiler-options, prelink-options, link-options

Chapter 25. Using stored procedures for client/server processing 675

|||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||||

|
||
|

|||||||||||||||||

|
||
|

|

|
|

|

|

|

|
|

|
|

|

|
|
|
|

|
|
|
|

|
|
||

|
|
|
|

|



function
A VARCHAR(20) input parameter that identifies the task that you want
DSNTPSMP to perform. The tasks are:

BUILD
Creates the following objects for an SQL procedure:
v A DBRM, in the data set that DD name SQLDBRM points to
v A load module, in the data set that DD name SQLLMOD points to
v The C language source code for the SQL procedure, in the data set that

DD name SQLCSRC points to
v The stored procedure package
v The stored procedure definition

The following input parameters are required for the BUILD function:
SQL-procedure name
SQL-procedure-source or source-data-set-name

If you choose the BUILD function, and an SQL procedure with name
SQL-procedure-name already exists, DSNTPSMP issues an error message and
terminates.

BUILD_DEBUG
Creates the following objects for an SQL procedure and includes the
preparation necessary to debug the SQL procedure with the SQL
Debugger:
v A DBRM, in the data set that DD name SQLDBRM points to
v A load module, in the data set that DD name SQLLMOD points to
v The C language source code for the SQL procedure, in the data set that

DD name SQLCSRC points to
v The stored procedure package
v The stored procedure definition

The following input parameters are required for the BUILD_DEBUG
function:

SQL-procedure name
SQL-procedure-source or source-data-set-name

If you choose the BUILD_DEBUG function, and an SQL procedure with
name SQL-procedure-name already exists, DSNTPSMP issues an error
message and terminates.

REBUILD
Replaces all objects that were created by the BUILD function for an SQL
procedure, if it exists, otherwise creates those objects.

The following input parameters are required for the REBUILD function:
SQL-procedure name
SQL-procedure-source or source-data-set-name

REBUILD_DEBUG
Replaces all objects that were created by the BUILD_DEBUG function for
an SQL procedure, if it exists, otherwise creates those objects, and includes
the preparation necessary to debug the SQL procedure with the SQL
Debugger.

The following input parameters are required for the REBUILD_DEBUG
function:

SQL-procedure name

676 Application Programming and SQL Guide

|
|
|

|
|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

|

|

|
|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|



SQL-procedure-source or source-data-set-name

REBIND
Binds the SQL procedure package for an existing SQL procedure.

The following input parameter is required for the REBIND function:
SQL-procedure name

DESTROY
Deletes the following objects for an existing SQL procedure:
v The DBRM, from the data set that DD name SQLDBRM points to
v The load module, from the data set that DD name SQLLMOD points to
v The C language source code for the SQL procedure, from the data set

that DD name SQLCSRC points to
v The stored procedure package
v The stored procedure definition

The following input parameter is required for the DESTROY function:
SQL-procedure name

ALTER
Updates the registration for an existing SQL procedure.

The following input parameters are required for the ALTER function:
SQL-procedure name
alter-statement

ALTER_REBUILD
Updates an existing SQL procedure.

The following input parameters are required for the ALTER_REBUILD
function:

SQL-procedure name
SQL-procedure-source or source-data-set-name

ALTER_REBUILD_DEBUG
Updates an existing SQL procedure, and includes the preparation necessary
to debug the SQL procedure with the SQL Debugger.

The following input parameters are required for the
ALTER_REBUILD_DEBUG function:

SQL-procedure name
SQL-procedure-source or source-data-set-name

ALTER_REBIND
Updates the registration and binds the SQL package for an existing SQL
procedure.

The following input parameters are required for the ALTER_REBIND
function:

SQL-procedure name
alter-statement

QUERYLEVEL
Obtains the interface level of the build utility invoked. No other input is
required.

SQL-procedure-name
A VARCHAR(261) input parameter that specifies the SQL procedure name.

The name can be qualified or unqualified. The name must match the procedure
name that is specified within the CREATE PROCEDURE statement that is

Chapter 25. Using stored procedures for client/server processing 677

|

|
|

|
|

|
|

|

|

|
|

|

|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|



provided in SQL-procedure-source or that is obtained from source-data-set-name.
In addition, the name must match the procedure name that is specified within
the ALTER PROCEDURE statement that is provided in alter-statement. Do not
mix qualified and unqualified references.

SQL-procedure-source
A CLOB(2M) input parameter that contains the CREATE PROCEDURE
statement for the SQL procedure. If you specify an empty string for this
parameter, you need to specify the name source-data-set-name of a data set that
contains the SQL procedure source code.

bind-options
A VARCHAR(1024) input parameter that contains the options that you want to
specify for binding the SQL procedure package. Do not specify the MEMBER
or LIBRARY option for the DB2 BIND PACKAGE command. For a list of valid
bind options for the DB2 BIND PACKAGE command, see Part 3 of DB2
Command Reference.

compiler-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for compiling the C language program that DB2 generates for the SQL
procedure. For a list of valid compiler options, see z/OS C/C++ User's Guide.

precompiler-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for precompiling the C language program that DB2 generates for the
SQL procedure. Do not specify the HOST option. For a list of valid
precompiler options, see Table 64 on page 485.

prelink-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for prelinking the C language program that DB2 generates for the SQL
procedure. For a list of valid prelink options, see z/OS C/C++ User's Guide.

link-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for linking the C language program that DB2 generates for the SQL
procedure. For a list of valid link options, see z/OS MVS: Program Management
User's Guide and Reference.

alter-statement
A VARCHAR(32672) input parameter that contains the SQL ALTER
PROCEDURE statement to process with the ALTER or ALTER_REBIND
function.

source-data-set-name
A VARCHAR(80) input parameter that contains the name of a z/OS sequential
data set or partitioned data set member that contains the source code for the
SQL procedure. If you specify an empty string for this parameter, you need to
provide the SQL procedure source code in SQL-procedure-source.

build-owner
A VARCHAR(130) input parameter that contains the SQL identifier to serve as
the build owner for newly created SQL stored procedures.

When this parameter is not specified, the value defaults to the value in the
CURRENT SQLID special register when the build utility is invoked.

678 Application Programming and SQL Guide

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|



build-utility
A VARCHAR(255) input parameter that contains the name of the build utility
that is invoked. The qualified form of the name is suggested, for example,
SYSPROC.DSNTPSMP.

return-code
A VARCHAR(255) output parameter in which DB2 puts the return code from
the DSNTPSMP invocation. The values are:

0 Successful invocation. The calling application can optionally retrieve the
result set and then issue the required SQL COMMIT statement.

4 Successful invocation, but warnings occurred. The calling application
should retrieve the warning messages in the result set and then issue the
required SQL COMMIT statement.

8 Failed invocation. The calling application should retrieve the error
messages in the result set and then issue the required SQL ROLLBACK
statement.

999
Failed invocation with severe errors. The calling application should retrieve
the error messages in the result set and then issue the required SQL
ROLLBACK statement. To view error messages that are not in the result
set, see the job log of the address space for the DSNTPSMP execution.

1.20
Level of DSNTPSMP when request is QUERYLEVEL. The calling
application can retrieve the result set for additional information about the
release and service level and then issue the required SQL COMMIT
statement.

Result set that DSNTPSMP returns: DSNTPSMP returns one result set that
contains messages and listings. You can write your client program to retrieve
information from this result set. This technique is shown in “Writing a DB2 UDB
for z/OS client program or SQL procedure to receive result sets” on page 710.

Each row of the result set contains the following information:

Processing step
The step in the function process to which the message applies.

ddname
The ddname of the data set that contains the message.

Sequence number
The sequence number of a line of message text within a message.

Message
A line of message text.

Rows in the message result set are ordered by processing step, ddname, and
sequence number.

Completing the requested DSNTPSMP action: The calling application must issue
either an SQL COMMIT statement or an SQL ROLLBACK statement after the
DSNTPSMP request. A return value of '0' or '4' requires the COMMIT statement.
Any other return value requires the ROLLBACK statement. You must process the
result set before issuing the COMMIT or ROLLBACK statement.

A QUERYLEVEL request must be followed by the COMMIT statement.

Chapter 25. Using stored procedures for client/server processing 679

|
|
|
|

|
|
|

||
|

||
|
|

||
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|



Examples of DSNTPSMP invocation: The following examples illustrate invoking
the BUILD, DESTROY, REBUILD, and REBIND functions of DSNTPSMP.

DSNTPSMP BUILD function: Call DSNTPSMP to build an SQL procedure. The
information that DSNTPSMP needs is listed in Table 80:

Table 80. The functions DSNTPSMP needs to BUILD an SQL stored procedure

Function BUILD

SQL procedure name MYSCHEMA.SQLPROC

Source location String in CLOB host variable procsrc

Bind options VALIDATE(BIND)

Compiler options SOURCE, LIST, LONGNAME, RENT

Precompiler options SOURCE, XREF, STDSQL(NO)

Prelink options None specified

Link options AMODE=31, RMODE=ANY, MAP, RENT

Build utility SYSPROC.DSNTPSMP

Return value String returned in varying-length host variable returnval

The CALL statement is:
EXEC SQL CALL SYSPROC.DSNTPSMP(’BUILD’,’MYSCHEMA.SQLPROC’,:procsrc,
’VALIDATE(BIND)’,
’SOURCE,LIST,LONGNAME,RENT’,
’SOURCE,XREF,STDSQL(NO)’,
’’,
’AMODE=31,RMODE=ANY,MAP,RENT’,
’’,’’,’’,’SYSPROC.DSNTPSMP’,
:returnval);

DSNTPSMP DESTROY function: Call DSNTPSMP to delete an SQL procedure
definition and the associated load module. The information that DSNTPMSP needs
is listed in Table 81:

Table 81. The functions DSNTPSMP needs to DESTROY an SQL stored procedure

Function DESTROY

SQL procedure name MYSCHEMA.OLDPROC

Return value String returned in varying-length host
variable returnval

The CALL statement is:
EXEC SQL CALL SYSPROC.DSNTPSMP(’DESTROY’,’MYSCHEMA.OLDPROC’,’’,
’’,’’,’’,’’,’’,
’’,’’,’’,’’,
:returnval);

DSNTPSMP REBUILD function: Call DSNTPSMP to recreate an existing SQL
procedure. The information that DSNTPMSP needs is listed in Table 82:

Table 82. The functions DSNTPSMP needs to REBUILD an SQL stored procedure

Function REBUILD

SQL procedure name MYSCHEMA.SQLPROC

680 Application Programming and SQL Guide

|
|

|
|

||

||

||

||

||

||

||

||

||

||

||
|

|

|
|
|
|
|
|
|
|

|
|
|

||

||

||

||
|
|

|

|
|
|
|

|
|

||

||

||



Table 82. The functions DSNTPSMP needs to REBUILD an SQL stored
procedure (continued)

Function REBUILD

Bind options VALIDATE(BIND)

Compiler options SOURCE, LIST, LONGNAME, RENT

Precompiler options SOURCE, XREF, STDSQL(NO)

Prelink options None specified

Link options AMODE=31, RMODE=ANY, MAP, RENT

Source data set name Member PROCSRC of partitioned data set
DSN810.SDSNSAMP

Return value String returned in varying-length host variable
returnval

The CALL statement is:
EXEC SQL CALL SYSPROC.DSNTPSMP(’REBUILD’,’MYSCHEMA.SQLPROC’,’’,
’VALIDATE(BIND)’,
’SOURCE,LIST,LONGNAME,RENT’,
’SOURCE,XREF,STDSQL(NO)’,
’’,
’AMODE=31,RMODE=ANY,MAP,RENT’,
’’,’DSN810.SDSNSAMP(PROCSRC)’,’’,’’,
:returnval);

If you want to recreate an existing SQL procedure for debugging with the SQL
Debugger, use the following CALL statement, which includes the
REBUILD_DEBUG function:
EXEC SQL CALL SYSPROC.DSNTPSMP(’REBUILD_DEBUG’,’MYSCHEMA.SQLPROC’,’’,
’VALIDATE(BIND)’,
’SOURCE,LIST,LONGNAME,RENT’,
’SOURCE,XREF,STDSQL(NO)’,
’’,
’AMODE=31,RMODE=ANY,MAP,RENT’,
’’,’DSN810.SDSNSAMP(PROCSRC)’,’’,’’,
:returnval);

DSNTPSMP REBIND function: Call DSNTPSMP to rebind the package for an
existing SQL procedure. The information that DSNTPMSP needs is listed in
Table 83:

Table 83. The functions DSNTPSMP needs to REBIND an SQL stored procedure

Function REBIND

SQL procedure name MYSCHEMA.SQLPROC

Bind options VALIDATE(RUN), ISOLATION(RR)

Return value String returned in varying-length host variable returnval

The CALL statement is:
EXEC SQL CALL SYSPROC.DSNTPSMP(’REBIND’,’MYSCHEMA.SQLPROC’,’’,
’VALIDATE(RUN),ISOLATION(RR)’,’’,’’,’’,’’,
’’,’’,’’,’’,
:returnval);

Chapter 25. Using stored procedures for client/server processing 681

|
|

||

||

||

||

||

||

||
|

||
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

||

||

||

||

||
|

|

|
|
|
|



Using JCL to prepare an SQL procedure
No support is provided for using JCL to prepare an SQL procedure for debugging
with the SQL Debugger.

Use the following steps to prepare an SQL procedure using JCL.
1. Preprocess the CREATE PROCEDURE statement.

To do this, execute program DSNHPC, with the HOST(SQL) option. This
process converts the SQL procedure source statements into a C language
program.

2. Precompile the C language source program that was generated in step 1.
This process produces a DBRM and modified C language source statements.
When you perform this step, ensure that you do the following things:
v Give the DBRM the same name as the name of the load module for the SQL

procedure.
v Specify MARGINS(1,80) for the MARGINS precompiler option.

3. Compile and link-edit the modified C source statements that were produced in
step 1.
This process produces an executable C language program.
When you compile the C language program, ensure that the compiler options
include the option NOSEQ.

4. Bind the DBRM that was produced in step 1 into a package.
5. Define the stored procedure to DB2.

To do this, execute the CREATE PROCEDURE statement for the SQL
procedure. You can execute the CREATE PROCEDURE statement dynamically,
using an application such as SPUFI or DSNTEP2. Executing the CREATE
PROCEDURE statement puts the stored procedure definition in the DB2
catalog. If the routine body of the CREATE PROCEDURE statement contains
embedded semicolons, change the default SQL terminator character in SPUFI,
DSNTEP2, or DSNTIAD from a semicolon to some other special character, such
as the percent sign (%). For information about to change the default SQL
terminator character, see one of the following sections:
v “Running DSNTIAD” on page 1026
v “Running DSNTEP2 and DSNTEP4” on page 1028
v “Changing SPUFI defaults” on page 62

Sample programs to help you prepare and run SQL procedures
Table 84 lists the sample jobs that DB2 provides to help you prepare and run SQL
procedures. All samples are in data set DSN810.SDSNSAMP. Before you can run
the samples, you must customize them for your installation. See the prolog of each
sample for specific instructions.

Table 84. SQL procedure samples shipped with DB2

Member that
contains
source code Contents Purpose

DSNHSQL JCL procedure Precompiles, compiles, prelink-edits, and link-edits an
SQL procedure

DSNTEJ63 JCL job Invokes JCL procedure DSNHSQL to prepare SQL
procedure DSN8ES1 for execution

682 Application Programming and SQL Guide

|
|
|

#

#
#
#
#
#
#
#
#
#

#

#

#



Table 84. SQL procedure samples shipped with DB2 (continued)

Member that
contains
source code Contents Purpose

DSN8ES1 SQL procedure A stored procedure that accepts a department number
as input and returns a result set that contains salary
information for each employee in that department

DSNTEJ64 JCL job Prepares client program DSN8ED3 for execution

DSN8ED3 C program Calls SQL procedure DSN8ES1

DSN8ES2 SQL procedure A stored procedure that accepts one input parameter
and returns two output parameters. The input
parameter specifies a bonus to be awarded to
managers. The SQL procedure updates the BONUS
column of DSN810.SDSNSAMP. If no SQL error occurs
when the SQL procedure runs, the first output
parameter contains the total of all bonuses awarded to
managers and the second output parameter contains a
null value. If an SQL error occurs, the second output
parameter contains an SQLCODE.

DSN8ED4 C program Calls the SQL procedure processor, DSNTPSMP, to
prepare DSN8ES2 for execution

DSN8WLMP JCL procedure A sample startup procedure for the WLM-established
stored procedures address space in which DSNTPSMP
runs

DSN8ED5 C program Calls SQL procedure DSN8ES2

DSNTEJ65 JCL job Prepares and executes programs DSN8ED4 and
DSN8ED5.

DSNTEJ65 uses DSNTPSMP, the SQL procedure
processor, which requires that the default EBCDIC
CCSID that is used by DB2 also be compatible with
the C compiler. Do not run DSNTEJ65 if the default
EBCDIC CCSID for DB2 is not compatible with the C
compiler. Examples of incompatible CCSIDs include
290, 930, 1026, and 1155.

DSNTIJSD JCL job Prepares a DB2 UDB for z/OS server for operation
with the SQL Debugger

Writing and preparing an application to use stored procedures
Use the SQL statement CALL to call a stored procedure and to pass a list of
parameters to the procedure. See Chapter 5 of DB2 SQL Reference for the syntax
and a complete description of the CALL statement.

An application program that calls a stored procedure can:
v Call more than one stored procedure.
v Call a single stored procedure more than once at the same or at different levels

of nesting.
v Execute the CALL statement locally or send the CALL statement to a server. The

application executes a CONNECT statement to connect to the server and then
executes the CALL statement, or uses a three-part name to identify and
implicitly connect to the server where the stored procedure is located.

v After connecting to a server, mix CALL statements with other SQL statements.

Chapter 25. Using stored procedures for client/server processing 683

#
#
#
#
#
#
#

|
|



Use either of these methods to execute the CALL statement:
– Execute the CALL statement statically.
– Use an escape clause in an ODBC application to pass the CALL statement to

DB2.
v Use any of the DB2 attachment facilities.

Forms of the CALL statement
The simplest form of a CALL statement looks like this:
EXEC SQL CALL A (:EMP, :PRJ, :ACT, :EMT, :EMS, :EME, :TYPE, :CODE);

where :EMP, :PRJ, :ACT, :EMT, :EMS, :EME, :TYPE, and :CODE are host variables
that you have declared earlier in your application program. Your CALL statement
might vary from the preceding statement in the following ways:
v Instead of passing each of the employee and project parameters separately, you

could pass them together as a host structure. For example, assume that you
define a host structure like this:
struct {

char EMP[7];
char PRJ[7];
short ACT;
short EMT;
char EMS[11];
char EME[11];

} empstruc;

The corresponding CALL statement looks like this:
EXEC SQL CALL A (:empstruc, :TYPE, :CODE);

v Suppose that A is in schema SCHEMAA at remote location LOCA. To access A,
you could use either of these methods:
– Execute a CONNECT statement to LOCA, and then execute the CALL

statement:
EXEC SQL CONNECT TO LOCA;
EXEC SQL CALL SCHEMAA.A (:EMP, :PRJ, :ACT, :EMT, :EMS, :EME,

:TYPE, :CODE);

– Specify the three-part name for A in the CALL statement:
EXEC SQL CALL LOCA.SCHEMAA.A (:EMP, :PRJ, :ACT, :EMT, :EMS,

:EME, :TYPE, :CODE);

The advantage of using the second form is that you do not need to execute a
CONNECT statement. The disadvantage is that this form of the CALL statement
is not portable to other operating systems.
If your program executes the ASSOCIATE LOCATORS or DESCRIBE
PROCEDURE statements, you must use the same form of the procedure name
on the CALL statement and on the ASSOCIATE LOCATORS or DESCRIBE
PROCEDURE statement.

v The preceding examples assume that none of the input parameters can have null
values. To allow null values, code a statement like this:
EXEC SQL CALL A (:EMP :IEMP, :PRJ :IPRJ, :ACT :IACT,

:EMT :IEMT, :EMS :IEMS, :EME :IEME,
:TYPE :ITYPE, :CODE :ICODE);

where :IEMP, :IPRJ, :IACT, :IEMT, :IEMS, :IEME, :ITYPE, and :ICODE are
indicator variables for the parameters.

684 Application Programming and SQL Guide



v You might pass integer or character string constants or the null value to the
stored procedure, as in this example:
EXEC SQL CALL A (’000130’, ’IF1000’, 90, 1.0, NULL, ’1982-10-01’,

:TYPE, :CODE);

v You might use a host variable for the name of the stored procedure:
EXEC SQL CALL :procnm (:EMP, :PRJ, :ACT, :EMT, :EMS, :EME,

:TYPE, :CODE);

Assume that the stored procedure name is A. The host variable procnm is a
character variable of length 255 or less that contains the value 'A'. You should
use this technique if you do not know in advance the name of the stored
procedure, but you do know the parameter list convention.

v If you prefer to pass your parameters in a single structure, rather than as
separate host variables, you might use this form:
EXEC SQL CALL A USING DESCRIPTOR :sqlda;

sqlda is the name of an SQLDA.
One advantage of using this form is that you can change the encoding scheme of
the stored procedure parameter values. For example, if the subsystem on which
the stored procedure runs has an EBCDIC encoding scheme, and you want to
retrieve data in ASCII CCSID 437, you can specify the desired CCSIDs for the
output parameters in the SQLVAR fields of the SQLDA.
This technique for overriding the CCSIDs of parameters is the same as the
technique for overriding the CCSIDs of variables, which is described in
“Changing the CCSID for retrieved data” on page 621. When you use this
technique, the defined encoding scheme of the parameter must be different from
the encoding scheme that you specify in the SQLDA. Otherwise, no conversion
occurs.
The defined encoding scheme for the parameter is the encoding scheme that you
specify in the CREATE PROCEDURE statement, or the default encoding scheme
for the subsystem, if you do not specify an encoding scheme in the CREATE
PROCEDURE statement.

v You might execute the CALL statement by using a host variable name for the
stored procedure with an SQLDA:
EXEC SQL CALL :procnm USING DESCRIPTOR :sqlda;

This form gives you extra flexibility because you can use the same CALL
statement to call different stored procedures with different parameter lists.
Your client program must assign a stored procedure name to the host variable
procnm and load the SQLDA with the parameter information before making the
SQL CALL.

Each of the preceding CALL statement examples uses an SQLDA. If you do not
explicitly provide an SQLDA, the precompiler generates the SQLDA based on the
variables in the parameter list.

Authorization for executing stored procedures
To execute a stored procedure, you need two types of authorization:
v Authorization to execute the CALL statement
v Authorization to execute the stored procedure package and any packages under

the stored procedure package.

The authorizations you need depend on whether the form of the CALL statement
is CALL literal or CALL :host-variable.

Chapter 25. Using stored procedures for client/server processing 685



If the stored procedure invokes user-defined functions or triggers, you need
additional authorizations to execute the trigger, the user-defined function, and the
user-defined function packages.

For more information, see the description of the CALL statement in Chapter 5 of
DB2 SQL Reference.

Linkage conventions
When an application executes the CALL statement, DB2 builds a parameter list for
the stored procedure, using the parameters and values provided in the statement.
DB2 obtains information about parameters from the stored procedure definition
you create when you execute CREATE PROCEDURE. Parameters are defined as
one of these types:

IN Input-only parameters, which provide values to the stored
procedure

OUT Output-only parameters, which return values from the stored
procedure to the calling program

INOUT Input/output parameters, which provide values to or return values
from the stored procedure.

If a stored procedure fails to set one or more of the output-only parameters, DB2
does not detect the error in the stored procedure. Instead, DB2 returns the output
parameters to the calling program, with the values established on entry to the
stored procedure.

Initializing output parameters: For a stored procedure that runs locally, you do not
need to initialize the values of output parameters before you call the stored
procedure. However, when you call a stored procedure at a remote location, the
local DB2 cannot determine whether the parameters are input (IN) or output (OUT
or INOUT) parameters. Therefore, you must initialize the values of all output
parameters before you call a stored procedure at a remote location.

It is recommended that you initialize the length of LOB output parameters to zero.
Doing so can improve your performance.

DB2 supports three parameter list conventions. DB2 chooses the parameter list
convention based on the value of the PARAMETER STYLE parameter in the stored
procedure definition: GENERAL, GENERAL WITH NULLS, or SQL.
v Use GENERAL when you do not want the calling program to pass null values

for input parameters (IN or INOUT) to the stored procedure. The stored
procedure must contain a variable declaration for each parameter passed in the
CALL statement.
Figure 206 on page 687 shows the structure of the parameter list for
PARAMETER STYLE GENERAL.

686 Application Programming and SQL Guide

|



v Use GENERAL WITH NULLS to allow the calling program to supply a null
value for any parameter passed to the stored procedure. For the GENERAL
WITH NULLS linkage convention, the stored procedure must do the following
tasks:
– Declare a variable for each parameter passed in the CALL statement.
– Declare a null indicator structure containing an indicator variable for each

parameter.
– On entry, examine all indicator variables associated with input parameters to

determine which parameters contain null values.
– On exit, assign values to all indicator variables associated with output

variables. An indicator variable for an output variable that returns a null
value to the caller must be assigned a negative number. Otherwise, the
indicator variable must be assigned the value 0.

In the CALL statement, follow each parameter with its indicator variable, using
one of the following forms:
host-variable :indicator-variable
or
host-variable INDICATOR :indicator-variable.

Figure 207 shows the structure of the parameter list for PARAMETER STYLE
GENERAL WITH NULLS.

v Like GENERAL WITH NULLS, option SQL lets you supply a null value for any
parameter that is passed to the stored procedure. In addition, DB2 passes input
and output parameters to the stored procedure that contain this information:

Figure 206. Parameter convention GENERAL for a stored procedure

Figure 207. Parameter convention GENERAL WITH NULLS for a stored procedure

Chapter 25. Using stored procedures for client/server processing 687

|



– The SQLSTATE that is to be returned to DB2. This is a CHAR(5) parameter
that represents the SQLSTATE that is passed in to the program from the
database manager. The initial value is set to ‘00000’. Although the SQLSTATE
is usually not set by the program, it can be set as the result SQLSTATE that is
used to return an error or a warning. Returned values that start with
anything other than ‘00’, ‘01’, or ‘02’ are error conditions. Refer to DB2 Codes
for more information about the SQLSTATE values that an application can
generate.

– The qualified name of the stored procedure. This is a VARCHAR(27) value.
– The specific name of the stored procedure. The specific name is a

VARCHAR(18) value that is the same as the unqualified name.
– The SQL diagnostic string that is to be returned to DB2. This is a

VARCHAR(70) value. Use this area to pass descriptive information about an
error or warning to the caller.

SQL is not a valid linkage convention for a REXX language stored procedure.
Figure 208 shows the structure of the parameter list for PARAMETER STYLE
SQL.

Example of stored procedure linkage convention GENERAL
The following examples demonstrate how an assembler, C, COBOL, or PL/I stored
procedure uses the GENERAL linkage convention to receive parameters. See
“Examples of using stored procedures” on page 1077 for examples of complete
stored procedures and application programs that call them.

Figure 208. Parameter convention SQL for a stored procedure

688 Application Programming and SQL Guide

|

|
|
|
|
|
|
|
|

|

|



For these examples, assume that a COBOL application has the following parameter
declarations and CALL statement:
************************************************************
* PARAMETERS FOR THE SQL STATEMENT CALL *
************************************************************
01 V1 PIC S9(9) USAGE COMP.
01 V2 PIC X(9)....

EXEC SQL CALL A (:V1, :V2) END-EXEC.

In the CREATE PROCEDURE statement, the parameters are defined like this:
IN V1 INT, OUT V2 CHAR(9)

The following figures show how an assembler, C, COBOL, and PL/I stored
procedure uses the GENERAL linkage convention to receive parameters.

Figure 209 shows how a stored procedure in assembler language receives these
parameters.

*******************************************************************
* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE GENERAL LINKAGE CONVENTION. *
*******************************************************************
A CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13
*******************************************************************
* BRING UP THE LANGUAGE ENVIRONMENT. *
*******************************************************************

...
*******************************************************************
* GET THE PASSED PARAMETER VALUES. THE GENERAL LINKAGE CONVENTION*
* FOLLOWS THE STANDARD ASSEMBLER LINKAGE CONVENTION: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS TO THE *
* PARAMETERS. *
*******************************************************************

L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1

...
L R7,4(R1) GET POINTER TO V2
MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2

...
CEETERM RC=0

*******************************************************************
* VARIABLE DECLARATIONS AND EQUATES *
*******************************************************************
R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LOCV1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2

...
PROGSIZE EQU *-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END A

Figure 209. An example of GENERAL linkage in assembler

Chapter 25. Using stored procedures for client/server processing 689



Figure 210 shows how a stored procedure in the C language receives these
parameters.

Figure 211 shows how a stored procedure in the COBOL language receives these
parameters.

#pragma runopts(PLIST(OS))
#pragma options(RENT)
#include <stdlib.h>
#include <stdio.h>
/*****************************************************************/
/* Code for a C language stored procedure that uses the */
/* GENERAL linkage convention. */
/*****************************************************************/
main(argc,argv)
int argc; /* Number of parameters passed */
char *argv[]; /* Array of strings containing */

/* the parameter values */
{
long int locv1; /* Local copy of V1 */
char locv2[10]; /* Local copy of V2 */

/* (null-terminated) */

...
/***************************************************************/
/* Get the passed parameters. The GENERAL linkage convention */
/* follows the standard C language parameter passing */
/* conventions: */
/* - argc contains the number of parameters passed */
/* - argv[0] is a pointer to the stored procedure name */
/* - argv[1] to argv[n] are pointers to the n parameters */
/* in the SQL statement CALL. */
/***************************************************************/
if(argc==3) /* Should get 3 parameters: */
{ /* procname, V1, V2 */
locv1 = *(int *) argv[1];

/* Get local copy of V1 */

...
strcpy(argv[2],locv2);

/* Assign a value to V2 */

...
}

}

Figure 210. An example of GENERAL linkage in C

690 Application Programming and SQL Guide



Figure 212 shows how a stored procedure in the PL/I language receives these
parameters.

Example of stored procedure linkage convention GENERAL
WITH NULLS
The following examples demonstrate how an assembler, C, COBOL, or PL/I stored
procedure uses the GENERAL WITH NULLS linkage convention to receive
parameters. See “Examples of using stored procedures” on page 1077 for examples
of complete stored procedures and application programs that call them.

For these examples, assume that a C application has the following parameter
declarations and CALL statement:

CBL RENT
IDENTIFICATION DIVISION.
************************************************************
* CODE FOR A COBOL LANGUAGE STORED PROCEDURE THAT USES THE *
* GENERAL LINKAGE CONVENTION. *
************************************************************
PROGRAM-ID. A.

...
DATA DIVISION.

...
LINKAGE SECTION.
************************************************************
* DECLARE THE PARAMETERS PASSED BY THE SQL STATEMENT *
* CALL HERE. *
************************************************************
01 V1 PIC S9(9) USAGE COMP.
01 V2 PIC X(9).

...
PROCEDURE DIVISION USING V1, V2.
************************************************************
* THE USING PHRASE INDICATES THAT VARIABLES V1 AND V2 *
* WERE PASSED BY THE CALLING PROGRAM. *
************************************************************

...
****************************************
* ASSIGN A VALUE TO OUTPUT VARIABLE V2 *
****************************************

MOVE ’123456789’ TO V2.

Figure 211. An example of GENERAL linkage in COBOL

*PROCESS SYSTEM(MVS);
A: PROC(V1, V2) OPTIONS(MAIN NOEXECOPS REENTRANT);
/***************************************************************/
/* Code for a PL/I language stored procedure that uses the */
/* GENERAL linkage convention. */
/***************************************************************/
/***************************************************************/
/* Indicate on the PROCEDURE statement that two parameters */
/* were passed by the SQL statement CALL. Then declare the */
/* parameters in the following section. */
/***************************************************************/
DCL V1 BIN FIXED(31),

V2 CHAR(9);

...
V2 = ’123456789’; /* Assign a value to output variable V2 */

Figure 212. An example of GENERAL linkage in PL/I

Chapter 25. Using stored procedures for client/server processing 691



/************************************************************/
/* Parameters for the SQL statement CALL */
/************************************************************/

long int v1;
char v2[10]; /* Allow an extra byte for */

/* the null terminator */
/************************************************************/
/* Indicator structure */
/************************************************************/

struct indicators {
short int ind1;
short int ind2;

} indstruc;

...
indstruc.ind1 = 0; /* Remember to initialize the */

/* input parameter’s indicator*/
/* variable before executing */
/* the CALL statement */

EXEC SQL CALL B (:v1 :indstruc.ind1, :v2 :indstruc.ind2);

...

In the CREATE PROCEDURE statement, the parameters are defined like this:
IN V1 INT, OUT V2 CHAR(9)

The following figures show how an assembler, C, COBOL, or PL/I stored
procedure uses the GENERAL WITH NULLS linkage convention to receive
parameters.

Figure 213 shows how a stored procedure in assembler language receives these
parameters.

692 Application Programming and SQL Guide



Figure 214 shows how a stored procedure in the C language receives these
parameters.

*******************************************************************
* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE GENERAL WITH NULLS LINKAGE CONVENTION. *
*******************************************************************
B CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13
*******************************************************************
* BRING UP THE LANGUAGE ENVIRONMENT. *
*******************************************************************

...
*******************************************************************
* GET THE PASSED PARAMETER VALUES. THE GENERAL WITH NULLS LINKAGE*
* CONVENTION IS AS FOLLOWS: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS. IF N *
* PARAMETERS ARE PASSED, THERE ARE N+1 POINTERS. THE FIRST *
* N POINTERS ARE THE ADDRESSES OF THE N PARAMETERS, JUST AS *
* WITH THE GENERAL LINKAGE CONVENTION. THE N+1ST POINTER IS *
* THE ADDRESS OF A LIST CONTAINING THE N INDICATOR VARIABLE *
* VALUES. *
*******************************************************************

L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1
L R7,8(R1) GET POINTER TO INDICATOR ARRAY
MVC LOCIND(2*2),0(R7) MOVE VALUES INTO LOCAL STORAGE
LH R7,LOCIND GET INDICATOR VARIABLE FOR V1
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, V1 IS NULL

...
L R7,4(R1) GET POINTER TO V2
MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2
L R7,8(R1) GET POINTER TO INDICATOR ARRAY
MVC 2(2,R7),=H(0) MOVE ZERO TO V2’S INDICATOR VAR

...
CEETERM RC=0

*******************************************************************
* VARIABLE DECLARATIONS AND EQUATES *
*******************************************************************
R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LOCV1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2
LOCIND DS 2H LOCAL COPY OF INDICATOR ARRAY

...
PROGSIZE EQU *-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END B

Figure 213. An example of GENERAL WITH NULLS linkage in assembler

Chapter 25. Using stored procedures for client/server processing 693



Figure 215 shows how a stored procedure in the COBOL language receives these
parameters.

#pragma options(RENT)
#pragma runopts(PLIST(OS))
#include <stdlib.h>
#include <stdio.h>
/*****************************************************************/
/* Code for a C language stored procedure that uses the */
/* GENERAL WITH NULLS linkage convention. */
/*****************************************************************/
main(argc,argv)
int argc; /* Number of parameters passed */
char *argv[]; /* Array of strings containing */

/* the parameter values */
{
long int locv1; /* Local copy of V1 */
char locv2[10]; /* Local copy of V2 */

/* (null-terminated) */
short int locind[2]; /* Local copy of indicator */

/* variable array */
short int *tempint; /* Used for receiving the */

/* indicator variable array */

...
/***************************************************************/
/* Get the passed parameters. The GENERAL WITH NULLS linkage */
/* convention is as follows: */
/* - argc contains the number of parameters passed */
/* - argv[0] is a pointer to the stored procedure name */
/* - argv[1] to argv[n] are pointers to the n parameters */
/* in the SQL statement CALL. */
/* - argv[n+1] is a pointer to the indicator variable array */
/***************************************************************/
if(argc==4) /* Should get 4 parameters: */
{ /* procname, V1, V2, */

/* indicator variable array */
locv1 = *(int *) argv[1];

/* Get local copy of V1 */
tempint = argv[3]; /* Get pointer to indicator */

/* variable array */
locind[0] = *tempint;

/* Get 1st indicator variable */
locind[1] = *(++tempint);

/* Get 2nd indicator variable */
if(locind[0]<0) /* If 1st indicator variable */
{ /* is negative, V1 is null */

...
}

...
strcpy(argv[2],locv2);

/* Assign a value to V2 */
*(++tempint) = 0; /* Assign 0 to V2’s indicator */

/* variable */
}

}

Figure 214. An example of GENERAL WITH NULLS linkage in C

694 Application Programming and SQL Guide



Figure 216 shows how a stored procedure in the PL/I language receives these
parameters.

CBL RENT
IDENTIFICATION DIVISION.
************************************************************
* CODE FOR A COBOL LANGUAGE STORED PROCEDURE THAT USES THE *
* GENERAL WITH NULLS LINKAGE CONVENTION. *
************************************************************
PROGRAM-ID. B.

...
DATA DIVISION.

...
LINKAGE SECTION.
************************************************************
* DECLARE THE PARAMETERS AND THE INDICATOR ARRAY THAT *
* WERE PASSED BY THE SQL STATEMENT CALL HERE. *
************************************************************
01 V1 PIC S9(9) USAGE COMP.
01 V2 PIC X(9).
*
01 INDARRAY.

10 INDVAR PIC S9(4) USAGE COMP OCCURS 2 TIMES.

...
PROCEDURE DIVISION USING V1, V2, INDARRAY.
************************************************************
* THE USING PHRASE INDICATES THAT VARIABLES V1, V2, AND *
* INDARRAY WERE PASSED BY THE CALLING PROGRAM. *
************************************************************

...
***************************
* TEST WHETHER V1 IS NULL *
***************************
IF INDARRAY(1) < 0
PERFORM NULL-PROCESSING.

...
****************************************
* ASSIGN A VALUE TO OUTPUT VARIABLE V2 *
* AND ITS INDICATOR VARIABLE *
****************************************

MOVE ’123456789’ TO V2.
MOVE ZERO TO INDARRAY(2).

Figure 215. An example of GENERAL WITH NULLS linkage in COBOL

Chapter 25. Using stored procedures for client/server processing 695



Example of stored procedure linkage convention SQL
The following examples demonstrate how an assembler, C, COBOL, or PL/I stored
procedure uses the SQL linkage convention to receive parameters. These examples
also show how a stored procedure receives the DBINFO structure.

For these examples, assume that a C application has the following parameter
declarations and CALL statement:
/************************************************************/
/* Parameters for the SQL statement CALL */
/************************************************************/

long int v1;
char v2[10]; /* Allow an extra byte for */

/* the null terminator */
/************************************************************/
/* Indicator variables */
/************************************************************/

short int ind1;
short int ind2;

...
ind1 = 0; /* Remember to initialize the */

/* input parameter’s indicator*/
/* variable before executing */
/* the CALL statement */

EXEC SQL CALL B (:v1 :ind1, :v2 :ind2);

...

In the CREATE PROCEDURE statement, the parameters are defined like this:
IN V1 INT, OUT V2 CHAR(9)

The following figures show how an assembler, C, COBOL, or PL/I stored
procedure uses the SQL linkage convention to receive parameters.

*PROCESS SYSTEM(MVS);
A: PROC(V1, V2, INDSTRUC) OPTIONS(MAIN NOEXECOPS REENTRANT);
/***************************************************************/
/* Code for a PL/I language stored procedure that uses the */
/* GENERAL WITH NULLS linkage convention. */
/***************************************************************/
/***************************************************************/
/* Indicate on the PROCEDURE statement that two parameters */
/* and an indicator variable structure were passed by the SQL */
/* statement CALL. Then declare them in the following section.*/
/* For PL/I, you must declare an indicator variable structure, */
/* not an array. */
/***************************************************************/
DCL V1 BIN FIXED(31),

V2 CHAR(9);
DCL

01 INDSTRUC,
02 IND1 BIN FIXED(15),
02 IND2 BIN FIXED(15);

...
IF IND1 < 0 THEN
CALL NULLVAL; /* If indicator variable is negative */

/* then V1 is null */

...
V2 = ’123456789’; /* Assign a value to output variable V2 */
IND2 = 0; /* Assign 0 to V2’s indicator variable */

Figure 216. An example of GENERAL WITH NULLS linkage in PL/I

696 Application Programming and SQL Guide

|

|

|



Figure 217 shows how a stored procedure in assembler language receives these
parameters.

*******************************************************************
* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE SQL LINKAGE CONVENTION. *
*******************************************************************
B CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13
*******************************************************************
* BRING UP THE LANGUAGE ENVIRONMENT. *
*******************************************************************

...
*******************************************************************
* GET THE PASSED PARAMETER VALUES. THE SQL LINKAGE *
* CONVENTION IS AS FOLLOWS: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS. IF N *
* PARAMETERS ARE PASSED, THERE ARE 2N+4 POINTERS. THE FIRST *
* N POINTERS ARE THE ADDRESSES OF THE N PARAMETERS, JUST AS *
* WITH THE GENERAL LINKAGE CONVENTION. THE NEXT N POINTERS ARE *
* THE ADDRESSES OF THE INDICATOR VARIABLE VALUES. THE LAST *
* 4 POINTERS (5, IF DBINFO IS PASSED) ARE THE ADDRESSES OF *
* INFORMATION ABOUT THE STORED PROCEDURE ENVIRONMENT AND *
* EXECUTION RESULTS. *
*******************************************************************

L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1
L R7,8(R1) GET POINTER TO 1ST INDICATOR VARIABLE
MVC LOCI1(2),0(R7) MOVE VALUE INTO LOCAL STORAGE
L R7,20(R1) GET POINTER TO STORED PROCEDURE NAME
MVC LOCSPNM(20),0(R7) MOVE VALUE INTO LOCAL STORAGE
L R7,24(R1) GET POINTER TO DBINFO
MVC LOCDBINF(DBINFLN),0(R7)

* MOVE VALUE INTO LOCAL STORAGE
LH R7,LOCI1 GET INDICATOR VARIABLE FOR V1
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, V1 IS NULL

...
L R7,4(R1) GET POINTER TO V2
MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2
L R7,12(R1) GET POINTER TO INDICATOR VAR 2
MVC 0(2,R7),=H’0’ MOVE ZERO TO V2’S INDICATOR VAR
L R7,16(R1) GET POINTER TO SQLSTATE
MVC 0(5,R7),=CL5’xxxxx’ MOVE xxxxx TO SQLSTATE

...
CEETERM RC=0

Figure 217. An example of SQL linkage in assembler (Part 1 of 2)

Chapter 25. Using stored procedures for client/server processing 697

|

|

|



Figure 218 shows how a stored procedure written as a main program in the C
language receives these parameters.

*******************************************************************
* VARIABLE DECLARATIONS AND EQUATES *
*******************************************************************
R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LOCV1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2
LOCI1 DS H LOCAL COPY OF INDICATOR 1
LOCI2 DS H LOCAL COPY OF INDICATOR 2
LOCSQST DS CL5 LOCAL COPY OF SQLSTATE
LOCSPNM DS H,CL27 LOCAL COPY OF STORED PROC NAME
LOCSPSNM DS H,CL18 LOCAL COPY OF SPECIFIC NAME
LOCDIAG DS H,CL70 LOCAL COPY OF DIAGNOSTIC DATA
LOCDBINF DS 0H LOCAL COPY OF DBINFO DATA
DBNAMELN DS H DATABASE NAME LENGTH
DBNAME DS CL128 DATABASE NAME
AUTHIDLN DS H APPL AUTH ID LENGTH
AUTHID DS CL128 APPL AUTH ID
ASC_SBCS DS F ASCII SBCS CCSID
ASC_DBCS DS F ASCII DBCS CCSID
ASC_MIXD DS F ASCII MIXED CCSID
EBC_SBCS DS F EBCDIC SBCS CCSID
EBC_DBCS DS F EBCDIC DBCS CCSID
EBC_MIXD DS F EBCDIC MIXED CCSID
UNI_SBCS DS F UNICODE SBCS CCSID
UNI_DBCS DS F UNICODE DBCS CCSID
UNI_MIXD DS F UNICODE MIXED CCSID
ENCODE DS F PROCEDURE ENCODING SCHEME
RESERV0 DS CL20 RESERVED
TBQUALLN DS H TABLE QUALIFIER LENGTH
TBQUAL DS CL128 TABLE QUALIFIER
TBNAMELN DS H TABLE NAME LENGTH
TBNAME DS CL128 TABLE NAME
CLNAMELN DS H COLUMN NAME LENGTH
COLNAME DS CL128 COLUMN NAME
RELVER DS CL8 DBMS RELEASE AND VERSION
RESERV1 DS CL2 RESERVED
PLATFORM DS F DBMS OPERATING SYSTEM
NUMTFCOL DS H NUMBER OF TABLE FUNCTION COLS USED
RESERV2 DS CL26 RESERVED
TFCOLNUM DS A POINTER TO TABLE FUNCTION COL LIST
APPLID DS A POINTER TO APPLICATION ID
RESERV3 DS CL20 RESERVED
DBINFLN EQU *-LOCDBINF LENGTH OF DBINFO

...
PROGSIZE EQU *-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END B

Figure 217. An example of SQL linkage in assembler (Part 2 of 2)

698 Application Programming and SQL Guide

|

|

|

|



#pragma runopts(plist(os))
#include <;stdlib.h>
#include <;stdio.h>

main(argc,argv)
int argc;
char *argv[];

{
int parm1;
short int ind1;
char p_proc[28];
char p_spec[19];
/***************************************************/
/* Assume that the SQL CALL statment included */
/* 3 input/output parameters in the parameter list.*/
/* The argv vector will contain these entries: */
/* argv[0] 1 contains load module */
/* argv[1-3] 3 input/output parms */
/* argv[4-6] 3 null indicators */
/* argv[7] 1 SQLSTATE variable */
/* argv[8] 1 qualified proc name */
/* argv[9] 1 specific proc name */
/* argv[10] 1 diagnostic string */
/* argv[11] + 1 dbinfo */
/* ------ */
/* 12 for the argc variable */
/***************************************************/
if argc<>12 {

...
/* We end up here when invoked with wrong number of parms */
}

Figure 218. An example of SQL linkage for a C stored procedure written as a main program
(Part 1 of 2)

Chapter 25. Using stored procedures for client/server processing 699

|



Figure 219 shows how a stored procedure written as a subprogram in the C
language receives these parameters.

/***************************************************/
/* Assume the first parameter is an integer. */
/* The following code shows how to copy the integer*/
/* parameter into the application storage. */
/***************************************************/
parm1 = *(int *) argv[1];
/***************************************************/
/* We can access the null indicator for the first */
/* parameter on the SQL CALL as follows: */
/***************************************************/
ind1 = *(short int *) argv[4];
/***************************************************/
/* We can use the following expression */
/* to assign ’xxxxx’ to the SQLSTATE returned to */
/* caller on the SQL CALL statement. */
/***************************************************/
strcpy(argv[7],"xxxxx/0");
/***************************************************/
/* We obtain the value of the qualified procedure */
/* name with this expression. */
/***************************************************/
strcpy(p_proc,argv[8]);
/***************************************************/
/* We obtain the value of the specific procedure */
/* name with this expression. */
/***************************************************/
strcpy(p_spec,argv[9]);
/***************************************************/
/* We can use the following expression to assign */
/* ’yyyyyyyy’ to the diagnostic string returned */
/* in the SQLDA associated with the CALL statement.*/
/***************************************************/
strcpy(argv[10],"yyyyyyyy/0");...

}

Figure 218. An example of SQL linkage for a C stored procedure written as a main program
(Part 2 of 2)

700 Application Programming and SQL Guide

|



Figure 220 shows how a stored procedure in the COBOL language receives these
parameters.

#pragma linkage(myproc,fetchable)
#include <stdlib.h>
#include <stdio.h>
#include <sqludf.h>

void myproc(*parm1 int, /* assume INT for PARM1 */
parm2 char[11], /* assume CHAR(10) parm2 */...
*p_ind1 short int, /* null indicator for parm1 */
*p_ind2 short int, /* null indicator for parm2 */...
p_sqlstate char[6], /* SQLSTATE returned to DB2 */
p_proc char[28], /* Qualified stored proc name */
p_spec char[19], /* Specific stored proc name */
p_diag char[71], /* Diagnostic string */
struct sqludf_dbinfo *udf_dbinfo); /* DBINFO */

{
int l_p1;
char[11] l_p2;
short int l_ind1;
short int l_ind2;
char[6] l_sqlstate;
char[28] l_proc;
char[19] l_spec;
char[71] l_diag;
sqludf_dbinfo *ludf_dbinfo;...
/***************************************************/
/* Copy each of the parameters in the parameter */
/* list into a local variable, just to demonstrate */
/* how the parameters can be referenced. */
/***************************************************/
l_p1 = *parm1;

strcpy(l_p2,parm2);

l_ind1 = *p_ind1;

l_ind1 = *p_ind2;

strcpy(l_sqlstate,p_sqlstate);

strcpy(l_proc,p_proc);

strcpy(l_spec,p_spec);

strcpy(l_diag,p_diag);
memcpy(&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));...

}

Figure 219. An example of SQL linkage for a C stored procedure written as a subprogram

Chapter 25. Using stored procedures for client/server processing 701

|

|



CBL RENT
IDENTIFICATION DIVISION....
DATA DIVISION....
LINKAGE SECTION.
* Declare each of the parameters
01 PARM1 ...
01 PARM2 ......
* Declare a null indicator for each parameter
01 P-IND1 PIC S9(4) USAGE COMP.
01 P-IND2 PIC S9(4) USAGE COMP....
* Declare the SQLSTATE that can be set by stored proc
01 P-SQLSTATE PIC X(5).
* Declare the qualified procedure name
01 P-PROC.
49 P-PROC-LEN PIC 9(4) USAGE BINARY.
49 P-PROC-TEXT PIC X(27).

* Declare the specific procedure name
01 P-SPEC.
49 P-SPEC-LEN PIC 9(4) USAGE BINARY.
49 P-SPEC-TEXT PIC X(18).

* Declare SQL diagnostic message token
01 P-DIAG.
49 P-DIAG-LEN PIC 9(4) USAGE BINARY.
49 P-DIAG-TEXT PIC X(70).

*********************************************************
* Structure used for DBINFO *
*********************************************************
01 SQLUDF-DBINFO.
* Location name length

05 DBNAMELEN PIC 9(4) USAGE BINARY.
* Location name

05 DBNAME PIC X(128).
* authorization ID length

05 AUTHIDLEN PIC 9(4) USAGE BINARY.
* authorization ID

05 AUTHID PIC X(128).
* environment CCSID information

05 CODEPG PIC X(48).
05 CDPG-DB2 REDEFINES CODEPG.

10 DB2-CCSIDS OCCURS 3 TIMES.
15 DB2-SBCS PIC 9(9) USAGE BINARY.
15 DB2-DBCS PIC 9(9) USAGE BINARY.
15 DB2-MIXED PIC 9(9) USAGE BINARY.

10 ENCODING-SCHEME PIC 9(9) USAGE BINARY.
10 RESERVED PIC X(20).

Figure 220. An example of SQL linkage in COBOL (Part 1 of 2)

702 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|



Figure 221 shows how a stored procedure in the PL/I language receives these
parameters.

* other platform-specific deprecated CCSID structures not included here
* schema name length

05 TBSCHEMALEN PIC 9(4) USAGE BINARY.
* schema name

05 TBSCHEMA PIC X(128).
* table name length

05 TBNAMELEN PIC 9(4) USAGE BINARY.
* table name

05 TBNAME PIC X(128).
* column name length

05 COLNAMELEN PIC 9(4) USAGE BINARY.
* column name

05 COLNAME PIC X(128).
* product information

05 VER-REL PIC X(8).
* reserved

05 RESD0 PIC X(2).
* platform type

05 PLATFORM PIC 9(9) USAGE BINARY.
* number of entries in the TF column list array (tfcolumn, below)

05 NUMTFCOL PIC 9(4) USAGE BINARY.
* reserved

05 RESD1 PIC X(26).
* tfcolumn will be allocated dynamically of it is defined
* otherwise this will be a null pointer

05 TFCOLUMN USAGE IS POINTER.
* application identifier

05 APPL-ID USAGE IS POINTER.
* reserved

05 RESD2 PIC X(20).
*...
PROCEDURE DIVISION USING PARM1, PARM2,

P-IND1, P-IND2,
P-SQLSTATE, P-PROC, P-SPEC, P-DIAG,
SQLUDF-DBINFO....

Figure 220. An example of SQL linkage in COBOL (Part 2 of 2)

*PROCESS SYSTEM(MVS);
MYMAIN: PROC(PARM1, PARM2, ...,

P_IND1, P_IND2, ...,
P_SQLSTATE, P_PROC, P_SPEC, P_DIAG, DBINFO)

OPTIONS(MAIN NOEXECOPS REENTRANT);

DCL PARM1 ... /* first parameter */
DCL PARM2 ... /* second parameter */...
DCL P_IND1 BIN FIXED(15);/* indicator for 1st parm */
DCL P_IND2 BIN FIXED(15);/* indicator for 2nd parm */...
DCL P_SQLSTATE CHAR(5); /* SQLSTATE to return to DB2 */
DCL 01 P_PROC CHAR(27) /* Qualified procedure name */

VARYING;
DCL 01 P_SPEC CHAR(18) /* Specific stored proc */

VARYING;
DCL 01 P_DIAG CHAR(70) /* Diagnostic string */

VARYING;
DCL DBINFO PTR;

Figure 221. An example of SQL linkage in PL/I (Part 1 of 2)

Chapter 25. Using stored procedures for client/server processing 703

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

#
#
#
#
#
#
#
####
#
####
#
#
#
#
#
#
#
#



Special considerations for C
In order for the linkage conventions to work correctly when a C language stored
procedure runs on z/OS, you must include the following line in your source code:
#pragma runopts(PLIST(OS))

This option is not applicable to other platforms, however. If you plan to use a C
stored procedure on other platforms besides z/OS, use conditional compilation, as
shown in Figure 222, to include this option only when you compile on z/OS.

DCL 01 SP_DBINFO BASED(DBINFO), /* Dbinfo */
03 UDF_DBINFO_LLEN BIN FIXED(15), /* location length */
03 UDF_DBINFO_LOC CHAR(128), /* location name */
03 UDF_DBINFO_ALEN BIN FIXED(15), /* auth ID length */
03 UDF_DBINFO_AUTH CHAR(128), /* authorization ID */
03 UDF_DBINFO_CCSID, /* CCSIDs for DB2 UDB for z/OS */
05 R1 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_ASBCS BIN FIXED(15), /* ASCII SBCS CCSID */
05 R2 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_ADBCS BIN FIXED(15), /* ASCII DBCS CCSID */
05 R3 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_AMIXED BIN FIXED(15), /* ASCII MIXED CCSID */
05 R4 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_ESBCS BIN FIXED(15), /* EBCDIC SBCS CCSID */
05 R5 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_EDBCS BIN FIXED(15), /* EBCDIC DBCS CCSID */
05 R6 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_EMIXED BIN FIXED(15), /* EBCDIC MIXED CCSID*/
05 R7 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_USBCS BIN FIXED(15), /* Unicode SBCS CCSID */
05 R8 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_UDBCS BIN FIXED(15), /* Unicode DBCS CCSID */
05 R9 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_UMIXED BIN FIXED(15), /* Unicode MIXED CCSID*/
05 UDF_DBINFO_ENCODE BIN FIXED(31), /* SP encode scheme */
05 UDF_DBINFO_RESERV0 CHAR(20), /* reserved */
03 UDF_DBINFO_SLEN BIN FIXED(15), /* schema length */
03 UDF_DBINFO_SCHEMA CHAR(128), /* schema name */
03 UDF_DBINFO_TLEN BIN FIXED(15), /* table length */
03 UDF_DBINFO_TABLE CHAR(128), /* table name */
03 UDF_DBINFO_CLEN BIN FIXED(15), /* column length */
03 UDF_DBINFO_COLUMN CHAR(128), /* column name */
03 UDF_DBINFO_RELVER CHAR(8), /* DB2 release level */
03 UDF_DBINFO_RESERV0 CHAR(2), /* reserved */
03 UDF_DBINFO_PLATFORM BIN FIXED(31), /* database platform*/
03 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /* # of TF cols used*/
03 UDF_DBINFO_RESERV1 CHAR(26), /* reserved */
03 UDF_DBINFO_TFCOLUMN PTR, /* -> table fun col list */
03 UDF_DBINFO_APPLID PTR, /* -> application id */
03 UDF_DBINFO_RESERV2 CHAR(20); /* reserved */...

Figure 221. An example of SQL linkage in PL/I (Part 2 of 2)

#ifdef MVS
#pragma runopts(PLIST(OS))
#endif

-- or --

#ifndef WKSTN
#pragma runopts(PLIST(OS))
#endif

Figure 222. Using conditional compilation to include or exclude a statement

704 Application Programming and SQL Guide

|

|



Special considerations for PL/I
In order for the linkage conventions to work correctly when a PL/I language
stored procedure runs on z/OS, you must do the following:
v Include the run-time option NOEXECOPS in your source code.
v Specify the compile-time option SYSTEM(MVS).

For information about specifying PL/I compile-time and run-time options, see IBM
Enterprise PL/I for z/OS Programming Guide.

Using indicator variables to speed processing
If any of your output parameters occupy a great deal of storage, it is wasteful to
pass the entire storage areas to your stored procedure. You can use indicator
variables in the program that call the stored procedure to pass only a two byte
area to the stored procedure and receive the entire area from the stored procedure.
To accomplish this, declare an indicator variable for every large output parameter
in your SQL statement CALL. (If you are using the GENERAL WITH NULLS or
SQL linkage convention, you must declare indicator variables for all of your
parameters, so you do not need to declare another indicator variable.) Assign a
negative value to each indicator variable associated with a large output variable.
Then include the indicator variables in the CALL statement. This technique can be
used whether the stored procedure linkage convention is GENERAL, GENERAL
WITH NULLS, or SQL.

For example, suppose that a stored procedure that is defined with the GENERAL
linkage convention takes one integer input parameter and one character output
parameter of length 6000. You do not want to pass the 6000 byte storage area to
the stored procedure. A PL/I program containing these statements passes only two
bytes to the stored procedure for the output variable and receives all 6000 bytes
from the stored procedure:
DCL INTVAR BIN FIXED(31); /* This is the input variable */
DCL BIGVAR(6000); /* This is the output variable */
DCL I1 BIN FIXED(15); /* This is an indicator variable */...
I1 = -1; /* Setting I1 to -1 causes only */

/* a two byte area representing */
/* I1 to be passed to the */
/* stored procedure, instead of */
/* the 6000 byte area for BIGVAR*/

EXEC SQL CALL PROCX(:INTVAR, :BIGVAR INDICATOR :I1);

Declaring data types for passed parameters
A stored procedure in any language except REXX must declare each parameter
passed to it. In addition, the stored procedure definition must contain a compatible
SQL data type declaration for each parameter. For information about creating a
stored procedure definition, see “Defining your stored procedure to DB2” on page
637.

For REXX: See “Calling a stored procedure from a REXX procedure” on page 716
for information about DB2 data types and corresponding parameter formats.

For languages other than REXX: For all data types except LOBs, ROWIDs, locators,
and VARCHARs (for C language), see the tables listed in Table 85 on page 706 for
the host data types that are compatible with the data types in the stored procedure
definition.

Chapter 25. Using stored procedures for client/server processing 705

|

|

#
#
#
#



Table 85. Listing of tables of compatible data types

Language Compatible data types table

Assembler Table 12 on page 153

C Table 14 on page 177

COBOL Table 17 on page 211

PL/I Table 21 on page 243

For LOBs, ROWIDs, VARCHARs, and locators, Table 86 shows compatible
declarations for the assembler language.

Table 86. Compatible assembler language declarations for LOBs, ROWIDs, and locators

SQL data type in definition Assembler declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

DS FL4

BLOB(n) If n <= 65535:
var DS 0FL4
var_length DS FL4
var_data DS CLn
If n > 65535:
var DS 0FL4
var_length DS FL4
var_data DS CL65535
ORG var_data+(n-65535)

CLOB(n) If n <= 65535:
var DS 0FL4
var_length DS FL4
var_data DS CLn
If n > 65535:
var DS 0FL4
var_length DS FL4
var_data DS CL65535
ORG var_data+(n-65535)

DBCLOB(n) If m (=2*n) <= 65534:
var DS 0FL4
var_length DS FL4
var_data DS CLm
If m > 65534:
var DS 0FL4
var_length DS FL4
var_data DS CL65534
ORG var_data+(m-65534)

ROWID DS HL2,CL40

VARCHAR(n) If PARAMETER VARCHAR NULTERM is
specified or implied:

char data[n+1];

If PARAMETER VARCHAR STRUCTURE is
specified:

struct
{short len;
char data[n];

} var;

706 Application Programming and SQL Guide

#
#



Table 86. Compatible assembler language declarations for LOBs, ROWIDs, and
locators (continued)

SQL data type in definition Assembler declaration

Notes:

1. This row does not apply to VARCHAR(n) FOR BIT DATA. BIT DATA is always passed
in a structured representation.

For LOBs, ROWIDs, and locators, Table 87 shows compatible declarations for the C
language.

Table 87. Compatible C language declarations for LOBs, ROWIDs, and locators

SQL data type in definition C declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

unsigned long

BLOB(n) struct
{unsigned long length;
char data[n];

} var;

CLOB(n) struct
{unsigned long length;
char var_data[n];

} var;

DBCLOB(n) struct
{unsigned long length;
sqldbchar data[n];
} var;

ROWID struct
{short int length;
char data[40];

} var;

For LOBs, ROWIDs, and locators, Table 88 shows compatible declarations for
COBOL.

Table 88. Compatible COBOL declarations for LOBs, ROWIDs, and locators

SQL data type in definition COBOL declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

01 var PIC S9(9) USAGE IS BINARY.

Chapter 25. Using stored procedures for client/server processing 707

|



Table 88. Compatible COBOL declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition COBOL declaration

BLOB(n) If n <= 32767:

01 var.
49 var-LENGTH PIC 9(9)

USAGE COMP.
49 var-DATA PIC X(n).

If n > 32767:

01 var.
02 var-LENGTH PIC S9(9)

USAGE COMP.
02 var-DATA.

49 FILLER
PIC X(32767).

49 FILLER
PIC X(32767)....

49 FILLER
PIC X(mod(n,32767)).

CLOB(n) If n <= 32767:

01 var.
49 var-LENGTH PIC 9(9)

USAGE COMP.
49 var-DATA PIC X(n).

If n > 32767:

01 var.
02 var-LENGTH PIC S9(9)

USAGE COMP.
02 var-DATA.

49 FILLER
PIC X(32767).

49 FILLER
PIC X(32767)....

49 FILLER
PIC X(mod(n,32767)).

DBCLOB(n) If n <= 32767:

01 var.
49 var-LENGTH PIC 9(9)

USAGE COMP.
49 var-DATA PIC G(n)

USAGE DISPLAY-1.

If n > 32767:

01 var.
02 var-LENGTH PIC S9(9)

USAGE COMP.
02 var-DATA.

49 FILLER
PIC G(32767)
USAGE DISPLAY-1.

49 FILLER
PIC G(32767).
USAGE DISPLAY-1....

49 FILLER
PIC G(mod(n,32767))
USAGE DISPLAY-1.

708 Application Programming and SQL Guide



Table 88. Compatible COBOL declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition COBOL declaration

ROWID 01 var.
49 var-LEN PIC 9(4)

USAGE COMP.
49 var-DATA PIC X(40).

For LOBs, ROWIDs, and locators, Table 89 shows compatible declarations for PL/I.

Table 89. Compatible PL/I declarations for LOBs, ROWIDs, and locators

SQL data type in definition PL/I

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

BIN FIXED(31)

BLOB(n) If n <= 32767:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

CHAR(n);

If n > 32767:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
CHAR(32767),

03 var_DATA2
CHAR(mod(n,32767));

CLOB(n) If n <= 32767:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

CHAR(n);

If n > 32767:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
CHAR(32767),

03 var_DATA2
CHAR(mod(n,32767));

Chapter 25. Using stored procedures for client/server processing 709



Table 89. Compatible PL/I declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition PL/I

DBCLOB(n) If n <= 16383:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

GRAPHIC(n);

If n > 16383:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
GRAPHIC(16383),

03 var_DATA2
GRAPHIC(mod(n,16383));

ROWID CHAR(40) VAR

Tables of results: Each high-level language definition for stored procedure
parameters supports only a single instance (a scalar value) of the parameter. There
is no support for structure, array, or vector parameters. Because of this, the SQL
statement CALL limits the ability of an application to return some kinds of tables.
For example, an application might need to return a table that represents multiple
occurrences of one or more of the parameters passed to the stored procedure.
Because the SQL statement CALL cannot return more than one set of parameters,
use one of the following techniques to return such a table:
v Put the data that the application returns in a DB2 table. The calling program can

receive the data in one of these ways:
– The calling program can fetch the rows from the table directly. Specify FOR

FETCH ONLY or FOR READ ONLY on the SELECT statement that retrieves
data from the table. A block fetch can retrieve the required data efficiently.

– The stored procedure can return the contents of the table as a result set. See
“Writing a stored procedure to return result sets to a DRDA client” on page
652 and “Writing a DB2 UDB for z/OS client program or SQL procedure to
receive result sets” for more information.

v Convert tabular data to string format and return it as a character string
parameter to the calling program. The calling program and the stored procedure
can establish a convention for interpreting the content of the character string. For
example, the SQL statement CALL can pass a 1920-byte character string
parameter to a stored procedure, allowing the stored procedure to return a 24x80
screen image to the calling program.

Writing a DB2 UDB for z/OS client program or SQL procedure
to receive result sets

You can write a program to receive result sets given either of the following
alternatives:
v For a fixed number of result sets, for which you know the contents

This is the only alternative in which you can write an SQL procedure to return
result sets.

v For a variable number of result sets, for which you do not know the contents

710 Application Programming and SQL Guide



The first alternative is simpler to write, but if you use the second alternative, you
do not need to make major modifications to your client program if the stored
procedure changes.

The basic steps for receiving result sets are as follows:
1. Declare a locator variable for each result set that will be returned.

If you do not know how many result sets will be returned, declare enough
result set locators for the maximum number of result sets that might be
returned.

2. Call the stored procedure and check the SQL return code.
If the SQLCODE from the CALL statement is +466, the stored procedure has
returned result sets.

3. Determine how many result sets the stored procedure is returning.
If you already know how many result sets the stored procedure returns, you
can skip this step.
Use the SQL statement DESCRIBE PROCEDURE to determine the number of
result sets. DESCRIBE PROCEDURE places information about the result sets in
an SQLDA. Make this SQLDA large enough to hold the maximum number of
result sets that the stored procedure might return. When the DESCRIBE
PROCEDURE statement completes, the fields in the SQLDA contain the
following values:
v SQLD contains the number of result sets returned by the stored procedure.
v Each SQLVAR entry gives information about a result set. In an SQLVAR

entry:
– The SQLNAME field contains the name of the SQL cursor used by the

stored procedure to return the result set.
– The SQLIND field contains the value -1. This indicates that no estimate of

the number of rows in the result set is available.
– The SQLDATA field contains the value of the result set locator, which is

the address of the result set.
4. Link result set locators to result sets.

You can use the SQL statement ASSOCIATE LOCATORS to link result set
locators to result sets. The ASSOCIATE LOCATORS statement assigns values to
the result set locator variables. If you specify more locators than the number of
result sets returned, DB2 ignores the extra locators.
To use the ASSOCIATE LOCATORS statement, you must embed it in an
application or SQL procedure.
If you executed the DESCRIBE PROCEDURE statement previously, the result
set locator values are in the SQLDATA fields of the SQLDA. You can copy the
values from the SQLDATA fields to the result set locators manually, or you can
execute the ASSOCIATE LOCATORS statement to do it for you.
The stored procedure name that you specify in an ASSOCIATE LOCATORS or
DESCRIBE PROCEDURE statement must match the stored procedure name in
the CALL statement that returns the result sets. That is:
v If the stored procedure name in ASSOCIATE LOCATORS or DESCRIBE

PROCEDURE is unqualified, the stored procedure name in the CALL
statement must be unqualified.

v If the stored procedure name in ASSOCIATE LOCATORS or DESCRIBE
PROCEDURE is qualified with a schema name, the stored procedure name in
the CALL statement must be qualified with a schema name.

Chapter 25. Using stored procedures for client/server processing 711



v If the stored procedure name in ASSOCIATE LOCATORS or DESCRIBE
PROCEDURE is qualified with a location name and a schema name, the
stored procedure name in the CALL statement must be qualified with a
location name and a schema name.

5. Allocate cursors for fetching rows from the result sets.
Use the SQL statement ALLOCATE CURSOR to link each result set with a
cursor. Execute one ALLOCATE CURSOR statement for each result set. The
cursor names can be different from the cursor names in the stored procedure.
To use the ALLOCATE CURSOR statement, you must embed it in an
application or SQL procedure.

6. Determine the contents of the result sets.
If you already know the format of the result set, you can skip this step.
Use the SQL statement DESCRIBE CURSOR to determine the format of a result
set and put this information in an SQLDA. For each result set, you need an
SQLDA big enough to hold descriptions of all columns in the result set.
You can use DESCRIBE CURSOR only for cursors for which you executed
ALLOCATE CURSOR previously.
After you execute DESCRIBE CURSOR, if the cursor for the result set is
declared WITH HOLD, the high-order bit of the eighth byte of field SQLDAID
in the SQLDA is set to 1.

7. Fetch rows from the result sets into host variables by using the cursors that you
allocated with the ALLOCATE CURSOR statements.
If you executed the DESCRIBE CURSOR statement, perform these steps before
you fetch the rows:
a. Allocate storage for host variables and indicator variables. Use the contents

of the SQLDA from the DESCRIBE CURSOR statement to determine how
much storage you need for each host variable.

b. Put the address of the storage for each host variable in the appropriate
SQLDATA field of the SQLDA.

c. Put the address of the storage for each indicator variable in the appropriate
SQLIND field of the SQLDA.

Fetching rows from a result set is the same as fetching rows from a table.

You do not need to connect to the remote location when you execute these
statements:
v DESCRIBE PROCEDURE
v ASSOCIATE LOCATORS
v ALLOCATE CURSOR
v DESCRIBE CURSOR
v FETCH
v CLOSE

For the syntax of result set locators in each host language, see Chapter 9,
“Embedding SQL statements in host languages,” on page 143. For the syntax of
result set locators in SQL procedures, see Chapter 6 of DB2 SQL Reference. For the
syntax of the ASSOCIATE LOCATORS, DESCRIBE PROCEDURE, ALLOCATE
CURSOR, and DESCRIBE CURSOR statements, see Chapter 5 of DB2 SQL
Reference.

Figure 223 on page 713 and Figure 224 on page 714 show C language code that
accomplishes each of these steps. Coding for other languages is similar. For a more

712 Application Programming and SQL Guide



complete example of a C language program that receives result sets, see “Examples
of using stored procedures” on page 1077.

Figure 223 demonstrates how you receive result sets when you know how many
result sets are returned and what is in each result set.

Figure 224 on page 714 demonstrates how you receive result sets when you do not
know how many result sets are returned or what is in each result set.

/*************************************************************/
/* Declare result set locators. For this example, */
/* assume you know that two result sets will be returned. */
/* Also, assume that you know the format of each result set. */
/*************************************************************/

EXEC SQL BEGIN DECLARE SECTION;
static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2;
EXEC SQL END DECLARE SECTION;

...
/*************************************************************/
/* Call stored procedure P1. */
/* Check for SQLCODE +466, which indicates that result sets */
/* were returned. */
/*************************************************************/

EXEC SQL CALL P1(:parm1, :parm2, ...);
if(SQLCODE==+466)
{
/*************************************************************/
/* Establish a link between each result set and its */
/* locator using the ASSOCIATE LOCATORS. */
/*************************************************************/

EXEC SQL ASSOCIATE LOCATORS (:loc1, :loc2) WITH PROCEDURE P1;

...
/*************************************************************/
/* Associate a cursor with each result set. */
/*************************************************************/

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :loc2;

/*************************************************************/
/* Fetch the result set rows into host variables. */
/*************************************************************/

while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :order_no, :cust_no;

...
}
while(SQLCODE==0)
{

EXEC SQL FETCH C2 :order_no, :item_no, :quantity;

...
}

}

Figure 223. Receiving known result sets

Chapter 25. Using stored procedures for client/server processing 713



/*************************************************************/
/* Declare result set locators. For this example, */
/* assume that no more than three result sets will be */
/* returned, so declare three locators. Also, assume */
/* that you do not know the format of the result sets. */
/*************************************************************/

EXEC SQL BEGIN DECLARE SECTION;
static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2, *loc3;
EXEC SQL END DECLARE SECTION;

...

Figure 224. Receiving unknown result sets (Part 1 of 3)

/*************************************************************/
/* Call stored procedure P2. */
/* Check for SQLCODE +466, which indicates that result sets */
/* were returned. */
/*************************************************************/

EXEC SQL CALL P2(:parm1, :parm2, ...);
if(SQLCODE==+466)
{
/*************************************************************/
/* Determine how many result sets P2 returned, using the */
/* statement DESCRIBE PROCEDURE. :proc_da is an SQLDA */
/* with enough storage to accommodate up to three SQLVAR */
/* entries. */
/*************************************************************/

EXEC SQL DESCRIBE PROCEDURE P2 INTO :proc_da;

...
/*************************************************************/
/* Now that you know how many result sets were returned, */
/* establish a link between each result set and its */
/* locator using the ASSOCIATE LOCATORS. For this example, */
/* we assume that three result sets are returned. */
/*************************************************************/

EXEC SQL ASSOCIATE LOCATORS (:loc1, :loc2, :loc3) WITH PROCEDURE P2;

...
/*************************************************************/
/* Associate a cursor with each result set. */
/*************************************************************/

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :loc2;
EXEC SQL ALLOCATE C3 CURSOR FOR RESULT SET :loc3;

Figure 224. Receiving unknown result sets (Part 2 of 3)

714 Application Programming and SQL Guide



Figure 225 on page 716 demonstrates how you can use an SQL procedure to
receive result sets.

/*************************************************************/
/* Use the statement DESCRIBE CURSOR to determine the */
/* format of each result set. */
/*************************************************************/

EXEC SQL DESCRIBE CURSOR C1 INTO :res_da1;
EXEC SQL DESCRIBE CURSOR C2 INTO :res_da2;
EXEC SQL DESCRIBE CURSOR C3 INTO :res_da3;

...
/*************************************************************/
/* Assign values to the SQLDATA and SQLIND fields of the */
/* SQLDAs that you used in the DESCRIBE CURSOR statements. */
/* These values are the addresses of the host variables and */
/* indicator variables into which DB2 will put result set */
/* rows. */
/*************************************************************/

...
/*************************************************************/
/* Fetch the result set rows into the storage areas */
/* that the SQLDAs point to. */
/*************************************************************/

while(SQLCODE==0)
{

EXEC SQL FETCH C1 USING :res_da1;

...
}
while(SQLCODE==0)
{

EXEC SQL FETCH C2 USING :res_da2;

...
}
while(SQLCODE==0)
{

EXEC SQL FETCH C3 USING :res_da3;

...
}

}

Figure 224. Receiving unknown result sets (Part 3 of 3)

Chapter 25. Using stored procedures for client/server processing 715



Accessing transition tables in a stored procedure
When you write a user-defined function, external stored procedure, or SQL
procedure that is to be invoked from a trigger, you might need access to transition
tables for the trigger. The technique for accessing the transition tables is the same
for user-defined functions and stored procedures, and is described in “Accessing
transition tables in a user-defined function or stored procedure” on page 345.

Calling a stored procedure from a REXX procedure
The format of the parameters that you pass in the CALL statement in a REXX
procedure must be compatible with the data types of the parameters in the
CREATE PROCEDURE statement. Table 90 lists each SQL data type that you can
specify for the parameters in the CREATE PROCEDURE statement and the
corresponding format for a REXX parameter that represents that data type.

Table 90. Parameter formats for a CALL statement in a REXX procedure

SQL data type REXX format

SMALLINT
INTEGER

A string of numerics that does not contain a decimal point or exponent identifier.
The first character can be a plus or minus sign. This format also applies to
indicator variables that are passed as parameters.

DECIMAL(p,s)
NUMERIC(p,s)

A string of numerics that has a decimal point but no exponent identifier. The first
character can be a plus or minus sign.

REAL
FLOAT(n)
DOUBLE

A string that represents a number in scientific notation. The string consists of a
series of numerics followed by an exponent identifier (an E or e followed by an
optional plus or minus sign and a series of numerics).

CHARACTER(n)
VARCHAR(n)
VARCHAR(n) FOR BIT DATA

A string of length n, enclosed in single quotation marks.

GRAPHIC(n)
VARGRAPHIC(n)

The character G followed by a string enclosed in single quotation marks. The
string within the quotation marks begins with a shift-out character (X'0E') and
ends with a shift-in character (X'0F'). Between the shift-out character and shift-in
character are n double-byte characters.

DATE A string of length 10, enclosed in single quotation marks. The format of the string
depends on the value of field DATE FORMAT that you specify when you install
DB2. See Chapter 2 of DB2 SQL Reference for valid date string formats.

DECLARE RESULT1 RESULT_SET_LOCATOR VARYING;
DECLARE RESULT2 RESULT_SET_LOCATOR VARYING;...
CALL TARGETPROCEDURE();
ASSOCIATE RESULT SET LOCATORS(RESULT1,RESULT2)

WITH PROCEDURE TARGETPROCEDURE;
ALLOCATE RSCUR1 CURSOR FOR RESULT1;
ALLOCATE RSCUR2 CURSOR FOR RESULT2;
WHILE AT_END = 0 DO

FETCH RSCUR1 INTO VAR1;
SET TOTAL1 = TOTAL1 + VAR1;

END WHILE;
WHILE AT_END = 0 DO

FETCH RSCUR2 INTO VAR2;
SET TOTAL2 = TOTAL2 + VAR2;

END WHILE;...

Figure 225. Receiving result sets in an SQL procedure

716 Application Programming and SQL Guide



Table 90. Parameter formats for a CALL statement in a REXX procedure (continued)

SQL data type REXX format

TIME A string of length 8, enclosed in single quotation marks. The format of the string
depends on the value of field TIME FORMAT that you specify when you install
DB2. See Chapter 2 of DB2 SQL Reference for valid time string formats.

TIMESTAMP A string of length 26, enclosed in single quotation marks. The string has the
format yyyy-mm-dd-hh.mm.ss.nnnnnn.

Figure 226 on page 718 demonstrates how a REXX procedure calls the stored
procedure in Figure 200 on page 657. The REXX procedure performs the following
actions:
v Connects to the DB2 subsystem that was specified by the REXX procedure

invoker.
v Calls the stored procedure to execute a DB2 command that was specified by the

REXX procedure invoker.
v Retrieves rows from a result set that contains the command output messages.

Chapter 25. Using stored procedures for client/server processing 717



/* REXX */
PARSE ARG SSID COMMAND /* Get the SSID to connect to */

/* and the DB2 command to be */
/* executed */

/****************************************************************/
/* Set up the host command environment for SQL calls. */
/****************************************************************/

"SUBCOM DSNREXX" /* Host cmd env available? */
IF RC THEN /* No--make one */

S_RC = RXSUBCOM(’ADD’,’DSNREXX’,’DSNREXX’)
/****************************************************************/
/* Connect to the DB2 subsystem. */
/****************************************************************/

ADDRESS DSNREXX "CONNECT" SSID
IF SQLCODE ¬= 0 THEN CALL SQLCA
PROC = ’COMMAND’
RESULTSIZE = 32703
RESULT = LEFT(’ ’,RESULTSIZE,’ ’)

/****************************************************************/
/* Call the stored procedure that executes the DB2 command. */
/* The input variable (COMMAND) contains the DB2 command. */
/* The output variable (RESULT) will contain the return area */
/* from the IFI COMMAND call after the stored procedure */
/* executes. */
/****************************************************************/

ADDRESS DSNREXX "EXECSQL" ,
"CALL" PROC "(:COMMAND, :RESULT)"
IF SQLCODE < 0 THEN CALL SQLCA
SAY ’RETCODE =’RETCODE
SAY ’SQLCODE =’SQLCODE
SAY ’SQLERRMC =’SQLERRMC
SAY ’SQLERRP =’SQLERRP
SAY ’SQLERRD =’SQLERRD.1’,’,

|| SQLERRD.2’,’,
|| SQLERRD.3’,’,
|| SQLERRD.4’,’,
|| SQLERRD.5’,’,
|| SQLERRD.6

SAY ’SQLWARN =’SQLWARN.0’,’,
|| SQLWARN.1’,’,
|| SQLWARN.2’,’,
|| SQLWARN.3’,’,
|| SQLWARN.4’,’,
|| SQLWARN.5’,’,
|| SQLWARN.6’,’,
|| SQLWARN.7’,’,
|| SQLWARN.8’,’,
|| SQLWARN.9’,’,
|| SQLWARN.10

SAY ’SQLSTATE=’SQLSTATE
SAY C2X(RESULT) "’"||RESULT||"’"

Figure 226. Example of a REXX procedure that calls a stored procedure (Part 1 of 3)

718 Application Programming and SQL Guide



/****************************************************************/
/* Display the IFI return area in hexadecimal. */
/****************************************************************/

OFFSET = 4+1
TOTLEN = LENGTH(RESULT)
DO WHILE ( OFFSET < TOTLEN )

LEN = C2D(SUBSTR(RESULT,OFFSET,2))
SAY SUBSTR(RESULT,OFFSET+4,LEN-4-1)
OFFSET = OFFSET + LEN

END
/****************************************************************/
/* Get information about result sets returned by the */
/* stored procedure. */
/****************************************************************/

ADDRESS DSNREXX "EXECSQL DESCRIBE PROCEDURE :PROC INTO :SQLDA"
IF SQLCODE ¬= 0 THEN CALL SQLCA
DO I = 1 TO SQLDA.SQLD

SAY "SQLDA."I".SQLNAME ="SQLDA.I.SQLNAME";"
SAY "SQLDA."I".SQLTYPE ="SQLDA.I.SQLTYPE";"
SAY "SQLDA."I".SQLLOCATOR ="SQLDA.I.SQLLOCATOR";"
SAY "SQLDA."I".SQLESTIMATE="SQLDA.I.SQLESTIMATE";"

END I
/****************************************************************/
/* Set up a cursor to retrieve the rows from the result */
/* set. */
/****************************************************************/

ADDRESS DSNREXX "EXECSQL ASSOCIATE LOCATOR (:RESULT) WITH PROCEDURE :PROC"
IF SQLCODE ¬= 0 THEN CALL SQLCA
SAY RESULT
ADDRESS DSNREXX "EXECSQL ALLOCATE C101 CURSOR FOR RESULT SET :RESULT"
IF SQLCODE ¬= 0 THEN CALL SQLCA
CURSOR = ’C101’
ADDRESS DSNREXX "EXECSQL DESCRIBE CURSOR :CURSOR INTO :SQLDA"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/****************************************************************/
/* Retrieve and display the rows from the result set, which */
/* contain the command output message text. */
/****************************************************************/

DO UNTIL(SQLCODE ¬= 0)
ADDRESS DSNREXX "EXECSQL FETCH C101 INTO :SEQNO, :TEXT"
IF SQLCODE = 0 THEN

DO
SAY TEXT

END
END
IF SQLCODE ¬= 0 THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL CLOSE C101"
IF SQLCODE ¬= 0 THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL COMMIT"
IF SQLCODE ¬= 0 THEN CALL SQLCA

Figure 226. Example of a REXX procedure that calls a stored procedure (Part 2 of 3)

Chapter 25. Using stored procedures for client/server processing 719



Preparing a client program
You must prepare the calling program by precompiling, compiling, and
link-editing it on the client system.

Before you can call a stored procedure from your embedded SQL application, you
must bind a package for the client program on the remote system. You can use the
remote DRDA bind capability on your DRDA client system to bind the package to
the remote system.

If you have packages that contain SQL CALL statements that you bound before
DB2 Version 6, you can get better performance from those packages if you rebind
them in DB2 Version 6 or later. Rebinding lets DB2 obtain some information from
the catalog at bind time that it obtained at run time before Version 6. Therefore,
after you rebind your packages, they run more efficiently because DB2 can do
fewer catalog searches at run time.

For an ODBC or CLI application, the DB2 packages and plan associated with the
ODBC driver must be bound to DB2 before you can run your application. For
information about building client applications on platforms other than DB2 UDB
for z/OS to access stored procedures, see one of these documents:

/****************************************************************/
/* Disconnect from the DB2 subsystem. */
/****************************************************************/

ADDRESS DSNREXX "DISCONNECT"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/****************************************************************/
/* Delete the host command environment for SQL. */
/****************************************************************/

S_RC = RXSUBCOM(’DELETE’,’DSNREXX’,’DSNREXX’) /* REMOVE CMD ENV */
RETURN

/****************************************************************/
/* Routine to display the SQLCA */
/****************************************************************/

SQLCA:
TRACE O
SAY ’SQLCODE =’SQLCODE
SAY ’SQLERRMC =’SQLERRMC
SAY ’SQLERRP =’SQLERRP
SAY ’SQLERRD =’SQLERRD.1’,’,

|| SQLERRD.2’,’,
|| SQLERRD.3’,’,
|| SQLERRD.4’,’,
|| SQLERRD.5’,’,
|| SQLERRD.6

SAY ’SQLWARN =’SQLWARN.0’,’,
|| SQLWARN.1’,’,
|| SQLWARN.2’,’,
|| SQLWARN.3’,’,
|| SQLWARN.4’,’,
|| SQLWARN.5’,’,
|| SQLWARN.6’,’,
|| SQLWARN.7’,’,
|| SQLWARN.8’,’,
|| SQLWARN.9’,’,
|| SQLWARN.10

SAY ’SQLSTATE=’SQLSTATE
EXIT

Figure 226. Example of a REXX procedure that calls a stored procedure (Part 3 of 3)

720 Application Programming and SQL Guide



v DB2 Universal Database Application Development Guide: Building and Running
Applications

v DB2 Universal Database for iSeries SQL Programming with Host Languages

A z/OS client can bind the DBRM to a remote server by specifying a location
name on the command BIND PACKAGE. For example, suppose you want a client
program to call a stored procedure at location LOCA. You precompile the program
to produce DBRM A. Then you can use the following command to bind DBRM A
into package collection COLLA at location LOCA:
BIND PACKAGE (LOCA.COLLA) MEMBER(A)

The plan for the package resides only at the client system.

Running a stored procedure
Stored procedures run as either main programs or subprograms. “Writing a stored
procedure as a main program or subprogram” on page 645 contains information
about the requirements for each type of stored procedure.

If a stored procedure runs as a main program, before each call, Language
Environment reinitializes the storage used by the stored procedure. Program
variables for the stored procedure do not persist between calls.

If a stored procedure runs as a subprogram, Language Environment does not
initialize the storage between calls. Program variables for the stored procedure can
persist between calls. However, you should not assume that your program
variables are available from one stored procedure call to another because:
v Stored procedures from other users can run in an instance of Language

Environment between two executions of your stored procedure.
v Consecutive executions of a stored procedure might run in different stored

procedures address spaces.
v The z/OS operator might refresh Language Environment between two

executions of your stored procedure.

DB2 runs stored procedures under the DB2 thread of the calling application,
making the stored procedures part of the caller's unit of work.

If both the client and server application environments support two-phase commit,
the coordinator controls updates between the application, the server, and the stored
procedures. If either side does not support two-phase commit, updates will fail.

If a stored procedure abnormally terminates:
v The calling program receives an SQL error as notification that the stored

procedure failed.
v DB2 places the calling program's unit of work in a must-rollback state.
v DB2 stops the stored procedure, and subsequent calls fail, in either of the

following conditions:
– If the number of abnormal terminations equals the STOP AFTER n FAILURES

value for the stored procedure
– If the number of abnormal terminations equals the default MAX ABEND

COUNT value for the subsystem

Chapter 25. Using stored procedures for client/server processing 721

|
|

|
|

|
|



v If the stored procedure does not handle the abend condition, DB2 refreshes the
Language Environment environment to recover the storage that the application
uses. In most cases, the Language Environment environment does not need to
restart.

v If a data set is allocated to the DD name CEEDUMP in the JCL procedure that
starts the stored procedures address space, Language Environment writes a
small diagnostic dump to this data set. See your system administrator to obtain
the dump information. See “Testing a stored procedure” on page 727 for
techniques that you can use to diagnose the problem.

v In a data sharing environment, the stored procedure is placed in STOPABN
status only on the member where the abends occured. A calling program can
invoke the stored procedure from other members of the data sharing group. The
status on all other members is STARTED.

How DB2 determines which version of a stored procedure to
run

The combination of the schema name and stored procedure name uniquely identify
a stored procedure. If you qualify the stored procedure name when you execute a
CALL statement to call a stored procedure, there is only one candidate to run.
However, if you do not qualify the stored name, DB2 uses the following method to
determine which stored procedure to run:
1. DB2 searches the list of schema names from the PATH bind option or the

CURRENT PATH special register from left to right until it finds a schema name
for which a stored procedure definition exists with the name in the CALL
statement.
DB2 uses schema names from the PATH bind option for CALL statements of
the following form:
CALL literal

DB2 uses schema names from the CURRENT PATH special register for CALL
statements of the following form:
CALL host-variable

2. When DB2 finds a stored procedure definition, DB2 executes that stored
procedure if the following conditions are true:
v The caller is authorized to execute the stored procedure.
v The stored procedure has the same number of parameters as in the CALL

statement.

If both conditions are not true, DB2 continues to go through the list of schemas
until it finds a stored procedure that meets both conditions or reaches the end
of the list.

3. If DB2 cannot find a suitable stored procedure, it returns an SQL error code for
the CALL statement.

Using a single application program to call different versions
of a stored procedure

If you want to use the same application program to call different versions of a
stored procedure that have the same load module name, follow these steps:
1. When you define each version of the stored procedure, use the same stored

procedure name but different schema names, different COLLID values, and
different WLM environments.

722 Application Programming and SQL Guide

#
#
#
#



2. In the program that invokes the stored procedure, specify the unqualified
stored procedure name in the CALL statement.

3. Use the SQL path to indicate which version of the stored procedure that the
client program should call. You can choose the SQL path in several ways:
v If the client program is not an ODBC or JDBC application, use one of the

following methods:
– Use the CALL procedure-name form of the CALL statement. When you bind

plans or packages for the program that calls the stored procedure, bind
one plan or package for each version of the stored procedure that you
want to call. In the PATH bind option for each plan or package, specify
the schema name of the stored procedure that you want to call.

– Use the CALL host-variable form of the CALL statement. In the client
program, use the SET PATH statement to specify the schema name of the
stored procedure that you want to call.

v If the client program is an ODBC or JDBC application, choose one of the
following methods:
– Use the SET PATH statement to specify the schema name of the stored

procedure that you want to call.
– When you bind the stored procedure packages, specify a different

collection for each stored procedure package. Use the COLLID value that
you specified when defining the stored procedure to DB2.

4. When you run the client program, specify the plan or package with the PATH
value that matches the schema name of the stored procedure that you want to
call.

For example, suppose that you want to write one program, PROGY, that calls one
of two versions of a stored procedure named PROCX. The load module for both
stored procedures is named SUMMOD. Each version of SUMMOD is in a different
load library. The stored procedures run in different WLM environments, and the
startup JCL for each WLM environment includes a STEPLIB concatenation that
specifies the correct load library for the stored procedure module.

First, define the two stored procedures in different schemas and different WLM
environments:
CREATE PROCEDURE TEST.PROCX(IN V1 INTEGER, OUT V2 CHAR(9))

LANGUAGE C
EXTERNAL NAME SUMMOD
WLM ENVIRONMENT TESTENV;

CREATE PROCEDURE PROD.PROCX(IN V1 INTEGER, OUT V2 CHAR(9))
LANGUAGE C
EXTERNAL NAME SUMMOD
WLM ENVIRONMENT PRODENV;

When you write CALL statements for PROCX in program PROGY, use the
unqualified form of the stored procedure name:
CALL PROCX(V1,V2);

Bind two plans for PROGY. In one BIND statement, specify PATH(TEST). In the
other BIND statement, specify PATH(PROD).

To call TEST.PROCX, execute PROGY with the plan that you bound with
PATH(TEST). To call PROD.PROCX, execute PROGY with the plan that you bound
with PATH(PROD).

Chapter 25. Using stored procedures for client/server processing 723



Running multiple stored procedures concurrently
Multiple stored procedures can run concurrently, each under its own z/OS task
(TCB). The maximum number of stored procedures that can run concurrently in a
single address space is set at DB2 installation time, on panel DSNTIPX.

See Part 2 of DB2 Installation Guide for more information.

You can override that value in the following ways:
v For WLM-established or DB2-established stored procedures address spaces, edit

the JCL procedures that start stored procedures address spaces, and modify the
value of the NUMTCB parameter.

v For WLM-established address spaces, when you set up a WLM application
environment, specify the following parameter in field Start Parameters of panel
Create An Application Environment:
NUMTCB=number-of-TCBs

For REXX stored procedures, you must set NUMTCB to 1.

To maximize the number of stored procedures that can run concurrently, use the
following guidelines:
v Set REGION size to 0 in startup procedures for the stored procedures address

spaces to obtain the largest possible amount of storage below the 16MB line.
v Limit storage required by application programs below the 16MB line by:

– Link editing programs above the line with AMODE(31) and RMODE(ANY)
attributes

– Using the RENT and DATA(31) compiler options for COBOL programs.
v Limit storage required by IBM Language Environment by using these run-time

options:
– HEAP(,,ANY) to allocate program heap storage above the 16MB line
– STACK(,,ANY,) to allocate program stack storage above the 16MB line
– STORAGE(,,,4K) to reduce reserve storage area below the line to 4KB
– BELOWHEAP(4K,,) to reduce the heap storage below the line to 4KB
– LIBSTACK(4K,,) to reduce the library stack below the line to 4KB
– ALL31(ON) to indicate all programs contained in the stored procedure run

with AMODE(31) and RMODE(ANY).
You can list these options in the RUN OPTIONS parameter of the CREATE
PROCEDURE or ALTER PROCEDURE statement, if they are not Language
Environment installation defaults. For example, the RUN OPTIONS parameter
could specify:
H(,,ANY),STAC(,,ANY,),STO(,,,4K),BE(4K,,),LIBS(4K,,),ALL31(ON)

For more information about creating a stored procedure definition, see
“Defining your stored procedure to DB2” on page 637.

v If you use WLM-established address spaces for your stored procedures, assign
stored procedures to WLM application environments according to guidelines
that are described in Part 5 (Volume 2) of DB2 Administration Guide.

Multiple instances of a stored procedure
Your application program can issue multiple CALL statements to the same local or
remote stored procedure. If that stored procedure returns result sets and the calling
application leaves those result sets open before the next call to that same stored
procedure, each CALL statement invokes a unique instance of the stored
procedure. Each instance of the stored procedure runs serially within the same DB2
thread and opens its own result sets. These multiple calls invoke multiple instances

724 Application Programming and SQL Guide

|

#

#
#
#
#
#
#



of any packages that are invoked while running the stored procedure. These
instances are invoked at either the same or different level of nesting under one
DB2 connection or thread.

In compatibility mode and enabling-new-function mode, multiple calls to the same
stored procedure do not produce multiple instances of the applications.

To invoke multiple instances of remote stored procedures or local stored
procedures that have SQL to access a remote site, both the client and server must
be in DB2 Version 8 new-function mode or later. For local stored procedures that
issue remote SQL, instances of the applications are created at the remote server site
regardless of whether result sets exist or are left open between calls.

DB2 storage shortages and EDM POOL FULL conditions can occur if you call too
many instances of a stored procedure or if you open too many cursors. If the
stored procedure issues remote SQL statements to another DB2 server, these
conditions can occur at both the DB2 client and at the DB2 server.

To optimize storage usage, two subsystem parameters control the maximum
number of stored procedures instances and the maximum number of open cursors
for a thread. MAX_ST_PROC controls the maximum number of stored procedure
instances that you can call within the same thread. MAX_NUM_CUR controls the
maximum number of cursors that can be open by the same thread. When either of
the values from these subsystem parameters is exceeded while an application is
running, the CALL statement or the OPEN statement receives SQLCODE -904.

The calling application for the stored procedure should close the result sets and
issue commits often. Even read-only applications should perform these actions.
Applications that fail to do so terminate abnormally with DB2 storage shortage
and EDM POOL FULL conditions.

You can set the maximum number of stored procedure instances and the maximum
number of open cursors on installation panel DSNTIPX. For more information
about setting the maximum number of stored procedure instances and the
maximum number of open cursors per DB2 thread or connection, see the topic
“Routine parameters panel: DSNTIPX”in DB2 Installation Guide.

Accessing non-DB2 resources
Applications that run in a stored procedures address space can access any
resources available to z/OS address spaces, such as VSAM files, flat files,
APPC/MVS conversations, and IMS or CICS transactions.

Consider the following when you develop stored procedures that access non-DB2
resources:
v When a stored procedure runs in a DB2-established stored procedures address

space, DB2 does not coordinate commit and rollback activity on recoverable
resources such as IMS or CICS transactions, and MQI messages. DB2 has no
knowledge of, and therefore cannot control, the dependency between a stored
procedure and a recoverable resource.

v When a stored procedure runs in a WLM-established stored procedures address
space, the stored procedure uses the Resource Recovery Services for commitment
control. When DB2 commits or rolls back work in this environment, DB2
coordinates all updates made to recoverable resources by other RRS compliant
resource managers in the z/OS system.

Chapter 25. Using stored procedures for client/server processing 725

#
#
#

#
#

#
#
#
#
#

#
#
#
#

#
#
#
#
#
#
#

#
#
#
#

#
#
#
#
#



v When a stored procedure runs in a DB2-established stored procedures address
space, z/OS is not aware that the stored procedures address space is processing
work for DB2. One consequence of this is that z/OS accesses RACF-protected
resources using the user ID associated with the z/OS task (ssnmSPAS) for stored
procedures, not the user ID of the client.

v When a stored procedure runs in a WLM-established stored procedures address
space, DB2 can establish a RACF environment for accessing non-DB2 resources.
The authority used when the stored procedure accesses protected z/OS
resources depends on the value of SECURITY in the stored procedure definition:
– If the value of SECURITY is DB2, the authorization ID associated with the

stored procedures address space is used.
– If the value of SECURITY is USER, the authorization ID under which the

CALL statement is executed is used.
– If the value of SECURITY is DEFINER, the authorization ID under which the

CREATE PROCEDURE statement was executed is used.
v Not all non-DB2 resources can tolerate concurrent access by multiple TCBs in the

same address space. You might need to serialize the access within your
application.

CICS
Stored procedure applications can access CICS by one of these methods:
v Stored procedure DSNACICS

DSNACICS gives workstation applications a way to invoke CICS server
programs while using TCP/IP or SNA as their communication protocol.
The workstation applications use DB2 CONNECT to connect to a DB2 for
z/OS subsystem, and then call DSNACICS to invoke the CICS server
programs.

v Message Queue Interface (MQI) for asynchronous execution of CICS
transactions

v External CICS interface (EXCI) for synchronous execution of CICS
transactions

v Advanced Program-to-Program Communication (APPC), using the
Common Programming Interface Communications (CPI Communications)
application programming interface

For DB2-established address spaces, a CICS application runs as a separate
unit of work from the unit of work under which the stored procedure runs.
Consequently, results from CICS processing do not affect the completion of
stored procedure processing. For example, a CICS transaction in a stored
procedure that rolls back a unit of work does not prevent the stored
procedure from committing the DB2 unit of work. Similarly, a rollback of the
DB2 unit of work does not undo the successful commit of a CICS transaction.

For WLM-established address spaces, if your system is running a release of
CICS that uses z/OS RRS, then z/OS RRS controls commitment of all
resources.

726 Application Programming and SQL Guide



IMS
If your system is not running a release of IMS that uses z/OS RRS, you
can use one of the following methods to access DL/I data from your
stored procedure:
v Use the CICS EXCI interface to run a CICS transaction synchronously.

That CICS transaction can, in turn, access DL/I data.
v Invoke IMS transactions asynchronously using the MQI.
v Use APPC through the CPI Communications application programming

interface

Testing a stored procedure
Some commonly used debugging tools, such as TSO TEST, are not available in the
environment where stored procedures run. Here are some alternative testing
strategies to consider.

Debugging the stored procedure as a stand-alone program on
a workstation

If you have debugging support on a workstation, you might choose to do most of
your development and testing on a workstation, before installing a stored
procedure on z/OS. This results in very little debugging activity on z/OS.

Debugging with the Debug Tool and IBM VisualAge COBOL
If you have VisualAge COBOL installed on your workstation and the Debug Tool
installed on your z/OS system, you can use the VisualAge COBOL
Edit/Compile/Debug component with the Debug Tool to debug COBOL stored
procedures that run in a WLM-established stored procedures address space. For
detailed information about the Debug Tool, see Debug Tool User's Guide and
Reference.

After you write your COBOL stored procedure and set up the WLM environment,
follow these steps to test the stored procedure with the Debug Tool:
1. When you compile the stored procedure, specify the TEST and SOURCE

options.
Ensure that the source listing is stored in a permanent data set. VisualAge
COBOL displays the source listing during the debug session.

2. When you define the stored procedure, include run-time option TEST with the
suboption VADTCPIP&ipaddr in your RUN OPTIONS argument.
VADTCPIP& tells the Debug Tool that it is interfacing with a workstation that
runs VisualAge COBOL and is configured for TCP/IP communication with
your z/OS system. ipaddr is the IP address of the workstation on which you
display your debug information. For example, the RUN OPTIONS value in the
following stored procedure definition indicates that debug information should
go to the workstation with IP address 9.63.51.17:
CREATE PROCEDURE WLMCOB
(IN INTEGER, INOUT VARCHAR(3000), INOUT INTEGER)
MODIFIES SQL DATA
LANGUAGE COBOL EXTERNAL
PROGRAM TYPE MAIN
WLM ENVIRONMENT WLMENV1
RUN OPTIONS ’POSIX(ON),TEST(,,,VADTCPIP&9.63.51.17:*)’

Chapter 25. Using stored procedures for client/server processing 727



3. In the JCL startup procedure for WLM-established stored procedures address
space, add the data set name of the Debug Tool load library to the STEPLIB
concatenation. For example, suppose that ENV1PROC is the JCL procedure for
application environment WLMENV1. The modified JCL for ENV1PROC might
look like this:
//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN,NUMTCB=8
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM=’&DB2SSN,&NUMTCB,&APPLENV’
//STEPLIB DD DISP=SHR,DSN=DSN810.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSN810.SDSNLOAD
// DD DISP=SHR,DSN=EQAW.SEQAMOD <== DEBUG TOOL

4. On the workstation, start the VisualAge Remote Debugger daemon.
This daemon waits for incoming requests from TCP/IP.

5. Call the stored procedure.
When the stored procedure starts, a window that contains the debug session is
displayed on the workstation. You can then execute Debug Tool commands to
debug the stored procedure.

Debugging an SQL procedure or C language stored procedure
with the Debug Tool and C/C++ Productivity Tools for z/OS

If you have the C/C++ Productivity Tools for z/OS installed on your workstation
and the Debug Tool installed on your z/OS system, you can debug an SQL
procedure or C or C++ stored procedure that runs in a WLM-established stored
procedures address space. The code against which you run the debug tools is the C
source program that is produced by the program preparation process for the stored
procedure. For detailed information about the Debug Tool, see Debug Tool User's
Guide and Reference.

After you write your C++ stored procedure or SQL procedure and set up the WLM
environment, follow these steps to test the stored procedure with the Distributed
Debugger feature of the C/C++ Productivity Tools for z/OS and the Debug Tool:
1. When you define the stored procedure, include run-time option TEST with the

suboption VADTCPIP&ipaddr in your RUN OPTIONS argument.
VADTCPIP& tells the Debug Tool that it is interfacing with a workstation that
runs VisualAge C++ and is configured for TCP/IP communication with your
z/OS system. ipaddr is the IP address of the workstation on which you display
your debug information. For example, this RUN OPTIONS value in a stored
procedure definition indicates that debug information should go to the
workstation with IP address 9.63.51.17:
RUN OPTIONS ’POSIX(ON),TEST(,,,VADTCPIP&9.63.51.17:*)’

2. Precompile the stored procedure.
Ensure that the modified source program that is the output from the
precompile step is in a permanent, catalogued data set. For an SQL procedure,
the modified C source program that is the output from the second precompile
step must be in a permanent, catalogued data set.

3. Compile the output from the precompile step. Specify the TEST, SOURCE, and
OPT(0) compiler options.

4. In the JCL startup procedure for the stored procedures address space, add the
data set name of the Debug Tool load library to the STEPLIB concatenation. For
example, suppose that ENV1PROC is the JCL procedure for application
environment WLMENV1. The modified JCL for ENV1PROC might look like
this:

728 Application Programming and SQL Guide



//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN,NUMTCB=8
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM=’&DB2SSN,&NUMTCB,&APPLENV’
//STEPLIB DD DISP=SHR,DSN=DSN810.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSN810.SDSNLOAD
// DD DISP=SHR,DSN=EQAW.SEQAMOD <== DEBUG TOOL

5. On the workstation, start the Distributed Debugger daemon.
This daemon waits for incoming requests from TCP/IP.

6. Call the stored procedure.
When the stored procedure starts, a window that contains the debug session is
displayed on the workstation. You can then execute Debug Tool commands to
debug the stored procedure.

Debugging with Debug Tool for z/OS interactively and in batch
mode

You can use the Debug Tool for z/OS to test z/OS stored procedures written in
any of the supported languages either interactively or in batch mode.

Using Debug Tool interactively: To test a stored procedure interactively using the
Debug Tool, you must have the Debug Tool installed on the z/OS system where
the stored procedure runs. To debug your stored procedure using the Debug Tool,
do the following:
v Compile the stored procedure with option TEST. This places information in the

program that the Debug Tool uses during a debugging session.
v Invoke the Debug Tool. One way to do that is to specify the Language

Environment run-time option TEST. The TEST option controls when and how
the Debug Tool is invoked. The most convenient place to specify run-time
options is in the RUN OPTIONS parameter of the CREATE PROCEDURE or
ALTER PROCEDURE statement for the stored procedure.
For example, you can code the TEST option using the following parameters:
TEST(ALL,*,PROMPT,JBJONES%SESSNA:)

Table 91 lists the effects each parameter has on the Debug Tool:

Table 91. Effects of the TEST option parameters on the Debug Tool

Parameter value Effect on the Debug Tool

ALL The Debug Tool gains control when an
attention interrupt, ABEND, or program or
Language Environment condition of Severity
1 and above occurs.

Debug commands will be entered from the
terminal.

PROMPT The Debug Tool is invoked immediately after
Language Environment initialization.

JBJONES%SESSNA: The Debug Tool initiates a session on a
workstation identified to APPC/MVS as
JBJONES with a session ID of SESSNA.

v If you want to save the output from your debugging session, issue the following
command:
SET LOG ON FILE dbgtool.log;

Chapter 25. Using stored procedures for client/server processing 729

|

|



This command saves a log of your debugging session to a file on the
workstation called dbgtool.log. This should be the first command that you enter
from the terminal or include in your commands file.

Using Debug Tool in batch mode: To test your stored procedure in batch mode, you
must have the Debug Tool installed on the z/OS system where the stored
procedure runs. To debug your stored procedure in batch mode using the Debug
Tool, do the following:
v Compile the stored procedure with option TEST, if you plan to use the Language

Environment run-time option TEST to invoke the Debug Tool. This places
information in the program that the Debug Tool uses during a debugging
session.

v Allocate a log data set to receive the output from the Debug Tool. Put a DD
statement for the log data set in the start-up procedure for the stored procedures
address space.

v Enter commands in a data set that you want the Debug Tool to execute. Put a
DD statement for that data set in the start-up procedure for the stored
procedures address space. To define the commands data set to the Debug Tool,
specify the commands data set name or DD name in the TEST run-time option.
For example, to specify that the Debug Tool use the commands that are in the
data set that is associated with the DD name TESTDD, include the following
parameter in the TEST option:
TEST(ALL,TESTDD,PROMPT,*)

The first command in the commands data set should be:
SET LOG ON FILE ddname;

This command directs output from your debugging session to the log data set
that you defined in the previous step. For example, if you defined a log data set
with DD name INSPLOG in the stored procedures address space start-up
procedure, the first command should be the following command:
SET LOG ON FILE INSPLOG;

v Invoke the Debug Tool. The following are two possible methods for invoking the
Debug Tool:
– Specify the run-time option TEST. The most convenient place to do that is in

the RUN OPTIONS parameter of the CREATE PROCEDURE or ALTER
PROCEDURE statement for the stored procedure.

– Put CEETEST calls in the stored procedure source code. If you use this
approach for an existing stored procedure, you must recompile, re-link, and
bind it, and issue the STOP PROCEDURE and START PROCEDURE
commands to reload the stored procedure.
You can combine the run-time option TEST with CEETEST calls. For example,
you might want to use TEST to name the commands data set but use
CEETEST calls to control when the Debug Tool takes control.

For more information about using the Debug Tool for z/OS, see Debug Tool User's
Guide and Reference.

Using the MSGFILE run-time option
Language Environment supports the run-time option MSGFILE, which identifies a
JCL DD statement used for writing debugging messages. You can use the
MSGFILE option to direct debugging messages to a disk file or JES spool file. The
following considerations apply:

730 Application Programming and SQL Guide



v For each MSGFILE argument, you must add a DD statement to the JCL
procedure used to start the DB2 stored procedures address space.

v Execute ALTER PROCEDURE with the RUN OPTIONS parameter to add the
MSGFILE option to the list of run-time options for the stored procedure.

v Because multiple TCBs can be active in the DB2 stored procedures address
space, you must serialize I/O to the data set associated with the MSGFILE
option. For example:
– Use the ENQ option of the MSGFILE option to serialize I/O to the message

file.
– To prevent multiple procedures from sharing a data set, each stored

procedure can specify a unique DD name with the MSGFILE option.
– If you debug your applications infrequently or on a DB2 test system, you can

serialize I/O by temporarily running the DB2 stored procedures address
space with NUMTCB=1 in the stored procedures address space start-up
procedure. Ask your system administrator for assistance in doing this.

These considerations also apply to a WLM stored procedures address space.

Using driver applications
You can write a small driver application that calls the stored procedure as a
subprogram and passes the parameter list supported by the stored procedure. You
can then test and debug the stored procedure as a normal DB2 application under
TSO. Using this method, you can use TSO TEST and other commonly used
debugging tools.

Using SQL INSERT statements
You can use SQL statements to insert debugging information into a DB2 table. This
allows other machines in the network (such as a workstation) to easily access the
data in the table using DRDA access.

DB2 discards the debugging information if the application executes the
ROLLBACK statement. To prevent the loss of the debugging data, code the calling
application so that it retrieves the diagnostic data before executing the ROLLBACK
statement.

Chapter 25. Using stored procedures for client/server processing 731



732 Application Programming and SQL Guide



Chapter 26. Tuning your queries

This chapter tells you how to improve the performance of your queries. It begins
with “General tips and questions.”

For more detailed information and suggestions, see:
v “Writing efficient predicates” on page 737
v “General rules about predicate evaluation” on page 741
v “Using host variables efficiently” on page 762
v “Writing efficient subqueries” on page 768
v “Using scrollable cursors efficiently” on page 773
v “Writing efficient queries on tables with data-partitioned secondary indexes” on

page 774

If you still have performance problems after you have tried the suggestions in
these sections, you can use other, more risky techniques. See “Special techniques to
influence access path selection” on page 776 for information.

General tips and questions
Recommendation: If you have a query that is performing poorly, first go over the
following checklist to see that you have not overlooked some of the basics:
v “Is the query coded as simply as possible?”
v “Are all predicates coded correctly?”
v “Are there subqueries in your query?” on page 734
v “Does your query involve aggregate functions?” on page 735
v “Do you have an input variable in the predicate of an SQL query?” on page 736
v “Do you have a problem with column correlation?” on page 736
v “Can your query be written to use a noncolumn expression?” on page 736
v “Can materialized query tables help your query performance?” on page 736
v “Does the query contain encrypted data?” on page 737

Is the query coded as simply as possible?
Make sure the SQL query is coded as simply and efficiently as possible. Make sure
that no unused columns are selected and that there is no unneeded ORDER BY or
GROUP BY.

Are all predicates coded correctly?
Indexable predicates: Make sure all the predicates that you think should be
indexable are coded so that they can be indexable. Refer to Table 93 on page 742 to
see which predicates are indexable and which are not.

Unintentionally redundant or unnecessary predicates: Try to remove any predicates
that are unintentionally redundant or not needed; they can slow down
performance.

Declared lengths of host variables: For string comparisons other than equal
comparisons, ensure that the declared length of a host variable is less than or equal
to the length attribute of the table column that it is compared to. For languages in

© Copyright IBM Corp. 1983, 2012 733

|
|
|



which character strings are nul-terminated, the string length can be less than or
equal to the column length plus 1. If the declared length of the host variable is
greater than the column length, the predicate is stage 1 but cannot be a matching
predicate for an index scan.

For example, assume that a host variable and an SQL column are defined as
follows:

C language declaration SQL definition

char string_hv[15] STRING_COL CHAR(12)

A predicate such as WHERE STRING_COL > :string_hv is not a matching predicate
for an index scan because the length of string_hv is greater than the length of
STRING_COL. One way to avoid an inefficient predicate using character host
variables is to declare the host variable with a length that is less than or equal to
the column length:
char string_hv[12]

Because this is a C language example, the host variable length could be 1 byte
greater than the column length:
char string_hv[13]

For numeric comparisons, a comparison between a DECIMAL column and a float
or real host variable is stage 2 if the precision of the DECIMAL column is greater
than 15. For example, assume that a host variable and an SQL column are defined
as follows:

C language declaration SQL definition

float float_hv DECIMAL_COL DECIMAL(16,2)

A predicate such as WHERE DECIMAL_COL = :float_hv is not a matching predicate
for an index scan because the length of DECIMAL_COL is greater than 15.
However, if DECIMAL_COL is defined as DECIMAL(15,2), the predicate is stage 1
and indexable.

Are there subqueries in your query?
If your query uses subqueries, see “Writing efficient subqueries” on page 768 to
understand how DB2 executes subqueries. There are no absolute rules to follow
when deciding how or whether to code a subquery. But these are general
guidelines:
v If efficient indexes are available on the tables in the subquery, then a correlated

subquery is likely to be the most efficient kind of subquery.
v If no efficient indexes are available on the tables in the subquery, then a

noncorrelated subquery would be likely to perform better.
v If multiple subqueries are in any parent query, make sure that the subqueries are

ordered in the most efficient manner.

Example: Assume that MAIN_TABLE has 1000 rows:
SELECT * FROM MAIN_TABLE

WHERE TYPE IN (subquery 1) AND
PARTS IN (subquery 2);

Assuming that subquery 1 and subquery 2 are the same type of subquery (either
correlated or noncorrelated) and the subqueries are stage 2, DB2 evaluates the

734 Application Programming and SQL Guide

|
|
|
|

|
|

|||

||
|
|
|
|
|
|

|

|
|

|

|
|
|
|

|||

||
|
|
|
|
|



subquery predicates in the order they appear in the WHERE clause. Subquery 1
rejects 10% of the total rows, and subquery 2 rejects 80% of the total rows.

The predicate in subquery 1 (which is referred to as P1) is evaluated 1000 times,
and the predicate in subquery 2 (which is referred to as P2) is evaluated 900 times,
for a total of 1900 predicate checks. However, if the order of the subquery
predicates is reversed, P2 is evaluated 1000 times, but P1 is evaluated only 200
times, for a total of 1200 predicate checks.

Coding P2 before P1 appears to be more efficient if P1 and P2 take an equal
amount of time to execute. However, if P1 is 100 times faster to evaluate than P2,
then coding subquery 1 first might be advisable. If you notice a performance
degradation, consider reordering the subqueries and monitoring the results.
Consult “Writing efficient subqueries” on page 768 to help you understand what
factors make one subquery run more slowly than another.

If you are unsure, run EXPLAIN on the query with both a correlated and a
noncorrelated subquery. By examining the EXPLAIN output and understanding
your data distribution and SQL statements, you should be able to determine which
form is more efficient.

This general principle can apply to all types of predicates. However, because
subquery predicates can potentially be thousands of times more processor- and
I/O-intensive than all other predicates, the order of subquery predicates is
particularly important.

Regardless of coding order, DB2 performs noncorrelated subquery predicates
before correlated subquery predicates, unless the subquery is transformed into a
join.

Refer to “DB2 predicate manipulation” on page 757 to see in what order DB2 will
evaluate predicates and when you can control the evaluation order.

Does your query involve aggregate functions?
If your query involves aggregate functions, make sure that they are coded as
simply as possible; this increases the chances that they will be evaluated when the
data is retrieved, rather than afterward. In general, a aggregate function performs
best when evaluated during data access and next best when evaluated during DB2
sort. Least preferable is to have a aggregate function evaluated after the data has
been retrieved. Refer to “When are aggregate functions evaluated?
(COLUMN_FN_EVAL)” on page 808 for help in using EXPLAIN to get the
information you need.

For aggregate functions to be evaluated during data retrieval, the following
conditions must be met for all aggregate functions in the query:
v No sort is needed for GROUP BY. Check this in the EXPLAIN output.
v No stage 2 (residual) predicates exist. Check this in your application.
v No distinct set functions exist, such as COUNT(DISTINCT C1).
v If the query is a join, all set functions must be on the last table joined. Check

this by looking at the EXPLAIN output.
v All aggregate functions must be on single columns with no arithmetic

expressions.
v The aggregate function is not one of the following aggregate functions:

– STDDEV

Chapter 26. Tuning your queries 735

|
|
|



– STDDEV_SAMP
– VAR
– VAR_SAMP

If your query involves the functions MAX or MIN, refer to “One-fetch access
(ACCESSTYPE=I1)” on page 814 to see whether your query could take advantage
of that method.

Do you have an input variable in the predicate of an SQL
query?

When host variables or parameter markers are used in a query, the actual values
are not known when you bind the package or plan that contains the query. DB2
therefore uses a default filter factor to determine the best access path for an SQL
statement. If that access path proves to be inefficient, you can do several things to
obtain a better access path.

See “Using host variables efficiently” on page 762 for more information.

Do you have a problem with column correlation?
Two columns in a table are said to be correlated if the values in the columns do
not vary independently.

DB2 might not determine the best access path when your queries include
correlated columns. If you think you have a problem with column correlation, see
“Column correlation” on page 754 for ideas on what to do about it.

Can your query be written to use a noncolumn expression?
The following predicate combines a column, SALARY, with values that are not
from columns on one side of the operator:
WHERE SALARY + (:hv1 * SALARY) > 50000

If you rewrite the predicate in the following way, DB2 can evaluate it more
efficiently:
WHERE SALARY > 50000/(1 + :hv1)

In the second form, the column is by itself on one side of the operator, and all the
other values are on the other side of the operator. The expression on the right is
called a noncolumn expression. DB2 can evaluate many predicates with noncolumn
expressions at an earlier stage of processing called stage 1, so the queries take less
time to run.

For more information on noncolumn expressions and stage 1 processing, see
“Properties of predicates” on page 737.

Can materialized query tables help your query performance?
Dynamic queries that operate on very large amounts of data and involve multiple
joins might take a long time to run. One way to improve the performance of these
queries is to generate the results of all or parts of the queries in advance, and store
the results in materialized query tables.

Materialized query tables are user-created tables. Depending on how the tables are
defined, they are user-maintained or system-maintained. If you have set subsystem
parameters or an application sets special registers to tell DB2 to use materialized

736 Application Programming and SQL Guide

|

|
|
|
|

|
|
|



query tables, when DB2 executes a dynamic query, DB2 uses the contents of
applicable materialized query tables if DB2 finds a performance advantage to
doing so.

For information about materialized query tables, see Part 5 (Volume 2) of DB2
Administration Guide.

Does the query contain encrypted data?
Encryption and decryption can degrade the performance of some queries.
However, you can lessen the performance impact of encryption and decryption by
writing your queries carefully and designing your database with encrypted data in
mind. For more information about avoiding performance degradation while using
encrypted data, see Part 3 (Volume 1) of DB2 Administration Guide.

Writing efficient predicates
Definition: Predicates are found in the clauses WHERE, HAVING or ON of SQL
statements; they describe attributes of data. They are usually based on the columns
of a table and either qualify rows (through an index) or reject rows (returned by a
scan) when the table is accessed. The resulting qualified or rejected rows are
independent of the access path chosen for that table.

Example: The following query has three predicates: an equal predicate on C1, a
BETWEEN predicate on C2, and a LIKE predicate on C3.
SELECT * FROM T1

WHERE C1 = 10 AND
C2 BETWEEN 10 AND 20 AND
C3 NOT LIKE ’A%’

Effect on access paths: This section explains the effect of predicates on access
paths. Because SQL allows you to express the same query in different ways,
knowing how predicates affect path selection helps you write queries that access
data efficiently.

This section describes:
v “Properties of predicates”
v “General rules about predicate evaluation” on page 741
v “Predicate filter factors” on page 748
v “DB2 predicate manipulation” on page 757
v “Column correlation” on page 754

Properties of predicates
Predicates in a HAVING clause are not used when selecting access paths; hence, in
this section the term 'predicate' means a predicate after WHERE or ON.

A predicate influences the selection of an access path because of:
v Its type, as described in “Predicate types” on page 738
v Whether it is indexable, as described in “Indexable and nonindexable

predicates” on page 739
v Whether it is stage 1 or stage 2

v Whether it contains a ROWID column, as described in “Is direct row access
possible? (PRIMARY_ACCESSTYPE = D)” on page 803

There are special considerations for “Predicates in the ON clause” on page 740.

Chapter 26. Tuning your queries 737

|
|
|

|
|

|

|
|
|
|
|



Predicate definitions: Predicates are identified as:

Simple or compound
A compound predicate is the result of two predicates, whether simple or
compound, connected together by AND or OR Boolean operators. All
others are simple.

Local or join
Local predicates reference only one table. They are local to the table and
restrict the number of rows returned for that table. Join predicates involve
more than one table or correlated reference. They determine the way rows
are joined from two or more tables. For examples of their use, see
“Interpreting access to two or more tables (join)” on page 815.

Boolean term
Any predicate that is not contained by a compound OR predicate structure
is a Boolean term. If a Boolean term is evaluated false for a particular row,
the whole WHERE clause is evaluated false for that row.

Predicate types
The type of a predicate depends on its operator or syntax. The type determines
what type of processing and filtering occurs when the predicate is evaluated.
Table 92 shows the different predicate types.

Table 92. Definitions and examples of predicate types

Type Definition Example

Subquery Any predicate that includes another
SELECT statement.

C1 IN (SELECT C10 FROM
TABLE1)

Equal Any predicate that is not a subquery
predicate and has an equal operator and
no NOT operator. Also included are
predicates of the form C1 IS NULL and C
IS NOT DISTINCT FROM.

C1=100

Range Any predicate that is not a subquery
predicate and has an operator in the
following list: >, >=, <, <=, LIKE, or
BETWEEN.

C1>100

IN-list A predicate of the form column IN (list of
values).

C1 IN (5,10,15)

NOT Any predicate that is not a subquery
predicate and contains a NOT operator.
Also included are predicates of the form
C1 IS DISTINCT FROM.

COL1 <> 5 or COL1 NOT
BETWEEN 10 AND 20

Example: Influence of type on access paths: The following two examples show how
the predicate type can influence DB2's choice of an access path. In each one,
assume that a unique index I1 (C1) exists on table T1 (C1, C2), and that all values
of C1 are positive integers.

The following query has a range predicate:
SELECT C1, C2 FROM T1 WHERE C1 >= 0;

However, the predicate does not eliminate any rows of T1. Therefore, it could be
determined during bind that a table space scan is more efficient than the index
scan.

738 Application Programming and SQL Guide



The following query has an equal predicate:
SELECT * FROM T1 WHERE C1 = 0;

DB2 chooses the index access in this case because the index is highly selective on
column C1.

Indexable and nonindexable predicates
Definition: Indexable predicate types can match index entries; other types cannot.
Indexable predicates might not become matching predicates of an index; it
depends on the indexes that are available and the access path chosen at bind time.

Examples: If the employee table has an index on the column LASTNAME, the
following predicate can be a matching predicate:
SELECT * FROM DSN8810.EMP WHERE LASTNAME = ’SMITH’;

The following predicate cannot be a matching predicate, because it is not
indexable.
SELECT * FROM DSN8810.EMP WHERE SEX <> ’F’;

Recommendation: To make your queries as efficient as possible, use indexable
predicates in your queries and create suitable indexes on your tables. Indexable
predicates allow the possible use of a matching index scan, which is often a very
efficient access path.

Stage 1 and stage 2 predicates
Definition: Rows retrieved for a query go through two stages of processing.
1. Stage 1 predicates (sometimes called sargable) can be applied at the first stage.
2. Stage 2 predicates (sometimes called nonsargable or residual) cannot be applied

until the second stage.

The following items determine whether a predicate is stage 1:
v Predicate syntax

See Table 93 on page 742 for a list of simple predicates and their types. See
Examples of predicate properties for information on compound predicate types.

v Type and length of constants or columns in the predicate
A simple predicate whose syntax classifies it as indexable and stage 1 might not
be indexable or stage 1 because it contains constants and columns whose lengths
are too long.
Example: The following predicate is not indexable:
CHARCOL<'ABCDEFG', where CHARCOL is defined as CHAR(6)

The predicate is not indexable because the length of the column is shorter than
the length of the constant.
Example: The following predicate is not stage 1:
DECCOL>34.5, where DECCOL is defined as DECIMAL(18,2)

The predicate is not stage 1 because the precision of the decimal column is
greater than 15.

v Whether DB2 evaluates the predicate before or after a join operation. A predicate
that is evaluated after a join operation is always a stage 2 predicate.

v Join sequence

Chapter 26. Tuning your queries 739

|

|
|
|

|

|

|
|

|

|

|
|

|



The same predicate might be stage 1 or stage 2, depending on the join sequence.
Join sequence is the order in which DB2 joins tables when it evaluates a query.
The join sequence is not necessarily the same as the order in which the tables
appear in the predicate.
Example: This predicate might be stage 1 or stage 2:
T1.C1=T2.C1+1

If T2 is the first table in the join sequence, the predicate is stage 1, but if T1 is
the first table in the join sequence, the predicate is stage 2.
You can determine the join sequence by executing EXPLAIN on the query and
examining the resulting plan table. See Chapter 27, “Using EXPLAIN to improve
SQL performance,” on page 789 for details.

All indexable predicates are stage 1. The predicate C1 LIKE %BC is stage 1, but is
not indexable.

Recommendation: Use stage 1 predicates whenever possible.

Boolean term (BT) predicates
Definition: A Boolean term predicate, or BT predicate, is a simple or compound
predicate that, when it is evaluated false for a particular row, makes the entire
WHERE clause false for that particular row.

Examples: In the following query P1, P2 and P3 are simple predicates:
SELECT * FROM T1 WHERE P1 AND (P2 OR P3);
v P1 is a simple BT predicate.
v P2 and P3 are simple non-BT predicates.
v P2 OR P3 is a compound BT predicate.
v P1 AND (P2 OR P3) is a compound BT predicate.

Effect on access paths: In single-index processing, only Boolean term predicates are
chosen for matching predicates. Hence, only indexable Boolean term predicates are
candidates for matching index scans. To match index columns by predicates that
are not Boolean terms, DB2 considers multiple-index access.

In join operations, Boolean term predicates can reject rows at an earlier stage than
can non-Boolean term predicates.

Recommendation: For join operations, choose Boolean term predicates over
non-Boolean term predicates whenever possible.

Predicates in the ON clause
The ON clause supplies the join condition in an outer join. For a full outer join, the
clause can use only equal predicates. For other outer joins, the clause can use any
predicates except predicates that contain subqueries.

For left and right outer joins, and for inner joins, join predicates in the ON clause
are treated the same as other stage 1 and stage 2 predicates. A stage 2 predicate in
the ON clause is treated as a stage 2 predicate of the inner table.

For full outer join, the ON clause is evaluated during the join operation like a
stage 2 predicate.

740 Application Programming and SQL Guide

|
|
|
|

|

|

|
|

|
|
|



In an outer join, predicates that are evaluated after the join are stage 2 predicates.
Predicates in a table expression can be evaluated before the join and can therefore
be stage 1 predicates.

Example: In the following statement, the predicate “EDLEVEL > 100” is evaluated
before the full join and is a stage 1 predicate:
SELECT * FROM (SELECT * FROM DSN8810.EMP

WHERE EDLEVEL > 100) AS X FULL JOIN DSN8810.DEPT
ON X.WORKDEPT = DSN8810.DEPT.DEPTNO;

For more information about join methods, see “Interpreting access to two or more
tables (join)” on page 815.

General rules about predicate evaluation
Recommendations:

1. In terms of resource usage, the earlier a predicate is evaluated, the better.
2. Stage 1 predicates are better than stage 2 predicates because they disqualify

rows earlier and reduce the amount of processing needed at stage 2.
3. When possible, try to write queries that evaluate the most restrictive predicates

first. When predicates with a high filter factor are processed first, unnecessary
rows are screened as early as possible, which can reduce processing cost at a
later stage. However, a predicate's restrictiveness is only effective among
predicates of the same type and the same evaluation stage. For information
about filter factors, see “Predicate filter factors” on page 748.

This section contains the following topics:
v “Order of evaluating predicates”
v “Examples of predicate properties” on page 747
v “Predicate filter factors” on page 748
v “Column correlation” on page 754
v “DB2 predicate manipulation” on page 757
v “Predicates with encrypted data” on page 762

Order of evaluating predicates
Two sets of rules determine the order of predicate evaluation.

The first set:
1. Indexable predicates are applied first. All matching predicates on index key

columns are applied first and evaluated when the index is accessed.
Next, stage 1 predicates that have not been picked as matching predicates but
still refer to index columns are applied to the index. This is called index
screening.

2. Other stage 1 predicates are applied next.
After data page access, stage 1 predicates are applied to the data.

3. Finally, the stage 2 predicates are applied on the returned data rows.

The second set of rules describes the order of predicate evaluation within each of
the stages:
1. All equal predicates (including column IN list, where list has only one element,

or column BETWEEN value1 AND value1) are evaluated.

Chapter 26. Tuning your queries 741

|

|
|



2. All range predicates and predicates of the form column IS NOT NULL are
evaluated.

3. All other predicate types are evaluated.

After both sets of rules are applied, predicates are evaluated in the order in which
they appear in the query. Because you specify that order, you have some control
over the order of evaluation.

Exception: Regardless of coding order, non-correlated subqueries are evaluated
before correlated subqueries, unless DB2 transforms the subquery into a join.

Summary of predicate processing
Table 93 lists many of the simple predicates and tells whether those predicates are
indexable or stage 1. The following terms are used:
v subq means a correlated or noncorrelated subquery.
v noncor subq means a noncorrelated subquery.
v cor subq means a correlated subquery.
v op is any of the operators >, >=, <, <=, ¬>, ¬<.
v value is a constant, host variable, or special register.
v pattern is any character string that does not start with the special characters for

percent (%) or underscore (_).
v char is any character string that does not include the special characters for

percent (%) or underscore (_).
v expression is any expression that contains arithmetic operators, scalar functions,

aggregate functions, concatenation operators, columns, constants, host variables,
special registers, or date or time expressions.

v noncol expr is a noncolumn expression, which is any expression that does not
contain a column. That expression can contain arithmetic operators, scalar
functions, concatenation operators, constants, host variables, special registers, or
date or time expressions.
An example of a noncolumn expression is
CURRENT DATE - 50 DAYS

v Tn col expr is an expression that contains a column in table Tn. The expression
might be only that column.

v predicate is a predicate of any type.

In general, if you form a compound predicate by combining several simple
predicates with OR operators, the result of the operation has the same
characteristics as the simple predicate that is evaluated latest. For example, if two
indexable predicates are combined with an OR operator, the result is indexable. If a
stage 1 predicate and a stage 2 predicate are combined with an OR operator, the
result is stage 2.

Table 93. Predicate types and processing

Predicate Type
Index-
able?

Stage
1? Notes

COL = value Y Y 16

COL = noncol expr Y Y 9, 11, 12, 15

COL IS NULL Y Y 20, 21

COL op value Y Y 13

742 Application Programming and SQL Guide

|
|

|
|

|

#



Table 93. Predicate types and processing (continued)

Predicate Type
Index-
able?

Stage
1? Notes

COL op noncol expr Y Y 9, 11, 12, 13

COL BETWEEN value1
AND value2

Y Y 13

COL BETWEEN noncol expr1
AND noncol expr2

Y Y 9, 11, 12, 13,
15,23

value BETWEEN COL1
AND COL2

N N

COL BETWEEN COL1
AND COL2

N N 10

COL BETWEEN expression1
AND expression2

Y Y 6, 7, 11, 12, 13,
14

COL LIKE 'pattern' Y Y 5

COL IN (list) Y Y 17, 18

COL <> value N Y 8, 11

COL <> noncol expr N Y 8, 11

COL IS NOT NULL Y Y 21

COL NOT BETWEEN value1
AND value2

N Y

COL NOT BETWEEN noncol expr1
AND noncol expr2

N Y

value NOT BETWEEN
COL1 AND COL2

N N

COL NOT IN (list) N Y

COL NOT LIKE ' char' N Y 5

COL LIKE '%char' N Y 1, 5

COL LIKE '_char' N Y 1, 5

COL LIKE host variable Y Y 2, 5

T1.COL = T2 col expr Y Y 6, 9, 11, 12, 14,
15, 25

T1.COL op T2 col expr Y Y 6, 9, 11, 12, 13,
14, 15

T1.COL <> T2 col expr N Y 8, 11

T1.COL1 = T1.COL2 N N 3, 25

T1.COL1 op T1.COL2 N N 3

T1.COL1 <> T1.COL2 N N 3

COL=(noncor subq) Y Y

COL = ANY (noncor subq) N N 22

COL = ALL (noncor subq) N N

COL op (noncor subq) Y Y 26 on page 747

COL op ANY (noncor subq) Y Y 22

COL op ALL (noncor subq) Y Y

COL <> (noncor subq) N Y

Chapter 26. Tuning your queries 743

|

|
|
#
#

|
|

||||

|

|

|||#

|

|

|

#

#



Table 93. Predicate types and processing (continued)

Predicate Type
Index-
able?

Stage
1? Notes

COL <> ANY (noncor subq) N N 22

COL <> ALL (noncor subq) N N

COL IN (noncor subq) Y Y 24

(COL1,...COLn) IN (noncor subq) Y Y

COL NOT IN (noncor subq) N N

(COL1,...COLn) NOT IN (noncor subq) N N

COL = (cor subq) N N 4

COL = ANY (cor subq) N N 22

COL = ALL (cor subq) N N

COL op (cor subq) N N 4

COL op ANY (cor subq) N N 22

COL op ALL (cor subq) N N

COL <> (cor subq) N N 4

COL <> ANY (cor subq) N N 22

COL <> ALL (cor subq) N N

COL IN (cor subq) N N 19

(COL1,...COLn) IN (cor subq) N N

COL NOT IN (cor subq) N N

(COL1,...COLn) NOT IN (cor subq) N N

COL IS DISTINCT FROM value N Y 8, 11

COL IS NOT DISTINCT FROM value Y Y 16

COL IS DISTINCT FROM noncol expr N Y 8, 11

COL IS NOT DISTINCT FROM noncol expr Y Y 9, 11, 12, 15

T1.COL1 IS DISTINCT FROM T2.COL2 N N 3

T1.COL1 IS NOT DISTINCT FROM T2.COL2 N N 3

T1.COL1 IS DISTINCT FROM T2 col expr N Y 8, 11

T1.COL1 IS NOT DISTINCT FROM T2 col expr Y Y 6, 9, 11, 12, 14,
15

COL IS DISTINCT FROM (noncor subq) N Y

COL IS NOT DISTINCT FROM (noncor subq) Y Y

COL IS NOT DISTINCT FROM (cor subq) N N 4

EXISTS (subq) N N 19

NOT EXISTS (subq) N N

expression = value N N

expression <> value N N

expression op value N N

expression op (subq) N N

COL LIKE UPPER ('pattern') Y Y 5 on page 745

COL LIKE UPPER (host-variable) 2 on page 745,
5 on page 745

744 Application Programming and SQL Guide

#

#

#

#

#

||||

||||

||||

||||

||||

||||

||||

||||
|

||||

||||

||||

####

####
#



Notes to Table 93 on page 742:

1. Indexable only if an ESCAPE character is specified and used in the LIKE
predicate. For example, COL LIKE '+%char' ESCAPE '+' is indexable.

2. Indexable only if the pattern in the host variable is an indexable constant (for
example, host variable='char%').

3. If both COL1 and COL2 are from the same table, access through an index on
either one is not considered for these predicates. However, the following
query is an exception:
SELECT * FROM T1 A, T1 B WHERE A.C1 = B.C2;

By using correlation names, the query treats one table as if it were two
separate tables. Therefore, indexes on columns C1 and C2 are considered for
access.

4. If the subquery has already been evaluated for a given correlation value, then
the subquery might not have to be reevaluated.

5. Not indexable or stage 1 if a field procedure exists on that column.
6. The column on the left side of the join sequence must be in a different table

from any columns on the right side of the join sequence.
7. The tables that contain the columns in expression1 or expression2 must already

have been accessed.
8. The processing for WHERE NOT COL = value is like that for WHERE COL <>

value, and so on.
9. If noncol expr, noncol expr1, or noncol expr2 is a noncolumn expression of one of

these forms, then the predicate is not indexable:
v noncol expr + 0
v noncol expr - 0
v noncol expr * 1
v noncol expr / 1
v noncol expr CONCAT empty string

10. COL, COL1, and COL2 can be the same column or different columns. The
columns are in the same table.

11. Any of the following sets of conditions make the predicate stage 2:
v The first value obtained before the predicate is evaluated is DECIMAL(p,s),

where p>15, and the second value obtained before the predicate is evaluated
is REAL or FLOAT.

v The first value obtained before the predicate is evaluated is CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC, and the second value obtained
before the predicate is evaluated is DATE, TIME, or TIMESTAMP.

12. The predicate is stage 1 but not indexable if the first value obtained before the
predicate is evaluated is CHAR or VARCHAR, the second value obtained
before the predicate is evaluated is GRAPHIC or VARGRAPHIC, and the first
value obtained before the predicate is evaluated is not Unicode mixed.

13. If both sides of the comparison are strings, any of the following sets of
conditions makes the predicate stage 1 but not indexable:
v The first value obtained before the predicate is evaluated is CHAR or

VARCHAR, and the second value obtained before the predicate is evaluated
is GRAPHIC or VARGRAPHIC.

v Both of the following conditions are true:

Chapter 26. Tuning your queries 745

|
|

#

#
#
#

#
#
#

#
#
#
#

#
#

#
#
#

#



– Both sides of the comparison are CHAR or VARCHAR, or both sides of
the comparison are BINARY or VARBINARY

– The length the first value obtained before the predicate is evaluated is
less than the length of the second value obtained before the predicate is
evaluated.

v Both of the following conditions are true:
– Both sides of the comparison are GRAPHIC or VARGRAPHIC.
– The length of the first value obtained before the predicate is evaluated is

less than the length of the second value obtained before the predicate is
evaluated.

v Both of the following conditions are true:
– The first value obtained before the predicate is evaluated is GRAPHIC or

VARGRAPHIC, and the second value obtained before the predicate is
evaluated is CHAR or VARCHAR.

– The length of the first value obtained before the predicate is evaluated is
less than the length of the second value obtained before the predicate is
evaluated.

14. If both sides of the comparison are strings, but the two sides have different
CCSIDs, the predicate is stage 1 and indexable only if the first value obtained
before the predicate is evaluated is Unicode and the comparison does not
meet any of the conditions in note 13 on page 745.

15. Under either of these circumstances, the predicate is stage 2:
v noncol expr is a case expression.
v All of the following conditions are true:

– noncol expr is the product or the quotient of two noncolumn expressions
– noncol expr is an integer value
– COL is a FLOAT or a DECIMAL column

16. If COL has the ROWID data type, DB2 tries to use direct row access instead of
index access or a table space scan.

17. If COL has the ROWID data type, and an index is defined on COL, DB2 tries
to use direct row access instead of index access.

18. IN-list predicates are indexable and stage 1 if the following conditions are
true:
v The IN list contains only simple items. For example, constants, host

variables, parameter markers, and special registers.
v The IN list does not contain any aggregate functions or scalar functions.
v The IN list is not contained in a trigger’s WHEN clause.
v For numeric predicates where the left side column is DECIMAL with

precision greater than 15, none of the items in the IN list are FLOAT.
v For string predicates, the coded character set identifier is the same as the

identifier for the left side column.
v For DATE, TIME, and TIMESTAMP predicates, the left side column must be

DATE, TIME, or TIMESTAMP.
19. COL IN (corr subq) and EXISTS (corr subq) predicates might become indexable

and stage 1 if they are transformed to a join during processing.
20. The predicate types COL IS NULL and COL IS NOT NULL are stage 2

predicates when they query a column that is defined as NOT NULL.
21. If the predicate type is COL IS NULL and the column is defined as NOT

NULL, the table is not accessed because C1 cannot be NULL.

746 Application Programming and SQL Guide

#
#

#
#
#

#

#

#
#
#

#

#
#
#

#
#
#

#
#
#
#

|

|

|
|
|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

#
#

#
#



22. The ANY and SOME keywords behave similarly. If a predicate with the ANY
keyword is not indexable and not stage 1, a similar predicate with the SOME
keyword is not indexable and not stage 1.

23. Under either of these circumstances, the predicate is stage 2:
v noncol expr is a case expression.
v noncol expr is the product or the quotient of two noncolumn expressions,

that product or quotient is an integer value, and COL is a FLOAT or a
DECIMAL column.

24. COL IN (noncor subq) is stage 1 for type N access only. Otherwise, it is stage 2.
25. If the inner table is as EBCDIC or ASCII column and the outer table is a

Unicode column, the predicate is stage 1 and indexable.
26. This type of predicate is not stage 1 when a nullability mismatch is possible.

Examples of predicate properties
Assume that predicate P1 and P2 are simple, stage 1, indexable predicates:

P1 AND P2 is a compound, stage 1, indexable predicate.
P1 OR P2 is a compound, stage 1 predicate, not indexable except by a union of
RID lists from two indexes.

The following examples of predicates illustrate the general rules shown in Table 93
on page 742. In each case, assume that there is an index on columns (C1,C2,C3,C4)
of the table and that 0 is the lowest value in each column.
v WHERE C1=5 AND C2=7

Both predicates are stage 1 and the compound predicate is indexable. A
matching index scan could be used with C1 and C2 as matching columns.

v WHERE C1=5 AND C2>7
Both predicates are stage 1 and the compound predicate is indexable. A
matching index scan could be used with C1 and C2 as matching columns.

v WHERE C1>5 AND C2=7
Both predicates are stage 1, but only the first matches the index. A matching
index scan could be used with C1 as a matching column.

v WHERE C1=5 OR C2=7
Both predicates are stage 1 but not Boolean terms. The compound is indexable.
Multiple-index access for the compound predicate is not possible because there
is no index that has C2 as the leading column. For single-index access, C1 and
C2 can be only index screening columns.

v WHERE C1=5 OR C2<>7
The first predicate is indexable and stage 1, and the second predicate is stage 1
but not indexable. The compound predicate is stage 1 and not indexable.

v WHERE C1>5 OR C2=7
Both predicates are stage 1 but not Boolean terms. The compound is indexable.
Multiple-index access for the compound predicate is not possible because no
index has C2 as the leading column. For single-index access, C1 and C2 can be
only index screening columns.

v WHERE C1 IN (cor subq) AND C2=C1
Both predicates are stage 2 and not indexable. The index is not considered for
matching-index access, and both predicates are evaluated at stage 2.

v WHERE C1=5 AND C2=7 AND (C3 + 5) IN (7,8)

Chapter 26. Tuning your queries 747

#
#
#

#

#

#
#
#

#

#
#

#

|
|

|
|



The first two predicates only are stage 1 and indexable. The index is considered
for matching-index access, and all rows satisfying those two predicates are
passed to stage 2 to evaluate the third predicate.

v WHERE C1=5 OR C2=7 OR (C3 + 5) IN (7,8)
The third predicate is stage 2. The compound predicate is stage 2 and all three
predicates are evaluated at stage 2. The simple predicates are not Boolean terms
and the compound predicate is not indexable.

v WHERE C1=5 OR (C2=7 AND C3=C4)
The third predicate is stage 2. The two compound predicates (C2=7 AND
C3=C4) and (C1=5 OR (C2=7 AND C3=C4)) are stage 2. All predicates are
evaluated at stage 2.

v WHERE (C1>5 OR C2=7) AND C3 = C4
The compound predicate (C1>5 OR C2=7) is indexable and stage 1. The simple
predicate C3=C4 is not stage1; so the index is not considered for matching-index
access. Rows that satisfy the compound predicate (C1>5 OR C2=7) are passed to
stage 2 for evaluation of the predicate C3=C4.

Predicate filter factors
Definition: The filter factor of a predicate is a number between 0 and 1 that
estimates the proportion of rows in a table for which the predicate is true. Those
rows are said to qualify by that predicate.

Example: Suppose that DB2 can determine that column C1 of table T contains only
five distinct values: A, D, Q, W and X. In the absence of other information, DB2
estimates that one-fifth of the rows have the value D in column C1. Then the
predicate C1=’D’ has the filter factor 0.2 for table T.

How DB2 uses filter factors: Filter factors affect the choice of access paths by
estimating the number of rows qualified by a set of predicates.

For simple predicates, the filter factor is a function of three variables:
1. The literal value in the predicate; for instance, 'D' in the previous example.
2. The operator in the predicate; for instance, '=' in the previous example and '<>'

in the negation of the predicate.
3. Statistics on the column in the predicate. In the previous example, those include

the information that column T.C1 contains only five values.

Recommendation: Control the first two of those variables when you write a
predicate. Your understanding of how DB2 uses filter factors should help you write
more efficient predicates.

Values of the third variable, statistics on the column, are kept in the DB2 catalog.
You can update many of those values, either by running the utility RUNSTATS or
by executing UPDATE for a catalog table. For information about using RUNSTATS,
see . see the discussion of maintaining statistics in the catalog in Part 4 (Volume 1)
of DB2 Administration Guide For information on updating the catalog manually, see
“Updating catalog statistics” on page 786.

If you intend to update the catalog with statistics of your own choice, you should
understand how DB2 uses:
v “Default filter factors for simple predicates” on page 749
v “Filter factors for uniform distributions” on page 749
v “Interpolation formulas” on page 750

748 Application Programming and SQL Guide



v “Filter factors for all distributions” on page 751

Default filter factors for simple predicates
Table 94 lists default filter factors for different types of predicates. DB2 uses those
values when no other statistics exist.

Example: The default filter factor for the predicate C1 = 'D' is 1/25 (0.04). If D is
actually not close to 0.04, the default probably does not lead to an optimal access
path.

Table 94. DB2 default filter factors by predicate type

Predicate Type Filter Factor

Col = literal 1/25

Col <> literal 1 – (1/25)

Col IS NULL 1/25

Col IS NOT DISTINCT FROM 1/25

Col IS DISTINCT FROM 1 – (1/25)

Col IN (literal list) (number of literals)/25

Col Op literal 1/3

Col LIKE literal 1/10

Col BETWEEN literal1 and literal2 1/10

Note:
Op is one of these operators: <, <=, >, >=.
Literal is any constant value that is known at bind time.

Filter factors for uniform distributions
DB2 uses the filter factors in Table 95 if:
v There is a positive value in column COLCARDF of catalog table

SYSIBM.SYSCOLUMNS for the column “Col”.
v There are no additional statistics for “Col” in SYSIBM.SYSCOLDIST.

Example: If D is one of only five values in column C1, using RUNSTATS puts the
value 5 in column COLCARDF of SYSCOLUMNS. If there are no additional
statistics available, the filter factor for the predicate C1 = 'D' is 1/5 (0.2).

Table 95. DB2 uniform filter factors by predicate type

Predicate type Filter factor

Col = literal 1/COLCARDF

Col <> literal 1 – (1/COLCARDF)

Col IS NULL 1/COLCARDF

Col IS NOT DISTINCT FROM 1/COLCARDF

Col IS DISTINCT FROM 1 – (1/COLCARDF)

Col IN (literal list) number of literals /COLCARDF

Col Op1 literal interpolation formula

Col Op2 literal interpolation formula

Col LIKE literal interpolation formula

Col BETWEEN literal1 and literal2 interpolation formula

Chapter 26. Tuning your queries 749

||

||

||

||



Table 95. DB2 uniform filter factors by predicate type (continued)

Predicate type Filter factor

Note:
Op1 is < or <=, and the literal is not a host variable.
Op2 is > or >=, and the literal is not a host variable.
Literal is any constant value that is known at bind time.

Filter factors for other predicate types: The examples selected in Table 94 on page
749 and Table 95 on page 749 represent only the most common types of predicates.
If P1 is a predicate and F is its filter factor, then the filter factor of the predicate
NOT P1 is (1 - F). But, filter factor calculation is dependent on many things, so a
specific filter factor cannot be given for all predicate types.

Interpolation formulas
Definition: For a predicate that uses a range of values, DB2 calculates the filter
factor by an interpolation formula. The formula is based on an estimate of the ratio
of the number of values in the range to the number of values in the entire column
of the table.

The formulas: The formulas that follow are rough estimates, subject to further
modification by DB2. They apply to a predicate of the form col op. literal. The
value of (Total Entries) in each formula is estimated from the values in columns
HIGH2KEY and LOW2KEY in catalog table SYSIBM.SYSCOLUMNS for column col:
Total Entries = (HIGH2KEY value - LOW2KEY value).
v For the operators < and <=, where the literal is not a host variable:

(Literal value - LOW2KEY value) / (Total Entries)
v For the operators > and >=, where the literal is not a host variable:

(HIGH2KEY value - Literal value) / (Total Entries)
v For LIKE or BETWEEN:

(High literal value - Low literal value) / (Total Entries)

Example: For column C2 in a predicate, suppose that the value of HIGH2KEY is
1400 and the value of LOW2KEY is 200. For C2, DB2 calculates (Total Entries) =
1200.

For the predicate C1 BETWEEN 800 AND 1100, DB2 calculates the filter factor F as:
F = (1100 - 800)/1200 = 1/4 = 0.25

Interpolation for LIKE: DB2 treats a LIKE predicate as a type of BETWEEN
predicate. Two values that bound the range qualified by the predicate are
generated from the literal string in the predicate. Only the leading characters found
before the escape character ('%' or '_') are used to generate the bounds. So if the
escape character is the first character of the string, the filter factor is estimated as 1,
and the predicate is estimated to reject no rows.

Defaults for interpolation: DB2 might not interpolate in some cases; instead, it can
use a default filter factor. Defaults for interpolation are:
v Relevant only for ranges, including LIKE and BETWEEN predicates
v Used only when interpolation is not adequate
v Based on the value of COLCARDF
v Used whether uniform or additional distribution statistics exist on the column if

either of the following conditions is met:
– The predicate does not contain constants

750 Application Programming and SQL Guide



– COLCARDF < 4.

Table 96 shows interpolation defaults for the operators <, <=, >, >= and for LIKE
and BETWEEN.

Table 96. Default filter factors for interpolation

COLCARDF Factor for Op
Factor for LIKE
or BETWEEN

>=100000000 1/10,000 3/100000

>=10000000 1/3,000 1/10000

>=1000000 1/1,000 3/10000

>=100000 1/300 1/1000

>=10000 1/100 3/1000

>=1000 1/30 1/100

>=100 1/10 3/100

>=2 1/3 1/10

=1 1/1 1/1

<=0 1/3 1/10

Note: Op is one of these operators: <, <=, >, >=.

Filter factors for all distributions
RUNSTATS can generate additional statistics for a column or set of columns. DB2
can use that information to calculate filter factors. DB2 collects two kinds of
distribution statistics:

Frequency
The percentage of rows in the table that contain a value for a column or set
of columns

Cardinality
The number of distinct values in a set of columns

When they are used: Table 97 lists the types of predicates on which these statistics
are used.

Table 97. Predicates for which distribution statistics are used

Type of statistic
Single column or
concatenated columns Predicates

Frequency Single COL=literal
COL IS NULL
COL IN (literal-list)
COL op literal
COL BETWEEN literal AND literal
COL=host-variable
COL1=COL2
T1.COL=T2.COL
COL IS NOT DISTINCT FROM

Frequency Concatenated COL=literal
COL IS NOT DISTINCT FROM

Chapter 26. Tuning your queries 751

|||

|||

|||

|

|
|

|

|

|



Table 97. Predicates for which distribution statistics are used (continued)

Type of statistic
Single column or
concatenated columns Predicates

Cardinality Single COL=literal
COL IS NULL
COL IN (literal-list)
COL op literal
COL BETWEEN literal AND literal
COL=host-variable
COL1=COL2
T1.COL=T2.COL
COL IS NOT DISTINCT FROM

Cardinality Concatenated COL=literal
COL=:host-variable
COL1=COL2
COL IS NOT DISTINCT FROM

Note: op is one of these operators: <, <=, >, >=.

How they are used: Columns COLVALUE and FREQUENCYF in table
SYSCOLDIST contain distribution statistics. Regardless of the number of values in
those columns, running RUNSTATS deletes the existing values and inserts rows for
frequent values.

You can run RUNSTATS without the FREQVAL option, with the FREQVAL option
in the correl-spec, with the FREQVAL option in the colgroup-spec, or in both, with
the following effects:
v If you run RUNSTATS without the FREQVAL option, RUNSTATS inserts rows

for the 10 most frequent values for the first column of the specified index.
v If you run RUNSTATS with the FREQVAL option in the correl-spec, RUNSTATS

inserts rows for concatenated columns of an index. The NUMCOLS option
specifies the number of concatenated index columns. The COUNT option
specifies the number of frequent values. You can collect most-frequent values,
least-frequent values, or both.

v If you run RUNSTATS with the FREQVAL option in the colgroup-spec,
RUNSTATS inserts rows for the columns in the column group that you specify.
The COUNT option specifies the number of frequent values. You can collect
most-frequent values, least-frequent values, or both.

v If you specify the FREQVAL option, RUNSTATS inserts rows for columns of the
specified index and for columns in a column group.

See Part 2 of DB2 Utility Guide and Reference for more information about
RUNSTATS. DB2 uses the frequencies in column FREQUENCYF for predicates that
use the values in column COLVALUE and assumes that the remaining data are
uniformly distributed.

Example: Filter factor for a single column

Suppose that the predicate is C1 IN ('3','5') and that SYSCOLDIST contains these
values for column C1:

COLVALUE FREQUENCYF
’3’ .0153
’5’ .0859
’8’ .0627

752 Application Programming and SQL Guide

|

|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|



The filter factor is .0153 + .0859 = .1012.

Example: Filter factor for correlated columns

Suppose that columns C1 and C2 are correlated. Suppose also that the predicate is
C1='3' AND C2='5' and that SYSCOLDIST contains these values for columns C1
and C2:
COLVALUE FREQUENCYF
’1’ ’1’ .1176
’2’ ’2’ .0588
’3’ ’3’ .0588
’3’ ’5’ .1176
’4’ ’4’ .0588
’5’ ’3’ .1764
’5’ ’5’ .3529
’6’ ’6’ .0588

The filter factor is .1176.

Using multiple filter factors to determine the cost of a query
When DB2 estimates the cost of a query, it determines the filter factor repeatedly
and at various levels. For example, suppose that you execute the following query:
SELECT COLS FROM T1

WHERE C1 = ’A’
AND C3 = ’B’
AND C4 = ’C’;

Table T1 consists of columns C1, C2, C3, and C4. Index I1 is defined on table T1
and contains columns C1, C2, and C3.

Suppose that the simple predicates in the compound predicate have the following
characteristics:

C1='A' Matching predicate

C3='B' Screening predicate

C4='C' Stage 1, nonindexable predicate

To determine the cost of accessing table T1 through index I1, DB2 performs these
steps:
1. Estimates the matching index cost. DB2 determines the index matching filter

factor by using single-column cardinality and single-column frequency statistics
because only one column can be a matching column.

2. Estimates the total index filtering. This includes matching and screening
filtering. If statistics exist on column group (C1,C3), DB2 uses those statistics.
Otherwise DB2 uses the available single-column statistics for each of these
columns.
DB2 will also use FULLKEYCARDF as a bound. Therefore, it can be critical to
have column group statistics on column group (C1, C3) to get an accurate
estimate.

3. Estimates the table-level filtering. If statistics are available on column group
(C1,C3,C4), DB2 uses them. Otherwise, DB2 uses statistics that exist on subsets
of those columns.

Important: If you supply appropriate statistics at each level of filtering, DB2 is
more likely to choose the most efficient access path.

Chapter 26. Tuning your queries 753

|

|
|
|

|
|
|
|

|
|

|
|

||

||

||

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|



You can use RUNSTATS to collect any of the needed statistics.

Column correlation
Two columns of data, A and B of a single table, are correlated if the values in
column A do not vary independently of the values in column B.

Example: Table 98 is an excerpt from a large single table. Columns CITY and
STATE are highly correlated, and columns DEPTNO and SEX are entirely
independent.

Table 98. Data from the CREWINFO table

CITY STATE DEPTNO SEX EMPNO ZIPCODE

Fresno CA A345 F 27375 93650

Fresno CA J123 M 12345 93710

Fresno CA J123 F 93875 93650

Fresno CA J123 F 52325 93792

New York NY J123 M 19823 09001

New York NY A345 M 15522 09530

Miami FL B499 M 83825 33116

Miami FL A345 F 35785 34099

Los Angeles CA X987 M 12131 90077

Los Angeles CA A345 M 38251 90091

In this simple example, for every value of column CITY that equals 'FRESNO',
there is the same value in column STATE ('CA').

How to detect column correlation
The first indication that column correlation is a problem is because of poor
response times when DB2 has chosen an inappropriate access path. If you suspect
two columns in a table (CITY and STATE in table CREWINFO) are correlated, then
you can issue the following SQL queries that reflect the relationships between the
columns:
SELECT COUNT (DISTINCT CITY) AS CITYCOUNT,

COUNT (DISTINCT STATE) AS STATECOUNT FROM CREWINFO;

The result of the count of each distinct column is the value of COLCARDF in the
DB2 catalog table SYSCOLUMNS. Multiply the previous two values together to get
a preliminary result:
CITYCOUNT x STATECOUNT = ANSWER1

Then issue the following SQL statement:
SELECT COUNT(*) FROM

(SELECT DISTINCT CITY, STATE
FROM CREWINFO) AS V1; (ANSWER2)

Compare the result of the previous count (ANSWER2) with ANSWER1. If
ANSWER2 is less than ANSWER1, then the suspected columns are correlated.

Impacts of column correlation
DB2 might not determine the best access path, table order, or join method when
your query uses columns that are highly correlated. Column correlation can make

754 Application Programming and SQL Guide

|

|
|

|



the estimated cost of operations cheaper than they actually are. Column correlation
affects both single table queries and join queries.

Column correlation on the best matching columns of an index: The following
query selects rows with females in department A345 from Fresno, California. Two
indexes are defined on the table, Index 1 (CITY,STATE,ZIPCODE) and Index 2
(DEPTNO,SEX).
Query 1

SELECT ... FROM CREWINFO WHERE
CITY = ’FRESNO’ AND STATE = ’CA’ (PREDICATE1)
AND DEPTNO = ’A345’ AND SEX = ’F’; (PREDICATE2)

Consider the two compound predicates (labeled PREDICATE1 and PREDICATE2),
their actual filtering effects (the proportion of rows they select), and their DB2 filter
factors. Unless the proper catalog statistics are gathered, the filter factors are
calculated as if the columns of the predicate are entirely independent (not
correlated).

When the columns in a predicate correlate but the correlation is not reflected in
catalog statistics, the actual filtering effect to be significantly different from the DB2
filter factor. Table 99 shows how the actual filtering effect and the DB2 filter factor
can differ, and how that difference can affect index choice and performance.

Table 99. Effects of column correlation on matching columns

INDEX 1 INDEX 2

Matching predicates Predicate1
CITY=FRESNO AND STATE=CA

Predicate2
DEPTNO=A345 AND SEX=F

Matching columns 2 2

DB2 estimate for
matching columns
(Filter Factor)

column=CITY, COLCARDF=4
Filter Factor=1/4
column=STATE, COLCARDF=3
Filter Factor=1/3

column=DEPTNO,
COLCARDF=4
Filter Factor=1/4
column=SEX, COLCARDF=2
Filter Factor=1/2

Compound filter factor
for matching columns

1/4 × 1/3 = 0.083 1/4 × 1/2 = 0.125

Qualified leaf pages
based on DB2 estimations

0.083 × 10 = 0.83
INDEX CHOSEN (.8 < 1.25)

0.125 × 10 = 1.25

Actual filter factor based on data
distribution

4/10 2/10

Actual number of qualified leaf pages
based on compound predicate

4/10 × 10 = 4 2/10 × 10 = 2
BETTER INDEX CHOICE
(2 < 4)

DB2 chooses an index that returns the fewest rows, partly determined by the
smallest filter factor of the matching columns. Assume that filter factor is the only
influence on the access path. The combined filtering of columns CITY and STATE
seems very good, whereas the matching columns for the second index do not seem
to filter as much. Based on those calculations, DB2 chooses Index 1 as an access
path for Query 1.

Chapter 26. Tuning your queries 755



The problem is that the filtering of columns CITY and STATE should not look
good. Column STATE does almost no filtering. Since columns DEPTNO and SEX
do a better job of filtering out rows, DB2 should favor Index 2 over Index 1.

Column correlation on index screening columns of an index: Correlation might also
occur on nonmatching index columns, used for index screening. See “Nonmatching
index scan (ACCESSTYPE=I and MATCHCOLS=0)” on page 812 for more
information. Index screening predicates help reduce the number of data rows that
qualify while scanning the index. However, if the index screening predicates are
correlated, they do not filter as many data rows as their filter factors suggest. To
illustrate this, use “Query 1” on page 755 with the following indexes on Table 98
on page 754:
Index 3 (EMPNO,CITY,STATE)
Index 4 (EMPNO,DEPTNO,SEX)

In the case of Index 3, because the columns CITY and STATE of Predicate 1 are
correlated, the index access is not improved as much as estimated by the screening
predicates and therefore Index 4 might be a better choice. (Note that index
screening also occurs for indexes with matching columns greater than zero.)

Multiple table joins: In Query 2, Table 100 is added to the original query (see
“Query 1” on page 755) to show the impact of column correlation on join queries.

Table 100. Data from the DEPTINFO table

CITY STATE MANAGER DEPT DEPTNAME

Fresno CA Smith J123 ADMIN

Los Angeles CA Jones A345 LEGAL

Query 2
SELECT ... FROM CREWINFO T1,DEPTINFO T2

WHERE T1.CITY = ’FRESNO’ AND T1.STATE=’CA’ (PREDICATE 1)
AND T1.DEPTNO = T2.DEPT AND T2.DEPTNAME = ’LEGAL’;

The order that tables are accessed in a join statement affects performance. The
estimated combined filtering of Predicate1 is lower than its actual filtering. So table
CREWINFO might look better as the first table accessed than it should.

Also, due to the smaller estimated size for table CREWINFO, a nested loop join
might be chosen for the join method. But, if many rows are selected from table
CREWINFO because Predicate1 does not filter as many rows as estimated, then
another join method or join sequence might be better.

What to do about column correlation
If column correlation is causing DB2 to choose an inappropriate access path, try
one of these techniques to alter the access path:
v For leading indexed columns, run the RUNSTATS utility with the KEYCARD

option determine the column correlation. For all other column groups, run the
RUNSTATS utility with the COLGROUP option.

v Run the RUNSTATS utility to collect column correlation information for any
column group with the COLGROUP option.

v Update the catalog statistics manually.
v Use SQL that forces access through a particular index.

756 Application Programming and SQL Guide

|
|
|

|
|



The last two techniques are discussed in “Special techniques to influence access
path selection” on page 776.

The RUNSTATS utility collects the statistics DB2 needs to make proper choices
about queries. With RUNSTATS, you can collect statistics on the concatenated key
columns of an index and the number of distinct values for those concatenated
columns. This gives DB2 accurate information to calculate the filter factor for the
query.

Example: RUNSTATS collects statistics that benefit queries like this:
SELECT * FROM T1
WHERE C1 = ’a’ AND C2 = ’b’ AND C3 = ’c’ ;

where:
v The first three index keys are used (MATCHCOLS = 3).
v An index exists on C1, C2, C3, C4, C5.
v Some or all of the columns in the index are correlated in some way.

See Part 5 (Volume 2) of DB2 Administration Guide for information on using
RUNSTATS to influence access path selection.

DB2 predicate manipulation
In some specific cases, DB2 either modifies some predicates, or generates extra
predicates. Although these modifications are transparent to you, they have a direct
impact on the access path selection and your PLAN_TABLE results. This is because
DB2 always uses an index access path when it is cost effective. Generating extra
predicates provides more indexable predicates potentially, which creates more
chances for an efficient index access path.

Therefore, to understand your PLAN_TABLE results, you must understand how
DB2 manipulates predicates. The information in Table 93 on page 742 is also
helpful.

Predicate modifications for IN-list predicates
If an IN-list predicate has only one item in its list, the predicate becomes an
EQUAL predicate.

A set of simple, Boolean term, equal predicates on the same column that are
connected by OR predicates can be converted into an IN-list predicate. For
example: C1=5 or C1=10 or C1=15 converts to C1 IN (5,10,15).

Removal of pre-evaluated predicates
DB2 sometimes removes predicates that are always evaluated as false. Such
predicates are sometimes used by query generators, and in application programs to
toggle between “real” and “fake” predicates. In many cases DB2 can remove these
predicates to improve the efficiency of the access path for the statement. This
function is enabled only when the value of PREDPRUNE subsystem parameter is
set to YES.

DB2 might remove the following types of always-false predicates:
v Equal predicates that contain non-matching constant values: constant-value1 =

constant-value2

v IN predicates that match a constant value to a list of non-matching constant
values: constant-value1 IN (constant-value2, constant-value3,constant-
value3)

Chapter 26. Tuning your queries 757

#

#
#
#
#
#
#
#

#

#
#

#
#
#



DB2 uses the following rules to determine whether to remove always-false
predicates:
v Always-false predicates under an OR condition are removed.

For example, consider the following predicate:
WHERE (’A’ = ’B’ OR COL1 IN (’B’, ’C’))

DB2 can simplify the predicate by removing the ’A’ = ’B’ predicate, which is
always false. Therefore DB2 can use the following simplified predicate instead:
WHERE COL1 IN (’B’, ’C’)

v Always-false predicates that compare non-matching constant values under an
AND condition are not removed. For example, DB2 does not simplify the
following predicates:

C1 = 1 AND 1 = 3
C1 = 1 OR 1 = 2 AND 3 = 4
C1 = 1 OR 1 = 2 AND 3 = 4

v Predicates are removed from only WHERE, HAVING, and ON clauses.
v WHEN predicates for CASE expressions are not simplified.
v Always-false range predicates that compare constants, such as 1 > 2 are not

removed.
v Predicates that contains host variables, which might be always-false under

REOPT(ALWAYS), are not removed.

When DB2 simplifies join operations
Because full outer joins are less efficient than left or right joins, and left and right
joins are less efficient than inner joins, you should always try to use the simplest
type of join operation in your queries. However, if DB2 encounters a join operation
that it can simplify, it attempts to do so.

Simplification of joins when predicates eliminate NULL values: DB2 can simplify
a join operation when the query contains a predicate or an ON clause that
eliminates the null values that are generated by the join operation.

Example: Consider this query:
SELECT * FROM T1 X FULL JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2 > 12;

The outer join operation gives you these result table rows:
v The rows with matching values of C1 in tables T1 and T2 (the inner join result)
v The rows from T1 where C1 has no corresponding value in T2
v The rows from T2 where C1 has no corresponding value in T1

However, when you apply the predicate, you remove all rows in the result table
that came from T2 where C1 has no corresponding value in T1. DB2 transforms the
full join into a left join, which is more efficient:
SELECT * FROM T1 X LEFT JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2 > 12;

Example: The predicate, X.C2>12, filters out all null values that result from the
right join:
SELECT * FROM T1 X RIGHT JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2>12;

758 Application Programming and SQL Guide

#
#

#

#

#

#
#

#

#
#
#

#
#
#

#

#

#
#

#
#

#
#
#



Therefore, DB2 can transform the right join into a more efficient inner join without
changing the result:
SELECT * FROM T1 X INNER JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2>12;

The predicate that follows a join operation must have the following characteristics
before DB2 transforms an outer join into a simpler outer join or into an inner join:
v The predicate is a Boolean term predicate.
v The predicate is false if one table in the join operation supplies a null value for

all of its columns.

These predicates are examples of predicates that can cause DB2 to simplify join
operations:

T1.C1 > 10
T1.C1 IS NOT NULL
T1.C1 > 10 OR T1.C2 > 15
T1.C1 > T2.C1
T1.C1 IN (1,2,4)
T1.C1 LIKE 'ABC%'
T1.C1 BETWEEN 10 AND 100
12 BETWEEN T1.C1 AND 100

Example: This examples shows how DB2 can simplify a join operation because the
query contains an ON clause that eliminates rows with unmatched values:
SELECT * FROM T1 X LEFT JOIN T2 Y

FULL JOIN T3 Z ON Y.C1=Z.C1
ON X.C1=Y.C1;

Because the last ON clause eliminates any rows from the result table for which
column values that come from T1 or T2 are null, DB2 can replace the full join with
a more efficient left join to achieve the same result:
SELECT * FROM T1 X LEFT JOIN T2 Y

LEFT JOIN T3 Z ON Y.C1=Z.C1
ON X.C1=Y.C1;

In one case, DB2 transforms a full outer join into a left join when you cannot write
code to do it. This is the case where a view specifies a full outer join, but a
subsequent query on that view requires only a left outer join.

Example: Consider this view:
CREATE VIEW V1 (C1,T1C2,T2C2) AS

SELECT COALESCE(T1.C1, T2.C1), T1.C2, T2.C2
FROM T1 X FULL JOIN T2 Y
ON T1.C1=T2.C1;

This view contains rows for which values of C2 that come from T1 are null.
However, if you execute the following query, you eliminate the rows with null
values for C2 that come from T1:
SELECT * FROM V1

WHERE T1C2 > 10;

Therefore, for this query, a left join between T1 and T2 would have been adequate.
DB2 can execute this query as if the view V1 was generated with a left outer join
so that the query runs more efficiently.

Chapter 26. Tuning your queries 759



Removal of unneeded left outer joins: When a SQL statement contains a left outer
join, but does not select any columns from the right side of the join, DB2 can
remove the join from the statement.

This function is enabled only when the value of the PREDPRUNE subsystem
parameter is set to YES.

The right table is unneeded if either of the following conditions are true:
v A unique index exists on the join key column of the right table.
v The statement specifies SELECT DISTINCT.

For example consider the following statement:
SELECT DISTINCT T1.C3
FROM T1 LEFT OUTER JOIN T2
ON T1.C2 = T2.C2
WHERE T1.C1 = ?

Because the statement specified SELECT DISTINCT, and because no columns are
selected from the right table, the reference to the right table is unneeded.
Therefore, DB2 can remove the left outer join and select an access path for the
following statement instead:
SELECT DISTINCT T1.C3
FROM T1
WHERE T1.C1 = ?

Because all references to the right table have been removed from the statement, the
PLAN_TABLE output and access path diagrams for the statement contain no
references to the table.

Predicates generated through transitive closure
When the set of predicates that belong to a query logically imply other predicates,
DB2 can generate additional predicates to provide more information for access
path selection.

Rules for generating predicates: For single-table or inner join queries, DB2
generates predicates for transitive closure if:
v The query has an equal type predicate: COL1=COL2. This could be:

– A local predicate
– A join predicate

v The query also has a Boolean term predicate on one of the columns in the first
predicate with one of the following formats:
– COL1 op value

op is =, <>, >, >=, <, or <=.
value is a constant, host variable, or special register.

– COL1 (NOT) BETWEEN value1 AND value2

– COL1=COL3

For outer join queries, DB2 generates predicates for transitive closure if the query
has an ON clause of the form COL1=COL2 and a before join predicate that has one
of the following formats:
v COL1 op value

op is =, <>, >, >=, <, or <=
v COL1 (NOT) BETWEEN value1 AND value2

760 Application Programming and SQL Guide

#
#
#

#
#

#

#

#

#

#
#
#
#

#
#
#
#

#
#
#

#
#
#



DB2 generates a transitive closure predicate for an outer join query only if the
generated predicate does not reference the table with unmatched rows. That is, the
generated predicate cannot reference the left table for a left outer join or the right
table for a right outer join.

For a multiple-CCSID query, DB2 does not generate a transitive closure predicate if
the predicate that would be generated has these characteristics:
v The generated predicate is a range predicate (op is >, >=, <, or <=).
v Evaluation of the query with the generated predicate results in different CCSID

conversion from evaluation of the query without the predicate. See Chapter 4 of
DB2 SQL Reference for information on CCSID conversion.

When a predicate meets the transitive closure conditions, DB2 generates a new
predicate, whether or not it already exists in the WHERE clause.

The generated predicates have one of the following formats:
v COL op value

op is =, <>, >, >=, <, or <=.
value is a constant, host variable, or special register.

v COL (NOT) BETWEEN value1 AND value2

v COL1=COL2 (for single-table or inner join queries only)

Example of transitive closure for an inner join: Suppose that you have written this
query, which meets the conditions for transitive closure:
SELECT * FROM T1, T2

WHERE T1.C1=T2.C1 AND
T1.C1>10;

DB2 generates an additional predicate to produce this query, which is more
efficient:
SELECT * FROM T1, T2

WHERE T1.C1=T2.C1 AND
T1.C1>10 AND
T2.C1>10;

Example of transitive closure for an outer join: Suppose that you have written this
outer join query:
SELECT * FROM

(SELECT T1.C1 FROM T1 WHERE T1.C1>10) X
LEFT JOIN
(SELECT T2.C1 FROM T2) Y
ON X.C1 = Y.C1;

The before join predicate, T1.C1>10, meets the conditions for transitive closure, so
DB2 generates a query that has the same result as this more-efficient query:
SELECT * FROM

(SELECT T1.C1 FROM T1 WHERE T1.C1>10) X
LEFT JOIN
(SELECT T2.C1 FROM T2 WHERE T2.C1>10) Y
ON X.C1 = Y.C1;

Predicate redundancy: A predicate is redundant if evaluation of other predicates in
the query already determines the result that the predicate provides. You can
specify redundant predicates or DB2 can generate them. DB2 does not determine
that any of your query predicates are redundant. All predicates that you code are

Chapter 26. Tuning your queries 761

|
|

|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|



evaluated at execution time regardless of whether they are redundant. If DB2
generates a redundant predicate to help select access paths, that predicate is
ignored at execution.

Adding extra predicates: DB2 performs predicate transitive closure only on equal
and range predicates. However, you can help DB2 to choose a better access path
by adding transitive closure predicates for other types of operators, such as IN or
LIKE. For example, consider the following SELECT statement:
SELECT * FROM T1,T2

WHERE T1.C1=T2.C1
AND T1.C1 LIKE ’A%’;

If T1.C1=T2.C1 is true, and T1.C1 LIKE ’A%’ is true, then T2.C1 LIKE ’A%’ must
also be true. Therefore, you can give DB2 extra information for evaluating the
query by adding T2.C1 LIKE ’A%’:
SELECT * FROM T1,T2

WHERE T1.C1=T2.C1
AND T1.C1 LIKE ’A%’
AND T2.C1 LIKE ’A%’;

Predicates with encrypted data
DB2 provides built-in functions for data encryption and decryption. These
functions can secure sensitive data, but they can also degrade the performance of
some statements if they are not used carefully. If a predicate contains any operator
other than = and <>, encrypted data must be decrypted before comparisons can be
made. Decryption makes the predicates stage 2. For advice on avoiding
unnecessary encryption and decryption for predicate evaluation, see Part 3
(Volume 1) of DB2 Administration Guide.

Using host variables efficiently
Host variables require default filter factors: When you bind a static SQL statement
that contains host variables, DB2 uses a default filter factor to determine the best
access path for the SQL statement. For more information on filter factors, including
default values, see “Predicate filter factors” on page 748.

DB2 often chooses an access path that performs well for a query with several host
variables. However, in a new release or after maintenance has been applied, DB2
might choose a new access path that does not perform as well as the old access
path. In many cases, the change in access paths is due to the default filter factors,
which might lead DB2 to optimize the query in a different way.

The two ways to change the access path for a query that contains host variables
are:
v Bind the package or plan that contains the query with the option

REOPT(ALWAYS) or the option REOPT(ONCE).
v Rewrite the query.

Changing the access path at run time
You can use the following bind options to control how DB2 determines the access
path for SQL statements with variable values:

REOPT(ALWAYS) DB2 determines the access path for any SQL
statement with variable values each time the
statement is run.

762 Application Programming and SQL Guide

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|

||
|
|



REOPT(ONCE) DB2 determines and caches the access path for any
SQL statement with variable values only once at
run time, using the first set of input variable
values. If the statement is run multiple times, DB2
does not reoptimize each time unless the cached
statement is invalidated or removed from the
cache.

REOPT(NONE) DB2 determines the access path at bind time, and
does not change the access path at run time.

The REOPT(ALWAYS) bind option
Specify the REOPT(ALWAYS) bind option when you want DB2 to determine access
paths at both bind time and run time for statements that contain host variables and
special registers: At run time, DB2 uses the values in these variables to determine
the access paths. If the statement runs multiple times, DB2 determines the access
path each time that the statement runs.

Consider using the REOPT(ALWAYS) bind option in the following circumstances:
v The SQL statement does not perform well with the access path that is chosen at

bind time.
v The SQL statement takes a relatively long time to execute. For long-running SQL

statements, the performance gain from the better access path that is chosen
based on the input variable values for each run can be greater than the
performance cost of reoptimizing the access path each time that the statement
runs.

To use the REOPT(ALWAYS) bind option most efficiently, first determine which
SQL statements in your applications perform poorly with the REOPT(NONE) bind
option and the REOPT(ONCE) bind option. Separate the code containing those
statements into units that you bind into packages with the REOPT(ALWAYS)
option. Bind the rest of the code into packages using the REOPT(NONE) bind
option or the REOPT(ONCE) bind option, as appropriate. Then bind the plan with
the REOPT(NONE) bind option. Statements in the packages bound with
REOPT(ALWAYS) are candidates for repeated reoptimization at run time.

Example: To determine which queries in plans and packages that are bound with
the REOPT(ALWAYS) bind option will be reoptimized at run time, execute the
following SELECT statements:
SELECT PLNAME,

CASE WHEN STMTNOI <> 0
THEN STMTNOI
ELSE STMTNO
END AS STMTNUM,
SEQNO, TEXT
FROM SYSIBM.SYSSTMT
WHERE STATUS IN (’B’,’F’,’G’,’J’)
ORDER BY PLNAME, STMTNUM, SEQNO;

SELECT COLLID, NAME, VERSION,
CASE WHEN STMTNOI <> 0
THEN STMTNOI
ELSE STMTNO
END AS STMTNUM,
SEQNO, STMT
FROM SYSIBM.SYSPACKSTMT
WHERE STATUS IN (’B’,’F’,’G’,’J’)
ORDER BY COLLID, NAME, VERSION, STMTNUM, SEQNO;

Chapter 26. Tuning your queries 763

||
|
|
|
|
|
|

||
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|



If you specify the bind option VALIDATE(RUN), and a statement in the plan or
package is not bound successfully, that statement is incrementally bound at run
time. If you also specify the bind option REOPT(ALWAYS), DB2 reoptimizes the
access path during the incremental bind.

Example: To determine which plans and packages have statements that will be
incrementally bound, execute the following SELECT statements:
SELECT DISTINCT NAME

FROM SYSIBM.SYSSTMT
WHERE STATUS = ’F’ OR STATUS = ’H’;

SELECT DISTINCT COLLID, NAME, VERSION
FROM SYSIBM.SYSPACKSTMT
WHERE STATUS = ’F’ OR STATUS = ’H’;

The REOPT(ONCE) bind option
You can use the REOPT(ONCE) bind option to determine the access path for an
SQL statement at run time. The REOPT(ONCE) bind option determines the access
path for an SQL statement only once at run time and works only with dynamic
SQL statements. The REOPT(ONCE) bind option allows DB2 to store the access
path for dynamic SQL statements in the dynamic statement cache.

Consider using the REOPT(ONCE) bind option in the following circumstances:
v The SQL statement is a dynamic SQL statement.
v The SQL statement does not perform well with the access path that is chosen at

bind time.
v The SQL statement is relatively simple and takes a relatively short time to

execute. For simple SQL statements, reoptimizing the access path each time that
the statement runs can degrade performance more than using the access path
from the first run for each subsequent run.

v The same SQL statement is repeated many times in a loop, or is run by many
threads. Because of the dynamic statement cache, the access path that DB2
chooses for the first set of input variables will perform well for subsequent
executions of the same SQL statement, even if the input variable values are
different each time.

To use the REOPT(ONCE) bind option most efficiently, first determine which
dynamic SQL statements in your applications perform poorly with the
REOPT(NONE) bind option and the REOPT(ALWAYS) bind option. Separate the
code containing those statements into units that you bind into packages with the
REOPT(ONCE) option. Bind the rest of the code into packages using the
REOPT(NONE) bind option or the REOPT(ALWAYS) bind option, as appropriate.
Then bind the plan with the REOPT(NONE) bind option. A dynamic statement in
a package that is bound with REOPT(ONCE) is a candidate for reoptimization the
first time that the statement is run.

Example: To determine which queries in plans and packages that are bound with
the REOPT(ONCE) bind option will be reoptimized at run time, execute the
following SELECT statements:
SELECT PLNAME,

CASE WHEN STMTNOI <> 0
THEN STMTNOI
ELSE STMTNO
END AS STMTNUM,
SEQNO, TEXT
FROM SYSIBM.SYSSTMT
WHERE STATUS IN (’J’)
ORDER BY PLNAME, STMTNUM, SEQNO;

764 Application Programming and SQL Guide

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|



SELECT COLLID, NAME, VERSION,
CASE WHEN STMTNOI <> 0
THEN STMTNOI
ELSE STMTNO
END AS STMTNUM,
SEQNO, STMT
FROM SYSIBM.SYSPACKSTMT
WHERE STATUS IN (’J’)
ORDER BY COLLID, NAME, VERSION, STMTNUM, SEQNO;

If you specify the bind option VALIDATE(RUN), and a statement in the plan or
package is not bound successfully, that statement is incrementally bound at run
time.

Example: To determine which plans and packages have statements that will be
incrementally bound, execute the following SELECT statements:
SELECT DISTINCT NAME

FROM SYSIBM.SYSSTMT
WHERE STATUS = ’F’ OR STATUS = ’H’;

SELECT DISTINCT COLLID, NAME, VERSION
FROM SYSIBM.SYSPACKSTMT
WHERE STATUS = ’F’ OR STATUS = ’H’;

The REOPT(NONE) bind option
You should use the REOPT(NONE) bind option when an SQL statement with
variable values performs well with the access path that is chosen at bind time.
Keep in mind that an SQL statement that performs well with the REOPT(NONE)
bind option might perform even better with the bind options that change the
access path at run time.

Rewriting queries to influence access path selection

Important
This section describes tactics for rewriting queries to influence how DB2
selects access paths. The access path selection "tricks" that are described in the
section might cause significant performance degradation if they are not
carefully implemented and monitored.

Example: The selection method might change in a later release of DB2,
causing your changes to degrade performance.

Before and after you make any permanent changes, take performance
measurements. When you migrate to a new release, evaluate the performance
again. Be prepared to back out any changes that have degraded performance.

The examples that follow identify potential performance problems and offer
suggestions for tuning the queries. However, before you rewrite any query, you
should consider whether the REOPT(ALWAYS) or REOPT(ONCE) bind options can
solve your access path problems. See “Changing the access path at run time” on
page 762 for more information about REOPT(ALWAYS) and REOPT(ONCE).

Example 1: An equal predicate

An equal predicate has a default filter factor of 1/COLCARDF. The actual filter
factor might be quite different.

Query:

Chapter 26. Tuning your queries 765

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|



SELECT * FROM DSN8810.EMP
WHERE SEX = :HV1;

Assumptions: Because the column SEX has only two different values, 'M' and 'F',
the value COLCARDF for SEX is 2. If the numbers of male and female employees
are not equal, the actual filter factor of 1/2 is larger or smaller than the default,
depending on whether :HV1 is set to 'M' or 'F'.

Recommendation: One of these two actions can improve the access path:
v Bind the package or plan that contains the query with the REOPT(ALWAYS)

bind option. This action causes DB2 to reoptimize the query at run time, using
the input values you provide. You might also consider binding the package or
plan with the REOPT(ONCE) bind option.

v Write predicates to influence the DB2 selection of an access path, based on your
knowledge of actual filter factors. For example, you can break the query into
three different queries, two of which use constants. DB2 can then determine the
exact filter factor for most cases when it binds the plan.
SELECT (HV1);

WHEN ('M')
DO;

EXEC SQL SELECT * FROM DSN8810.EMP
WHERE SEX = 'M';

END;
WHEN ('F')

DO;
EXEC SQL SELECT * FROM DSN8810.EMP
WHERE SEX = 'F';

END;
OTHERWISE

DO:
EXEC SQL SELECT * FROM DSN8810.EMP
WHERE SEX = :HV1;

END;
END;

Example 2: Known ranges

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

Query:
SELECT * FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2
AND C2 BETWEEN :HV3 AND :HV4;

Assumptions: You know that:
v The application always provides a narrow range on C1 and a wide range on C2.
v The desired access path is through index T1X1.

Recommendation: If DB2 does not choose T1X1, rewrite the query as follows, so
that DB2 does not choose index T1X2 on C2:

SELECT * FROM T1
WHERE C1 BETWEEN :HV1 AND :HV2

AND (C2 BETWEEN :HV3 AND :HV4 OR 0=1);

Example 3: Variable ranges

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

766 Application Programming and SQL Guide



Query:
SELECT * FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2
AND C2 BETWEEN :HV3 AND :HV4;

Assumptions: You know that the application provides both narrow and wide
ranges on C1 and C2. Hence, default filter factors do not allow DB2 to choose the
best access path in all cases. For example, a small range on C1 favors index T1X1
on C1, a small range on C2 favors index T1X2 on C2, and wide ranges on both C1
and C2 favor a table space scan.

Recommendation: If DB2 does not choose the best access path, try either of the
following changes to your application:
v Use a dynamic SQL statement and embed the ranges of C1 and C2 in the

statement. With access to the actual range values, DB2 can estimate the actual
filter factors for the query. Preparing the statement each time it is executed
requires an extra step, but it can be worthwhile if the query accesses a large
amount of data.

v Include some simple logic to check the ranges of C1 and C2, and then execute
one of these static SQL statements, based on the ranges of C1 and C2:

SELECT * FROM T1 WHERE C1 BETWEEN :HV1 AND :HV2
AND (C2 BETWEEN :HV3 AND :HV4 OR 0=1);

SELECT * FROM T1 WHERE C2 BETWEEN :HV3 AND :HV4
AND (C1 BETWEEN :HV1 AND :HV2 OR 0=1);

SELECT * FROM T1 WHERE (C1 BETWEEN :HV1 AND :HV2 OR 0=1)
AND (C2 BETWEEN :HV3 AND :HV4 OR 0=1);

Example 4: ORDER BY

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

Query:
SELECT * FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2
ORDER BY C2;

In this example, DB2 could choose one of the following actions:
v Scan index T1X1 and then sort the results by column C2
v Scan the table space in which T1 resides and then sort the results by column C2
v Scan index T1X2 and then apply the predicate to each row of data, thereby

avoiding the sort

Which choice is best depends on the following factors:
v The number of rows that satisfy the range predicate
v The cluster ratio of the indexes

If the actual number of rows that satisfy the range predicate is significantly
different from the estimate, DB2 might not choose the best access path.

Assumptions: You disagree with the DB2 choice.

Recommendation: In your application, use a dynamic SQL statement and embed
the range of C1 in the statement. That allows DB2 to use the actual filter factor
rather than the default, but requires extra processing for the PREPARE statement.

Chapter 26. Tuning your queries 767



Example 5: A join operation

Tables A, B, and C each have indexes on columns C1, C2, C3, and C4.

Assumptions: The actual filter factors on table A are much larger than the default
factors. Hence, DB2 underestimates the number of rows selected from table A and
wrongly chooses that as the first table in the join.

Recommendations: You can:
v Reduce the estimated size of Table A by adding predicates
v Disfavor any index on the join column by making the join predicate on table A

nonindexable

Example: The following query illustrates the second of those choices.
SELECT * FROM T1 A, T1 B, T1 C

WHERE (A.C1 = B.C1 OR 0=1)
AND A.C2 = C.C2
AND A.C2 BETWEEN :HV1 AND :HV2
AND A.C3 BETWEEN :HV3 AND :HV4
AND A.C4 < :HV5
AND B.C2 BETWEEN :HV6 AND :HV7
AND B.C3 < :HV8
AND C.C2 < :HV9;

The result of making the join predicate between A and B a nonindexable predicate
(which cannot be used in single index access) disfavors the use of the index on
column C1. This, in turn, might lead DB2 to access table A or B first. Or, it might
lead DB2 to change the access type of table A or B, thereby influencing the join
sequence of the other tables.

Writing efficient subqueries
Definitions: A subquery is a SELECT statement within the WHERE or HAVING
clause of another SQL statement.

Decision needed: You can often write two or more SQL statements that achieve
identical results, particularly if you use subqueries. The statements have different
access paths, however, and probably perform differently.

Topic overview: The topics that follow describe different methods to achieve the
results intended by a subquery and tell what DB2 does for each method. The
information should help you estimate what method performs best for your query.

The first two methods use different types of subqueries:
v “Correlated subqueries” on page 769
v “Noncorrelated subqueries” on page 769

A subquery can sometimes be transformed into a join operation. Sometimes DB2
does that to improve the access path, and sometimes you can get better results by
doing it yourself. The third method is:
v “When DB2 transforms a subquery into a join” on page 771

Finally, for a comparison of the three methods as applied to a single task, see:
v “Subquery tuning” on page 772

768 Application Programming and SQL Guide



Correlated subqueries
Definition: A correlated subquery refers to at least one column of the outer query.

Any predicate that contains a correlated subquery is a stage 2 predicate unless it is
transformed to a join.

Example: In the following query, the correlation name, X, illustrates the subquery's
reference to the outer query block.
SELECT * FROM DSN8810.EMP X

WHERE JOB = ’DESIGNER’
AND EXISTS (SELECT 1

FROM DSN8810.PROJ
WHERE DEPTNO = X.WORKDEPT

AND MAJPROJ = ’MA2100’);

What DB2 does: A correlated subquery is evaluated for each qualified row of the
outer query that is referred to. In executing the example, DB2:
1. Reads a row from table EMP where JOB='DESIGNER'.
2. Searches for the value of WORKDEPT from that row, in a table stored in

memory.
The in-memory table saves executions of the subquery. If the subquery has
already been executed with the value of WORKDEPT, the result of the
subquery is in the table and DB2 does not execute it again for the current row.
Instead, DB2 can skip to step 5.

3. Executes the subquery, if the value of WORKDEPT is not in memory. That
requires searching the PROJ table to check whether there is any project, where
MAJPROJ is 'MA2100', for which the current WORKDEPT is responsible.

4. Stores the value of WORKDEPT and the result of the subquery in memory.
5. Returns the values of the current row of EMP to the application.

DB2 repeats this whole process for each qualified row of the EMP table.

Notes on the in-memory table: The in-memory table is applicable if the operator of
the predicate that contains the subquery is one of the following operators:

<, <=, >, >=, =, <>, EXISTS, NOT EXISTS

The table is not used, however, if:
v There are more than 16 correlated columns in the subquery
v The sum of the lengths of the correlated columns is more than 256 bytes
v There is a unique index on a subset of the correlated columns of a table from the

outer query

The in-memory table is a wrap-around table and does not guarantee saving the
results of all possible duplicated executions of the subquery.

Noncorrelated subqueries
Definition: A noncorrelated subquery makes no reference to outer queries.

Example:

Chapter 26. Tuning your queries 769



SELECT * FROM DSN8810.EMP
WHERE JOB = ’DESIGNER’

AND WORKDEPT IN (SELECT DEPTNO
FROM DSN8810.PROJ
WHERE MAJPROJ = ’MA2100’);

What DB2 does: A noncorrelated subquery is executed once when the cursor is
opened for the query. What DB2 does to process it depends on whether it returns a
single value or more than one value. The query in the preceding example can
return more than one value.

Single-value subqueries
When the subquery is contained in a predicate with a simple operator, the
subquery is required to return 1 or 0 rows. The simple operator can be one of the
following operators:

<, <=, >, >=, =, <>, NOT <, NOT <=, NOT >, NOT >=

The following noncorrelated subquery returns a single value:
SELECT *
FROM DSN8810.EMP
WHERE JOB = ’DESIGNER’

AND WORKDEPT <= (SELECT MAX(DEPTNO)
FROM DSN8810.PROJ);

What DB2 does: When the cursor is opened, the subquery executes. If it returns
more than one row, DB2 issues an error. The predicate that contains the subquery
is treated like a simple predicate with a constant specified, for example,
WORKDEPT <= 'value'.

Stage 1 and stage 2 processing: The rules for determining whether a predicate with
a noncorrelated subquery that returns a single value is stage 1 or stage 2 are
generally the same as for the same predicate with a single variable.

Multiple-value subqueries
A subquery can return more than one value if the operator is one of the following:

op ANY, op ALL , op SOME, IN, EXISTS

where op is any of the operators >, >=, <, <=, NOT <, NOT <=, NOT >, NOT >=.

What DB2 does: If possible, DB2 reduces a subquery that returns more than one
row to one that returns only a single row. That occurs when there is a range
comparison along with ANY, ALL, or SOME. The following query is an example:
SELECT * FROM DSN8810.EMP

WHERE JOB = ’DESIGNER’
AND WORKDEPT <= ANY (SELECT DEPTNO

FROM DSN8810.PROJ
WHERE MAJPROJ = ’MA2100’);

DB2 calculates the maximum value for DEPTNO from table DSN8810.PROJ and
removes the ANY keyword from the query. After this transformation, the subquery
is treated like a single-value subquery.

That transformation can be made with a maximum value if the range operator is:
v > or >= with the quantifier ALL
v < or <= with the quantifier ANY or SOME

The transformation can be made with a minimum value if the range operator is:
v < or <= with the quantifier ALL

770 Application Programming and SQL Guide

|
|
|



v > or >= with the quantifier ANY or SOME

The resulting predicate is determined to be stage 1 or stage 2 by the same rules as
for the same predicate with a single-valued subquery.

When a subquery is sorted: A noncorrelated subquery is sorted when the
comparison operator is IN, NOT IN, = ANY, <> ANY, = ALL, or <> ALL. The sort
enhances the predicate evaluation, reducing the amount of scanning on the
subquery result. When the value of the subquery becomes smaller or equal to the
expression on the left side, the scanning can be stopped and the predicate can be
determined to be true or false.

When the subquery result is a character data type and the left side of the predicate
is a datetime data type, then the result is placed in a work file without sorting. For
some noncorrelated subqueries that use IN, NOT IN, = ANY, <> ANY, = ALL, or
<> ALL comparison operators, DB2 can more accurately pinpoint an entry point
into the work file, thus further reducing the amount of scanning that is done.

Results from EXPLAIN: For information about the result in a plan table for a
subquery that is sorted, see “When are aggregate functions evaluated?
(COLUMN_FN_EVAL)” on page 808.

When DB2 transforms a subquery into a join
For a SELECT, UPDATE, or DELETE statement, DB2 can sometimes transform a
subquery into a join between the result table of a subquery and the result table of
an outer query. The order of access for a subquery is more restrictive than for an
equivalent join. Therefore, DB2 might gain more flexibility for optimizing an access
path by using the join.

However, DB2 cannot always transform every subquery to a join. For example,
DB2 does not transform a query when the transformation would introduce
redundancy, or when the subquery contains certain clauses or predicate types.

The specific criteria for transformation are not described here. The purpose of the
transformation is to provide the additional flexibility for optimization without a
rewrite. Consequently, the recommendation for any rewrite is to use the join
explicitly rather than making the subquery eligible for transformation.

For a statement with multiple subqueries, DB2 does the transformation only on the
last subquery in the statement that qualifies for transformation.

Example: The following subquery can be transformed into a join because it meets
the first set of conditions for transformation:
SELECT * FROM EMP

WHERE DEPTNO IN
(SELECT DEPTNO FROM DEPT

WHERE LOCATION IN (’SAN JOSE’, ’SAN FRANCISCO’)
AND DIVISION = ’MARKETING’);

If there is a department in the marketing division which has branches in both San
Jose and San Francisco, the result of the SQL statement is not the same as if a join
were done. The join makes each employee in this department appear twice because
it matches once for the department of location San Jose and again of location San
Francisco, although it is the same department. Therefore, it is clear that to

Chapter 26. Tuning your queries 771

#
#
#
#
#

#
#
#

#
#
#
#



transform a subquery into a join, the uniqueness of the subquery select list must be
guaranteed. For this example, a unique index on any of the following sets of
columns would guarantee uniqueness:
v (DEPTNO)
v (DIVISION, DEPTNO)
v (DEPTNO, DIVISION).

The resultant query is:
SELECT EMP.* FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO AND
DEPT.LOCATION IN (’SAN JOSE’, ’SAN FRANCISCO’) AND
DEPT.DIVISION = ’MARKETING’;

Results from EXPLAIN: For information about the result in a plan table for a
subquery that is transformed into a join operation, see “Is a subquery transformed
into a join?” on page 808.

Subquery tuning
The following three queries all retrieve the same rows. All three retrieve data about
all designers in departments that are responsible for projects that are part of major
project MA2100. These three queries show that there are several ways to retrieve a
desired result.

Query A: A join of two tables
SELECT DSN8810.EMP.* FROM DSN8810.EMP, DSN8810.PROJ

WHERE JOB = ’DESIGNER’
AND WORKDEPT = DEPTNO
AND MAJPROJ = ’MA2100’;

Query B: A correlated subquery
SELECT * FROM DSN8810.EMP X

WHERE JOB = ’DESIGNER’
AND EXISTS (SELECT 1 FROM DSN8810.PROJ

WHERE DEPTNO = X.WORKDEPT
AND MAJPROJ = ’MA2100’);

Query C: A noncorrelated subquery
SELECT * FROM DSN8810.EMP

WHERE JOB = ’DESIGNER’
AND WORKDEPT IN (SELECT DEPTNO FROM DSN8810.PROJ

WHERE MAJPROJ = ’MA2100’);

If you need columns from both tables EMP and PROJ in the output, you must use
a join.

PROJ might contain duplicate values of DEPTNO in the subquery, so that an
equivalent join cannot be written.

In general, query A might be the one that performs best. However, if there is no
index on DEPTNO in table PROJ, then query C might perform best. The
IN-subquery predicate in query C is indexable. Therefore, if an index on
WORKDEPT exists, DB2 might do IN-list access on table EMP. If you decide that a
join cannot be used and there is an available index on DEPTNO in table PROJ,
then query B might perform best.

772 Application Programming and SQL Guide



When looking at a problem subquery, see if the query can be rewritten into
another format or see if there is an index that you can create to help improve the
performance of the subquery.

Knowing the sequence of evaluation is important, for the different subquery
predicates and for all other predicates in the query. If the subquery predicate is
costly, perhaps another predicate could be evaluated before that predicate so that
the rows would be rejected before even evaluating the problem subquery predicate.

Using scrollable cursors efficiently
The following recommendations help you get the best performance from your
scrollable cursors:
v Determine when scrollable cursors work best for you.

Scrollable cursors are a valuable tool for writing applications such as
screen-based applications, in which the result table is small and you often move
back and forth through the data. However, scrollable cursors require more DB2
processing than non-scrollable cursors. If your applications require large result
tables or you only need to move sequentially forward through the data, use
non-scrollable cursors.

v Declare scrollable cursors as SENSITIVE only if you need to see the latest data.
If you do not need to see updates that are made by other cursors or application
processes, using a cursor that you declare as INSENSITIVE requires less
processing by DB2.
If you need to see only some of the latest updates, and you do not need to see
the results of insert operations, declare scrollable cursors as SENSITIVE STATIC.
See Chapter 5 of DB2 SQL Reference for information about which updates you
can see with a scrollable cursor that is declared as SENSITIVE STATIC.
If you need to see all of the latest updates and inserts, declare scrollable cursors
as SENSITIVE DYNAMIC.

v To ensure maximum concurrency when you use a scrollable cursor for
positioned update and delete operations, specify ISOLATION(CS) and
CURRENTDATA(NO) when you bind packages and plans that contain
updatable scrollable cursors. See Chapter 18, “Planning for concurrency,” on
page 393 for more details.

v Use the FETCH FIRST n ROWS ONLY clause with scrollable cursors when it is
appropriate.
In a distributed environment, when you need to retrieve a limited number of
rows, FETCH FIRST n ROWS ONLY can improve your performance for
distributed queries that use DRDA access by eliminating unneeded network
traffic. See “Limiting the number of rows returned to DRDA clients” on page 464
for more information.
In a local environment, if you need to scroll through a limited subset of rows in
a table, you can use FETCH FIRST n ROWS ONLY to make the result table
smaller.

v In a distributed environment, if you do not need to use your scrollable cursors
to modify data, do your cursor processing in a stored procedure.
Using stored procedures can decrease the amount of network traffic that your
application requires.

v In a TEMP database, create table spaces that are large enough for processing
your scrollable cursors.

Chapter 26. Tuning your queries 773

|
|
|
|

|
|

#
#



DB2 uses declared temporary tables for processing the following types of
scrollable cursors:
– SENSITIVE STATIC SCROLL
– INSENSITIVE SCROLL
– ASENSITIVE SCROLL, if the cursor sensitivity is INSENSITIVE. A cursor that

meets the criteria for a read-only cursor has an effective sensitivity of
INSENSITIVE.

See the DECLARE CURSOR statement in DB2 SQL Referencefor more information
about cursor sensitivity. See DB2 Installation Guide for more information about
calculating the appropriate size for declared temporary tables for cursors.

v Remember to commit changes often for the following reasons:
– You frequently need to leave scrollable cursors open longer than

non-scrollable cursors.
– There is an increased chance of deadlocks with scrollable cursors because

scrollable cursors allow rows to be accessed and updated in any order.
Frequent commits can decrease the chances of deadlocks.

To prevent cursors from closing after commit operations, declare your scrollable
cursors WITH HOLD.

v While sensitive static sensitive scrollable cursors are open against a table, DB2
will disallow reuse of space in that table space to prevent the scrollable cursor
from fetching newly inserted rows that were not in the original result set.
Although this is normal, it can result in a seemingly false out-of-space
indication. The problem can be more noticeable in a data sharing environment
with transactions that access LOBs. Consider the following preventive measures:
– Check applications such that they commit frequently
– Close sensitive scrollable cursors when no longer needed
– Remove WITH HOLD parm for the sensitive scrollable cursor, if possible
– Isolate LOB table spaces in a dedicated bufferpool in the data sharing

environment

Writing efficient queries on tables with data-partitioned secondary
indexes

The number of partitions that DB2 accesses to evaluate a query predicate can affect
the performance of the query. A query that provides data retrieval through a
data-partitioned secondary index (DPSI) might access some or all partitions of the
DPSI. For a query that is based only on a DPSI key value or range, DB2 must
examine all partitions. If the query also has predicates on the leading columns of
the partitioning key, DB2 does not need to examine all partitions. The removal
from consideration of inapplicable partitions is known as page range screening or
limited partition scan. A limited partition scan can be determined at bind time or at
run time. For example, a limited partition scan can be determined at bind time for
a predicate in which a column is compared to a constant. A limited partition scan
occurs at run time if the column is compared to a host variable, parameter marker,
or special register.

The following example demonstrates how you can use a partitioning index to
enable a limited partition scan on a set of partitions that DB2 needs to examine to
satisfy a query predicate.

Suppose that you create table Q1, with partitioning index DATE_IX and DPSI
STATE_IX:

774 Application Programming and SQL Guide

#
#

#

#

#
#
#

#
#
#

|
|
|

#
#
#
#
#
#

#

#

#

#
#

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|



CREATE TABLESPACE TS1 NUMPARTS 3;

CREATE TABLE Q1 (DATE DATE,
CUSTNO CHAR(5),
STATE CHAR(2),
PURCH_AMT DECIMAL(9,2))
IN TS1
PARTITION BY (DATE)
(PARTITION 1 ENDING AT (’2002-1-31’),
PARTITION 2 ENDING AT (’2002-2-28’),
PARTITION 3 ENDING AT (’2002-3-31’));

CREATE INDEX DATE_IX ON Q1 (DATE) PARTITIONED CLUSTER;

CREATE INDEX STATE_IX ON Q1 (STATE) PARTITIONED;

Now suppose that you want to execute the following query against table Q1:
SELECT CUSTNO, PURCH_AMT
FROM Q1
WHERE STATE = ’CA’;

Because the predicate is based only on values of a DPSI key (STATE), DB2 must
examine all partitions to find the matching rows.

Now suppose that you modify the query in the following way:
SELECT CUSTNO, PURCH_AMT
FROM Q1
WHERE DATE BETWEEN ’2002-01-01’ AND ’2002-01-31’ AND
STATE = ’CA’;

Because the predicate is now based on values of a partitioning index key (DATE)
and on values of a DPSI key (STATE), DB2 can eliminate the scanning of data
partitions 2 and 3, which do not satisfy the query for the partitioning key. This can
be determined at bind time because the columns of the predicate are compared to
constants.

Now suppose that you use host variables instead of constants in the same query:
SELECT CUSTNO, PURCH_AMT
FROM Q1
WHERE DATE BETWEEN :hv1 AND :hv2 AND
STATE = :hv3;

DB2 can use the predicate on the partitioning column to eliminate the scanning of
unneeded partitions at run time.

Writing queries to take advantage of limited partition scan is especially useful
when a correlation exists between columns that are in a partitioning index and
columns that are in a DPSI.

For example, suppose that you create table Q2, with partitioning index DATE_IX
and DPSI ORDERNO_IX:
CREATE TABLESPACE TS2 NUMPARTS 3;

CREATE TABLE Q2 (DATE DATE,
ORDERNO CHAR(8),
STATE CHAR(2),
PURCH_AMT DECIMAL(9,2))
IN TS2
PARTITION BY (DATE)
(PARTITION 1 ENDING AT (’2000-12-31’),
PARTITION 2 ENDING AT (’2001-12-31’),

Chapter 26. Tuning your queries 775

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|



PARTITION 3 ENDING AT (’2002-12-31’));

CREATE INDEX DATE_IX ON Q2 (DATE) PARTITIONED CLUSTER;

CREATE INDEX ORDERNO_IX ON Q2 (ORDERNO) PARTITIONED;

Also suppose that the first 4 bytes of each ORDERNO column value represent the
four-digit year in which the order is placed. This means that the DATE column and
the ORDERNO column are correlated.

To take advantage of limited partition scan, when you write a query that has the
ORDERNO column in the predicate, also include the DATE column in the
predicate. The partitioning index on DATE lets DB2 eliminate the scanning of
partitions that are not needed to satisfy the query. For example:
SELECT ORDERNO, PURCH_AMT
FROM Q2
WHERE ORDERNO BETWEEN ’2002AAAA’ AND ’2002ZZZZ’ AND
DATE BETWEEN ’2002-01-01’ AND ’2002-12-31’;

Special techniques to influence access path selection

Important
This section describes tactics for rewriting queries and modifying catalog
statistics to influence how DB2 selects access paths. The access path selection
"tricks"that are described in the section might cause significant performance
degradation if they are not carefully implemented and monitored.

Example: The selection method might change in a later release of DB2,
causing your changes to degrade performance.

Save the old catalog statistics or SQL before you consider making any
changes to control the choice of access path. Before and after you make any
changes, take performance measurements. When you migrate to a new
release, evaluate the performance again. Be prepared to back out any changes
that have degraded performance.

This section contains the following information about determining and changing
access paths:
v Obtaining information about access paths
v “Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS” on

page 778
v “Fetching a limited number of rows: FETCH FIRST n ROWS ONLY” on page

777
v “Using the CARDINALITY clause to improve the performance of queries with

user-defined table function references” on page 781
v “Reducing the number of matching columns” on page 782
v “Rearranging the order of tables in a FROM clause” on page 786
v “Updating catalog statistics” on page 786
v “Using a subsystem parameter” on page 787

776 Application Programming and SQL Guide

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|



Obtaining information about access paths
You can obtain information about DB2 access paths by using the following
methods:
v Use Visual Explain.

The DB2 Visual Explain tool, which is invoked from a workstation client, can be
used to display and analyze information on access paths chosen by DB2. Visual
Explain displays the access path information in both graphic and text formats.
The tool provides you with an easy-to-use interface to the PLAN_TABLE output
and allows you to invoke EXPLAIN for dynamic SQL statements. You can also
access the catalog statistics for certain referenced objects of an access path. In
addition, the tool allows you to archive EXPLAIN output from previous SQL
statements to analyze changes in your SQL environment. See DB2 Visual Explain
online help for more information.

v Run OMEGAMON DB2 Performance Monitor accounting reports.
Another way to track performance is with the OMEGAMON DB2 Performance
Monitor accounting reports. The accounting report, short layout, ordered by
PLANNAME, lists the primary performance figures. Check the plans that
contain SQL statements whose access paths you tried to influence. If the elapsed
time, TCB time, or number of getpage requests increases sharply without a
corresponding increase in the SQL activity, then there could be a problem. You
can use OMEGAMON Online Monitor to track events after your changes have
been implemented, providing immediate feedback on the effects of your
changes.

v Specify the bind option EXPLAIN.
You can also use the EXPLAIN option when you bind or rebind a plan or
package. Compare the new plan or package for the statement to the old one. If
the new one has a table space scan or a nonmatching index space scan, but the
old one did not, the problem is probably the statement. Investigate any changes
in access path in the new plan or package; they could represent performance
improvements or degradations. If neither the accounting report ordered by
PLANNAME or PACKAGE nor the EXPLAIN statement suggest corrective
action, use the OMEGAMON SQL activity reports for additional information.
For more information on using EXPLAIN, see “Obtaining PLAN_TABLE
information from EXPLAIN” on page 790.

Fetching a limited number of rows: FETCH FIRST n ROWS
ONLY

In some applications, you execute queries that can return a large number of rows,
but you need only a small subset of those rows. Retrieving the entire result table
from the query can be inefficient. You can specify the FETCH FIRST n ROWS
ONLY clause in a SELECT statement to limit the number of rows in the result table
of a query to n rows. In addition, for a distributed query that uses DRDA access,
FETCH FIRST n ROWS ONLY, DB2 prefetches only n rows.

Example: Suppose that you write an application that requires information on only
the 20 employees with the highest salaries. To return only the rows of the
employee table for those 20 employees, you can write a query like this:
SELECT LASTNAME, FIRSTNAME, EMPNO, SALARY

FROM EMP
ORDER BY SALARY DESC
FETCH FIRST 20 ROWS ONLY;

Chapter 26. Tuning your queries 777



Interaction between OPTIMIZE FOR n ROWS and FETCH FIRST n ROWS ONLY:
In general, if you specify FETCH FIRST n ROWS ONLY but not OPTIMIZE FOR n
ROWS in a SELECT statement, DB2 optimizes the query as if you had specified
OPTIMIZE FOR n ROWS.

When both the FETCH FIRST n ROWS ONLY clause and the OPTIMIZE FOR n
ROWS clause are specified, the value for the OPTIMIZE FOR n ROWS clause is
used for access path selection.

Example: Suppose that you submit the following SELECT statement:
SELECT * FROM EMP
FETCH FIRST 5 ROWS ONLY
OPTIMIZE FOR 20 ROWS;

The OPTIMIZE FOR value of 20 rows is used for access path selection.

Minimizing overhead for retrieving few rows: OPTIMIZE FOR n
ROWS

When an application executes a SELECT statement, DB2 assumes that the
application will retrieve all the qualifying rows. This assumption is most
appropriate for batch environments. However, for interactive SQL applications,
such as SPUFI, it is common for a query to define a very large potential result set
but retrieve only the first few rows. The access path that DB2 chooses might not be
optimal for those interactive applications.

This section discusses the use of OPTIMIZE FOR n ROWS to affect the
performance of interactive SQL applications. Unless otherwise noted, this
information pertains to local applications. For more information on using
OPTIMIZE FOR n ROWS in distributed applications, see “Limiting the number of
DRDA network transmissions” on page 461.

What OPTIMIZE FOR n ROWS does: The OPTIMIZE FOR n ROWS clause lets an
application declare its intent to do either of these things:
v Retrieve only a subset of the result set
v Give priority to the retrieval of the first few rows

DB2 uses the OPTIMIZE FOR n ROWS clause to choose access paths that minimize
the response time for retrieving the first few rows. For distributed queries, the
value of n determines the number of rows that DB2 sends to the client on each
DRDA network transmission. See “Limiting the number of DRDA network
transmissions” on page 461 for more information on using OPTIMIZE FOR n
ROWS in the distributed environment.

Use OPTIMIZE FOR 1 ROW to avoid sorts: You can influence the access path
most by using OPTIMIZE FOR 1 ROW. OPTIMIZE FOR 1 ROW tells DB2 to select
an access path that returns the first qualifying row quickly. This means that
whenever possible, DB2 avoids any access path that involves a sort. If you specify
a value for n that is anything but 1, DB2 chooses an access path based on cost, and
you won't necessarily avoid sorts.

How to specify OPTIMIZE FOR n ROWS for a CLI application: For a Call Level
Interface (CLI) application, you can specify that DB2 uses OPTIMIZE FOR n ROWS
for all queries. To do that, specify the keyword OPTIMIZEFORNROWS in the
initialization file. For more information, see Chapter 3 of DB2 ODBC Guide and
Reference.

778 Application Programming and SQL Guide

|
|
|

|

|
|
|

|



How many rows you can retrieve with OPTIMIZE FOR n ROWS: The OPTIMIZE
FOR n ROWS clause does not prevent you from retrieving all the qualifying rows.
However, if you use OPTIMIZE FOR n ROWS, the total elapsed time to retrieve all
the qualifying rows might be significantly greater than if DB2 had optimized for
the entire result set.

When OPTIMIZE FOR n ROWS is effective: OPTIMIZE FOR n ROWS is effective
only on queries that can be performed incrementally. If the query causes DB2 to
gather the whole result set before returning the first row, DB2 ignores the
OPTIMIZE FOR n ROWS clause, as in the following situations:
v The query uses SELECT DISTINCT or a set function distinct, such as

COUNT(DISTINCT C1).
v Either GROUP BY or ORDER BY is used, and no index can give the necessary

ordering.
v A aggregate function and no GROUP BY clause is used.
v The query uses UNION.

Example: Suppose that you query the employee table regularly to determine the
employees with the highest salaries. You might use a query like this:
SELECT LASTNAME, FIRSTNAME, EMPNO, SALARY

FROM EMP
ORDER BY SALARY DESC;

An index is defined on column EMPNO, so employee records are ordered by
EMPNO. If you have also defined a descending index on column SALARY, that
index is likely to be very poorly clustered. To avoid many random, synchronous
I/O operations, DB2 would most likely use a table space scan, then sort the rows
on SALARY. This technique can cause a delay before the first qualifying rows can
be returned to the application.

If you add the OPTIMIZE FOR n ROWS clause to the statement, DB2 will probably
use the SALARY index directly because you have indicated that you expect to
retrieve the salaries of only the 20 most highly paid employees.

Example: The following statement uses that strategy to avoid a costly sort
operation:
SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY

FROM EMP
ORDER BY SALARY DESC
OPTIMIZE FOR 20 ROWS;

Effects of using OPTIMIZE FOR n ROWS:

v The join method could change. Nested loop join is the most likely choice,
because it has low overhead cost and appears to be more efficient if you want to
retrieve only one row.

v An index that matches the ORDER BY clause is more likely to be picked. This is
because no sort would be needed for the ORDER BY.

v List prefetch is less likely to be picked.
v Sequential prefetch is less likely to be requested by DB2 because it infers that

you only want to see a small number of rows.
v In a join query, the table with the columns in the ORDER BY clause is likely to

be picked as the outer table if there is an index on that outer table that gives the
ordering needed for the ORDER BY clause.

Chapter 26. Tuning your queries 779



Recommendation: For a local query, specify OPTIMIZE FOR n ROWS only in
applications that frequently fetch only a small percentage of the total rows in a
query result set. For example, an application might read only enough rows to fill
the end user's terminal screen. In cases like this, the application might read the
remaining part of the query result set only rarely. For an application like this,
OPTIMIZE FOR n ROWS can result in better performance by causing DB2 to favor
SQL access paths that deliver the first n rows as fast as possible.

When you specify OPTIMIZE FOR n ROWS for a remote query, a small value of n
can help limit the number of rows that flow across the network on any given
transmission.

You can improve the performance for receiving a large result set through a remote
query by specifying a large value of n in OPTIMIZE FOR n ROWS. When you
specify a large value, DB2 attempts to send the n rows in multiple transmissions.
For better performance when retrieving a large result set, in addition to specifying
OPTIMIZE FOR n ROWS with a large value of n in your query, do not execute
other SQL statements until the entire result set for the query is processed. If
retrieval of data for several queries overlaps, DB2 might need to buffer result set
data in the DDF address space. See "Block fetching result sets" in Part 5 (Volume 2)
of DB2 Administration Guide for more information.

For local or remote queries, to influence the access path most, specify OPTIMIZE
for 1 ROW. This value does not have a detrimental effect on distributed queries.

Favoring index access
One common database design involves tables that contain groups of rows that
logically belong together. Within each group, the rows should be accessed in the
same sequence every time. The sequence is determined by the primary key on the
table. Lock contention can occur when DB2 chooses different access paths for
different applications that operate on a table with this design.

To minimize contention among applications that access tables with this design,
specify the VOLATILE keyword when you create or alter the tables. A table that is
defined with the VOLATILE keyword is known as a volatile table. When DB2
executes queries that include volatile tables, DB2 uses index access whenever
possible. One exception is for DELETE statements on a VOLATILE table in a
segmented table space when no WHERE clause is specified. In this case, a table
space scan is used. As well as minimizing contention, using index access preserves
the access sequence that the primary key provides.

Defining a table as volatile has a similar effect on a query to setting the
NPGTHRSH subsystem parameter to favor matching index access for all qualified
tables. (See “Using a subsystem parameter” on page 787 for information on the
settings for NPGTHRSH.) However, the effect of NPGTHRSH is subsystem-wide,
and index access might not be appropriate for many queries. Defining tables as
volatile lets you limit the set of queries that favor index access to queries that
involve the volatile tables.

Using a subsystem parameter to control outer join processing
Subsystem parameter OJPERFEH can improve outer join processing. In particular,
when the value of OJPERFEH is YES, DB2 takes the following actions, which can
improve outer join processing in most cases:

780 Application Programming and SQL Guide

|

|
|
|
|
|

|
|
|
|
#
#
#
|

|
|
|
|
|
|
|

#

#
#
#



v Does not merge table expressions or views if the parent query block of a table
expression or view contains an outer join, and the merge would cause a column
in a predicate to become an expression.

v Does not attempt to reduce work file usage for outer joins.
v Uses transitive closure for the ON predicates in outer joins.

However, these actions might not improve performance for some outer joins.

Recommendation: If the performance of queries that contain outer joins is not
adequate, set OJPERFEH to NO, restart DB2, and rerun those queries.

Using the CARDINALITY clause to improve the performance of
queries with user-defined table function references

The cardinality of a user-defined table function is the number of rows that are
returned when the function is invoked. DB2 uses this number to estimate the cost
of executing a query that invokes a user-defined table function. The cost of
executing a query is one of the factors that DB2 uses when it calculates the access
path. Therefore, if you give DB2 an accurate estimate of a user-defined table
function's cardinality, DB2 can better calculate the best access path.

You can specify a cardinality value for a user-defined table function by using the
CARDINALITY clause of the SQL CREATE FUNCTION or ALTER FUNCTION
statement. However, this value applies to all invocations of the function, whereas a
user-defined table function might return different numbers of rows, depending on
the query in which it is referenced.

To give DB2 a better estimate of the cardinality of a user-defined table function for
a particular query, you can use the CARDINALITY or CARDINALITY
MULTIPLIER clause in that query. DB2 uses those clauses at bind time when it
calculates the access cost of the user-defined table function. Using this clause is
recommended only for programs that run on DB2 UDB for z/OS because the
clause is not supported on earlier versions of DB2.

Example of using the CARDINALITY clause to specify the cardinality of a
user-defined table function invocation: Suppose that when you created
user-defined table function TUDF1, you set a cardinality value of 5, but in the
following query, you expect TUDF1 to return 30 rows:
SELECT *
FROM TABLE(TUDF1(3)) AS X;

Add the CARDINALITY 30 clause to tell DB2 that, for this query, TUDF1 should
return 30 rows:
SELECT *
FROM TABLE(TUDF1(3) CARDINALITY 30) AS X;

Example of using the CARDINALITY MULTIPLIER clause to specify the
cardinality of a user-defined table function invocation: Suppose that when you
created user-defined table function TUDF2, you set a cardinality value of 5, but in
the following query, you expect TUDF2 to return 30 times that many rows:
SELECT *
FROM TABLE(TUDF2(10)) AS X;

Add the CARDINALITY MULTIPLIER 30 clause to tell DB2 that, for this query,
TUDF1 should return 5*30, or 150, rows:

Chapter 26. Tuning your queries 781

#
#
#

#

#

#

#
#

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|



SELECT *
FROM TABLE(TUDF2(10) CARDINALITY MULTIPLIER 30) AS X;

Reducing the number of matching columns
Discourage the use of a poorer performing index by reducing the index's matching
predicate on its leading column. Consider the example in Figure 227, where the
index that DB2 picks is less than optimal.

DB2 picks IX2 to access the data, but IX1 would be roughly 10 times quicker. The
problem is that 50% of all parts from center number 3 are still in Center 3; they
have not moved. Assume that there are no statistics on the correlated columns in
catalog table SYSCOLDIST. Therefore, DB2 assumes that the parts from center
number 3 are evenly distributed among the 50 centers.

CREATE TABLE PART_HISTORY (
PART_TYPE CHAR(2), IDENTIFIES THE PART TYPE
PART_SUFFIX CHAR(10), IDENTIFIES THE PART
W_NOW INTEGER, TELLS WHERE THE PART IS
W_FROM INTEGER, TELLS WHERE THE PART CAME FROM
DEVIATIONS INTEGER, TELLS IF ANYTHING SPECIAL WITH THIS PART
COMMENTS CHAR(254),
DESCRIPTION CHAR(254),
DATE1 DATE,
DATE2 DATE,
DATE3 DATE);

CREATE UNIQUE INDEX IX1 ON PART_HISTORY
(PART_TYPE,PART_SUFFIX,W_FROM,W_NOW);

CREATE UNIQUE INDEX IX2 ON PART_HISTORY
(W_FROM,W_NOW,DATE1);

+------------------------------------------------------------------------------+
| Table statistics | Index statistics IX1 IX2 |
|--------------------------------+---------------------------------------------|
| CARDF 100,000 | FIRSTKEYCARDF 1000 50 |
| NPAGES 10,000 | FULLKEYCARDF 100,000 100,000 |
| | CLUSTERRATIO 99% 99% |
| | NLEAF 3000 2000 |
| | NLEVELS 3 3 |
|------------------------------------------------------------------------------|
| column cardinality HIGH2KEY LOW2KEY |
| -------- ----------- -------- ------- |
| Part_type 1000 ’ZZ’ ’AA’ |
| w_now 50 1000 1 |
| w_from 50 1000 1 |
+------------------------------------------------------------------------------+

Q1:
SELECT * FROM PART_HISTORY -- SELECT ALL PARTS
WHERE PART_TYPE = ’BB’ P1 -- THAT ARE ’BB’ TYPES
AND W_FROM = 3 P2 -- THAT WERE MADE IN CENTER 3
AND W_NOW = 3 P3 -- AND ARE STILL IN CENTER 3

+------------------------------------------------------------------------------+
| Filter factor of these predicates. |
| P1 = 1/1000= .001 |
| P2 = 1/50 = .02 |
| P3 = 1/50 = .02 |
|------------------------------------------------------------------------------|
| ESTIMATED VALUES | WHAT REALLY HAPPENS |
| filter data | filter data |
| index matchcols factor rows | index matchcols factor rows |
| ix2 2 .02*.02 40 | ix2 2 .02*.50 1000 |
| ix1 1 .001 100 | ix1 1 .001 100 |
+------------------------------------------------------------------------------+

Figure 227. Reducing the number of MATCHCOLS

782 Application Programming and SQL Guide

|
|



You can get the desired access path by changing the query. To discourage the use
of IX2 for this particular query, you can change the third predicate to be
nonindexable.
SELECT * FROM PART_HISTORY

WHERE PART_TYPE = ’BB’
AND W_FROM = 3
AND (W_NOW = 3 + 0) <-- PREDICATE IS MADE NONINDEXABLE

Now index I2 is not picked, because it has only one match column. The preferred
index, I1, is picked. The third predicate is a nonindexable predicate, so an index is
not used for the compound predicate.

You can make a predicate nonindexable in many ways. The recommended way is
to add 0 to a predicate that evaluates to a numeric value or to concatenate an
empty string to a predicate that evaluates to a character value.

Indexable Nonindexable

T1.C3=T2.C4 (T1.C3=T2.C4 CONCAT '')
T1.C1=5 T1.C1=5+0

These techniques do not affect the result of the query and cause only a small
amount of overhead.

The preferred technique for improving the access path when a table has correlated
columns is to generate catalog statistics on the correlated columns. You can do that
either by running RUNSTATS or by updating catalog table SYSCOLDIST manually.

Creating indexes for efficient star-join processing
A star schema is a database design that, in its simplest form, consists of a large table
called a fact table, and two or more smaller tables, called dimension tables. More
complex star schemas can be created by breaking one or more of the dimension
tables into multiple tables.

To access the data in a star schema design, you often write SELECT statements that
include join operations between the fact table and the dimension tables, but no join
operations between dimension tables. These types of queries are known as star-join
queries.

For a star-join query, DB2 uses a special join type called a star join if the following
conditions are true:
v The tables meet the conditions that are specified in “Star join (JOIN_TYPE=’S’)”

on page 823.
v The STARJOIN system parameter is set to ENABLE, and the number of tables in

the query block is greater than or equal to the minimum number that is
specified in the SJTABLES system parameter.
See “Star join (JOIN_TYPE=’S’)” on page 823 for detailed discussions of these
system parameters.

This section gives suggestions for choosing indexes might improve star-join query
performance.

Recommendations for creating indexes for star-join queries
Follow these recommendations to improve performance of star-join queries:

Chapter 26. Tuning your queries 783



v Define a multi-column index on all key columns of the fact table. Key columns
are fact table columns that have corresponding dimension tables.

v If you do not have information about the way that your data is used, first try a
multi-column index on the fact table that is based on the correlation of the data.
Put less highly correlated columns later in the index key than more highly
correlated columns. See “Determining the order of columns in an index for a star
schema design” for information on deriving an index that follows this
recommendation.

v As the correlation of columns in the fact table changes, reevaluate the index to
determine if columns in the index should be reordered.

v Define indexes on dimension tables to improve access to those tables.
v When you have executed a number of queries and have more information about

the way that the data is used, follow these recommendations:
– Put more selective columns at the beginning of the index.
– If a number of queries do not reference a dimension, put the column that

corresponds to that dimension at the end of the index.
When a fact table has more than one multi-column index and none of those
indexes contains all key columns, DB2 evaluates all of the indexes and uses
the index that best exploits star join.

Determining the order of columns in an index for a star schema
design
You can use the following method to determine the order of columns in a
multi-column index. The description of the method uses the following terminology:

F A fact table.

D1...Dn
Dimension tables.

C1...Cn
Key columns in the fact table. C1 is joined to dimension D1, C2 is joined to
dimension D2, and so on.

cardD1...cardDn
Cardinality of columns C1...Cn in dimension tables D1...Dn.

cardC1...cardCn
Cardinality of key columns C1...Cn in fact table F.

cardCij
Cardinality of pairs of column values from key columns Ci and Cj in fact table
F.

cardCijk
Cardinality of triplets of column values from key columns Ci, Cj, and Ck in
fact table F.

Density
A measure of the correlation of key columns in the fact table. The density is
calculated as follows:

For a single column
cardCi⁄cardDi

For pairs of columns
cardCij⁄(cardDi*cardDj)

For triplets of columns
cardCijk⁄(cardDi*cardDj*cardDk)

784 Application Programming and SQL Guide



S The current set of columns whose order in the index is not yet determined.

S-{Cm}
The current set of columns, excluding column Cm

Follow these steps to derive a fact table index for a star-join query that joins n
columns of fact table F to n dimension tables D1 through Dn:
1. Define the set of columns whose index key order is to be determined as the n

columns of fact table F that correspond to dimension tables. That is,
S={C1,...Cn} and L=n.

2. Calculate the density of all sets of L-1 columns in S.
3. Find the lowest density. Determine which column is not in the set of columns

with the lowest density. That is, find column Cm in S, such that for every Ci in
S, density(S-{Cm})<density(S-{Ci}).

4. Make Cm the Lth column of the index.
5. Remove Cm from S.
6. Decrement L by 1.
7. Repeat steps 2 through 6 n-2 times. The remaining column after iteration n-2 is

the first column of the index.

Example of determining column order for a fact table index: Suppose that a star
schema has three dimension tables with the following cardinalities:
cardD1=2000
cardD2=500
cardD3=100

Now suppose that the cardinalities of single columns and pairs of columns in the
fact table are:
cardC1=2000
cardC2=433
cardC3=100
cardC12=625000
cardC13=196000
cardC23=994

Determine the best multi-column index for this star schema.

Step 1: Calculate the density of all pairs of columns in the fact table:
density(C1,C2)=625000⁄(2000*500)=0.625
density(C1,C3)=196000⁄(2000*100)=0.98
density(C2,C3)=994⁄(500*100)=0.01988

Step 2: Find the pair of columns with the lowest density. That pair is (C2,C3).
Determine which column of the fact table is not in that pair. That column is C1.

Step 3: Make column C1 the third column of the index.

Step 4: Repeat steps 1 through 3 to determine the second and first columns of the
index key:
density(C2)=433⁄500=0.866
density(C3)=100⁄100=1.0

The column with the lowest density is C2. Therefore, C3 is the second column of
the index. The remaining column, C2, is the first column of the index. That is, the
best order for the multi-column index is C2, C3, C1.

Chapter 26. Tuning your queries 785



Rearranging the order of tables in a FROM clause
The order of tables or views in the FROM CLAUSE can affect the access path. If
your query performs poorly, it could be because the join sequence is inefficient.
You can determine the join sequence within a query block from the PLANNO
column in the PLAN_TABLE. For information on using the PLAN_TABLE, see
Chapter 27, “Using EXPLAIN to improve SQL performance,” on page 789. If you
think that the join sequence is inefficient, try rearranging the order of the tables
and views in the FROM clause to match a join sequence that might perform better.

Updating catalog statistics
If you have the proper authority, you can influence access path selection by using
an SQL UPDATE or INSERT statement to change statistical values in the DB2
catalog. However, this is not generally recommended except as a last resort.
Although updating catalog statistics can help a certain query, other queries can be
affected adversely. Also, the UPDATE statements must be repeated after
RUNSTATS resets the catalog values. You should be very careful if you attempt to
update statistics. .

If you update catalog statistics for a table space or index manually, and you are
using dynamic statement caching, you need to invalidate statements in the cache
that involve those table spaces or indexes. To invalidate statements in the dynamic
statement cache without updating catalog statistics or generating reports, you can
run the RUNSTATS utility with the REPORT NO and UPDATE NONE options on
the table space or the index that the query is dependent on.

The example shown in Figure 227 on page 782, involves this query:
SELECT * FROM PART_HISTORY -- SELECT ALL PARTS
WHERE PART_TYPE = ’BB’ P1 -- THAT ARE ’BB’ TYPES

AND W_FROM = 3 P2 -- THAT WERE MADE IN CENTER 3
AND W_NOW = 3 P3 -- AND ARE STILL IN CENTER 3

This query has a problem with data correlation. DB2 does not know that 50% of
the parts that were made in Center 3 are still in Center 3. The problem was
circumvented by making a predicate nonindexable. But suppose that hundreds of
users are writing queries similar to that query. Having all users change their
queries would be impossible. In this type of situation, the best solution is to
change the catalog statistics.

For the query in Figure 227 on page 782, you can update the catalog statistics in
one of two ways:
v Run the RUNSTATS utility, and request statistics on the correlated columns

W_FROM and W_NOW. This is the preferred method. See the discussion of
maintaining statistics in the catalog in Part 5 (Volume 2) of DB2 Administration
Guide and Part 2 of DB2 Utility Guide and Reference for more information.

v Update the catalog statistics manually.

Updating the catalog to adjust for correlated columns: One catalog table that you
can update is SYSIBM.SYSCOLDIST, which gives information about a column or
set of columns in a table. Assume that because columns W_NOW and W_FROM
are correlated, only 100 distinct values exist for the combination of the two
columns, rather than 2500 (50 for W_FROM * 50 for W_NOW). Insert a row like
this to indicate the new cardinality:
INSERT INTO SYSIBM.SYSCOLDIST

(FREQUENCY, FREQUENCYF, IBMREQD,
TBOWNER, TBNAME, NAME, COLVALUE,

786 Application Programming and SQL Guide

|
|
|
|
|
|

|
|



TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS)
VALUES(0, -1, ’N’,

’USRT001’,’PART_HISTORY’,’W_FROM’,’ ’,
’C’,100,X’00040003’,2);

You can also use the RUNSTATS utility to put this information in SYSCOLDIST.
See DB2 Utility Guide and Reference for more information.

You tell DB2 about the frequency of a certain combination of column values by
updating SYSIBM.SYSCOLDIST. For example, you can indicate that 1% of the rows
in PART_HISTORY contain the values 3 for W_FROM and 3 for W_NOW by
inserting this row into SYSCOLDIST:
INSERT INTO SYSIBM.SYSCOLDIST

(FREQUENCY, FREQUENCYF, STATSTIME, IBMREQD,
TBOWNER, TBNAME, NAME, COLVALUE,
TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS)

VALUES(0, .0100, ’1996-12-01-12.00.00.000000’,’N’,
’USRT001’,’PART_HISTORY’,’W_FROM’,X’00800000030080000003’,
’F’,-1,X’00040003’,2);

Updating the catalog for joins with table functions: Updating catalog statistics
might cause extreme performance problems if the statistics are not updated
correctly. Monitor performance, and be prepared to reset the statistics to their
original values if performance problems arise.

Using a subsystem parameter
This section describes subsystem parameters that influence access path selection. To
set subsystem parameters, modify and run installation job DSNTIJUZ. See Part 2 of
DB2 Installation Guide for information about how to set subsystem parameters. This
section contains the following topics:
v “Using a subsystem parameter to favor matching index access”
v “Using a subsystem parameter to optimize queries with IN-list predicates” on

page 788
v “Using a subsystem parameter to control the weighting I/O cost and CPU cost”

on page 788

Using a subsystem parameter to favor matching index access
DB2 often does a table space scan or nonmatching index scan when the data access
statistics indicate that a table is small, even though matching index access is
possible. This is a problem if the table is small or empty when statistics are
collected, but the table is large when it is queried. In that case, the statistics are not
accurate and can lead DB2 to pick an inefficient access path.

The best solution to the problem is to run RUNSTATS again after the table is
populated. However, if you cannot do that, you can use subsystem parameter
NPGTHRSH to cause DB2 to favor matching index access over a table space scan
and over nonmatching index access.

The value of NPGTHRSH is an integer that indicates the tables for which DB2
favors matching index access. Values of NPGTHRSH and their meanings are:

−1 DB2 favors matching index access for all tables.

0 DB2 selects the access path based on cost, and no tables qualify for
special handling. This is the default.

n>=1 If data access statistics have been collected for all tables, DB2

Chapter 26. Tuning your queries 787

|
|
#
#



favors matching index access for tables for which the total number
of pages on which rows of the table appear (NPAGES) is less than
n.

Tables with default statistics for NPAGES (NPAGES =-1) are presumed to have 501
pages. For such tables, DB2 will favor matching index access only when
NPGTHRSH is set above 501.

Recommendation: Before you use NPGTHRSH, be aware that in some cases,
matching index access can be more costly than a table space scan or nonmatching
index access. Specify a small value for NPGTHRSH (10 or less), which limits the
number of tables for which DB2 favors matching index access. If you need to use
matching index access only for specific tables, create or alter those tables with the
VOLATILE parameter, rather than using the system-wide NPGTHRSH parameter.
See “Favoring index access” on page 780.

Using a subsystem parameter to optimize queries with IN-list
predicates
You can use the INLISTP parameter to control IN-list predicate optimization. If you
set the INLISTP parameter to a number n that is between 1 and 5000, DB2
optimizes for an IN-list predicate with up to n values. If you set the INLISTP
predicate to zero, the optimization is disabled. The default value for the INLISTP
parameter is 50.

When you enable the INLISTP parameter, you enable two primary means of
optimizing some queries that contain IN-list predicates:
v The IN-list predicate is pushed down from the parent query block into the

materialized table expression.
v A correlated IN-list predicate in a subquery that is generated by transitive

closure is moved up to the parent query block.

Using a subsystem parameter to control the weighting I/O cost
and CPU cost
If you observe access path changes that result in performance regressions,
especially increased CPU consumption, after moving to faster processors or larger
buffer pools, you might benefit from setting the value of the OPTIOWGT
subsystem parameter to ENABLED.

ENABLE specifies that when selecting access paths, DB2 is to use a new formula
that better balances the cost estimates of I/O response time and CPU usage.
DISABLE specifies that DB2 is to use the original formula to balance the CPU and
I/O estimates.

Note: Changing the OPTIOWGT parameter might negatively impact the access
paths of queries that are otherwise stable. For more advice on how to set
this parameter, contact IBM® Software Support.

788 Application Programming and SQL Guide

#
#
#

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

#
#
#
#
#
#

#
#
#
#

#
#
#
#



Chapter 27. Using EXPLAIN to improve SQL performance

The information under this heading, up to the end of this chapter, is
Product-sensitive Programming Interface and Associated Guidance Information, as
defined in “Notices” on page 1195.

Definitions and purpose: EXPLAIN is a monitoring tool that produces information
about the following:
v A plan, package, or SQL statement when it is bound. The output appears in a

table that you create called PLAN_TABLE, which is also called a plan table. For
experienced users, you can use PLAN_TABLE to give optimization hints to DB2.

v An estimated cost of executing an SQL SELECT, INSERT, UPDATE, or DELETE
statement. The output appears in a table that you create called
DSN_STATEMNT_TABLE, which is also called a statement table. For more
information about statement tables, see “Estimating a statement's cost” on page
842.

v User-defined functions referred to in the statement, including the specific name
and schema. The output appears in a table that you create called
DSN_FUNCTION_TABLE, which is also called a function table. For more
information about function tables, see “Ensuring that DB2 executes the intended
user-defined function” on page 356.

Other tools: The following tools can help you tune SQL queries:
v DB2 Visual Explain

Visual Explain is a graphical workstation feature of DB2 that provides:
– An easy-to-understand display of a selected access path
– Suggestions for changing an SQL statement
– An ability to invoke EXPLAIN for dynamic SQL statements
– An ability to provide DB2 catalog statistics for referenced objects of an access

path
– A subsystem parameter browser with keyword 'Find' capabilities
For information about using DB2 Visual Explain, which is a separately packaged
CD-ROM provided with your DB2 UDB for z/OS Version 8 license, see DB2
Visual Explain online help.

v OMEGAMON Performance Expert

OMEGAMON is a performance monitoring tool that formats performance data.
OMEGAMON combines information from EXPLAIN and from the DB2 catalog.
It displays access paths, indexes, tables, table spaces, plans, packages, DBRMs,
host variable definitions, ordering, table access and join sequences, and lock
types. Output is presented in a dialog rather than as a table, making the
information easy to read and understand. DB2 Performance Monitor (DB2 PM)
performs some of the functions of OMEGAMON Perfomance Expert.

v DB2 Estimator

DB2 Estimator for Windows is an easy-to-use, stand-alone tool for estimating the
performance of DB2 UDB for z/OS applications. You can use it to predict the
performance and cost of running the applications, transactions, SQL statements,
triggers, and utilities. For instance, you can use DB2 Estimator for estimating the
impact of adding or dropping an index from a table, estimating the change in

© Copyright IBM Corp. 1983, 2012 789



response time from adding processor resources, and estimating the amount of
time a utility job will take to run. DB2 Estimator for Windows can be
downloaded from the Web.

v DB2-supplied EXPLAIN stored procedure. Users with authority to run EXPLAIN
directly can obtain access path information by calling the DB2-supplied
EXPLAIN stored procedure. For more information about the DB2-supplied
EXPLAIN stored procedure, see Appendix J, “DB2-supplied stored procedures,”
on page 1131.

Chapter overview: This chapter includes the following topics:
v “Obtaining PLAN_TABLE information from EXPLAIN”
v “EXPLAIN tables” on page 791
v “Creating PLAN_TABLE” on page 791
v “Asking questions about data access” on page 800
v “Interpreting access to a single table” on page 809
v “Interpreting access to two or more tables (join)” on page 815
v “Interpreting data prefetch” on page 830
v “Determining sort activity” on page 834
v “Processing for views and nested table expressions” on page 836
v “Estimating a statement's cost” on page 842

See also Chapter 28, “Parallel operations and query performance,” on page 847.

Obtaining PLAN_TABLE information from EXPLAIN
The information in PLAN_TABLE can help you to:
v Design databases, indexes, and application programs
v Determine when to rebind an application
v Determine the access path chosen for a query

For each access to a single table, EXPLAIN tells you if an index access or table
space scan is used. If indexes are used, EXPLAIN tells you how many indexes and
index columns are used and what I/O methods are used to read the pages. For
joins of tables, EXPLAIN tells you which join method and type are used, the order
in which DB2 joins the tables, and when and why it sorts any rows.

The primary use of EXPLAIN is to observe the access paths for the SELECT parts
of your statements. For UPDATE and DELETE WHERE CURRENT OF, and for
INSERT, you receive somewhat less information in your plan table. And some
accesses EXPLAIN does not describe: for example, the access to LOB values, which
are stored separately from the base table, and access to parent or dependent tables
needed to enforce referential constraints.

The access paths shown for the example queries in this chapter are intended only
to illustrate those examples. If you execute the queries in this chapter on your
system, the access paths chosen can be different.

Steps to obtain PLAN_TABLE information: Use the following overall steps to
obtain information from EXPLAIN:
1. Have appropriate access to a plan table. To create the table, see “Creating

PLAN_TABLE” on page 791.
2. Populate the table with the information you want. For instructions, see

“Populating and maintaining a plan table” on page 798.
3. Select the information you want from the table. For instructions, see

“Reordering rows from a plan table” on page 799.

790 Application Programming and SQL Guide

#
#
#
#
#



EXPLAIN tables
EXPLAIN tables contain information about SQL statements and functions that run
on DB2 for z/OS.

You can create and maintain a set of EXPLAIN tables to capture and analyze
information about the performance of SQL statements and functions that run on
DB2 for z/OS. EXPLAIN tables are populated when you run the EXPLAIN
statements. SQL optimization tools also create and maintain instances of EXPLAIN
tables.

Important:: EXPLAIN tables in any pre-Version 8 format or EXPLAIN tables that
are in EBCDIC encoding are deprecated.

You might create any of the following EXPLAIN tables:
v PLAN_TABLE
v DSN_DETCOST_TABLE
v DSN_FUNCTION_TABLE
v DSN_FILTER_TABLE
v DSN_PGRANGE_TABLE
v DSN_PGROUP_TABLE
v DSN_PREDICAT_TABLE
v DSN_PTASK_TABLE
v DSN_QUERY_TABLE
v DSN_SORT_TABLE
v DSN_SORTKEY_TABLE
v DSN_STATEMNT_TABLE
v DSN_STRUCT_TABLE
v DSN_VIEWREF_TABLE

Creating PLAN_TABLE
Before you can use EXPLAIN, a PLAN_TABLE must be created to hold the results
of EXPLAIN. A copy of the statements that are needed to create the table are in the
DB2 sample library, under the member name DSNTESC. (Unless you need the
information that they provide, you do not need to create a function table or
statement table to use EXPLAIN.)

Important:: If mixed data strings are allowed on a DB2 subsystem, EXPLAIN
tables must be created with CCSID UNICODE. This includes, but is
not limited to, mixed data strings that are used for tokens, SQL
statements, application names, program names, correlation names, and
collection IDs.

Important:: EXPLAIN tables in any pre-V8 format or EXPLAIN tables that are in
EBCDIC encoding are deprecated.

Figure 228 on page 792 shows most current format of a plan table, which consists
of 58 columns. Table 101 on page 794 shows the content of each column.

Chapter 27. Using EXPLAIN to improve SQL performance 791

#

#
#

#
#
#
#
#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

|
|

#
#
#
#
#

#
#

|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dcrplta.htm#dcrplta
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsndetcosttable8.htm#dqx2db2z_dsndetcosttable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.apsg/udfres.htm#udffntb
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnfiltertable8.htm#dqx2db2z_dsnfiltertable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnpgrangetable8.htm#dqx2db2z_dsnpgrangetable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnpgrouptable8.htm#dqx2db2z_dsnpgrouptable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnpredicattable8.htm#dqx2db2z_dsnpredicattable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnptasktable8.htm#dqx2db2z_dsnptasktable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnquerytable8.htm#dqx2db2z_dsnquerytable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnsorttable8.htm#dqx2db2z_dsnsorttable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnsortkeytable8.htm#dqx2db2z_dsnsortkeytable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/l344crt.htm#l344crt
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnstructtable8.htm#dqx2db2z_dsnstructtable8
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/dqx2db2z_dsnviewreftable8.htm#dqx2db2z_dsnviewreftable8


CREATE TABLE userid.PLAN_TABLE
(QUERYNO INTEGER NOT NULL,
QBLOCKNO SMALLINT NOT NULL,
APPLNAME CHAR(8) NOT NULL,
PROGNAME VARCHAR(128) NOT NULL,
PLANNO SMALLINT NOT NULL,
METHOD SMALLINT NOT NULL,
CREATOR VARCHAR(128) NOT NULL,
TNAME VARCHAR(128) NOT NULL,
TABNO SMALLINT NOT NULL,
ACCESSTYPE CHAR(2) NOT NULL,
MATCHCOLS SMALLINT NOT NULL,
ACCESSCREATOR VARCHAR(128) NOT NULL,
ACCESSNAME VARCHAR(128) NOT NULL,
INDEXONLY CHAR(1) NOT NULL,
SORTN_UNIQ CHAR(1) NOT NULL,
SORTN_JOIN CHAR(1) NOT NULL,
SORTN_ORDERBY CHAR(1) NOT NULL,
SORTN_GROUPBY CHAR(1) NOT NULL,
SORTC_UNIQ CHAR(1) NOT NULL,
SORTC_JOIN CHAR(1) NOT NULL,
SORTC_ORDERBY CHAR(1) NOT NULL,
SORTC_GROUPBY CHAR(1) NOT NULL,
TSLOCKMODE CHAR(3) NOT NULL,
TIMESTAMP CHAR(16) NOT NULL,
REMARKS VARCHAR(762) NOT NULL,
PREFETCH CHAR(1) NOT NULL WITH DEFAULT,
COLUMN_FN_EVAL CHAR(1) NOT NULL WITH DEFAULT,
MIXOPSEQ SMALLINT NOT NULL WITH DEFAULT,
VERSION VARCHAR(64) NOT NULL WITH DEFAULT,
COLLID VARCHAR(128) NOT NULL WITH DEFAULT,
ACCESS_DEGREE SMALLINT ,
ACCESS_PGROUP_ID SMALLINT ,
JOIN_DEGREE SMALLINT ,
JOIN_PGROUP_ID SMALLINT ,
SORTC_PGROUP_ID SMALLINT ,
SORTN_PGROUP_ID SMALLINT ,
PARALLELISM_MODE CHAR(1) ,
MERGE_JOIN_COLS SMALLINT ,
CORRELATION_NAME VARCHAR(128) ,
PAGE_RANGE CHAR(1) NOT NULL WITH DEFAULT,
JOIN_TYPE CHAR(1) NOT NULL WITH DEFAULT,
GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
IBM_SERVICE_DATA VARCHAR(254) FOR BIT DATA NOT NULL WITH DEFAULT,
WHEN_OPTIMIZE CHAR(1) NOT NULL WITH DEFAULT,
QBLOCK_TYPE CHAR(6) NOT NULL WITH DEFAULT,
BIND_TIME TIMESTAMP NOT NULL WITH DEFAULT,
OPTHINT VARCHAR(128) NOT NULL WITH DEFAULT,
HINT_USED VARCHAR(128) NOT NULL WITH DEFAULT,
PRIMARY_ACCESSTYPE CHAR(1) NOT NULL WITH DEFAULT,
PARENT_QBLOCKNO SMALLINT NOT NULL WITH DEFAULT,
TABLE_TYPE CHAR(1) ,
TABLE_ENCODE CHAR(1) NOT NULL WITH DEFAULT,
TABLE_SCCSID SMALLINT NOT NULL WITH DEFAULT,
TABLE_MCCSID SMALLINT NOT NULL WITH DEFAULT,
TABLE_DCCSID SMALLINT NOT NULL WITH DEFAULT,
ROUTINE_ID INTEGER NOT NULL WITH DEFAULT,
CTEREF SMALLINT NOT NULL WITH DEFAULT,
STMTTOKEN VARCHAR(240))

IN database-name.table-space-name
CCSID EBCDIC;

Figure 228. 58-column format of PLAN_TABLE

792 Application Programming and SQL Guide

|

|
|

|
|

|
#
#
#
#
#

|

|

|
|

|
|
|
|
|
|
|



Your plan table can use many other formats with fewer columns, as shown in
Figure 229. However, use the 58-column format because it gives you the most
information. If you alter an existing plan table with fewer than 58 columns to the
58-column format:
v If they exist, change the data type of columns: PROGNAME, CREATOR,

TNAME, ACCESSTYPE, ACCESSNAME, REMARKS, COLLID,
CORRELATION_NAME, IBM_SERVICE_DATA, OPTHINT, and HINT_USED.
Use the values shown in Figure 228 on page 792.

v Add the missing columns to the table. Use the column definitions shown in
Figure 228 on page 792. For most columns added, specify NOT NULL WITH
DEFAULT so that default values are included for the rows in the table. However,
as the figure shows, certain columns do allow nulls. Do not specify those
columns as NOT NULL WITH DEFAULT.

Table 101 on page 794 shows the descriptions of the columns in PLAN_TABLE.

QUERYNO INTEGER NOT NULL ACCESS_DEGREE SMALLINT
QBLOCKNO SMALLINT NOT NULL ACCESS_PGROUP_ID SMALLINT
APPLNAME CHAR(8) NOT NULL JOIN_DEGREE SMALLINT
PROGNAME CHAR(8) NOT NULL JOIN_PGROUP_ID SMALLINT
PLANNO SMALLINT NOT NULL ------------------34 column format----------------
METHOD SMALLINT NOT NULL SORTC_PGROUP_ID SMALLINT
CREATOR CHAR(8) NOT NULL SORTN_PGROUP_ID SMALLINT
TNAME CHAR(18) NOT NULL PARALLELISM_MODE CHAR(1)
TABNO SMALLINT NOT NULL MERGE_JOIN_COLS SMALLINT
ACCESSTYPE CHAR(2) NOT NULL CORRELATION_NAME CHAR(18)
MATCHCOLS SMALLINT NOT NULL PAGE_RANGE CHAR(1) NOT NULL WITH DEFAULT
ACCESSCREATOR CHAR(8) NOT NULL JOIN_TYPE CHAR(1) NOT NULL WITH DEFAULT
ACCESSNAME CHAR(18) NOT NULL GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT
INDEXONLY CHAR(1) NOT NULL IBM_SERVICE_DATA VARCHAR(254) NOT NULL WITH DEFAULT
SORTN_UNIQ CHAR(1) NOT NULL ------------------43 column format----------------
SORTN_JOIN CHAR(1) NOT NULL WHEN_OPTIMIZE CHAR(1) NOT NULL WITH DEFAULT
SORTN_ORDERBY CHAR(1) NOT NULL QBLOCK_TYPE CHAR(6) NOT NULL WITH DEFAULT
SORTN_GROUPBY CHAR(1) NOT NULL BIND_TIME TIMESTAMP NOT NULL WITH DEFAULT
SORTC_UNIQ CHAR(1) NOT NULL ------------------46 column format----------------
SORTC_JOIN CHAR(1) NOT NULL OPTHINT CHAR(8) NOT NULL WITH DEFAULT
SORTC_ORDERBY CHAR(1) NOT NULL HINT_USED CHAR(8) NOT NULL WITH DEFAULT
SORTC_GROUPBY CHAR(1) NOT NULL PRIMARY_ACCESSTYPE CHAR(1) NOT NULL WITH DEFAULT
TSLOCKMODE CHAR(3) NOT NULL ------------------49 column format----------------
TIMESTAMP CHAR(16) NOT NULL PARENT_QBLOCKNO SMALLINT NOT NULL WITH DEFAULT
REMARKS VARCHAR(254) NOT NULL TABLE_TYPE CHAR(1)

----------------25 column format--------------- ------------------51 column format----------------
PREFETCH CHAR(1) NOT NULL WITH DEFAULT
COLUMN_FN_EVAL CHAR(1) NOT NULL WITH DEFAULT
MIXOPSEQ SMALLINT NOT NULL WITH DEFAULT

----------------28 column format---------------
VERSION VARCHAR(64) NOT NULL WITH DEFAULT
COLLID CHAR(18) NOT NULL WITH DEFAULT

----------------30 column format---------------

Figure 229. Formats of PLAN_TABLE prior to the 58-column format

Chapter 27. Using EXPLAIN to improve SQL performance 793

|
|
|
|

|
|
|
|

|
|
|
|
|



Table 101. Descriptions of columns in PLAN_TABLE

Column Name Description

QUERYNO A number intended to identify the statement being explained. For a row produced by
an EXPLAIN statement, specify the number in the QUERYNO clause. For a row
produced by non-EXPLAIN statements, specify the number using the QUERYNO
clause, which is an optional part of the SELECT, INSERT, UPDATE and DELETE
statement syntax. Otherwise, DB2 assigns a number based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number in the source
program, values greater than 32767 are reported as 0. However, in a very long
program, the value is not guaranteed to be unique. If QUERYNO is not unique, the
value of TIMESTAMP is unique.

QBLOCKNO A number that identifies each query block within a query. The value of the numbers
are not in any particular order, nor are they necessarily consecutive.

APPLNAME The name of the application plan for the row. Applies only to embedded EXPLAIN
statements executed from a plan or to statements explained when binding a plan.
Blank if not applicable.

PROGNAME The name of the program or package containing the statement being explained.
Applies only to embedded EXPLAIN statements and to statements explained as the
result of binding a plan or package. Blank if not applicable.

PLANNO The number of the step in which the query indicated in QBLOCKNO was processed.
This column indicates the order in which the steps were executed.

METHOD A number (0, 1, 2, 3, or 4) that indicates the join method used for the step:

0 First table accessed, continuation of previous table accessed, or not used.

1 Nested loop join. For each row of the present composite table, matching rows
of a new table are found and joined.

2 Merge scan join. The present composite table and the new table are scanned
in the order of the join columns, and matching rows are joined.

3 Sorts needed by ORDER BY, GROUP BY, SELECT DISTINCT, UNION, a
quantified predicate, or an IN predicate. This step does not access a new
table.

4 Hybrid join. The current composite table is scanned in the order of the
join-column rows of the new table. The new table is accessed using list
prefetch.

CREATOR The creator of the new table accessed in this step, blank if METHOD is 3.

TNAME The name of a table, materialized query table, created or declared temporary table,
materialized view, or materialized table expression. The value is blank if METHOD is
3. The column can also contain the name of a table in the form DSNWFQB(qblockno).
DSNWFQB(qblockno) is used to represent the intermediate result of a UNION ALL or
an outer join that is materialized. If a view is merged, the name of the view does not
appear.

TABNO Values are for IBM use only.

794 Application Programming and SQL Guide

|
|

|
|



Table 101. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

ACCESSTYPE The method of accessing the new table:
I By an index (identified in ACCESSCREATOR and ACCESSNAME)
I1 By a one-fetch index scan
M By a multiple index scan (followed by MX, MI, or MU)
MI By an intersection of multiple indexes
MU By a union of multiple indexes
MX By an index scan on the index named in ACCESSNAME
N By an index scan when the matching predicate contains the IN keyword
R By a table space scan
RW By a work file scan of the result of a materialized user-defined table function
V By buffers for an INSERT statement within a SELECT
blank Not applicable to the current row

MATCHCOLS For ACCESSTYPE I, I1, N, or MX, the number of index keys used in an index scan;
otherwise, 0.

ACCESSCREATOR For ACCESSTYPE I, I1, N, or MX, the creator of the index; otherwise, blank.

ACCESSNAME For ACCESSTYPE I, I1, N, or MX, the name of the index; otherwise, blank.

INDEXONLY Whether access to an index alone is enough to carry out the step, or whether data too
must be accessed. Y=Yes; N=No.

SORTN_UNIQ Whether the new table is sorted to remove duplicate rows. Y=Yes; N=No.

SORTN_JOIN Whether the new table is sorted for join method 2 or 4. Y=Yes; N=No.

SORTN_ORDERBY Whether the new table is sorted for ORDER BY. Y=Yes; N=No.

SORTN_GROUPBY Whether the new table is sorted for GROUP BY. Y=Yes; N=No.

SORTC_UNIQ Whether the composite table is sorted to remove duplicate rows. Y=Yes; N=No.

SORTC_JOIN Whether the composite table is sorted for join method 1, 2 or 4. Y=Yes; N=No.

SORTC_ORDERBY Whether the composite table is sorted for an ORDER BY clause or a quantified
predicate. Y=Yes; N=No.

SORTC_GROUPBY Whether the composite table is sorted for a GROUP BY clause. Y=Yes; N=No.

TSLOCKMODE An indication of the mode of lock to be acquired on either the new table, or its table
space or table space partitions. If the isolation can be determined at bind time, the
values are:
IS Intent share lock
IX Intent exclusive lock
S Share lock
U Update lock
X Exclusive lock
SIX Share with intent exclusive lock
N UR isolation; no lock
If the isolation cannot be determined at bind time, then the lock mode determined by
the isolation at run time is shown by the following values.
NS For UR isolation, no lock; for CS, RS, or RR, an S lock.
NIS For UR isolation, no lock; for CS, RS, or RR, an IS lock.
NSS For UR isolation, no lock; for CS or RS, an IS lock; for RR, an S lock.
SS For UR, CS, or RS isolation, an IS lock; for RR, an S lock.

The data in this column is right justified. For example, IX appears as a blank
followed by I followed by X. If the column contains a blank, then no lock is acquired.

TIMESTAMP Usually, the time at which the row is processed, to the last .01 second. If necessary,
DB2 adds .01 second to the value to ensure that rows for two successive queries have
different values.

REMARKS A field into which you can insert any character string of 762 or fewer characters.

Chapter 27. Using EXPLAIN to improve SQL performance 795

||
||



Table 101. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

PREFETCH Whether data pages are to be read in advance by prefetch:

S Pure sequential prefetch

L Prefetch through a page list

D Possible candidate for dynamic prefetch

blank Unknown or no prefetch

COLUMN_FN_EVAL When an SQL aggregate function is evaluated. R = while the data is being read from
the table or index; S = while performing a sort to satisfy a GROUP BY clause; blank =
after data retrieval and after any sorts.

MIXOPSEQ The sequence number of a step in a multiple index operation.

1, 2, ... n For the steps of the multiple index procedure (ACCESSTYPE is MX,
MI, or MU.)

0 For any other rows (ACCESSTYPE is I, I1, M, N, R, or blank.)

VERSION The version identifier for the package. Applies only to an embedded EXPLAIN
statement executed from a package or to a statement that is explained when binding
a package. Blank if not applicable.

COLLID The collection ID for the package. Applies only to an embedded EXPLAIN statement
that is executed from a package or to a statement that is explained when binding a
package. Blank if not applicable. The value DSNDYNAMICSQLCACHE indicates that
the row is for a cached statement.

Note: The following nine columns, from ACCESS_DEGREE through CORRELATION_NAME, contain the null value
if the plan or package was bound using a plan table with fewer than 43 columns. Otherwise, each of them can
contain null if the method it refers to does not apply.

ACCESS_DEGREE The number of parallel tasks or operations activated by a query. This value is
determined at bind time; the actual number of parallel operations used at execution
time could be different. This column contains 0 if there is a host variable.

ACCESS_PGROUP_ID The identifier of the parallel group for accessing the new table. A parallel group is a
set of consecutive operations, executed in parallel, that have the same number of
parallel tasks. This value is determined at bind time; it could change at execution
time.

JOIN_DEGREE The number of parallel operations or tasks used in joining the composite table with
the new table. This value is determined at bind time and can be 0 if there is a host
variable. The actual number of parallel operations or tasks used at execution time
could be different.

JOIN_PGROUP_ID The identifier of the parallel group for joining the composite table with the new table.
This value is determined at bind time; it could change at execution time.

SORTC_PGROUP_ID The parallel group identifier for the parallel sort of the composite table.

SORTN_PGROUP_ID The parallel group identifier for the parallel sort of the new table.

PARALLELISM_MODE The kind of parallelism, if any, that is used at bind time:
I Query I/O parallelism
C Query CP parallelism
X Sysplex query parallelism

MERGE_JOIN_COLS The number of columns that are joined during a merge scan join (Method=2).

CORRELATION_NAME The correlation name of a table or view that is specified in the statement. If there is
no correlation name, then the column is null.

PAGE_RANGE Whether the table qualifies for page range screening, so that plans scan only the
partitions that are needed. Y = Yes; blank = No.

796 Application Programming and SQL Guide

|

##

##

##

##

||
|
|

||

||
|

||

||
|
|

||
|
|
|

#
#



Table 101. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

JOIN_TYPE The type of join:
F FULL OUTER JOIN
L LEFT OUTER JOIN
S STAR JOIN
blank INNER JOIN or no join
RIGHT OUTER JOIN converts to a LEFT OUTER JOIN when you use it, so that
JOIN_TYPE contains L.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN. The column is blank if the
DB2 subsystem was not in a data sharing environment when EXPLAIN was executed.

IBM_SERVICE_DATA Values are for IBM use only.

WHEN_OPTIMIZE When the access path was determined:

blank At bind time, using a default filter factor for any host variables, parameter
markers, or special registers.

B At bind time, using a default filter factor for any host variables, parameter
markers, or special registers; however, the statement is reoptimized at run
time using input variable values for input host variables, parameter markers,
or special registers. The bind option REOPT(ALWAYS) or REOPT(ONCE)
must be specified for reoptimization to occur.

R At run time, using input variables for any host variables, parameter markers,
or special registers. The bind option REOPT(ALWAYS) or REOPT(ONCE)
must be specified for this to occur.

QBLOCK_TYPE For each query block, an indication of the type of SQL operation performed. For the
outermost query, this column identifies the statement type. Possible values:
SELECT SELECT
INSERT INSERT
UPDATE UPDATE
DELETE DELETE
SELUPD SELECT with FOR UPDATE OF
DELCUR DELETE WHERE CURRENT OF CURSOR
UPDCUR UPDATE WHERE CURRENT OF CURSOR
CORSUB Correlated subselect or fullselect
NCOSUB Noncorrelated subselect or fullselect
TABLEX Table expression
TRIGGR WHEN clause on CREATE TRIGGER
UNION UNION
UNIONA UNION ALL

BIND_TIME For static SQL statements, the time at which the plan or package for this statement or
query block was bound. For cached dynamic SQL statements, the time at which the
which the statement entered the cache. For static and cached dynamic SQL
statements, this is a full-precision timestamp value. For non-cached dynamic SQL
statements, this is the value contained in the TIMESTAMP column of PLAN_TABLE
appended by 4 zeroes.

OPTHINT A string that you use to identify this row as an optimization hint for DB2. DB2 uses
this row as input when choosing an access path.

HINT_USED If DB2 used one of your optimization hints, it puts the identifier for that hint (the
value in OPTHINT) in this column.

Chapter 27. Using EXPLAIN to improve SQL performance 797

||

#
#
#
#
#
#



Table 101. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

PRIMARY_ACCESSTYPE Indicates whether direct row access will be attempted first:

D DB2 will try to use direct row access. If DB2 cannot use direct row access at
run time, it uses the access path described in the ACCESSTYPE column of
PLAN_TABLE.

T By sparse index access.

blank DB2 will not try to use direct row access.

PARENT_QBLOCKNO A number that indicates the QBLOCKNO of the parent query block.

TABLE_TYPE The type of new table:
B Buffers for an INSERT statement within a SELECT
C Common table expression
F Table function
M Materialized query table
Q Temporary intermediate result table (not materialized). For the name of a

view or nested table expression, a value of Q indicates that the
materializaition was virtual and not actual. Materialization can be virtual
when the view or nested table expression definition contains a UNION ALL
that is not distributed.

R Recursive common table expression
T Table
W Work file
The value of the column is null if the query uses GROUP BY, ORDER BY, or
DISTINCT, which requires an implicit sort.

TABLE_ENCODE The encoding scheme of the table. If the table has a single CCSID set, possible values
are:
A ASCII
E EBCDIC
U Unicode

M is the value of the column when the table contains muliple CCSID set, the value of
the column is M.

TABLE_SCCSID The SBCS CCSID value of the table. If column TABLE_ENCODE is M, the value is 0.

TABLE_MCCSID The mixed CCSID value of the table. If column TABLE_ENCODE is M, the value is 0.
If MIXED=NO in the DSHDECP module, the value is -2.

TABLE_DCCSID The DBCS CCSID value of the table. If column TABLE_ENCODE is M, the value is 0.
If MIXED=NO in the DSHDECP module, the value is -2.

ROUTINE_ID Values are for IBM use only.

CTEREF If the referenced table is a common table expression, the value is the top-level query
block number.

STMTTOKEN User-specified statement token.

Populating and maintaining a plan table
For the two distinct ways to populate a plan table, see:
v “Executing the SQL statement EXPLAIN” on page 799
v “Binding with the option EXPLAIN(YES)” on page 799

When you populate the plan table through EXPLAIN, any INSERT triggers on the
table are not activated. If you insert rows yourself, then those triggers are
activated.

798 Application Programming and SQL Guide

##

||
||

||

||

|
|
||
||
||

|
|

|

#
#

#
#

|

||
|

||



For tips on maintaining a growing plan table, see “Maintaining a plan table.”

Executing the SQL statement EXPLAIN
You can populate a PLAN_TABLE by executing the SQL statement EXPLAIN. In
the statement, specify a single explainable SQL statement in the FOR clause.

If an alias is defined on a PLAN_TABLE that was created with a different
authorization ID, and you have the appropriate SELECT and INSERT privileges,
you can populate that PLAN_TABLE even if you do not own it.

You can execute EXPLAIN either statically from an application program, or
dynamically, using QMF or SPUFI. For instructions and for details of the
authorization that you need on PLAN_TABLE, see DB2 SQL Reference.

Binding with the option EXPLAIN(YES)
You can populate a plan table when you bind or rebind a plan or package. Specify
the option EXPLAIN(YES). EXPLAIN obtains information about the access paths
for all explainable SQL statements in a package or the DBRMs of a plan. The
information appears in table package_owner.PLAN_TABLE or
plan_owner.PLAN_TABLE. For dynamically prepared SQL, the qualifier of
PLAN_TABLE is the current SQLID.

If the plan owner or the package owner has an alias on a PLAN_TABLE that was
created by another owner, other_owner.PLAN_TABLE is populated instead of
package_owner.PLAN_TABLE or plan_owner.PLAN_TABLE.

Performance considerations: EXPLAIN as a bind option should not be a
performance concern. The same processing for access path selection is performed,
regardless of whether you use EXPLAIN(YES) or EXPLAIN (NO). With
EXPLAIN(YES), there is only a small amount of overhead processing to put the
results in a plan table.

If a plan or package that was previously bound with EXPLAIN(YES) is
automatically rebound, the value of field EXPLAIN PROCESSING on installation
panel DSNTIPO determines whether EXPLAIN is run again during the automatic
rebind. Again, there is a small amount of overhead for inserting the results into a
plan table.

EXPLAIN for remote binds: A remote requester that accesses DB2 can specify
EXPLAIN(YES) when binding a package at the DB2 server. The information
appears in a plan table at the server, not at the requester. If the requester does not
support the propagation of the option EXPLAIN(YES), rebind the package at the
requester with that option to obtain access path information. You cannot get
information about access paths for SQL statements that use private protocol.

Maintaining a plan table
DB2 adds rows to PLAN_TABLE as you choose; it does not automatically delete
rows. To clear the table of obsolete rows, use DELETE, just as you would for
deleting rows from any table. You can also use DROP TABLE to drop a plan table
completely.

Reordering rows from a plan table
Several processes can insert rows into the same plan table. To understand access
paths, you must retrieve the rows for a particular query in an appropriate order.

Chapter 27. Using EXPLAIN to improve SQL performance 799

|
|
|

|
|
|



Retrieving rows for a plan
The rows for a particular plan are identified by the value of APPLNAME. The
following query to a plan table returns the rows for all the explainable statements
in a plan in their logical order:
SELECT * FROM JOE.PLAN_TABLE

WHERE APPLNAME = ’APPL1’
ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

The result of the ORDER BY clause shows whether there are:
v Multiple QBLOCKNOs within a QUERYNO
v Multiple PLANNOs within a QBLOCKNO
v Multiple MIXOPSEQs within a PLANNO

All rows with the same non-zero value for QBLOCKNO and the same value for
QUERYNO relate to a step within the query. QBLOCKNOs are not necessarily
executed in the order shown in PLAN_TABLE. But within a QBLOCKNO, the
PLANNO column gives the substeps in the order they execute.

For each substep, the TNAME column identifies the table accessed. Sorts can be
shown as part of a table access or as a separate step.

What if QUERYNO=0? For entries that contain QUERYNO=0, use the timestamp,
which is guaranteed to be unique, to distinguish individual statements.

Retrieving rows for a package
The rows for a particular package are identified by the values of PROGNAME,
COLLID, and VERSION. Those columns correspond to the following four-part
naming convention for packages:
LOCATION.COLLECTION.PACKAGE_ID.VERSION

COLLID gives the COLLECTION name, and PROGNAME gives the
PACKAGE_ID. The following query to a plan table return the rows for all the
explainable statements in a package in their logical order:
SELECT * FROM JOE.PLAN_TABLE

WHERE PROGNAME = ’PACK1’ AND COLLID = ’COLL1’ AND VERSION = ’PROD1’
ORDER BY QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

Asking questions about data access
When you examine your EXPLAIN results, try to answer the following questions:
v “Is access through an index? (ACCESSTYPE is I, I1, N or MX)” on page 801
v “Is access through more than one index? (ACCESSTYPE=M)” on page 801
v “How many columns of the index are used in matching? (MATCHCOLS=n)” on

page 802
v “Is the query satisfied using only the index? (INDEXONLY=Y)” on page 802
v “Is direct row access possible? (PRIMARY_ACCESSTYPE = D)” on page 803
v “Is a view or nested table expression materialized?” on page 806
v “Was a scan limited to certain partitions? (PAGE_RANGE=Y)” on page 806
v “What kind of prefetching is expected? (PREFETCH = L, S, D, or blank)” on

page 807
v “Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C, or X)”

on page 807
v “Are sorts performed?” on page 807

800 Application Programming and SQL Guide



v “Is a subquery transformed into a join?” on page 808
v “When are aggregate functions evaluated? (COLUMN_FN_EVAL)” on page 808
v “How many index screening columns are used?” on page 808
v “Is a complex trigger WHEN clause used? (QBLOCKTYPE=TRIGGR)” on page

809

As explained in this section, they can be answered in terms of values in columns
of a plan table.

Is access through an index? (ACCESSTYPE is I, I1, N or MX)
If the column ACCESSTYPE in the plan table has one of those values, DB2 uses an
index to access the table that is named in column TNAME. The columns
ACCESSCREATOR and ACCESSNAME identify the index. For a description of
methods of using indexes, see “Index access paths” on page 810.

Is access through more than one index? (ACCESSTYPE=M)
The value M indicates that DB2 uses a set of indexes to access a single table. A set
of rows in the plan table contain information about the multiple index access. The
rows are numbered in column MIXOPSEQ in the order of execution of steps in the
multiple index access. (If you retrieve the rows in order by MIXOPSEQ, the result
is similar to postfix arithmetic notation.)

Both of the following examples have these indexes: IX1 on T(C1) and IX2 on T(C2).

Example: Suppose that you issue the following SELECT statement:
SELECT * FROM T

WHERE C1 = 1 AND C2 = 1;

DB2 processes the query by performing the following steps:
1. DB2 retrieves all the qualifying record identifiers (RIDs) where C1=1, by using

index IX1.
2. DB2 retrieves all the qualifying RIDs where C2=1, by using index IX2. The

intersection of these lists is the final set of RIDs.
3. DB2 accesses the data pages that are needed to retrieve the qualified rows by

using the final RID list.

The plan table for this example is shown in Table 102.

Table 102. PLAN_TABLE output for example with intersection (AND) operator

TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY PREFETCH

MIXOP-
SEQ

T M 0 N L 0

T MX 1 IX1 Y 1

T MX 1 IX2 Y 2

T MI 0 N 3

Example: Suppose that you issue the following SELECT statement:
SELECT * FROM T

WHERE C1 BETWEEN 100 AND 199 OR
C1 BETWEEN 500 AND 599;

Chapter 27. Using EXPLAIN to improve SQL performance 801



In this case, the same index can be used more than once in a multiple index access
because more than one predicate could be matching. DB2 processes the query by
performing the following steps:
1. DB2 retrieves all RIDs where C1 is between 100 and 199, using index IX1.
2. DB2 retrieves all RIDs where C1 is between 500 and 599, again using IX1. The

union of those lists is the final set of RIDs.
3. DB2 retrieves the qualified rows by using the final RID list.

The plan table for this example is shown in Table 103.

Table 103. PLAN_TABLE output for example with union (OR) operator

TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY PREFETCH

MIXOP-
SEQ

T M 0 N L 0

T MX 1 IX1 Y 1

T MX 1 IX1 Y 2

T MU 0 N 3

How many columns of the index are used in matching?
(MATCHCOLS=n)

If MATCHCOLS is 0, the access method is called a nonmatching index scan. All the
index keys and their RIDs are read.

If MATCHCOLS is greater than 0, the access method is called a matching index scan:
the query uses predicates that match the index columns.

In general, the matching predicates on the leading index columns are equal or IN
predicates. The predicate that matches the final index column can be an equal, IN,
NOT NULL, or range predicate (<, <=, >, >=, LIKE, or BETWEEN).

The following example illustrates matching predicates:
SELECT * FROM EMP

WHERE JOBCODE = ’5’ AND SALARY > 60000 AND LOCATION = ’CA’;

INDEX XEMP5 on (JOBCODE, LOCATION, SALARY, AGE);

The index XEMP5 is the chosen access path for this query, with MATCHCOLS = 3.
Two equal predicates are on the first two columns and a range predicate is on the
third column. Though the index has four columns in the index, only three of them
can be considered matching columns.

Is the query satisfied using only the index? (INDEXONLY=Y)
In this case, the method is called index-only access. For a SELECT operation, all the
columns needed for the query can be found in the index and DB2 does not access
the table. For an UPDATE or DELETE operation, only the index is required to read
the selected row.

Index-only access to data is not possible for any step that uses list prefetch, which
is described under “What kind of prefetching is expected? (PREFETCH = L, S, D,
or blank)” on page 807. Index-only access is not possible for padded indexes when
varying-length data is returned or a VARCHAR column has a LIKE predicate,
unless the VARCHAR FROM INDEX field of installation panel DSNTIP8 is set to

802 Application Programming and SQL Guide

#
#
#



YES and plan or packages have been rebound to pick up the change. See Part 2 of
DB2 Installation Guide for more information. Index-only access is always possible
for nonpadded indexes.

If access is by more than one index, INDEXONLY is Y for a step with access type
MX, because the data pages are not actually accessed until all the steps for
intersection (MI) or union (MU) take place.

When an SQL application uses index-only access for a ROWID column, the
application claims the table space or table space partition. As a result, contention
may occur between the SQL application and a utility that drains the table space or
partition. Index-only access to a table for a ROWID column is not possible if the
associated table space or partition is in an incompatible restrictive state. For
example, an SQL application can make a read claim on the table space only if the
restrictive state allows readers.

Is direct row access possible? (PRIMARY_ACCESSTYPE = D)
If an application selects a row from a table that contains a ROWID column, the
row ID value implicitly contains the location of the row. If you use that row ID
value in the search condition of subsequent SELECTs, DELETEs, or UPDATEs, DB2
might be able to navigate directly to the row. This access method is called direct
row access.

Direct row access is very fast, because DB2 does not need to use the index or a
table space scan to find the row. Direct row access can be used on any table that
has a ROWID column.

To use direct row access, you first select the values of a row into host variables.
The value that is selected from the ROWID column contains the location of that
row. Later, when you perform queries that access that row, you include the row ID
value in the search condition. If DB2 determines that it can use direct row access, it
uses the row ID value to navigate directly to the row. See “Example: Coding with
row IDs for direct row access” on page 805 for a coding example.

Which predicates qualify for direct row access?
For a query to qualify for direct row access, the search condition must be a
Boolean term stage 1 predicate that fits one of these descriptions:
1. A simple Boolean term predicate of the form COL=noncolumn expression, where

COL has the ROWID data type and noncolumn expression contains a row ID
2. A simple Boolean term predicate of the form COL IN list, where COL has the

ROWID data type and the values in list are row IDs, and an index is defined
on COL

3. A compound Boolean term that combines several simple predicates using the
AND operator, and one of the simple predicates fits description 1 or 2

However, just because a query qualifies for direct row access does not mean that
access path is always chosen. If DB2 determines that another access path is better,
direct row access is not chosen.

Examples: In the following predicate example, ID is a ROWID column in table T1.
A unique index exists on that ID column. The host variables are of the ROWID
type.
WHERE ID IN (:hv_rowid1,:hv_rowid2,:hv_rowid3)

The following predicate also qualifies for direct row access:

Chapter 27. Using EXPLAIN to improve SQL performance 803

#
|
|



WHERE ID = ROWID(X’F0DFD230E3C0D80D81C201AA0A280100000000000203’)

Searching for propagated rows: If rows are propagated from one table to another,
do not expect to use the same row ID value from the source table to search for the
same row in the target table, or vice versa. This does not work when direct row
access is the access path chosen.

Example: Assume that the host variable in the following statement contains a row
ID from SOURCE:
SELECT * FROM TARGET

WHERE ID = :hv_rowid

Because the row ID location is not the same as in the source table, DB2 will
probably not find that row. Search on another column to retrieve the row you
want.

Reverting to ACCESSTYPE
Although DB2 might plan to use direct row access, circumstances can cause DB2 to
not use direct row access at run time. DB2 remembers the location of the row as of
the time it is accessed. However, that row can change locations (such as after a
REORG) between the first and second time it is accessed, which means that DB2
cannot use direct row access to find the row on the second access attempt. Instead
of using direct row access, DB2 uses the access path that is shown in the
ACCESSTYPE column of PLAN_TABLE.

If the predicate you are using to do direct row access is not indexable and if DB2 is
unable to use direct row access, then DB2 uses a table space scan to find the row.
This can have a profound impact on the performance of applications that rely on
direct row access. Write your applications to handle the possibility that direct row
access might not be used. Some options are to:
v Ensure that your application does not try to remember ROWID columns across

reorganizations of the table space.
When your application commits, it releases its claim on the table space; it is
possible that a REORG can run and move the row, which disables direct row
access. Plan your commit processing accordingly; use the returned row ID value
before committing, or re-select the row ID value after a commit is issued.
If you are storing ROWID columns from another table, update those values after
the table with the ROWID column is reorganized.

v Create an index on the ROWID column, so that DB2 can use the index if direct
row access is disabled.

v Supplement the ROWID column predicate with another predicate that enables
DB2 to use an existing index on the table. For example, after reading a row, an
application might perform the following update:
EXEC SQL UPDATE EMP
SET SALARY = :hv_salary + 1200

WHERE EMP_ROWID = :hv_emp_rowid
AND EMPNO = :hv_empno;

If an index exists on EMPNO, DB2 can use index access if direct access fails. The
additional predicate ensures DB2 does not revert to a table space scan.

Using direct row access and other access methods
Parallelism: Direct row access and parallelism are mutually exclusive. If a query
qualifies for both direct row access and parallelism, direct row access is used. If
direct row access fails, DB2 does not revert to parallelism; instead it reverts to the

804 Application Programming and SQL Guide



backup access type (as designated by column ACCESSTYPE in the PLAN_TABLE).
This might result in a table space scan. To avoid a table space scan in case direct
row access fails, add an indexed column to the predicate.

RID list processing: Direct row access and RID list processing are mutually
exclusive. If a query qualifies for both direct row access and RID list processing,
direct row access is used. If direct row access fails, DB2 does not revert to RID list
processing; instead it reverts to the backup access type.

Example: Coding with row IDs for direct row access
Figure 230 is a portion of a C program that shows you how to obtain the row ID
value for a row, and then to use that value to find the row efficiently when you
want to modify it.

/**************************/
/* Declare host variables */
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_LOCATOR hv_picture;
SQL TYPE IS CLOB_LOCATOR hv_resume;
SQL TYPE IS ROWID hv_emp_rowid;
short hv_dept, hv_id;
char hv_name[30];
decimal hv_salary[5,2];

EXEC SQL END DECLARE SECTION;

/**********************************************************/
/* Retrieve the picture and resume from the PIC_RES table */
/**********************************************************/
strcpy(hv_name, "Jones");
EXEC SQL SELECT PR.PICTURE, PR.RESUME INTO :hv_picture, :hv_resume

FROM PIC_RES PR
WHERE PR.Name = :hv_name;

/**********************************************************/
/* Insert a row into the EMPDATA table that contains the */
/* picture and resume you obtained from the PIC_RES table */
/**********************************************************/
EXEC SQL INSERT INTO EMPDATA

VALUES (DEFAULT,9999,’Jones’, 35000.00, 99,
:hv_picture, :hv_resume);

/**********************************************************/
/* Now retrieve some information about that row, */
/* including the ROWID value. */
/**********************************************************/
hv_dept = 99;
EXEC SQL SELECT E.SALARY, E.EMP_ROWID

INTO :hv_salary, :hv_emp_rowid
FROM EMPDATA E
WHERE E.DEPTNUM = :hv_dept AND E.NAME = :hv_name;

Figure 230. Example of using a row ID value for direct row access (Part 1 of 2)

Chapter 27. Using EXPLAIN to improve SQL performance 805



Is a view or nested table expression materialized?
When the column TNAME names a view or nested table expression and column
TABLE_TYPE contains a W, it indicates that the view or nested table expression is
materialized. Materialization means that the data rows that are selected by the view
or nested table expression are put into a work file that is to be processed like a
table. (For a more detailed description of materialization, see “Processing for views
and nested table expressions” on page 836.)

Was a scan limited to certain partitions? (PAGE_RANGE=Y)
DB2 can limit a scan of data in a partitioned table space to one or more partitions.
The method is called a limited partition scan. The query must provide a predicate on
the first key column of the partitioning index. DB2 can use all leading columns of
the partitioning key. The rules for using a partitioning column to limit partitions
are the same as the rules for determining a matching column on an index. If a
partitioning column is a candidate to be a matching column, that column can limit
partitions.

A limited partition scan can be combined with other access methods. For example,
consider the following query:
SELECT .. FROM T

WHERE (C1 BETWEEN ’2002’ AND ’3280’
OR C1 BETWEEN ’6000’ AND ’8000’)
AND C2 = ’6’;

Assume that table T has a partitioned index on column C1 and that values of C1
between 2002 and 3280 all appear in partitions 3 and 4 and the values between
6000 and 8000 appear in partitions 8 and 9. Assume also that T has another index
on column C2. DB2 could choose any of these access methods:

/**********************************************************/
/* Update columns SALARY, PICTURE, and RESUME. Use the */
/* ROWID value you obtained in the previous statement */
/* to access the row you want to update. */
/* smiley_face and update_resume are */
/* user-defined functions that are not shown here. */
/**********************************************************/
EXEC SQL UPDATE EMPDATA

SET SALARY = :hv_salary + 1200,
PICTURE = smiley_face(:hv_picture),
RESUME = update_resume(:hv_resume)
WHERE EMP_ROWID = :hv_emp_rowid;

/**********************************************************/
/* Use the ROWID value to obtain the employee ID from the */
/* same record. */
/**********************************************************/
EXEC SQL SELECT E.ID INTO :hv_id

FROM EMPDATA E
WHERE E.EMP_ROWID = :hv_emp_rowid;

/**********************************************************/
/* Use the ROWID value to delete the employee record */
/* from the table. */
/**********************************************************/
EXEC SQL DELETE FROM EMPDATA

WHERE EMP_ROWID = :hv_emp_rowid;

Figure 230. Example of using a row ID value for direct row access (Part 2 of 2)

806 Application Programming and SQL Guide

|
|
|
|
|



v A matching index scan on column C1. The scan reads index values and data
only from partitions 3, 4, 8, and 9. (PAGE_RANGE=N)

v A matching index scan on column C2. (DB2 might choose that if few rows have
C2=6.) The matching index scan reads all RIDs for C2=6 from the index on C2
and corresponding data pages from partitions 3, 4, 8, and 9. (PAGE_RANGE=Y)

v A table space scan on T. DB2 avoids reading data pages from any partitions
except 3, 4, 8 and 9. (PAGE_RANGE=Y)

What kind of prefetching is expected? (PREFETCH = L, S, D,
or blank)

Prefetching is a method of determining in advance that a set of data pages is about
to be used and then reading the entire set into a buffer with a single asynchronous
I/O operation. If the value of PREFETCH is:
v S, the method is called sequential prefetch. The data pages that are read in

advance are sequential. A table space scan always uses sequential prefetch. An
index scan might not use it. For a more complete description, see “Sequential
prefetch (PREFETCH=S)” on page 830.

v L, the method is called list prefetch. One or more indexes are used to select the
RIDs for a list of data pages to be read in advance; the pages need not be
sequential. Usually, the RIDs are sorted. The exception is the case of a hybrid
join (described under “Hybrid join (METHOD=4)” on page 821) when the value
of column SORTN_JOIN is N. For a more complete description, see “List
prefetch (PREFETCH=L)” on page 831.

v D, the method is called dynamic prefetch. DB2 expects that the pages to be
accessed will be sufficiently nonsequential to invoke dynamic prefetch.

v Blank, prefetching is not expected. However, depending on the pattern of the
page access, data can be prefetched at execution time through a process called
sequential detection. For a description of that process, see “Sequential detection at
execution time” on page 832.

Is data accessed or processed in parallel?
(PARALLELISM_MODE is I, C, or X)

Parallel processing applies only to read-only queries.

If mode is: DB2 plans to use:
I Parallel I/O operations
C Parallel CP operations
X Sysplex query parallelism

Non-null values in columns ACCESS_DEGREE and JOIN_DEGREE indicate to
what degree DB2 plans to use parallel operations. At execution time, however, DB2
might not actually use parallelism, or it might use fewer operations in parallel than
were originally planned. For a more complete description, see Chapter 28, “Parallel
operations and query performance,” on page 847. For more information about
Sysplex query parallelism, see Chapter 6 of DB2 Data Sharing: Planning and
Administration.

Are sorts performed?
SORTN_JOIN and SORTC_JOIN: SORTN_JOIN indicates that the new table of a
join is sorted before the join. (For hybrid join, this is a sort of the RID list.) When
SORTN_JOIN and SORTC_JOIN are both 'Y', two sorts are performed for the join.
The sorts for joins are indicated on the same row as the new table access.

Chapter 27. Using EXPLAIN to improve SQL performance 807

|
|



METHOD 3 sorts: These are used for ORDER BY, GROUP BY, SELECT DISTINCT,
UNION, or a quantified predicate. A quantified predicate is 'col = ANY (fullselect)'
or 'col = SOME (fullselect)'. They are indicated on a separate row. A single row of
the plan table can indicate two sorts of a composite table, but only one sort is
actually done.

SORTC_UNIQ and SORTC_ORDERBY: SORTC_UNIQ indicates a sort to remove
duplicates, as might be needed by a SELECT statement with DISTINCT or UNION.
SORTC_ORDERBY usually indicates a sort for an ORDER BY clause. But
SORTC_UNIQ and SORTC_ORDERBY also indicate when the results of a
noncorrelated subquery are sorted, both to remove duplicates and to order the
results. One sort does both the removal and the ordering.

Is a subquery transformed into a join?
For better access paths, DB2 sometimes transforms subqueries into joins, as
described in “When DB2 transforms a subquery into a join” on page 771. A plan
table shows that a subquery is transformed into a join by the value in column
QBLOCKNO.
v If the subquery is not transformed into a join, that means it is executed in a

separate operation, and its value of QBLOCKNO is greater than the value for
the outer query.

v If the subquery is transformed into a join, it and the outer query have the same
value of QBLOCKNO. A join is also indicated by a value of 1, 2, or 4 in column
METHOD.

When are aggregate functions evaluated?
(COLUMN_FN_EVAL)

When the aggregate functions are evaluated is based on the access path chosen for
the SQL statement.
v If the ACCESSTYPE column is I1, then a MAX or MIN function can be evaluated

by one access of the index named in ACCESSNAME.
v For other values of ACCESSTYPE, the COLUMN_FN_EVAL column tells when

DB2 is evaluating the aggregate functions.

Value Functions are evaluated ...
S While performing a sort to satisfy a GROUP BY clause
R While the data is being read from the table or index
blank After data retrieval and after any sorts

Generally, values of R and S are considered better for performance than a blank.

Use variance and standard deviation with care: The VARIANCE and STDDEV
functions are always evaluated late (that is, COLUMN_FN_EVAL is blank). This
causes other functions in the same query block to be evaluated late as well. For
example, in the following query, the sum function is evaluated later than it would
be if the variance function was not present:
SELECT SUM(C1), VARIANCE(C1) FROM T1;

How many index screening columns are used?
The plan table does not provide the answer to this question. However, you can use
Visual Explain to determine how many index screening columns are used. For
information about Visual Explain, see DB2 Visual Explain online help.

808 Application Programming and SQL Guide

|

|
|
|



Is a complex trigger WHEN clause used?
(QBLOCKTYPE=TRIGGR)

The plan table does not report simple trigger WHEN clauses, such as WHEN
(N.C1 < 5). However, the plan table does report complex trigger WHEN clauses,
which are clauses that involve other base tables and transition tables. The
QBLOCK_TYPE column of the top level query block shows TRIGGR to indicate a
complex trigger WHEN clause.

Example: Consider the following trigger:
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW TABLE AS NT OLD AS O
FOR EACH STATEMENT MODE DB2SQL
WHEN (O.ON_HAND < (SELECT MAX(ON_HAND) FROM NT))

BEGIN ATOMIC
INSERT INTO ORDER_LOG VALUES (O.PARTNO, O.ON_HAND);

END

Table 104 shows the corresponding plan table for the WHEN clause.

Table 104. Plan table for the WHEN clause

QBLOCKNO PLANNO TABLE ACCESSTYPE QBLOCK_TYPE PARENT_QBLOCKNO

1 1 TRIGGR 0

2 1 NT R NCOSUB 1

Interpreting access to a single table
The following sections describe different access paths that values in a plan table
can indicate, along with suggestions for supplying better access paths for DB2 to
choose from:
v Table space scans (ACCESSTYPE=R PREFETCH=S)
v “Index access paths” on page 810
v “UPDATE using an index” on page 815

Table space scans (ACCESSTYPE=R PREFETCH=S)
Table space scan is most often used for one of the following reasons:
v Access is through a created temporary table. (Index access is not possible for

created temporary tables.)
v A matching index scan is not possible because an index is not available, or no

predicates match the index columns.
v A high percentage of the rows in the table is returned. In this case, an index is

not really useful because most rows need to be read anyway.
v The indexes that have matching predicates have low cluster ratios and are

therefore efficient only for small amounts of data.

Assume that table T has no index on C1. The following is an example that uses a
table space scan:
SELECT * FROM T WHERE C1 = VALUE;

In this case, at least every row in T must be examined to determine whether the
value of C1 matches the given value.

Chapter 27. Using EXPLAIN to improve SQL performance 809

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

||

||||||

||||||

||||||
|

|



Table space scans of nonsegmented table spaces
DB2 reads and examines every page in the table space, regardless of which table
the page belongs to. It might also read pages that have been left as free space and
space not yet reclaimed after deleting data.

Table space scans of segmented table spaces
If the table space is segmented, DB2 first determines which segments need to be
read. It then reads only the segments in the table space that contain rows of T. If
the prefetch quantity, which is determined by the size of your buffer pool, is
greater than the SEGSIZE and if the segments for T are not contiguous, DB2 might
read unnecessary pages. Use a SEGSIZE value that is as large as possible,
consistent with the size of the data. A large SEGSIZE value is best to maintain
clustering of data rows. For very small tables, specify a SEGSIZE value that is
equal to the number of pages required for the table.

Recommendation for SEGSIZE value: Table 105 summarizes the recommendations
for SEGSIZE, depending on how large the table is.

Table 105. Recommendations for SEGSIZE

Number of pages SEGSIZE recommendation

≤ 28 4 to 28

> 28 < 128 pages 32

≥ 128 pages 64

Table space scans of partitioned table spaces
Partitioned table spaces are nonsegmented. A table space scan on a partitioned
table space is more efficient than on a nonpartitioned table space. DB2 takes
advantage of the partitions by a limited partition scan, as described under “Was a
scan limited to certain partitions? (PAGE_RANGE=Y)” on page 806.

Table space scans and sequential prefetch
Regardless of the type of table space, DB2 plans to use sequential prefetch for a
table space scan. For a segmented table space, DB2 might not actually use
sequential prefetch at execution time if it can determine that fewer than four data
pages need to be accessed. For guidance on monitoring sequential prefetch, see
“Sequential prefetch (PREFETCH=S)” on page 830.

If you do not want to use sequential prefetch for a particular query, consider
adding to it the clause OPTIMIZE FOR 1 ROW.

Index access paths
DB2 uses the following index access paths:
v “Matching index scan (MATCHCOLS>0)” on page 811
v “Index screening” on page 811
v “Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0)” on page 812
v “IN-list index scan (ACCESSTYPE=N)” on page 812
v “Multiple index access (ACCESSTYPE is M, MX, MI, or MU)” on page 812
v “One-fetch access (ACCESSTYPE=I1)” on page 814
v “Index-only access (INDEXONLY=Y)” on page 814
v “Equal unique index (MATCHCOLS=number of index columns)” on page 814

For dynamic SQL queries, DB2 avoids choosing indexes in which all of the
partitions of the index are in a restricted state. If only some partitions are in a
restricted state, and index might be chosen, because subsequent access might

810 Application Programming and SQL Guide

#
#
#



require only unrestricted partitions to be touched. This behavior allows an efficient
index to be available as long as there is a possibility that it could be used
successfully. For static queries, DB2 does not consider the state of the index
partitions when choosing an index.

Matching index scan (MATCHCOLS>0)
In a matching index scan, predicates are specified on either the leading or all of the
index key columns. These predicates provide filtering; only specific index pages
and data pages need to be accessed. If the degree of filtering is high, the matching
index scan is efficient.

In the general case, the rules for determining the number of matching columns are
simple, although there are a few exceptions.
v Look at the index columns from leading to trailing. For each index column,

search for an indexable boolean term predicate on that column. (See “Properties
of predicates” on page 737 for a definition of boolean term.) If such a predicate
is found, then it can be used as a matching predicate.
Column MATCHCOLS in a plan table shows how many of the index columns
are matched by predicates.

v If no matching predicate is found for a column, the search for matching
predicates stops.

v If a matching predicate is a range predicate, then there can be no more matching
columns. For example, in the matching index scan example that follows, the
range predicate C2>1 prevents the search for additional matching columns.

v For star joins, a missing key predicate does not cause termination of matching
columns that are to be used on the fact table index.

The exceptional cases are:
v At most one IN-list predicate can be a matching predicate on an index.
v For MX accesses and index access with list prefetch, IN-list predicates cannot be

used as matching predicates.
v Join predicates cannot qualify as matching predicates when doing a merge join

(METHOD=2). For example, T1.C1=T2.C1 cannot be a matching predicate when
doing a merge join, although any local predicates, such as C1='5' can be used.
Join predicates can be used as matching predicates on the inner table of a nested
loop join or hybrid join.

Matching index scan example: Assume there is an index on T(C1,C2,C3,C4):
SELECT * FROM T

WHERE C1=1 AND C2>1
AND C3=1;

Two matching columns occur in this example. The first one comes from the
predicate C1=1, and the second one comes from C2>1. The range predicate on C2
prevents C3 from becoming a matching column.

Index screening
In index screening, predicates are specified on index key columns but are not part of
the matching columns. Those predicates improve the index access by reducing the
number of rows that qualify while searching the index. For example, with an index
on T(C1,C2,C3,C4) in the following SQL statement, C3>0 and C4=2 are index
screening predicates.

Chapter 27. Using EXPLAIN to improve SQL performance 811

#
#
#
#



SELECT * FROM T
WHERE C1 = 1

AND C3 > 0 AND C4 = 2
AND C5 = 8;

The predicates can be applied on the index, but they are not matching predicates.
C5=8 is not an index screening predicate, and it must be evaluated when data is
retrieved. The value of MATCHCOLS in the plan table is 1.

EXPLAIN does not directly tell when an index is screened; however, if
MATCHCOLS is less than the number of index key columns, it indicates that index
screening is possible.

Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0)
In a nonmatching index scan no matching columns are in the index. Hence, all the
index keys must be examined.

Because a nonmatching index usually provides no filtering, only a few cases
provide an efficient access path. The following situations are examples:
v When index screening predicates exist

In that case, not all of the data pages are accessed.
v When the clause OPTIMIZE FOR n ROWS is used

That clause can sometimes favor a nonmatching index, especially if the index
gives the ordering of the ORDER BY clause or GROUP BY clause.

v When more than one table exists in a nonsegmented table space
In that case, a table space scan reads irrelevant rows. By accessing the rows
through the nonmatching index, fewer rows are read.

IN-list index scan (ACCESSTYPE=N)
An IN-list index scan is a special case of the matching index scan, in which a single
indexable IN predicate is used as a matching equal predicate.

You can regard the IN-list index scan as a series of matching index scans with the
values in the IN predicate being used for each matching index scan. The following
example has an index on (C1,C2,C3,C4) and might use an IN-list index scan:
SELECT * FROM T

WHERE C1=1 AND C2 IN (1,2,3)
AND C3>0 AND C4<100;

The plan table shows MATCHCOLS = 3 and ACCESSTYPE = N. The IN-list scan is
performed as the following three matching index scans:
(C1=1,C2=1,C3>0), (C1=1,C2=2,C3>0), (C1=1,C2=3,C3>0)

Parallelism is supported for queries that involve IN-list index access. These queries
used to run sequentially in previous releases of DB2, although parallelism could
have been used when the IN-list access was for the inner table of a parallel group.
Now, in environments in which parallelism is enabled, you can see a reduction in
elapsed time for queries that involve IN-list index access for the outer table of a
parallel group.

Multiple index access (ACCESSTYPE is M, MX, MI, or MU)
Multiple index access uses more than one index to access a table. It is a good access
path when:
v No single index provides efficient access.
v A combination of index accesses provides efficient access.

812 Application Programming and SQL Guide

|
|



RID lists are constructed for each of the indexes involved. The unions or
intersections of the RID lists produce a final list of qualified RIDs that is used to
retrieve the result rows, using list prefetch. You can consider multiple index access
as an extension to list prefetch with more complex RID retrieval operations in its
first phase. The complex operators are union and intersection.

DB2 chooses multiple index access for the following query:
SELECT * FROM EMP

WHERE (AGE = 34) OR
(AGE = 40 AND JOB = ’MANAGER’);

For this query:
v EMP is a table with columns EMPNO, EMPNAME, DEPT, JOB, AGE, and SAL.
v EMPX1 is an index on EMP with key column AGE.
v EMPX2 is an index on EMP with key column JOB.

The plan table contains a sequence of rows describing the access. For this query,
ACCESSTYPE uses the following values:

Value Meaning
M Start of multiple index access processing
MX Indexes are to be scanned for later union or intersection
MI An intersection (AND) is performed
MU A union (OR) is performed

The following steps relate to the previous query and the values shown for the plan
table in Table 106:
1. Index EMPX1, with matching predicate AGE = 40, provides a set of candidates

for the result of the query. The value of MIXOPSEQ is 1.
2. Index EMPX2, with matching predicate JOB = 'MANAGER', also provides a set

of candidates for the result of the query. The value of MIXOPSEQ is 2.
3. The first intersection (AND) is done, and the value of MIXOPSEQ is 3. This MI

removes the two previous candidate lists (produced by MIXOPSEQs 2 and 3)
by intersecting them to form an intermediate candidate list, IR1, which is not
shown in PLAN_TABLE.

4. Index EMPX1, with matching predicate AGE = 34, also provides a set of
candidates for the result of the query. The value of MIXOPSEQ is 4.

5. The last step, where the value MIXOPSEQ is 5, is a union (OR) of the two
remaining candidate lists, which are IR1 and the candidate list produced by
MIXOPSEQ 1. This final union gives the result for the query.

Table 106. Plan table output for a query that uses multiple indexes. Depending on the filter
factors of the predicates, the access steps can appear in a different order.

PLAN-
NO TNAME

ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME PREFETCH

MIXOP-
SEQ

1 EMP M 0 L 0

1 EMP MX 1 EMPX1 1

1 EMP MX 1 EMPX2 2

1 EMP MI 0 3

1 EMP MX 1 EMPX1 4

1 EMP MU 0 5

Chapter 27. Using EXPLAIN to improve SQL performance 813

#
#

#
#

#
#
#
#

#
#

#

#



The multiple index steps are arranged in an order that uses RID pool storage most
efficiently and for the least amount of time.

One-fetch access (ACCESSTYPE=I1)
One-fetch index access requires retrieving only one row. It is the best possible access
path and is chosen whenever it is available. It applies to a statement with a MIN
or MAX aggregate function: the order of the index allows a single row to give the
result of the function.

One-fetch index access is a possible access path when:
v The query includes only one table.
v The query includes only one aggregate function (either MIN or MAX).
v Either no predicate or all predicates are matching predicates for the index.
v The query includes no GROUP BY clause.
v Aggregate functions are on:

– The first index column if no predicates exist
– The last matching column of the index if the last matching predicate is a

range type
– The next index column (after the last matching column) if all matching

predicates are equal type

Queries using one-fetch index access: Assuming that an index exists on
T(C1,C2,C3), the following queries use one-fetch index scan:
SELECT MIN(C1) FROM T;
SELECT MIN(C1) FROM T WHERE C1>5;
SELECT MIN(C1) FROM T WHERE C1>5 AND C1<10;
SELECT MIN(C2) FROM T WHERE C1=5;
SELECT MAX(C1) FROM T;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2<10;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2>5 AND C2<10;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2 BETWEEN 5 AND 10;

Index-only access (INDEXONLY=Y)
With index-only access, the access path does not require any data pages because the
access information is available in the index. Conversely, when an SQL statement
requests a column that is not in the index, updates any column in the table, or
deletes a row, DB2 has to access the associated data pages. Because the index is
almost always smaller than the table itself, an index-only access path usually
processes the data efficiently.

With an index on T(C1,C2), the following queries can use index-only access:
SELECT C1, C2 FROM T WHERE C1 > 0;
SELECT C1, C2 FROM T;
SELECT COUNT(*) FROM T WHERE C1 = 1;

Equal unique index (MATCHCOLS=number of index columns)
An index that is fully matched and unique, and in which all matching predicates
are equal-predicates, is called an equal unique index case. This case guarantees that
only one row is retrieved. If there is no one-fetch index access available, this is
considered the most efficient access over all other indexes that are not equal
unique. (The uniqueness of an index is determined by whether or not it was
defined as unique.)

Sometimes DB2 can determine that an index that is not fully matching is actually
an equal unique index case. Assume the following case:

814 Application Programming and SQL Guide

#
#



Unique Index1: (C1, C2)
Unique Index2: (C2, C1, C3)

SELECT C3 FROM T
WHERE C1 = 1 AND C2 = 5;

Index1 is a fully matching equal unique index. However, Index2 is also an equal
unique index even though it is not fully matching. Index2 is the better choice
because, in addition to being equal and unique, it also provides index-only access.

UPDATE using an index
If no index key columns are updated, you can use an index while performing an
UPDATE operation.

To use a matching index scan to update an index in which its key columns are
being updated, the following conditions must be met:
v Each updated key column must have a corresponding predicate of the form

"index_key_column = constant" or "index_key_column IS NULL".
v If a view is involved, WITH CHECK OPTION must not be specified.

For updates that do not involve dynamic scrollable cursors, DB2 can use list
prefetch, multiple index access, or IN-list access. With list prefetch or multiple
index access, any index or indexes can be used in an UPDATE operation. Of
course, to be chosen, those access paths must provide efficient access to the data.

A positioned update that uses a dynamic scrollable cursor cannot use an access
path with list prefetch, or multiple index access. This means that indexes that do
not meet the preceding criteria cannot be used to locate the rows to be updated.

Interpreting access to two or more tables (join)
A join operation retrieves rows from more than one table and combines them. The
operation specifies at least two tables, but they need not be distinct.

This section begins with “Definitions and examples of join operations” and
continues with descriptions of the methods of joining that can be indicated in a
plan table:
v “Nested loop join (METHOD=1)” on page 818
v “Merge scan join (METHOD=2)” on page 820
v “Hybrid join (METHOD=4)” on page 821
v “Star join (JOIN_TYPE=’S’)” on page 823

Definitions and examples of join operations
This section contains definitions and examples that are related to join operations.

Definitions: A composite table represents the result of accessing one or more tables
in a query. If a query contains a single table, only one composite table exists. If one
or more joins are involved, an outer composite table consists of the intermediate
result rows from the previous join step. This intermediate result may, or may not,
be materialized into a work file.

The new table (or inner table) in a join operation is the table that is newly accessed
in the step.

Chapter 27. Using EXPLAIN to improve SQL performance 815

|
|

|
|
|



A join operation can involve more than two tables. In these cases, the operation is
carried out in a series of steps. For non-star joins, each step joins only two tables.

Example: Figure 231 shows a two-step join operation.

DB2 performs the following steps to complete the join operation:
1. Accesses the first table (METHOD=0), named TJ (TNAME), which becomes the

composite table in step 2.
2. Joins the new table TK to TJ, forming a new composite table.
3. Sorts the new table TL (SORTN_JOIN=Y) and the composite table

(SORTC_JOIN=Y), and then joins the two sorted tables.
4. Sorts the final composite table (TNAME is blank) into the desired order

(SORTC_ORDERBY=Y).

Figure 231

Table 107 and Table 108 show a subset of columns in a plan table for this join
operation.

Table 107. Subset of columns for a two-step join operation

METHOD TNAME
ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY

TSLOCK-
MODE

0 TJ I 1 TJX1 N IS

1 TK I 1 TKX1 N IS

2 TL I 0 TLX1 Y S

3 0 N

Table 108. Subset of columns for a two-step join operation

SORTN
UNIQ

SORTN
JOIN

SORTN
ORDERBY

SORTN
GROUPBY

SORTC
UNIQ

SORTC
JOIN

SORTC
ORDERBY

SORTC
GROUPBY

N N N N N N N N

N N N N N N N N

N Y N N N Y N N

N N N N N N Y N

Composite

Composite

(Method 1)
Nested

loop
join

TJ TK New

NewWork
File

(Method 2)
Merge scan

join

(Sort)

Result

TL

Figure 231. Two-step join operation

816 Application Programming and SQL Guide



Definitions: A join operation typically matches a row of one table with a row of
another on the basis of a join condition. For example, the condition might specify
that the value in column A of one table equals the value of column X in the other
table (WHERE T1.A = T2.X).

Two kinds of joins differ in what they do with rows in one table that do not match
on the join condition with any row in the other table:
v An inner join discards rows of either table that do not match any row of the

other table.
v An outer join keeps unmatched rows of one or the other table, or of both. A row

in the composite table that results from an unmatched row is filled out with null
values. As Table 109 shows, outer joins are distinguished by which unmatched
rows they keep.

Table 109. Join types and kept unmatched rows

Outer join type Included unmatched rows

Left outer join The composite (outer) table

Right outer join The new (inner) table

Full outer join Both tables

Example: Suppose that you issue the following statement to explain an outer join:
EXPLAIN PLAN SET QUERYNO = 10 FOR
SELECT PROJECT, COALESCE(PROJECTS.PROD#, PRODNUM) AS PRODNUM,

PRODUCT, PART, UNITS
FROM PROJECTS LEFT JOIN

(SELECT PART,
COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS.PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP
ON PROJECTS.PROD# = PRODNUM

Table 110 shows a subset of the plan table for the outer join.

Table 110. Plan table output for an example with outer joins

QUERYNO QBLOCKNO PLANNO TNAME JOIN_TYPE

10 1 1 PROJECTS

10 1 2 TEMP L

10 2 1 PRODUCTS

10 2 2 PARTS F

Column JOIN_TYPE identifies the type of outer join with one of these values:
v F for FULL OUTER JOIN
v L for LEFT OUTER JOIN
v Blank for INNER JOIN or no join

At execution, DB2 converts every right outer join to a left outer join; thus
JOIN_TYPE never identifies a right outer join specifically.

Materialization with outer join: Sometimes DB2 has to materialize a result table
when an outer join is used in conjunction with other joins, views, or nested table
expressions. You can tell when this happens by looking at the TABLE_TYPE and
TNAME columns of the plan table. When materialization occurs, TABLE_TYPE

Chapter 27. Using EXPLAIN to improve SQL performance 817



contains a W, and TNAME shows the name of the materialized table as
DSNWFQB(xx), where xx is the number of the query block (QBLOCKNO) that
produced the work file.

Nested loop join (METHOD=1)
This section describes nested loop join, which is common join method. Figure 232
illustrates a nested loop join.

Method of joining
DB2 scans the composite (outer) table. For each row in that table that qualifies (by
satisfying the predicates on that table), DB2 searches for matching rows of the new
(inner) table. It concatenates any it finds with the current row of the composite
table. If no rows match the current row, then:
v For an inner join, DB2 discards the current row.
v For an outer join, DB2 concatenates a row of null values.

Stage 1 and stage 2 predicates eliminate unqualified rows during the join. (For an
explanation of those types of predicate, see “Stage 1 and stage 2 predicates” on
page 739.) DB2 can scan either table using any of the available access methods,
including table space scan.

Performance considerations
The nested loop join repetitively scans the inner table. That is, DB2 scans the outer
table once, and scans the inner table as many times as the number of qualifying
rows in the outer table. Therefore, the nested loop join is usually the most efficient
join method when the values of the join column passed to the inner table are in
sequence and the index on the join column of the inner table is clustered, or the
number of rows retrieved in the inner table through the index is small.

When nested loop join is used
Nested loop join is often used if:
v The outer table is small.

10 10
10
10
10
10
10

10

10
10
10

3

1

2
6
1

SELECT A, B, X, Y
FROM (SELECT FROM OUTERT WHERE A=10)
LEFT JOIN INNERT ON B=X;

5
3
2
1
2
9
7

A
B
C
D
E
F
G

Left outer join using nested loop join

Table
Columns

OUTERT INNERT Composite

3
1
2
2
6
1

3
1
2
2
- -
1

B
D
C
E

D

A B X Y A B X Y

Scan the outer table.
For each qualifying row find all matching rows

in the inner table, by a
table space or index scan.

The nested loop join
produces this result,
preserving the values
of the outer table.

Figure 232. Nested loop join for a left outer join

818 Application Programming and SQL Guide



v Predicates with small filter factors reduce the number of qualifying rows in the
outer table.

v An efficient, highly clustered index exists on the join columns of the inner table.
v The number of data pages accessed in the inner table is small.
v No join columns exist. Hybrid and sort merge joins require join columns; nested

loop joins do not.

Example: left outer join: Figure 232 on page 818 illustrates a nested loop for a left
outer join. The outer join preserves the unmatched row in OUTERT with values
A=10 and B=6. The same join method for an inner join differs only in discarding
that row.

Example: one-row table priority: For a case like the following example, with a
unique index on T1.C2, DB2 detects that T1 has only one row that satisfies the
search condition. DB2 makes T1 the first table in a nested loop join.
SELECT * FROM T1, T2

WHERE T1.C1 = T2.C1 AND
T1.C2 = 5;

Example: Cartesian join with small tables first: A Cartesian join is a form of
nested loop join in which there are no join predicates between the two tables. DB2
usually avoids a Cartesian join, but sometimes it is the most efficient method, as in
the following example. The query uses three tables: T1 has 2 rows, T2 has 3 rows,
and T3 has 10 million rows.
SELECT * FROM T1, T2, T3

WHERE T1.C1 = T3.C1 AND
T2.C2 = T3.C2 AND
T3.C3 = 5;

Join predicates are between T1 and T3 and between T2 and T3. There is no join
predicate between T1 and T2.

Assume that 5 million rows of T3 have the value C3=5. Processing time is large if
T3 is the outer table of the join and tables T1 and T2 are accessed for each of 5
million rows.

However if all rows from T1 and T2 are joined, without a join predicate, the 5
million rows are accessed only six times, once for each row in the Cartesian join of
T1 and T2. It is difficult to say which access path is the most efficient. DB2
evaluates the different options and could decide to access the tables in the
sequence T1, T2, T3.

Sorting the composite table: Your plan table could show a nested loop join that
includes a sort on the composite table. DB2 might sort the composite table (the
outer table in Figure 232) if the following conditions exist:
v The join columns in the composite table and the new table are not in the same

sequence.
v The join column of the composite table has no index.
v The index is poorly clustered.

Nested loop join with a sorted composite table has the following performance
advantages:
v Uses sequential detection efficiently to prefetch data pages of the new table,

reducing the number of synchronous I/O operations and the elapsed time.

Chapter 27. Using EXPLAIN to improve SQL performance 819

|
|



v Avoids repetitive full probes of the inner table index by using the index
look-aside.

Merge scan join (METHOD=2)
Merge scan join is also known as merge join or sort merge join. For this method, there
must be one or more predicates of the form TABLE1.COL1=TABLE2.COL2, where
the two columns have the same data type and length attribute.

Method of joining
Figure 233 illustrates a merge scan join.

DB2 scans both tables in the order of the join columns. If no efficient indexes on
the join columns provide the order, DB2 might sort the outer table, the inner table,
or both. The inner table is put into a work file; the outer table is put into a work
file only if it must be sorted. When a row of the outer table matches a row of the
inner table, DB2 returns the combined rows.

DB2 then reads another row of the inner table that might match the same row of
the outer table and continues reading rows of the inner table as long as there is a
match. When there is no longer a match, DB2 reads another row of the outer table.
v If that row has the same value in the join column, DB2 reads again the matching

group of records from the inner table. Thus, a group of duplicate records in the
inner table is scanned as many times as there are matching records in the outer
table.

v If the outer row has a new value in the join column, DB2 searches ahead in the
inner table. It can find any of the following rows:
– Unmatched rows in the inner table, with lower values in the join column.
– A new matching inner row. DB2 then starts the process again.

10 10
10
10
10
10

10
10
10
10

1
1
2
3
6

SELECT A, B, X, Y
FROM OUTER, INNER
WHERE A=10 AND B=X;

1
2
2
3
5
7
9

D
C
E
B
A
G
F

Merge scan join

Table
Columns

OUTER INNER Composite

1
1
2
2
3

1
1
2
2
3

D
D
C
E

A B X Y A B X Y

Scan the outer table.
For each row, scan a group of matching

rows in the inner table.
The merge scan join
produces this result.

Condense and sort the
outer table, or access it
through an index on
column B.

Condense and sort the
inner table.

B

Figure 233. Merge scan join

820 Application Programming and SQL Guide



– An inner row with a higher value of the join column. Now the row of the
outer table is unmatched. DB2 searches ahead in the outer table, and can find
any of the following rows:
- Unmatched rows in the outer table.
- A new matching outer row. DB2 then starts the process again.
- An outer row with a higher value of the join column. Now the row of the

inner table is unmatched, and DB2 resumes searching the inner table.

If DB2 finds an unmatched row:
For an inner join, DB2 discards the row.
For a left outer join, DB2 discards the row if it comes from the inner table and
keeps it if it comes from the outer table.
For a full outer join, DB2 keeps the row.

When DB2 keeps an unmatched row from a table, it concatenates a set of null
values as if that matched from the other table. A merge scan join must be used for
a full outer join.

Performance considerations
A full outer join by this method uses all predicates in the ON clause to match the
two tables and reads every row at the time of the join. Inner and left outer joins
use only stage 1 predicates in the ON clause to match the tables. If your tables
match on more than one column, it is generally more efficient to put all the
predicates for the matches in the ON clause, rather than to leave some of them in
the WHERE clause.

For an inner join, DB2 can derive extra predicates for the inner table at bind time
and apply them to the sorted outer table to be used at run time. The predicates can
reduce the size of the work file needed for the inner table.

If DB2 has used an efficient index on the join columns, to retrieve the rows of the
inner table, those rows are already in sequence. DB2 puts the data directly into the
work file without sorting the inner table, which reduces the elapsed time.

When merge scan join is used
A merge scan join is often used if:
v The qualifying rows of the inner and outer table are large, and the join predicate

does not provide much filtering; that is, in a many-to-many join.
v The tables are large and have no indexes with matching columns.
v Few columns are selected on inner tables. This is the case when a DB2 sort is

used. The fewer the columns to be sorted, the more efficient the sort is.

Hybrid join (METHOD=4)
The method applies only to an inner join and requires an index on the join column
of the inner table. Figure 234 on page 822 illustrates a hybrid join.

Chapter 27. Using EXPLAIN to improve SQL performance 821



Method of joining
The method requires obtaining RIDs in the order needed to use list prefetch. The
steps are shown in Figure 234. In that example, both the outer table (OUTER) and
the inner table (INNER) have indexes on the join columns.

DB2 performs the following steps:

�1� Scans the outer table (OUTER).

�2� Joins the outer table with RIDs from the index on the inner table. The
result is the phase 1 intermediate table. The index of the inner table is
scanned for every row of the outer table.

�3� Sorts the data in the outer table and the RIDs, creating a sorted RID list

SELECT A, B, X, Y
FROM OUTER, INNER
WHERE A=10 AND X=B;

Index Index

OUTER

INNER
RIDsX Y

X=B

10
10
10
10
10

1
1
2
3
6

1
2
2
3
5
7
9

Davis
Jones
Smith
Brown
Blake
Stone
Meyer

P5
P2
P7
P4
P1
P6
P3

List prefetch

Intermediate table (phase 1)

P5
P5P5

P2 P2
P7 P7
P4 P4

10
10
10
10
10

1
1

2
2

3

OUTER
data

OUTER
data

INNER
RIDs

INNER
RIDs

RID List

RID list

SORT

P2
P4
P5
P7Intermediate table (phase 2)

10
10
10
10
10

2
3
1
1
2

P2
P4
P5
P5
P7

Composite table

A B X Y

10
10
10
10
10

2
3
1
1
2

2
3
1

2
1

Jones

Jones

Brown
Davis
Davis

A B
1

2 4

5

3

Figure 234. Hybrid join (SORTN_JOIN='Y')

822 Application Programming and SQL Guide



and the phase 2 intermediate table. The sort is indicated by a value of Y in
column SORTN_JOIN of the plan table. If the index on the inner table is a
well-clustered index, DB2 can skip this sort; the value in SORTN_JOIN is
then N.

�4� Retrieves the data from the inner table, using list prefetch.

�5� Concatenates the data from the inner table and the phase 2 intermediate
table to create the final composite table.

Possible results from EXPLAIN for hybrid join
Table 117 shows possible EXPLAIN results from a hybrid join and an explanation
of each column value.

Table 117. Explanation of EXPLAIN results for a hybrid join

Column value Explanation

METHOD='4' A hybrid join was used.

SORTC_JOIN='Y' The composite table was sorted.

SORTN_JOIN='Y' The intermediate table was sorted in the order of inner table
RIDs. A non-clustered index accessed the inner table RIDs.

SORTN_JOIN='N' The intermediate table RIDs were not sorted. A clustered
index retrieved the inner table RIDs, and the RIDs were
already well ordered.

PREFETCH='L' Pages were read using list prefetch.

Performance considerations
Hybrid join uses list prefetch more efficiently than nested loop join, especially if
there are indexes on the join predicate with low cluster ratios. It also processes
duplicates more efficiently because the inner table is scanned only once for each set
of duplicate values in the join column of the outer table.

If the index on the inner table is highly clustered, there is no need to sort the
intermediate table (SORTN_JOIN=N). The intermediate table is placed in a table in
memory rather than in a work file.

When hybrid join is used
Hybrid join is often used if:
v A nonclustered index or indexes are used on the join columns of the inner table.
v The outer table has duplicate qualifying rows.

Star join (JOIN_TYPE=’S’)
Star join is a special join technique that DB2 uses to efficiently join tables that form
a star schema. A star schema is a logical database design that is included in
decision support applications. A star schema is composed of a fact table and a
number of dimension tables that are connected to it. A dimension table contains
several values that are given an ID, which is used in the fact table instead of all the
values.

You can think of the fact table, which is much larger than the dimension tables, as
being in the center surrounded by dimension tables; the result resembles a star
formation. Figure 235 on page 824 illustrates the star formation.

Chapter 27. Using EXPLAIN to improve SQL performance 823



Unlike the steps in the other join methods (nested loop join, merge scan join, and
hybrid join) in which only two tables are joined in each step, a step in the star join
method can involve three or more tables. Dimension tables are joined to the fact
table via a multi-column index that is defined on the fact table. Therefore, having a
well-defined, multi-column index on the fact table is critical for efficient star join
processing.

Example of a star schema
For an example of a star schema consider the following scenario. A star schema is
composed of a fact table for sales, with dimension tables connected to it for time,
products, and geographic locations. The time table has an ID for each month, its
quarter, and the year. The product table has an ID for each product item and its
class and its inventory. The geographic location table has an ID for each city and
its country.

In this scenario, the sales table contains three columns with IDs from the
dimension tables for time, product, and location instead of three columns for time,
three columns for products, and two columns for location. Thus, the size of the fact
table is greatly reduced. In addition, if you needed to change an item, you would
do it once in a dimension table instead of several times for each instance of the
item in the fact table.

Fact table

Dimension
table

Dimension
table

Dimension
table

Dimension
table

Dimension
table

Figure 235. Star schema with a fact table and dimension tables

824 Application Programming and SQL Guide

|
|
|
|
|
|



You can create even more complex star schemas by normalizing a dimension table
into several tables. The normalized dimension table is called a snowflake. Only one
of the tables in the snowflake joins directly wiht the fact table.

When star join is used
To access the data in a star schema, you often write SELECT statements that
include join operations between the fact table and the dimension tables, but no join
operations between dimension tables. DB2 uses star join processing as the join type
for the query if the following conditions are true:
v The query references at least two dimensions.
v All join predicates are between the fact table and the dimension tables, or within

tables of the same snowflake. If a snowflake is connected to the fact table, only
one table in the snowflake (the central dimension table) can be joined to the fact
table.

v All join predicates between the fact table and dimension tables are equi-join
predicates.

v All join predicates between the fact table and dimension tables are Boolean term
predicates. For more information, see “Boolean term (BT) predicates” on page
740.

v There are no instances of predicates that consist of a local predicate on a
dimension table and a local predicate on a different table that are connected
with an OR logical operator.

v No correlated subqueries cross dimensions.
v No single fact table column is joined to columns of different dimension tables in

join predicates. For example, fact table column F1 cannot be joined to column D1
of dimension table T1 and also joined to column D2 of dimension table T2.

v After DB2 simplifies join operations, no outer join operations exist. For more
information, see “When DB2 simplifies join operations” on page 758.

v The data type and length of both sides of a join predicate are the same.
v The value of subsystem parameter STARJOIN is 1, or the cardinality of the fact

table to the largest dimension table meets the requirements specified by the
value of the subsystem parameter. The values of STARJOIN and cardinality
requirements are:

-1 Star join is disabled. This is the default.

1 Star join is enabled. The one table with the largest cardinality is the fact
table. However, if there is more than one table with this cardinality, star
join is not enabled.

0 Star join is enabled if the cardinality of the fact table is at least 25 times
the cardinality of the largest dimension that is a base table that is joined
to the fact table.

n Star join is enabled if the cardinality of the fact table is at least n times
the cardinality of the largest dimension that is a base table that is joined
to the fact table, where 2≤n≤32768.

You can set the subsystem parameter STARJOIN by using the STAR JOIN
QUERIES field on the DSNTIP8 installation panel.

v The number of tables in the star schema query block, including the fact table,
dimensions tables, and snowflake tables, meet the requirements that are
specified by the value of subsystem parameter SJTABLES. The value of
SJTABLES is considered only if the subsystem parameter STARJOIN qualifies the
query for star join. The values of SJTABLES are:

Chapter 27. Using EXPLAIN to improve SQL performance 825

|
|
|

|
|



1, 2, or 3 Star join is always considered.

4 to 255 Star join is considered if the query block has at
least the specified number of tables. If star join is
enabled, 10 is the default value.

256 and greater Star join will never be considered.
Star join, which can reduce bind time significantly, does not provide optimal
performance in all cases. Performance of star join depends on a number of
factors such as the available indexes on the fact table, the cluster ratio of the
indexes, and the selectivity of rows through local and join predicates. Follow
these general guidelines for setting the value of SJTABLES:
– If you have queries that reference less than 10 tables in a star schema

database and you want to make the star join method applicable to all
qualified queries, set the value of SJTABLES to the minimum number of
tables used in queries that you want to be considered for star join.
Example: Suppose that you query a star schema database that has one fact
table and three dimension tables. You should set SJTABLES to 4.

– If you want to use star join for relatively large queries that reference a star
schema database but are not necessarily suitable for star join, use the default.
The star join method will be considered for all qualified queries that have 10
or more tables.

– If you have queries that reference a star schema database but, in general, do
not want to use star join, consider setting SJTABLES to a higher number, such
as 15, if you want to drastically cut the bind time for large queries and avoid
a potential bind time SQL return code -101 for large qualified queries.

For recommendations on indexes for star schemas, see “Creating indexes for
efficient star-join processing” on page 783.

Examples: query with three dimension tables: Suppose that you have a store in
San Jose and want information about sales of audio equipment from that store in
2000. For this example, you want to join the following tables:
v A fact table for SALES (S)
v A dimension table for TIME (T) with columns for an ID, month, quarter, and

year
v A dimension table for geographic LOCATION (L) with columns for an ID, city,

region, and country
v A dimension table for PRODUCT (P) with columns for an ID, product item,

class, and inventory

You could write the following query to join the tables:
SELECT *

FROM SALES S, TIME T, PRODUCT P, LOCATION L
WHERE S.TIME = T.ID AND

S.PRODUCT = P.ID AND
S.LOCATION = L.ID AND
T.YEAR = 2000 AND
P.CLASS = ’AUDIO’ AND
L.LOCATION = ’SAN JOSE’;

You would use the following index:
CREATE INDEX XSALES_TPL ON SALES (TIME, PRODUCT, LOCATION);

You EXPLAIN output looks like Table 118 on page 827.

826 Application Programming and SQL Guide

#
#
#
#
#
#
#
#



Table 118. Plan table output for a star join example with TIME, PRODUCT, and LOCATION

QUERYNO QBLOCKNO METHOD TNAME
JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

1 1 0 TIME S Y R

1 1 1 PRODUCT S Y R

1 1 1 LOCATION S Y R

1 1 1 SALES S I

All snowflakes are processed before the central part of the star join, as individual
query blocks, and are materialized into work files. There is a work file for each
snowflake. The EXPLAIN output identifies these work files by naming them
DSN_DIM_TBLX(nn), where nn indicates the corresponding QBLOCKNO for the
snowflake.

This next example shows the plan for a star join that contains two snowflakes.
Suppose that two new tables MANUFACTURER (M) and COUNTRY (C) are
added to the tables in the previous example to break dimension tables PRODUCT
(P) and LOCATION (L) into snowflakes:
v The PRODUCT table has a new column MID that represents the manufacturer.
v Table MANUFACTURER (M) has columns for MID and name to contain

manufacturer information.
v The LOCATION table has a new column CID that represents the country.
v Table COUNTRY (C) has columns for CID and name to contain country

information.

You could write the following query to join all the tables:
SELECT *

FROM SALES S, TIME T, PRODUCT P, MANUFACTURER M,
LOCATION L, COUNTRY C

WHERE S.TIME = T.ID AND
S.PRODUCT = P.ID AND
P.MID = M.MID AND
S.LOCATION = L.ID AND
L.CID = C.CID AND
T.YEAR = 2000 AND
M.NAME = ’some_company’;

The joined table pairs (PRODUCT, MANUFACTURER) and (LOCATION,
COUNTRY) are snowflakes. The EXPLAIN output of this query looks like
Table 119.

Table 119. Plan table output for a star join example with snowflakes

QBLOCK
NO METHOD TNAME

JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

PRIMARY
ACCESS
TYPE

1 0 TIME S Y R

1 1 DSN_DIM_TBLX(02) S Y R T

1 1 SALES S I

1 1 DSN_DIM_TBLX(03) Y R T

2 0 PRODUCT R

2 1 MANUFACTURER I

3 0 LOCATION R

Chapter 27. Using EXPLAIN to improve SQL performance 827

||

||||
|
|
|
|
|
|

|||||||

|||||||

|||||||

|||||||
|



Table 119. Plan table output for a star join example with snowflakes (continued)

QBLOCK
NO METHOD TNAME

JOIN
TYPE

SORTN
JOIN

ACCESS
TYPE

PRIMARY
ACCESS
TYPE

3 4 COUNTRY I

The joins in the snowflakes are processed first, and each snowflake is materialized
into a work file. Therefore, when the main star join block (QBLOCKNO=1) is
processed, it contains four tables: SALES (the fact table), TIME (a base dimension
table), and the two snowflake work files.

In this example, in the main star join block, the star join method is used for the
first three tables (as indicated by S in the JOIN TYPE column of the plan table) and
the remaining work file is joined by the nested loop join with sparse index access
on the work file, as indicated by T in the PRIMARY_ACCESSTYPE column for
DSN_DIM_TBLX(3).)

Dedicated virtual memory pool for star join operations
You can create a dedicated virtual memory pool for star join operations. When the
virtual memory pool is enabled for star joins, DB2 caches data from work files that
are used by star join queries. A virtual memory pool dedicated to star join
operations has the following advantages:
v Immediate data availability. During a star join operation, work files might be

scanned many times. If the work-file data is cached in the dedicated virtual
memory pool, that data is immediately available for join operations.

v Reduced buffer pool contention. Because the dedicated virtual memory pool
caches data separately from the work-file buffer pool, contention with the buffer
pool is reduced. Reduced contention improves performance particularly when
sort operations are performed concurrently.

To determine the size of the virtual memory pool, perform the following steps:
1. Determine the value of A. Estimate the number of star join queries that run

concurrently.
2. Determine the value of B. Estimate the average number of work files that a star

join query uses. In typical cases, with highly normalized star schemas, the
average number is about three to six work files.

3. Determine the value of C. Estimate the number of work-file rows, the
maximum length of the key, and the total of the maximum length of the
relevant columns. Multiply these three values together to find the size of the
data caching space for the work file, or the value of C.

4. Multiply (A) * (B) * (C) to determine the size of the pool in MB.

The default virtual memory pool size is 20 MB. To set the pool size, use the
SJMXPOOL parameter on the DSNTIP8 installation panel.

Example: The following example shows how to determine the size of the virtual
memory pool. Suppose that you issue the following star join query, where SALES
is the fact table:
SELECT C.COUNTRY, P.PRDNAME, SUM(F.SPRICE)

FROM SALES F, TIME T, PROD P, LOC L, SCOUN C
WHERE F.TID = T.TID AND

F.PID = P.PID AND

828 Application Programming and SQL Guide

#
#
#
#
#

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|
|



F.LID = L.LID AND
L.CID = C.CID AND
P.PCODE IN (4, 7, 21, 22, 53)

GROUP BY .COUNTRY, P.PRDNAME;

The EXPLAIN output of this query looks like Table 120.

Table 120. EXPLAIN output for a star join query

QBLOCK
NO

PLAN
NO TNAME METHOD

JOIN_
TYPE

ACCESS
TYPE

ACCESS
NAME

PRIMARY
ACCESS
TYPE

1 1 TIME 0 S R

1 2 PROD 1 S R T

1 3 SALES 1 S I XSALES

1 4 DSN_DIM_TBLX(02) 1 R T

1 5 3

2 1 LOC 0 R

2 2 SCOUN 4 I XSCOUN

For this query, two work files can be cached in memory. Sparse index access to
these work files, PROD and DSN_DIM_TBLX(02), are indicated by T in the
PRIMARY_ACCESSTYPE.

To determine the size of the dedicated virtual memory pool, perform the following
steps:
1. Determine the value of A. Estimate the number of star join queries that run

concurrently.
In this example, based on the type of operation, up to 12 star join queries are
expected run concurrently. Therefore, A = 12.

2. Determine the value of B. Estimate the average number of work files that a star
join query uses.
In this example, the star join query uses two work files, PROD and
DSN_DIM_TBLX(02). Therefore B = 2.

3. Determine the value of C. Estimate the number of work-file rows, the
maximum length of the key, and the total of the maximum length of the
relevant columns. Multiply these three values together to find the size of the
data caching space for the work file, or the value of C.
Both PROD and DSN_DIM_TBLX(02) are used to determine the value of C.
Recommendation: Average the values for a representative sample of work files,
and round the value up to determine an estimate for a value of C.
v The number of work-file rows depends on the number of rows that match

the predicate. For PROD, 87 rows are stored in the work file because 87 rows
match the IN-list predicate. No selective predicate is used for
DSN_DIM_TBLX(02), so the entire result of the join is stored in the work file.
The work file for DSN_DIM_TBLX(02) holds 2800 rows.

v The maximum length of the key depends on the data type definition of the
table's key column. For PID, the key column for PROD, the maximum length
is 4. DSN_DIM_TBLX(02) is a work file that results from the join of LOC and
SCOUN. The key column that is used in the join is LID from the LOC table.
The maximum length of LID is 4.

v The maximum data length depends on the maximum length of the key
column and the maximum length of the column that is selected as part of the

Chapter 27. Using EXPLAIN to improve SQL performance 829

|
|
|
|

|

||

|
|
|
|||
|
|
|
|
|
|

|
|
|

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||
|
#
#
#

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|



star join. Add to the maximum data length 1 byte for nullable columns, 2
bytes for varying length columns, and 3 bytes for nullable and varying
length columns.
For the PROD work file, the maximum data length is the maximum length of
PID, which is 4, plus the maximum length of PRDNAME, which is 24.
Therefore, the maximum data length for the PROD work file is 28. For the
DSN_DIM_TBLX(02) workfile, the maximum data length is the maximum
length of LID, which is 4, plus the maximum length of COUNTRY, which is
36. Therefore, the maximum data length for the DSN_DIM_TBLX(02) work
file is 40.

For PROD, C = (87) * (4 + 28) = 2784 bytes. For DSN_DIM_TBLX(02), C =
(2800) * (4 + 40) = 123200 bytes.
The average of these two estimated values for C is approximately 62 KB.
Because the number of rows in each work file can vary depending on the
selection criteria in the predicate, the value of C should be rounded up to the
nearest multiple of 100 KB. Therefore C = 100 KB.

4. Multiply (A) * (B) * (C) to determine the size of the pool in MB.
The size of the pool is determined by multiplying (12) * (2) * (100KB) = 2.4 MB.

Interpreting data prefetch
Prefetch is a mechanism for reading a set of pages, usually 32, into the buffer pool
with only one asynchronous I/O operation. Prefetch can allow substantial savings
in both processor cycles and I/O costs. To achieve those savings, monitor the use
of prefetch.

A plan table can indicate the use of three kinds of prefetch:
v “Sequential prefetch (PREFETCH=S)”
v “Dynamic prefetch (PREFETCH=D)” on page 831
v “List prefetch (PREFETCH=L)” on page 831

Additionally, you can choose not to use prefetch.

If DB2 does not choose prefetch at bind time, it can sometimes use it at execution
time nevertheless. The method is described in “Sequential detection at execution
time” on page 832.

Sequential prefetch (PREFETCH=S)
Sequential prefetch reads a sequential set of pages. The maximum number of pages
read by a request issued from your application program is determined by the size
of the buffer pool used. For each buffer pool size (4 KB, 8 KB, 16 KB, and 32 KB),
Table 121 shows the number pages read by prefetch for each asynchronous I/O.

Table 121. The number of pages read by prefetch, by buffer pool size

Buffer pool size Number of buffers
Pages read by prefetch (for each
asynchronous I/O)

4 KB <=223 buffers 8 pages

224-999 buffers 16 pages

1000+ buffers 32 pages

830 Application Programming and SQL Guide

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|

|



Table 121. The number of pages read by prefetch, by buffer pool size (continued)

Buffer pool size Number of buffers
Pages read by prefetch (for each
asynchronous I/O)

8 KB <=112 buffers 4 pages

113-499 buffers 8 pages

500+ buffers 16 pages

16 KB <=56 buffers 2 pages

57-249 buffers 4 pages

250+ buffers 8 pages

32 KB <=16 buffers 0 pages (prefetch disabled)

17-99 buffers 2 pages

100+ buffers 4 pages

For certain utilities (LOAD, REORG, RECOVER), the prefetch quantity can be
twice as much.

When sequential prefetch is used: Sequential prefetch is generally used for a table
space scan.

For an index scan that accesses eight or more consecutive data pages, DB2 requests
sequential prefetch at bind time. The index must have a cluster ratio of 80% or
higher. Both data pages and index pages are prefetched.

Dynamic prefetch (PREFETCH=D)
Dynamic prefetch can reduce paging and improve performance over sequential
prefetch for some data access that involves data that is not on consecutive pages.
When DB2 expects that dynamic prefetch will be used, DB2 sets PREFETCH=D. At
runtime, dynamic prefetch might or might not actually be used. However, DB2
expects dynamic prefetch and optimizes for that behavior.

When dynamic prefetch is used: Dynamic prefetch is used in prefetch situations
when the pages that DB2 will access are distributed in a nonconsecutive manner. If
the pages are distributed in a sufficiently consecutive manner, sequential prefetch
is used instead.

List prefetch (PREFETCH=L)
List prefetch reads a set of data pages determined by a list of RIDs taken from an
index. The data pages need not be contiguous. The maximum number of pages
that can be retrieved in a single list prefetch is 32 (64 for utilities).

List prefetch can be used in conjunction with either single or multiple index access.

The access method
List prefetch uses the following three steps:
1. RID retrieval: A list of RIDs for needed data pages is found by matching index

scans of one or more indexes.
2. RID sort: The list of RIDs is sorted in ascending order by page number.
3. Data retrieval: The needed data pages are prefetched in order using the sorted

RID list.

Chapter 27. Using EXPLAIN to improve SQL performance 831

|

|
|
|
|
|

|
|
|
|



List prefetch does not preserve the data ordering given by the index. Because the
RIDs are sorted in page number order before accessing the data, the data is not
retrieved in order by any column. If the data must be ordered for an ORDER BY
clause or any other reason, it requires an additional sort.

In a hybrid join, if the index is highly clustered, the page numbers might not be
sorted before accessing the data.

List prefetch can be used with most matching predicates for an index scan. IN-list
predicates are the exception; they cannot be the matching predicates when list
prefetch is used.

When list prefetch is used
List prefetch is used:
v Usually with a single index that has a cluster ratio lower than 80%
v Sometimes on indexes with a high cluster ratio, if the estimated amount of data

to be accessed is too small to make sequential prefetch efficient, but large
enough to require more than one regular read

v Always to access data by multiple index access
v Always to access data from the inner table during a hybrid join
v Usually for updatable cursors when the index contains columns that might be

updated.

Bind time and execution time thresholds
DB2 does not consider list prefetch if the estimated number of RIDs to be
processed would take more than 50% of the RID pool when the query is executed.
You can change the size of the RID pool in the field RID POOL SIZE on
installation panel DSNTIPC. The maximum size of a RID pool is 10 000 MB. The
maximum size of a single RID list is approximately 26 million RIDs. For
information about calculating RID pool size, see Part 5 (Volume 2) of DB2
Administration Guide.

During execution, DB2 ends list prefetching if more than 25% of the rows in the
table (with a minimum of 6524) must be accessed. Record IFCID 0125 in the
performance trace, mapped by macro DSNDQW01, indicates whether list prefetch
ended.

When list prefetch ends, the query continues processing by a method that depends
on the current access path.
v For access through a single index or through the union of RID lists from two

indexes, processing continues by a table space scan.
v For index access before forming an intersection of RID lists, processing continues

with the next step of multiple index access. If no step remains and no RID list
has been accumulated, processing continues by a table space scan.

Sequential detection at execution time
If DB2 does not choose prefetch at bind time, it can sometimes use prefetch at
execution time nevertheless. The method is called sequential detection.

When sequential detection is used
DB2 can use sequential detection for both index leaf pages and data pages. It is
most commonly used on the inner table of a nested loop join, if the data is
accessed sequentially.

832 Application Programming and SQL Guide

|
|

|
|

#



If a table is accessed repeatedly using the same statement (for example, DELETE in
a do-while loop), the data or index leaf pages of the table can be accessed
sequentially. This is common in a batch processing environment. Sequential
detection can then be used if access is through:
v SELECT or FETCH statements
v UPDATE and DELETE statements
v INSERT statements when existing data pages are accessed sequentially

DB2 can use sequential detection if it did not choose sequential prefetch at bind
time because of an inaccurate estimate of the number of pages to be accessed.

Sequential detection is not used for an SQL statement that is subject to referential
constraints.

How to tell whether sequential detection was used
A plan table does not indicate sequential detection, which is not determined until
run time. You can determine whether sequential detection was used from record
IFCID 0003 in the accounting trace or record IFCID 0006 in the performance trace.

How to tell if sequential detection might be used
The pattern of accessing a page is tracked when the application scans DB2 data
through an index. Tracking is done to detect situations where the access pattern
that develops is sequential or nearly sequential.

The most recent eight pages are tracked. A page is considered page-sequential if it
is within P/2 advancing pages of the current page, where P is the prefetch
quantity. P is usually 32.

If a page is page-sequential, DB2 determines further if data access is sequential or
nearly sequential. Data access is declared sequential if more than 4 out of the last
eight pages are page-sequential; this is also true for index-only access. The tracking
is continuous, allowing access to slip into and out of data access sequential.

When data access is first declared sequential, which is called initial data access
sequential, three page ranges are calculated as follows:
v Let A be the page being requested. RUN1 is defined as the page range of length

P/2 pages starting at A.
v Let B be page A + P/2. RUN2 is defined as the page range of length P/2 pages

starting at B.
v Let C be page B + P/2. RUN3 is defined as the page range of length P pages

starting at C.

For example, assume that page A is 10. Figure 236 illustrates the page ranges that
DB2 calculates.

For initial data access sequential, prefetch is requested starting at page A for P
pages (RUN1 and RUN2). The prefetch quantity is always P pages.

A B C

RUN1 RUN2 RUN3

Page #

P=32 pages

10 26 42

16 16 32

Figure 236. Initial page ranges to determine when to use prefetch

Chapter 27. Using EXPLAIN to improve SQL performance 833



For subsequent page requests where the page is 1) page sequential and 2) data
access sequential is still in effect, prefetch is requested as follows:
v If the desired page is in RUN1, no prefetch is triggered because it was already

triggered when data access sequential was first declared.
v If the desired page is in RUN2, prefetch for RUN3 is triggered and RUN2

becomes RUN1, RUN3 becomes RUN2, and RUN3 becomes the page range
starting at C+P for a length of P pages.

If a data access pattern develops such that data access sequential is no longer in
effect and, thereafter, a new pattern develops that is sequential, then initial data
access sequential is declared again and handled accordingly.

Because, at bind time, the number of pages to be accessed can only be estimated,
sequential detection acts as a safety net and is employed when the data is being
accessed sequentially.

In extreme situations, when certain buffer pool thresholds are reached, sequential
prefetch can be disabled. For a description of buffer pools and thresholds, see Part
5 (Volume 2) of DB2 Administration Guide.

Determining sort activity
DB2 can use two general types of sorts that DB2 can use when accessing data. One
is a sort of data rows; the other is a sort of row identifiers (RIDs) in a RID list.

Sorts of data
After you run EXPLAIN, DB2 sorts are indicated in PLAN_TABLE. The sorts can
be either sorts of the composite table or the new table. If a single row of
PLAN_TABLE has a 'Y' in more than one of the sort composite columns, then one
sort accomplishes two things. (DB2 will not perform two sorts when two 'Y's are in
the same row.) For instance, if both SORTC_ORDERBY and SORTC_UNIQ are 'Y'
in one row of PLAN_TABLE, then a single sort puts the rows in order and
removes any duplicate rows as well.

The only reason DB2 sorts the new table is for join processing, which is indicated
by SORTN_JOIN.

Sorts for group by and order by
These sorts are indicated by SORTC_ORDERBY, and SORTC_GROUPBY in
PLAN_TABLE. If there is both a GROUP BY clause and an ORDER BY clause, and
if every item in the ORDER-BY list is in the GROUP-BY list, then only one sort is
performed, which is marked as SORTC_ORDERBY.

The performance of the sort by the GROUP BY clause is improved when the query
accesses a single table and when the GROUP BY column has no index.

Sorts to remove duplicates
This type of sort is used to process a query with SELECT DISTINCT, with a set
function such as COUNT(DISTINCT COL1), or to remove duplicates in UNION
processing. It is indicated by SORTC_UNIQ in PLAN_TABLE.

Sorts used in join processing
Before joining two tables, it is often necessary to first sort either one or both of
them. For hybrid join (METHOD 4) and nested loop join (METHOD 1), the
composite table can be sorted to make the join more efficient. For merge join

834 Application Programming and SQL Guide



(METHOD 2), both the composite table and new table need to be sorted unless an
index is used for accessing these tables that gives the correct order already. The
sorts needed for join processing are indicated by SORTN_JOIN and SORTC_JOIN
in the PLAN_TABLE.

Sorts needed for subquery processing
When a noncorrelated IN or NOT IN subquery is present in the query, the results
of the subquery are sorted and put into a work file for later reference by the parent
query. The results of the subquery are sorted because this allows the parent query
to be more efficient when processing the IN or NOT IN predicate. Duplicates are
not needed in the work file, and are removed. Noncorrelated subqueries used with
=ANY or =ALL, or NOT=ANY or NOT=ALL also need the same type of sort as IN
or NOT IN subqueries. When a sort for a noncorrelated subquery is performed,
you see both SORTC_ORDERBY and SORTC_UNIQUE in PLAN_TABLE. This is
because DB2 removes the duplicates and performs the sort.

SORTN_GROUPBY, SORTN_ORDERBY, and SORTN_UNIQ are not currently used
by DB2.

Sorts of RIDs
To perform list prefetch, DB2 sorts RIDs into ascending page number order. This
sort is very fast and is done totally in memory. A RID sort is usually not indicated
in the PLAN_TABLE, but a RID sort normally is performed whenever list prefetch
is used. The only exception to this rule is when a hybrid join is performed and a
single, highly clustered index is used on the inner table. In this case SORTN_JOIN
is 'N', indicating that the RID list for the inner table was not sorted.

The effect of sorts on OPEN CURSOR
The type of sort processing required by the cursor affects the amount of time it can
take for DB2 to process the OPEN CURSOR statement. This section outlines the
effect of sorts and parallelism on OPEN CURSOR.

Without parallelism:

v If no sorts are required, then OPEN CURSOR does not access any data. It is at
the first fetch that data is returned.

v If a sort is required, then the OPEN CURSOR causes the materialized result table
to be produced. Control returns to the application after the result table is
materialized. If a cursor that requires a sort is closed and reopened, the sort is
performed again.

v If there is a RID sort, but no data sort, then it is not until the first row is fetched
that the RID list is built from the index and the first data record is returned.
Subsequent fetches access the RID pool to access the next data record.

With parallelism:

v At OPEN CURSOR, parallelism is asynchronously started, regardless of whether
a sort is required. Control returns to the application immediately after the
parallelism work is started.

v If there is a RID sort, but no data sort, then parallelism is not started until the
first fetch. This works the same way as with no parallelism.

Chapter 27. Using EXPLAIN to improve SQL performance 835



Processing for views and nested table expressions
This section describes how DB2 processes views and nested table expressions. A
nested table expression (which is called table expression in this description) is the
specification of a subquery in the FROM clause of an SQL SELECT statement. The
processing of table expressions is similar to a view. Two methods are used to
satisfy your queries that reference views or table expressions:
v “Merge”
v “Materialization”

You can determine the methods that are used by executing EXPLAIN for the
statement that contains the view or nested table expression. In addition, you can
use EXPLAIN to determine when UNION operators are used and how DB2 might
eliminate unnecessary subselects to improve the performance of a query.

Merge
The merge process is more efficient than materialization, as described in
“Performance of merge versus materialization” on page 842. In the merge process,
the statement that references the view or table expression is combined with the
fullselect that defined the view or table expression. This combination creates a
logically equivalent statement. This equivalent statement is executed against the
database.

Example: Consider the following statements, one of which defines a view, the
other of which references the view:
View-defining statement: View referencing statement:

CREATE VIEW VIEW1 (VC1,VC21,VC32) AS SELECT VC1,VC21
SELECT C1,C2,C3 FROM T1 FROM VIEW1

WHERE C1 > C3; WHERE VC1 IN (A,B,C);

The fullselect of the view-defining statement can be merged with the
view-referencing statement to yield the following logically equivalent statement:
Merged statement:

SELECT C1,C2 FROM T1
WHERE C1 > C3 AND C1 IN (A,B,C);

Example: The following statements show another example of when a view and
table expression can be merged:
SELECT * FROM V1 X

LEFT JOIN
(SELECT * FROM T2) Y ON X.C1=Y.C1

LEFT JOIN T3 Z ON X.C1=Z.C1;

Merged statement:

SELECT * FROM V1 X
LEFT JOIN

T2 ON X.C1 = T2.C1
LEFT JOIN T3 Z ON X.C1 = Z.C1;

Materialization
Views and table expressions cannot always be merged.

Example: Look at the following statements:

836 Application Programming and SQL Guide



View defining statement: View referencing statement:

CREATE VIEW VIEW1 (VC1,VC2) AS SELECT MAX(VC1)
SELECT SUM(C1),C2 FROM T1 FROM VIEW1;

GROUP BY C2;

Column VC1 occurs as the argument of a aggregate function in the view
referencing statement. The values of VC1, as defined by the view-defining
fullselect, are the result of applying the aggregate function SUM(C1) to groups
after grouping the base table T1 by column C2. No equivalent single SQL SELECT
statement can be executed against the base table T1 to achieve the intended result.
There is no way to specify that aggregate functions should be applied successively.

Two steps of materialization
In the previous example, DB2 performs materialization of the view or table
expression, which is a two step process.
1. The fullselect that defines the view or table expression is executed against the

database, and the results are placed in a temporary copy of a result table.
2. The statement that references the view or table expression is then executed

against the temporary copy of the result table to obtain the intended result.

Whether materialization is needed depends upon the attributes of the referencing
statement, or logically equivalent referencing statement from a prior merge, and
the attributes of the fullselect that defines the view or table expression.

When views or table expressions are materialized
In general, DB2 uses materialization to satisfy a reference to a view or table
expression when there is aggregate processing (grouping, aggregate functions,
distinct), indicated by the defining fullselect, in conjunction with either aggregate
processing indicated by the statement referencing the view or table expression, or
by the view or table expression participating in a join. For views and table
expressions that are defined with UNION or UNION ALL, DB2 can often
distribute aggregate processing, joins, and qualified predicates to avoid
materialization. For more information, see “Using EXPLAIN to determine UNION
activity and query rewrite” on page 840.

Table 122 indicates some cases in which materialization occurs. DB2 can also use
materialization in statements that contain multiple outer joins, outer joins that
combine with inner joins, or merges that cause a join of greater than 15 tables.

Table 122. Cases when DB2 performs view or table expression materialization. The "X" indicates a case of
materialization. Notes follow the table.

SELECT FROM view or
table expression uses...1

View definition or table expression uses...2

GROUP BY DISTINCT
Aggregate
function

Aggregate
function

DISTINCT UNION
UNION
ALL(4)

Joins (3) X X X X X

GROUP BY X X X X X

DISTINCT X X X

Aggregate function X X X X X X

Aggregate function
DISTINCT

X X X X X

Chapter 27. Using EXPLAIN to improve SQL performance 837



Table 122. Cases when DB2 performs view or table expression materialization (continued). The "X" indicates a case
of materialization. Notes follow the table.

SELECT FROM view or
table expression uses...1

View definition or table expression uses...2

GROUP BY DISTINCT
Aggregate
function

Aggregate
function

DISTINCT UNION
UNION
ALL(4)

SELECT subset of view
or table expression
columns

X X

Notes to Table 122 on page 837:

1. If the view is referenced as the target of an INSERT, UPDATE, or DELETE, then
view merge is used to satisfy the view reference. Only updatable views can be
the target in these statements. See Chapter 5 of DB2 SQL Reference for
information about which views are read-only (not updatable).
An SQL statement can reference a particular view multiple times where some
of the references can be merged and some must be materialized.

2. If a SELECT list contains a host variable in a table expression, then
materialization occurs. For example:
SELECT C1 FROM

(SELECT :HV1 AS C1 FROM T1) X;

If a view or nested table expression is defined to contain a user-defined
function, and if that user-defined function is defined as NOT DETERMINISTIC
or EXTERNAL ACTION, then the view or nested table expression is always
materialized.

3. Additional details about materialization with outer joins:
v If a WHERE clause exists in a view or table expression, and it does not

contain a column, materialization occurs.
Example:
SELECT X.C1 FROM

(SELECT C1 FROM T1
WHERE 1=1) X LEFT JOIN T2 Y

ON X.C1=Y.C1;

v If the outer join is a full outer join and the SELECT list of the view or nested
table expression does not contain a standalone column for the column that is
used in the outer join ON clause, then materialization occurs.
Example:
SELECT X.C1 FROM

(SELECT C1+10 AS C2 FROM T1) X FULL JOIN T2 Y
ON X.C2=Y.C2;

v If there is no column in a SELECT list of a view or nested table expression,
materialization occurs.
Example:
SELECT X.C1 FROM

(SELECT 1+2+:HV1. AS C1 FROM T1) X LEFT JOIN T2 Y
ON X.C1=Y.C1;

v If the SELECT list of a view or nested table expression contains a CASE
expression, and the result of the CASE expression is referenced in the outer
query block, then materialization occurs.
Example:

838 Application Programming and SQL Guide

#
#
#

#



SELECT X.C1 FROM
T1 X LEFT JOIN
(SELECT CASE C2 WHEN 5 THEN 10 ELSE 20 END AS YC1 FROM T2) Y

ON X.C1 = Y.YC1;

4. DB2 cannot avoid materialization for UNION ALL in all cases. Some of the
situations in which materialization occurs includes:
v When the view is the operand in an outer join for which nulls are used for

non-matching values, materialization occurs. This situation happens when
the view is either operand in a full outer join, the right operand in a left
outer join, or the left operand in a right outer join.

v If the number of tables would exceed 225 after distribution, then distribution
will not occur, and the result will be materialized.

Using EXPLAIN to determine when materialization occurs
For each reference to a view or table expression that is materialized, rows
describing the access path for both steps of the materialization process appear in
the PLAN_TABLE. These rows describe the access path used to formulate the
temporary result indicated by the view's defining fullselect, and they describe the
access to the temporary result as indicated by the referencing statement. The
defining fullselect can also refer to views or table expressions that need to be
materialized.

When DB2 chooses materialization, TNAME contains the name of the view or table
expression, and TABLE_TYPE contains a W. A value of Q in TABLE_TYPE for the
name of a view or nested table expression indicates that the materialization was
virtual and not actual. (Materialization can be virtual when the view or nested
table expression definition contains a UNION ALL that is not distributed.) When
DB2 chooses merge, EXPLAIN data for the merged statement appears in
PLAN_TABLE; only the names of the base tables on which the view or table
expression is defined appear.

Example: Consider the following statements, which define a view and reference
the view:

View defining statement:

CREATE VIEW V1DIS (SALARY, WORKDEPT) as
(SELECT DISTINCT SALARY, WORKDEPT FROM DSN8810.EMP)

View referencing statement:

SELECT * FROM DSN8810.DEPT
WHERE DEPTNO IN (SELECT WORKDEPT FROM V1DIS)

Table 123 shows a subset of columns in a plan table for the query.

Table 123. Plan table output for an example with view materialization

QBLOCKNO PLANNO
QBLOCK_
TYPE TNAME

TABLE_
TYPE METHOD

1 1 SELECT DEPT T 0

2 1 NOCOSUB V1DIS W 0

2 2 NOCOSUB ? 3

3 1 NOCOSUB EMP T 0

3 2 NOCOSUB ? 3

Notice how TNAME contains the name of the view and TABLE_TYPE contains W

Chapter 27. Using EXPLAIN to improve SQL performance 839

#
#
#
#

|



to indicate that DB2 chooses materialization for the reference to the view because
of the use of SELECT DISTINCT in the view definition.

Example: Consider the following statements, which define a view and reference
the view:

View defining statement:

CREATE VIEW V1NODIS (SALARY, WORKDEPT) as
(SELECT SALARY, WORKDEPT FROM DSN8810.EMP)

View referencing statement:

SELECT * FROM DSN8810.DEPT
WHERE DEPTNO IN (SELECT WORKDEPT FROM V1NODIS)

If the VIEW was defined without DISTINCT, DB2 would choose merge instead of
materialization. In the sample output, the name of the view does not appear in the
plan table, but the table name on which the view is based does appear.

Table 124 shows a sample plan table for the query.

Table 124. Plan table output for an example with view merge

QBLOCKNO PLANNO
QBLOCK_
TYPE TNAME

TABLE_
TYPE METHOD

1 1 SELECT DEPT T 0

2 1 NOCOSUB EMP T 0

2 2 NOCOSUB ? 3

For an example of when a view definition contains a UNION ALL and DB2 can
distribute joins and aggregations and avoid materialization, see “Using EXPLAIN
to determine UNION activity and query rewrite.” When DB2 avoids
materialization in such cases, TABLE_TYPE contains a Q to indicate that DB2 uses
an intermediate result that is not materialized, and TNAME shows the name of
this intermediate result as DSNWFQB(xx), where xx is the number of the query
block that produced the result.

Using EXPLAIN to determine UNION activity and query rewrite
For each reference to a view or table expression that is defined with UNION or
UNION ALL operators, DB2 tries to rewrite the query into a logically equivalent
statement with improved performance by:
v Distributing qualified predicates, joins, and aggregations across the subselects of

UNION ALL. Such distribution helps to avoid materialization. No distribution is
performed for UNION.

v Eliminating unnecessary subselects of the view or table expression. For DB2 to
eliminate subselects, the referencing query and the view or table definition must
have predicates that are based on common columns.

The QBLOCK_TYPE column in the plan table indicates union activity. For a
UNION ALL, the column contains 'UNIONA'. For UNION, the column contains
'UNION'. When QBLOCK_TYPE='UNION', the METHOD column on the same row
is set to 3 and the SORTC_UNIQ column is set to 'Y' to indicate that a sort is
necessary to remove duplicates. As with other views and table expressions, the
plan table also shows when DB2 uses materialization instead of merge.

840 Application Programming and SQL Guide



Example: Consider the following statements, which define a view, reference the
view, and show how DB2 rewrites the referencing statement:

View defining statement: View is created on three tables that contain weekly data

CREATE VIEW V1 (CUSTNO, CHARGES, DATE) as
SELECT CUSTNO, CHARGES, DATE
FROM WEEK1
WHERE DATE BETWEEN ’01/01/2000’ And ’01/07/2000’

UNION ALL
SELECT CUSTNO, CHARGES, DATE
FROM WEEK2
WHERE DATE BETWEEN ’01/08/2000’ And ’01/14/2000’

UNION ALL
SELECT CUSTNO, CHARGES, DATE
FROM WEEK3
WHERE DATE BETWEEN ’01/15/2000’ And ’01/21/2000’;

View referencing statement: For each customer in California, find the average
charges during the first and third Friday of January 2000

SELECT V1.CUSTNO, AVG(V1.CHARGES)
FROM CUST, V1
WHERE CUST.CUSTNO=V1.CUSTNO

AND CUST.STATE=’CA’
AND DATE IN (’01/07/2000’,’01/21/2000’)

GROUP BY V1.CUSTNO;

Rewritten statement (assuming that CHARGES is defined as NOT NULL):

SELECT CUSTNO_U, SUM(SUM_U)/SUM(CNT_U)
FROM
( SELECT WEEK1.CUSTNO, SUM(CHARGES), COUNT(CHARGES)

FROM CUST, WEEK1
Where CUST.CUSTNO=WEEK1.CUSTNO AND CUST.STATE=’CA’

AND DATE BETWEEN ’01/01/2000’ And ’01/07/2000’
AND DATE IN (’01/07/2000’,’01/21/2000’)

GROUP BY WEEK1.CUSTNO
UNION ALL
SELECT WEEK3.CUSNTO, SUM(CHARGES), COUNT(CHARGES)

FROM CUST,WEEK3
WHERE CUST.CUSTNO=WEEK3 AND CUST.STATE=’CA’

AND DATE BETWEEN ’01/15/2000’ And ’01/21/2000’
AND DATE IN (’01/07/2000’,’01/21/2000’)

GROUP BY WEEK3.CUSTNO
) AS X(CUSTNO_U,SUM_U,CNT_U)

GROUP BY CUSNTO_U;

Table 125 shows a subset of columns in a plan table for the query.

Table 125. Plan table output for an example with a view with UNION ALLs

QBLOCKNO PLANNO TNAME TABLE_TYPE METHOD
QBLOCK_
TYPE

PARENT_
QBLOCKNO

1 1 DSNWFQB(02) Q 0 0

1 2 ? 3 0

2 1 ? 0 UNIONA 1

3 1 CUST T 0 2

3 2 WEEK1 T 1 2

4 1 CUST T 0 2

4 2 WEEK3 T 2 2

Notice how DB2 eliminates the second subselect of the view definition from the
rewritten query and how the plan table indicates this removal by showing a
UNION ALL for only the first and third subselect in the view definition. The Q in
the TABLE_TYPE column indicates that DB2 does not materialize the view.

Chapter 27. Using EXPLAIN to improve SQL performance 841



Performance of merge versus materialization
Merge performs better than materialization. For materialization, DB2 uses a table
space scan to access the materialized temporary result. DB2 materializes a view or
table expression only if it cannot merge.

Materialization is a two-step process with the first step resulting in the formation
of a temporary result. The smaller the temporary result, the more efficient is the
second step. To reduce the size of the temporary result, DB2 attempts to evaluate
certain predicates from the WHERE clause of the referencing statement at the first
step of the process rather than at the second step. Only certain types of predicates
qualify. First, the predicate must be a simple Boolean term predicate. Second, it
must have one of the forms shown in Table 126.

Table 126. Predicate candidates for first-step evaluation

Predicate Example

COL op literal V1.C1 > hv1

COL IS (NOT) NULL V1.C1 IS NOT NULL

COL (NOT) BETWEEN literal AND literal V1.C1 BETWEEN 1 AND 10

COL (NOT) LIKE constant (ESCAPE constant) V1.C2 LIKE 'p\%%' ESCAPE '\'

COL IN (list) VI.C2 IN (a,b,c)

Note: Where "op" is =, <>, >, <, <=, or >=, and literal is either a host variable, constant, or
special register. The literals in the BETWEEN predicate need not be identical.

Implied predicates generated through predicate transitive closure are also
considered for first step evaluation.

Estimating a statement's cost
You can use EXPLAIN to populate a statement table,
owner.DSN_STATEMNT_TABLE, at the same time as your PLAN_TABLE is being
populated. DB2 provides cost estimates, in service units and in milliseconds, for
SELECT, INSERT, UPDATE, and DELETE statements, both static and dynamic. The
estimates do not take into account several factors, including cost adjustments that
are caused by parallel processing, or the use of triggers or user-defined functions.

Use the information provided in the statement table to:
v Help you determine if a statement is not going to perform within range of your

service-level agreements and to tune accordingly.
DB2 puts its cost estimate into one of two cost categories: category A or category
B. Estimates that go into cost category A are the ones for which DB2 has
adequate information to make an estimate. That estimate is not likely to be 100%
accurate, but is likely to be more accurate than any estimate that is in cost
category B.
DB2 puts estimates into cost category B when it is forced to use default values
for its estimates, such as when no statistics are available, or because host
variables are used in a query. See the description of the REASON column in
Table 127 on page 844 for more information about how DB2 determines into
which cost category an estimate goes.

v Give a system programmer a basis for entering service-unit values by which to
govern dynamic statements.
Information about using predictive governing is in Part 5 (Volume 2) of DB2
Administration Guide.

842 Application Programming and SQL Guide

||



This section describes the following tasks to obtain and use cost estimate
information from EXPLAIN:
1. “Creating a statement table”
2. “Populating and maintaining a statement table” on page 845
3. “Retrieving rows from a statement table” on page 845
4. “The implications of cost categories” on page 846

For more information about how to change applications to handle the SQLCODES
that are associated with predictive governing, see “Writing an application to
handle predictive governing” on page 604.

Creating a statement table
To collect information about the estimated cost of a statement, create a table called
DSN_STATEMNT_TABLE to hold the results of EXPLAIN. A copy of the
statements that are needed to create the table are in the DB2 sample library, under
the member name DSNTESC.

Important:: If mixed data strings are allowed on a DB2 subsystem, EXPLAIN
tables must be created with CCSID UNICODE. This includes, but is
not limited to, mixed data strings that are used for tokens, SQL
statements, application names, program names, correlation names, and
collection IDs.

Important:: EXPLAIN tables in any pre-Version 8 format or EXPLAIN tables that
are in EBCDIC encoding are deprecated.

Figure 237 shows the current format of a statement table.

Your statement table can use an older format in which the STMT_ENCODE
column does not exist, PROGNAME has a data type of CHAR(8), and COLLID has
a data type of CHAR(18). However, use the most current format because it gives
you the most information. You can alter a statement table in the older format to a
statement table in the current format.

Table 127 on page 844 shows the content of each column.

CREATE TABLE DSN_STATEMNT_TABLE
( QUERYNO INTEGER NOT NULL WITH DEFAULT,

APPLNAME CHAR(8) NOT NULL WITH DEFAULT,
PROGNAME VARCHAR(128) NOT NULL WITH DEFAULT,
COLLID VARCHAR(128) NOT NULL WITH DEFAULT,
GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,
STMT_TYPE CHAR(6) NOT NULL WITH DEFAULT,
COST_CATEGORY CHAR(1) NOT NULL WITH DEFAULT,
PROCMS INTEGER NOT NULL WITH DEFAULT,
PROCSU INTEGER NOT NULL WITH DEFAULT,
REASON VARCHAR(254) NOT NULL WITH DEFAULT
STMT_ENCODE CHAR(1) NOT NULL WITH DEFAULT);

Figure 237. Current format of DSN_STATEMNT_TABLE

Chapter 27. Using EXPLAIN to improve SQL performance 843

|
|

|

#
#
#
#
#

#
#

|
|
|
|
|



Table 127. Descriptions of columns in DSN_STATEMNT_TABLE

Column Name Description

QUERYNO A number that identifies the statement being explained. See the description of the
QUERYNO column in Table 101 on page 794 for more information. If QUERYNO is
not unique, the value of EXPLAIN_TIME is unique.

APPLNAME The name of the application plan for the row, or blank. See the description of the
APPLNAME column in Table 101 on page 794 for more information.

PROGNAME The name of the program or package containing the statement being explained, or
blank. See the description of the PROGNAME column in Table 101 on page 794 for
more information.

COLLID The collection ID for the package. Applies only to an embedded EXPLAIN statement
executed from a package or to a statement that is explained when binding a package.
Blank if not applicable. The value DSNDYNAMICSQLCACHE indicates that the row
is for a cached statement.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN, or blank. See the description
of the GROUP_MEMBER column in Table 101 on page 794 for more information.

EXPLAIN_TIME The time at which the statement is processed. This time is the same as the
BIND_TIME column in PLAN_TABLE.

STMT_TYPE The type of statement being explained. Possible values are:

SELECT SELECT

INSERT INSERT

UPDATE UPDATE

DELETE DELETE

SELUPD SELECT with FOR UPDATE OF

DELCUR DELETE WHERE CURRENT OF CURSOR

UPDCUR UPDATE WHERE CURRENT OF CURSOR

COST_CATEGORY Indicates if DB2 was forced to use default values when making its estimates. Possible
values:

A Indicates that DB2 had enough information to make a cost estimate without
using default values.

B Indicates that some condition exists for which DB2 was forced to use default
values. See the values in REASON to determine why DB2 was unable to put
this estimate in cost category A.

PROCMS The estimated processor cost, in milliseconds, for the SQL statement. The estimate is
rounded up to the next integer value. The maximum value for this cost is 2147483647
milliseconds, which is equivalent to approximately 24.8 days. If the estimated value
exceeds this maximum, the maximum value is reported.

PROCSU The estimated processor cost, in service units, for the SQL statement. The estimate is
rounded up to the next integer value. The maximum value for this cost is 2147483647
service units. If the estimated value exceeds this maximum, the maximum value is
reported.

844 Application Programming and SQL Guide

||
|
|
|



Table 127. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column Name Description

REASON A string that indicates the reasons for putting an estimate into cost category B.

HAVING CLAUSE A subselect in the SQL statement contains a
HAVING clause.

HOST VARIABLES The statement uses host variables, parameter
markers, or special registers.

REFERENTIAL CONSTRAINTS Referential constraints of the type CASCADE or
SET NULL exist on the target table of a DELETE
statement.

TABLE CARDINALITY The cardinality statistics are missing for one or
more of the tables that are used in the statement.
Or, the statement required the materialization of
views or nested table expressions.

TRIGGERS Triggers are defined on the target table of an
INSERT, UPDATE, or DELETE statement.

UDF The statement uses user-defined functions.

STMT_ENCODE Encoding scheme of the statement. If the statement repesents a single CCSID set, the
possible values are:
A ASCII
E EBCDIC
U Unicode

If the statement has multiple CCSID sets, the value is M.

Populating and maintaining a statement table
You populate a statement table at the same time as you populate the
corresponding plan table. For more information, see “Populating and maintaining a
plan table” on page 798.

Just as with the plan table, DB2 just adds rows to the statement table; it does not
automatically delete rows. INSERT triggers are not activated unless you insert
rows yourself using and SQL INSERT statement.

To clear the table of obsolete rows, use DELETE, just as you would for deleting
rows from any table. You can also use DROP TABLE to drop a statement table
completely.

Retrieving rows from a statement table
To retrieve all rows in a statement table, you can use a query like the following
statement, which retrieves all rows about the statement that is represented by
query number 13:
SELECT * FROM JOE.DSN_STATEMNT_TABLE

WHERE QUERYNO = 13;

The QUERYNO, APPLNAME, PROGNAME, COLLID, and EXPLAIN_TIME
columns contain the same values as corresponding columns of PLAN_TABLE for a
given plan. You can use these columns to join the plan table and statement table:
SELECT A.*, PROCMS, COST_CATEGORY
FROM JOE.PLAN_TABLE A, JOE.DSN_STATEMNT_TABLE B

WHERE A.APPLNAME = ’APPL1’ AND
A.APPLNAME = B.APPLNAME AND

Chapter 27. Using EXPLAIN to improve SQL performance 845

|
|

|
|
||
||
||

|



A.QUERYNO = B.QUERYNO AND A.PROGNAME = B.PROGNAME AND
A.COLLID = B.COLLID AND
A.BIND_TIME = B.EXPLAIN_TIME

ORDER BY A.QUERYNO, A.QBLOCKNO, A.PLANNO, A.MIXOPSEQ;

The implications of cost categories
Cost categories are DB2's way of differentiating estimates for which adequate
information is available from those for which it is not. You probably wouldn't want
to spend a lot of time tuning a query based on estimates that are returned in cost
category B, because the actual cost could be radically different based on such
things as what value is in a host variable, or how many levels of nested triggers
and user-defined functions exist.

Similarly, if system administrators use these estimates as input into the resource
limit specification table for governing (either predictive or reactive), they probably
would want to give much greater latitude for statements in cost category B than
for those in cost category A.

Because of the uncertainty involved, category B statements are also good
candidates for reactive governing.

What goes into cost category B? DB2 puts a statement's estimate into cost category
B when any of the following conditions exist:
v The statement has UDFs.
v Triggers are defined for the target table:

– The statement is INSERT, and insert triggers are defined on the target table.
– The statement is UPDATE, and update triggers are defined on the target

table.
– The statement is DELETE, and delete triggers are defined on the target table.

v The target table of a delete statement has referential constraints defined on it as
the parent table, and the delete rules are either CASCADE or SET NULL.

v The WHERE clause predicate has one of the following forms:
– COL op literal, and the literal is a host variable, parameter marker, or special

register. The operator can be >, >=, <, <=, LIKE, or NOT LIKE.
– COL BETWEEN literal AND literal where either literal is a host variable,

parameter marker, or special register.
– LIKE with an escape clause that contains a host variable.

v The cardinality statistics are missing for one or more tables that are used in the
statement.

v A subselect in the SQL statement contains a HAVING clause.

What goes into cost category A? DB2 puts everything that doesn't fall into
category B into category A.

846 Application Programming and SQL Guide

#



Chapter 28. Parallel operations and query performance

When DB2 plans to access data from a table or index in a partitioned table space, it
can initiate multiple parallel operations. The response time for data or
processor-intensive queries can be significantly reduced.

Query I/O parallelism manages concurrent I/O requests for a single query,
fetching pages into the buffer pool in parallel. This processing can significantly
improve the performance of I/O-bound queries. I/O parallelism is used only when
one of the other parallelism modes cannot be used.

Query CP parallelism enables true multitasking within a query. A large query can
be broken into multiple smaller queries. These smaller queries run simultaneously
on multiple processors accessing data in parallel. This reduces the elapsed time for
a query.

To expand even farther the processing capacity available for processor-intensive
queries, DB2 can split a large query across different DB2 members in a data
sharing group. This is known as Sysplex query parallelism. For more information
about Sysplex query parallelism, see Chapter 6 of DB2 Data Sharing: Planning and
Administration.

DB2 can use parallel operations for processing:
v Static and dynamic queries
v Local and remote data access
v Queries using single table scans and multi-table joins
v Access through an index, by table space scan or by list prefetch
v Sort operations

Parallel operations usually involve at least one table in a partitioned table space.
Scans of large partitioned table spaces have the greatest performance
improvements where both I/O and central processor (CP) operations can be
carried out in parallel.

Parallelism for partitioned and nonpartitioned table spaces: Both partitioned and
nonpartitioned table spaces can take advantage of query parallelism. Parallelism is
now enabled to include non-clustering indexes. Thus, table access can be run in
parallel when the application is bound with DEGREE (ANY) and the table is
accessed through a non-clustering index.

This chapter contains the following topics:
v “Comparing the methods of parallelism” on page 848
v “Enabling parallel processing” on page 850
v “Restrictions for parallelism” on page 851
v “Interpreting EXPLAIN output” on page 852
v “Tuning parallel processing” on page 854
v “Disabling query parallelism” on page 855

© Copyright IBM Corp. 1983, 2012 847



Comparing the methods of parallelism
The figures in this section show how the parallel methods compare with sequential
prefetch and with each other. All three techniques assume access to a table space
with three partitions, P1, P2, and P3. The notations P1, P2, and P3 are partitions of
a table space. R1, R2, R3, and so on, are requests for sequential prefetch. The
combination P2R1, for example, means the first request from partition 2.

Figure 238 shows sequential processing. With sequential processing, DB2 takes the
3 partitions in order, completing partition 1 before starting to process partition 2,
and completing 2 before starting 3. Sequential prefetch allows overlap of CP
processing with I/O operations, but I/O operations do not overlap with each
other. In the example in Figure 238, a prefetch request takes longer than the time to
process it. The processor is frequently waiting for I/O.

Figure 239 shows parallel I/O operations. With parallel I/O, DB2 prefetches data
from the 3 partitions at one time. The processor processes the first request from
each partition, then the second request from each partition, and so on. The
processor is not waiting for I/O, but there is still only one processing task.

Figure 240 on page 849 shows parallel CP processing. With CP parallelism, DB2
can use multiple parallel tasks to process the query. Three tasks working
concurrently can greatly reduce the overall elapsed time for data-intensive and
processor-intensive queries. The same principle applies for Sysplex query
parallelism, except that the work can cross the boundaries of a single CPC.

Time line

CP
processing:

I/O:

P1R1

P1R1

P1R2

P1R2

P1R3

P1R3

P2R1

P2R1

P2R2

P2R2

P2R3

P2R3

P3R1

P3R1 P3R2

… …

……

Figure 238. CP and I/O processing techniques. Sequential processing.

CP processing:

I/O:

P1R1 P2R1 P3R1 P1R2 P2R2 P3R2 P1R3

P1

P2

P3

R1

R1

R1

R2

R2

R2

R3

R3

R3

…

Time line

Figure 239. CP and I/O processing techniques. Parallel I/O processing.

848 Application Programming and SQL Guide



Queries that are most likely to take advantage of parallel operations: Queries that
can take advantage of parallel processing are:
v Those in which DB2 spends most of the time fetching pages—an I/O-intensive

query
A typical I/O-intensive query is something like the following query, assuming
that a table space scan is used on many pages:
SELECT COUNT(*) FROM ACCOUNTS
WHERE BALANCE > 0 AND
DAYS_OVERDUE > 30;

v Those in which DB2 spends a lot of processor time and also, perhaps, I/O time,
to process rows. Those include:
– Queries with intensive data scans and high selectivity. Those queries involve large

volumes of data to be scanned but relatively few rows that meet the search
criteria.

– Queries containing aggregate functions. Column functions (such as MIN, MAX,
SUM, AVG, and COUNT) usually involve large amounts of data to be
scanned but return only a single aggregate result.

– Queries accessing long data rows. Those queries access tables with long data
rows, and the ratio of rows per page is very low (one row per page, for
example).

– Queries requiring large amounts of central processor time. Those queries might be
read-only queries that are complex, data-intensive, or that involve a sort.
A typical processor-intensive query is something like:
SELECT MAX(QTY_ON_HAND) AS MAX_ON_HAND,

AVG(PRICE) AS AVG_PRICE,
AVG(DISCOUNTED_PRICE) AS DISC_PRICE,
SUM(TAX) AS SUM_TAX,
SUM(QTY_SOLD) AS SUM_QTY_SOLD,
SUM(QTY_ON_HAND - QTY_BROKEN) AS QTY_GOOD,
AVG(DISCOUNT) AS AVG_DISCOUNT,
ORDERSTATUS,
COUNT(*) AS COUNT_ORDERS

FROM ORDER_TABLE

I/O:

I/O:

I/O:

P1R1

P2R1

P3R1

P1R1

P2R1

P3R1

P1R2

P2R2

P3R2

P1R2

P2R2

P3R2

P1R3

P2R3

P3R3

P1R3

P2R3

P3R3

…

…

…

…

…

…

CP task 1:

CP task 2:

CP task 3:

Time line

Figure 240. CP and I/O processing techniques. Query processing using CP parallelism. The
tasks can be contained within a single CPC or can be spread out among the members of a
data sharing group.

Chapter 28. Parallel operations and query performance 849



WHERE SHIPPER = ’OVERNIGHT’ AND
SHIP_DATE < DATE(’1996-01-01’)

GROUP BY ORDERSTATUS
ORDER BY ORDERSTATUS;

Terminology: When the term task is used with information about parallel
processing, the context should be considered. For parallel query CP processing or
Sysplex query parallelism, a task is an actual z/OS execution unit used to process
a query. For parallel I/O processing, a task simply refers to the processing of one
of the concurrent I/O streams.

A parallel group is the term used to name a particular set of parallel operations
(parallel tasks or parallel I/O operations). A query can have more than one parallel
group, but each parallel group within the query is identified by its own unique ID
number.

The degree of parallelism is the number of parallel tasks or I/O operations that
DB2 determines can be used for the operations on the parallel group. The
maximum of parallel operations that DB2 can generate is 254. However, for most
queries and DB2 environments, DB2 chooses a lower number. You might need to
limit the maximum number further because more parallel operations consume
processor, real storage, and I/O resources. If resource consumption in high in your
parallelism environment, use the MAX DEGREE field on installation panel
DSNTIP8 to explicitly limit the maximum number of parallel operations that DB2
generates, as explain in “Enabling parallel processing.”

Enabling parallel processing
Queries can only take advantage of parallelism if you enable parallel processing.
Use the following actions to enable parallel processing:
v For static SQL, specify DEGREE(ANY) on BIND or REBIND. This bind option

affects static SQL only and does not enable parallelism for dynamic statements.
v For dynamic SQL, set the CURRENT DEGREE special register to 'ANY'. Setting

the special register affects dynamic statements only. It will have no effect on
your static SQL statements. You should also make sure that parallelism is not
disabled for your plan, package, or authorization ID in the RLST. You can set the
special register with the following SQL statement:
SET CURRENT DEGREE=’ANY’;

You can also change the special register default from 1 to ANY for the entire
DB2 subsystem by modifying the CURRENT DEGREE field on installation panel
DSNTIP8.

v If you bind with isolation CS, choose also the option CURRENTDATA(NO), if
possible. This option can improve performance in general, but it also ensures
that DB2 will consider parallelism for ambiguous cursors. If you bind with
CURRENDATA(YES) and DB2 cannot tell if the cursor is read-only, DB2 does
not consider parallelism. When a cursor is read-only, it is recommended that you
specify the FOR FETCH ONLY or FOR READ ONLY clause on the DECLARE
CURSOR statement to explicitly indicate that the cursor is read-only.

v The virtual buffer pool parallel sequential threshold (VPPSEQT) value must be
large enough to provide adequate buffer pool space for parallel processing. For a
description of buffer pools and thresholds, see Part 5 (Volume 2) of DB2
Administration Guide.

If you enable parallel processing when DB2 estimates a given query's I/O and
central processor cost is high, multiple parallel tasks can be activated if DB2
estimates that elapsed time can be reduced by doing so.

850 Application Programming and SQL Guide

|
|
|
#
#
#
#
#

#
#
#



Recommendation: For parallel sorts, allocate sufficient work files to maintain
performance.

Special requirements for CP parallelism: DB2 must be running on a central
processor complex that contains two or more tightly coupled processors
(sometimes called central processors, or CPs). If only one CP is online when the
query is bound, DB2 considers only parallel I/O operations.

DB2 also considers only parallel I/O operations if you declare a cursor WITH
HOLD and bind with isolation RR or RS. For more restrictions on parallelism, see
Table 128.

For complex queries, run the query in parallel within a member of a data sharing
group. With Sysplex query parallelism, use the power of the data sharing group to
process individual complex queries on many members of the data sharing group.
For more information about how you can use the power of the data sharing group
to run complex queries, see Chapter 6 of DB2 Data Sharing: Planning and
Administration.

Limiting the degree of parallelism:If you want to limit the maximum number of
parallel tasks that DB2 generates, you can use the MAX DEGREE field on
installation panel DSNTIP8. Changing MAX DEGREE, however, is not the way to
turn parallelism off. You use the DEGREE bind parameter or CURRENT DEGREE
special register to turn parallelism off.

Restrictions for parallelism
When parallelism is not used:Parallelism is not used for all queries; for some
access paths, it doesn't make sense to incur parallelism overhead. For example, if
you are selecting from a temporary table, parallelism is not used. Check Table 128
to determine whether your query uses any of the access paths that do not allow
parallelism.

Table 128. Checklist of parallel modes and query restrictions

If query uses this...

Is parallelism allowed?

CommentsI/O CP Sysplex

Access via RID list (list
prefetch and multiple
index access)

Yes Yes No Indicated by an “L” in the PREFETCH column of
PLAN_TABLE, or an M, MX, MI, or MQ in the
ACCESSTYPE column of PLAN_TABLE.

Queries that return LOB
values

Yes Yes No

Merge scan join on more
than one column

Yes Yes Yes

Queries that qualify for
direct row access

No No No Indicated by D in the PRIMARY_ACCESS_TYPE column
of PLAN_TABLE

Materialized views or
materialized nested table
expressions at reference
time

No No No

EXISTS within WHERE
predicate

No No No

Security label column on
table

Yes Yes No

Chapter 28. Parallel operations and query performance 851

|
|

#
#
#
#
#

|
|
||||

|
|
||||



Table 128. Checklist of parallel modes and query restrictions (continued)

If query uses this...

Is parallelism allowed?

CommentsI/O CP Sysplex

Mulit-row fetch Maybe Maybe Maybe Parallelism might be disabled for the last parallel group
in the top level query block. For some queries that have
only a single parallel group, parallelism might be
disabled completely.

Access paths that are restricted by parallelism: Certain access paths that would
reduce the effectiveness of parallelism are removed from consideration when
parallelism is enabled. To ensure that you can take advantage of parallelism, DB2
does not select certain access paths when parallelism is enabled. When the plan or
package is bound with DEGREE(ANY) or the CURRENT DEGREE special register
is set to 'ANY,' DB2:
v Does not choose Hybrid joins with SORTN_JOIN=Y.
v Does not transform certain subqueries to joins.

Interpreting EXPLAIN output
To understand how DB2 plans to use parallelism, examine your PLAN_TABLE
output. (Details on all columns in PLAN_TABLE are described in Table 101 on
page 794.) This section describes a method for examining PLAN_TABLE columns
for parallelism and gives several examples.

A method for examining PLAN_TABLE columns for parallelism
The steps for interpreting the output for parallelism are as follows:
1. Determine if DB2 plans to use parallelism:

For each query block (QBLOCKNO) in a query (QUERYNO), a non-null value
in ACCESS_DEGREE or JOIN_DEGREE indicates that some degree of
parallelism is planned.

2. Identify the parallel groups in the query:

All steps (PLANNO) with the same value for ACCESS_PGROUP_ID,
JOIN_PGROUP_ID, SORTN_PGROUP_ID, or SORTC_PGROUP_ID indicate
that a set of operations are in the same parallel group. Usually, the set of
operations involves various types of join methods and sort operations. Parallel
group IDs can appear in the same row of PLAN_TABLE output, or in different
rows, depending on the operation being performed. The examples in
“PLAN_TABLE examples showing parallelism” on page 853 help clarify this
concept.

3. Identify the parallelism mode:

The column PARALLELISM_MODE tells you the kind of parallelism that is
planned: I for query I/O, C for query CP, and X for Sysplex query. Within a
query block, you cannot have a mixture of “I” and “C” parallel modes.
However, a statement that uses more than one query block, such as a UNION,
can have “I” for one query block and “C” for another. You can have a mixture
of “C” and “X” modes in a query block, but not in the same parallel group.
If the statement was bound while this DB2 is a member of a data sharing
group, the PARALLELISM_MODE column can contain “X” even if only this
one DB2 member is active. This lets DB2 take advantage of extra processing

852 Application Programming and SQL Guide

#####
#
#
#

#



power that might be available at execution time. If other members are not
available at execution time, then DB2 runs the query within the single DB2
member.

PLAN_TABLE examples showing parallelism
For these examples, the other values would not change whether the
PARALLELISM_MODE is I, C, or X.
v Example 1: single table access

Assume that DB2 decides at bind time to initiate three concurrent requests to
retrieve data from table T1. Part of PLAN_TABLE appears as shown in
Table 129. If DB2 decides not to use parallel operations for a step,
ACCESS_DEGREE and ACCESS_PGROUP_ID contain null values.

Table 129. Part of PLAN_TABLE for single table access

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

v Example 2: nested loop join

Consider a query that results in a series of nested loop joins for three tables, T1,
T2 and T3. T1 is the outermost table, and T3 is the innermost table. DB2 decides
at bind time to initiate three concurrent requests to retrieve data from each of
the three tables. Each request accesses part of T1 and all of T2 and T3. For the
nested loop join method with sort, all the retrievals are in the same parallel
group except for star join with ACCESSTYPE=T (sparse index). Part of
PLAN_TABLE appears as shown in Table 130:

Table 130. Part of PLAN_TABLE for a nested loop join

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 1 3 1 3 1 (null) (null)

T3 1 3 1 3 1 (null) (null)

v Example 3: merge scan join

Consider a query that causes a merge scan join between two tables, T1 and T2.
DB2 decides at bind time to initiate three concurrent requests for T1 and six
concurrent requests for T2. The scan and sort of T1 occurs in one parallel group.
The scan and sort of T2 occurs in another parallel group. Furthermore, the
merging phase can potentially be done in parallel. Here, a third parallel group is
used to initiate three concurrent requests on each intermediate sorted table. Part
of PLAN_TABLE appears as shown in Table 131:

Table 131. Part of PLAN_TABLE for a merge scan join

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 d (null) (null) d (null)

T2 2 6 2 3 3 d d

Chapter 28. Parallel operations and query performance 853

|
|
|



In a multi-table join, DB2 might also execute the sort for a composite that
involves more than one table in a parallel task. DB2 uses a cost basis model to
determine whether to use parallel sort in all cases. When DB2 decides to use
parallel sort, SORTC_PGROUP_ID and SORTN_PGROUP_ID indicate the
parallel group identifier. Consider a query that joins three tables, T1, T2, and T3,
and uses a merge scan join between T1 and T2, and then between the composite
and T3. If DB2 decides, based on the cost model, that all sorts in this query are
to be performed in parallel, part of PLAN_TABLE appears as shown in
Table 132:

Table 132. Part of PLAN_TABLE for a multi-table, merge scan join

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 2 6 2 6 3 1 2

T3 2 6 4 6 5 3 4

v Example 4: hybrid join

Consider a query that results in a hybrid join between two tables, T1 and T2.
Furthermore, T1 needs to be sorted; as a result, in PLAN_TABLE the T2 row has
SORTC_JOIN=Y. DB2 decides at bind time to initiate three concurrent requests
for T1 and six concurrent requests for T2. Parallel operations are used for a join
through a clustered index of T2.
Because T2's RIDs can be retrieved by initiating concurrent requests on the
clustered index, the joining phase is a parallel step. The retrieval of T2's RIDs
and T2's rows are in the same parallel group. Part of PLAN_TABLE appears as
shown in Table 133:

Table 133. Part of PLAN_TABLE for a hybrid join

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 4 6 2 6 2 1 (null)

Tuning parallel processing
Much of the information in this section applies also to Sysplex query parallelism.
See Chapter 6 of DB2 Data Sharing: Planning and Administration for more
information.

A parallel group can run at a parallel degree less than that shown in the
PLAN_TABLE output. The following factors can cause a reduced degree of
parallelism:
v Buffer pool availability
v Logical contention.

Consider a nested loop join. The inner table could be in a partitioned or
nonpartitioned table space, but DB2 is more likely to use a parallel join
operation when the outer table is partitioned.

v Physical contention
v Run-time host variables

854 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|

||

||
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

||||||||

||||||||

||||||||
|

|



A host variable can determine the qualifying partitions of a table for a given
query. In such cases, DB2 defers the determination of the planned degree of
parallelism until run time, when the host variable value is known.

v Updatable cursor
At run time, DB2 might determine that an ambiguous cursor is updatable.

v A change in the configuration of online processors
If fewer processors are online at run time, DB2 might need to reformulate the
parallel degree.

Locking considerations for repeatable read applications: For CP parallelism, locks
are obtained independently by each task. Be aware that this situation can possibly
increase the total number of locks taken for applications that:
v Use an isolation level of repeatable read
v Use CP parallelism
v Repeatedly access the table space using a lock mode of IS without issuing

COMMITs

Recommendation: As is recommended for all repeatable-read applications, issue
frequent COMMITs to release the lock resources that are held. Repeatable read or
read stability isolation cannot be used with Sysplex query parallelism.

Disabling query parallelism
To disable parallel operations, do any of the following actions:
v For static SQL, rebind to change the option DEGREE(ANY) to DEGREE(1). You

can do this by using the DB2I panels, the DSN subcommands, or the DSNH
CLIST. The default is DEGREE(1).

v For dynamic SQL, execute the following SQL statement:
SET CURRENT DEGREE = ’1’;

The default value for CURRENT DEGREE is 1 unless your installation has
changed the default for the CURRENT DEGREE special register.

You can use system controls to disable parallelism, as well. These are described in
Part 5 (Volume 2) of DB2 Administration Guide.

Chapter 28. Parallel operations and query performance 855



856 Application Programming and SQL Guide



Chapter 29. Programming for the Interactive System
Productivity Facility

The Interactive System Productivity Facility (ISPF) helps you to construct and
execute dialogs. DB2 includes a sample application that illustrates how to use ISPF
through the call attachment facility (CAF). Instructions for compiling, printing, and
using the application are in Part 2 of DB2 Installation Guide. This chapter describes
how to structure applications for use with ISPF.

The following sections discuss scenarios for interaction among your program, DB2,
and ISPF:
v “Using ISPF and the DSN command processor”
v “Invoking a single SQL program through ISPF and DSN” on page 858
v “Invoking multiple SQL programs through ISPF and DSN” on page 859
v “Invoking multiple SQL programs through ISPF and CAF” on page 859

Each scenario has advantages and disadvantages in terms of efficiency, ease of
coding, ease of maintenance, and overall flexibility.

Using ISPF and the DSN command processor
There are some restrictions on how you make and break connections to DB2 in any
structure. If you use the PGM option of ISPF SELECT, ISPF passes control to your
load module by the LINK macro; if you use CMD, ISPF passes control by the
ATTACH macro.

The DSN command processor (see “DSN command processor” on page 509)
permits only single task control block (TCB) connections. Take care not to change
the TCB after the first SQL statement. ISPF SELECT services change the TCB if you
started DSN under ISPF, so you cannot use these to pass control from load module
to load module. Instead, use LINK, XCTL, or LOAD.

Figure 241 on page 858 shows the task control blocks that result from attaching the
DSN command processor below TSO or ISPF.

If you are in ISPF and running under DSN, you can perform an ISPLINK to
another program, which calls a CLIST. In turn, the CLIST uses DSN and another
application. Each such use of DSN creates a separate unit of recovery (process or
transaction) in DB2.

All such initiated DSN work units are unrelated, with regard to isolation (locking)
and recovery (commit). It is possible to deadlock with yourself; that is, one unit
(DSN) can request a serialized resource (a data page, for example) that another
unit (DSN) holds incompatibly.

A COMMIT in one program applies only to that process. There is no facility for
coordinating the processes.

© Copyright IBM Corp. 1983, 2012 857



Notes to Figure 241:
1. The RUN command with the CP option causes DSN to attach your program

and create a new TCB.
2. The RUN command without the CP option causes DSN to link to your

program.

Invoking a single SQL program through ISPF and DSN
With this structure, the user of your application first invokes ISPF, which displays
the data and selection panels. When the user selects the program on the selection
panel, ISPF calls a CLIST that runs the program. A corresponding CLIST might
contain:
DSN

RUN PROGRAM(MYPROG) PLAN(MYPLAN)
END

The application has one large load module and one plan.

Disadvantages: For large programs of this type, you want a more modular design,
making the plan more flexible and easier to maintain. If you have one large plan,
you must rebind the entire plan whenever you change a module that includes SQL
statements. 1 You cannot pass control to another load module that makes SQL calls
by using ISPLINK; rather, you must use LINK, XCTL, or LOAD and BALR.

1. To achieve a more modular construction when all parts of the program use SQL, consider using packages. See Chapter 17,
“Planning for DB2 program preparation,” on page 381.

TSO or ISPF

ATTACH

ATTACH

ATTACH

DSN initialization

load module

Alias=DSN

DSN main load

module

LINK
Ordinary

application

program

Application

command

processor

(See Note 2)

(See Note 1)

Figure 241. DSN task structure

858 Application Programming and SQL Guide



If you want to use ISPLINK, then call ISPF to run under DSN:
DSN

RUN PROGRAM(ISPF) PLAN(MYPLAN)
END

You then need to leave ISPF before you can start your application.

Furthermore, the entire program is dependent on DB2; if DB2 is not running, no
part of the program can begin or continue to run.

Invoking multiple SQL programs through ISPF and DSN
You can break a large application into several different functions, each
communicating through a common pool of shared variables controlled by ISPF.
You might write some functions as separately compiled and loaded programs,
others as EXECs or CLISTs. You can start any of those programs or functions
through the ISPF SELECT service, and you can start that from a program, a CLIST,
or an ISPF selection panel.

When you use the ISPF SELECT service, you can specify whether ISPF should
create a new ISPF variable pool before calling the function. You can also break a
large application into several independent parts, each with its own ISPF variable
pool.

You can call different parts of the program in different ways. For example, you can
use the PGM option of ISPF SELECT:
PGM(program-name) PARM(parameters)

Alternatively, you can use the CMD option:
CMD(command)

For a part that accesses DB2, the command can name a CLIST that starts DSN:
DSN

RUN PROGRAM(PART1) PLAN(PLAN1) PARM(input from panel)
END

Breaking the application into separate modules makes it more flexible and easier to
maintain. Furthermore, some of the application might be independent of DB2;
portions of the application that do not call DB2 can run, even if DB2 is not
running. A stopped DB2 database does not interfere with parts of the program that
refer only to other databases.

Disadvantages: The modular application, on the whole, has to do more work. It
calls several CLISTs, and each one must be located, loaded, parsed, interpreted,
and executed. It also makes and breaks connections to DB2 more often than the
single load module. As a result, you might lose some efficiency.

Invoking multiple SQL programs through ISPF and CAF
You can use the call attachment facility (CAF) to call DB2; for details, see
Chapter 30, “Programming for the call attachment facility,” on page 861. The
ISPF/CAF sample connection manager programs (DSN8SPM and DSN8SCM) take
advantage of the ISPLINK SELECT services, letting each routine make its own
connection to DB2 and establish its own thread and plan.

Chapter 29. Programming for the Interactive System Productivity Facility 859



With the same modular structure as in the previous example, using CAF is likely
to provide greater efficiency by reducing the number of CLISTs. This does not
mean, however, that any DB2 function executes more quickly.

Disadvantages: Compared to the modular structure using DSN, the structure using
CAF is likely to require a more complex program, which in turn might require
assembler language subroutines. For more information, see Chapter 30,
“Programming for the call attachment facility,” on page 861.

860 Application Programming and SQL Guide



Chapter 30. Programming for the call attachment facility

An attachment facility is a part of the DB2 code that allows other programs to
connect to and use DB2 to process SQL statements, commands, or instrumentation
facility interface (IFI) calls. With the call attachment facility (CAF), your application
program can establish and control its own connection to DB2. Programs that run in
z/OS batch, TSO foreground, and TSO background can use CAF.

It is also possible for IMS batch applications to access DB2 databases through CAF,
though that method does not coordinate the commitment of work between the IMS
and DB2 systems. We highly recommend that you use the DB2 DL/I batch support
for IMS batch applications.

CICS application programs must use the CICS attachment facility; IMS application
programs, the IMS attachment facility. Programs running in TSO foreground or
TSO background can use either the DSN command processor or CAF; each has
advantages and disadvantages.

Prerequisite knowledge: Analysts and programmers who consider using CAF must
be familiar with z/OS concepts and facilities in the following areas:
v The CALL macro and standard module linkage conventions
v Program addressing and residency options (AMODE and RMODE)
v Creating and controlling tasks; multitasking
v Functional recovery facilities such as ESTAE, ESTAI, and FRRs
v Asynchronous events and TSO attention exits (STAX)
v Synchronization techniques such as WAIT/POST.

CAF capabilities and requirements
To decide whether to use the call attachment facility, consider the capabilities and
requirements described in the followingsections :
v “CAF capabilities”
v “CAF requirements” on page 863

CAF capabilities
A program using CAF can:
v Access DB2 from z/OS address spaces where TSO, IMS, or CICS do not exist.
v Access DB2 from multiple z/OS tasks in an address space.
v Access the DB2 IFI.
v Run when DB2 is down (though it cannot run SQL when DB2 is down).
v Run with or without the TSO terminal monitor program (TMP).
v Run without being a subtask of the DSN command processor (or of any DB2

code).
v Run above or below the 16-MB line. (The CAF code resides below the line.)
v Establish an explicit connection to DB2, through a CALL interface, with control

over the exact state of the connection.
v Establish an implicit connection to DB2, by using SQL statements or IFI calls

without first calling CAF, with a default plan name and subsystem identifier.
v Verify that your application is using the correct release of DB2.

© Copyright IBM Corp. 1983, 2012 861



v Supply event control blocks (ECBs), for DB2 to post, that signal startup or
termination.

v Intercept return codes, reason codes, and abend codes from DB2 and translate
them into messages as desired.

Task capabilities
Any task in an address space can establish a connection to DB2 through CAF.
There can be only one connection for each task control block (TCB). A DB2 service
request issued by a program running under a given task is associated with that
task's connection to DB2. The service request operates independently of any DB2
activity under any other task.

Each connected task can run a plan. Multiple tasks in a single address space can
specify the same plan, but each instance of a plan runs independently from the
others. A task can terminate its plan and run a different plan without fully
breaking its connection to DB2.

CAF does not generate task structures, nor does it provide attention processing
exits or functional recovery routines. You can provide whatever attention handling
and functional recovery your application needs, but you must use ESTAE/ESTAI
type recovery routines and not Enabled Unlocked Task (EUT) FRR routines.

Using multiple simultaneous connections can increase the possibility of deadlocks
and DB2 resource contention. Your application design must consider that
possibility.

Programming language
You can write CAF applications in assembler language, C, COBOL, Fortran, and
PL/I. When choosing a language to code your application in, consider these
restrictions:
v If you need to use z/OS macros (ATTACH, WAIT, POST, and so on), you must

choose a programming language that supports them or else embed them in
modules written in assembler language.

v The CAF TRANSLATE function is not available from Fortran. To use the
function, code it in a routine written in another language, and then call that
routine from Fortran.

You can find a sample assembler program (DSN8CA) and a sample COBOL
program (DSN8CC) that use the call attachment facility in library
prefix.SDSNSAMP. A PL/I application (DSN8SPM) calls DSN8CA, and a COBOL
application (DSN8SCM) calls DSN8CC. For more information about the sample
applications and on accessing the source code, see Appendix B, “Sample
applications,” on page 1015.

Tracing facility
A tracing facility provides diagnostic messages that aid in debugging programs
and diagnosing errors in the CAF code. In particular, attempts to use CAF
incorrectly cause error messages in the trace stream.

Program preparation
Preparing your application program to run in CAF is similar to preparing it to run
in other environments, such as CICS, IMS, and TSO. You can prepare a CAF
application either in the batch environment or by using the DB2 program
preparation process. You can use the program preparation system either through

862 Application Programming and SQL Guide



DB2I or through the DSNH CLIST. For examples and guidance in program
preparation, see Chapter 21, “Preparing an application program to run,” on page
471.

CAF requirements
When you write programs that use CAF, be aware of the following characteristics.

Program size
The CAF code requires about 16 KB of virtual storage per address space and an
additional 10 KB for each TCB using CAF.

Use of LOAD
CAF uses z/OS SVC LOAD to load two modules as part of the initialization
following your first service request. Both modules are loaded into fetch-protected
storage that has the job-step protection key. If your local environment intercepts
and replaces the LOAD SVC, you must ensure that your version of LOAD
manages the load list element (LLE) and contents directory entry (CDE) chains like
the standard z/OS LOAD macro.

Using CAF in IMS batch
If you use CAF from IMS batch, you must write data to only one system in any
one unit of work. If you write to both systems within the same unit, a system
failure can leave the two databases inconsistent with no possibility of automatic
recovery. To end a unit of work in DB2, execute the SQL COMMIT statement; to
end one in IMS, issue the SYNCPOINT command.

Run environment
Applications requesting DB2 services must adhere to several run environment
characteristics. Those characteristics must be in effect regardless of the attachment
facility you use. They are not unique to CAF.
v The application must be running in TCB mode. SRB mode is not supported.
v An application task cannot have any EUT FRRs active when requesting DB2

services. If an EUT FRR is active, the DB2 functional recovery can fail, and your
application can receive some unpredictable abends.

v Different attachment facilities cannot be active concurrently within the same
address space. Therefore:
– An application must not use CAF in an CICS or IMS address space.
– An application that runs in an address space that has a CAF connection to

DB2 cannot connect to DB2 using RRSAF.
– An application that runs in an address space that has an RRSAF connection to

DB2 cannot connect to DB2 using CAF.
– An application cannot invoke the z/OS AXSET macro after executing the CAF

CONNECT call and before executing the CAF DISCONNECT call.
v One attachment facility cannot start another. This means that your CAF

application cannot use DSN, and a DSN RUN subcommand cannot call your
CAF application.

v The language interface module for CAF, DSNALI, is shipped with the linkage
attributes AMODE(31) and RMODE(ANY). If your applications load CAF below
the 16-MB line, you must link-edit DSNALI again.

Running DSN applications under CAF
Although doing so is not recommended, you can run existing DSN applications
with CAF merely by allowing them to make implicit connections to DB2. For DB2
to make an implicit connection successfully, the plan name for the application must

Chapter 30. Programming for the call attachment facility 863



be the same as the member name of the database request module (DBRM) that
DB2 produced when you precompiled the source program that contains the first
SQL call. You must also substitute the DSNALI language interface module for the
TSO language interface module, DSNELI.

Running DSN applications with CAF is not advantageous, and the loss of DSN
services can affect how well your program runs. In general, running DSN
applications with CAF is not recommended unless you provide an application
controller to manage the DSN application and replace any needed DSN functions.
Even then, you could have to change the application to communicate connection
failures to the controller correctly.

How to use CAF
To use CAF, you must first make available a load module known as the call
attachment language interface, or DSNALI. For considerations for loading or
link-editing this module, see “Accessing the CAF language interface” on page 867.

When the language interface is available, your program can make use of the CAF
in two ways:
v Implicitly, by including SQL statements or IFI calls in your program just as you

would in any program. The CAF facility establishes the connections to DB2
using default values for the pertinent parameters described under “Implicit
connections” on page 866.

v Explicitly, by writing CALL DSNALI statements, providing the appropriate
options. For the general form of the statements, see “CAF function descriptions”
on page 869.

The first element of each option list is a function, which describes the action that
you want CAF to take. For the available values of function and an approximation
of their effects, see “Summary of connection functions” on page 866. The effect of
any function depends in part on what functions the program has already run.
Before using any function, be sure to read the description of its usage. Also read
“Summary of CAF behavior” on page 882, which describes the influence of
previous functions.

You might structure a CAF configuration like the one that is illustrated in
Figure 242 on page 865. The application contains statements to load DSNALI,
DSNHLI2, and DSNWLI2. The application accesses DB2 by using the CAF
Language Interface. It calls DSNALI to handle CAF requests, DSNWLI to handle
IFI calls, and DSNHLI to handle SQL calls.

864 Application Programming and SQL Guide



The remainder of this chapter discusses:
v “Summary of connection functions” on page 866
v “Sample scenarios” on page 883
v “Exit routines from your application” on page 884

Application CAF

Language

Interface

CAF

Mainline

Code
LOAD DSNALI
LOAD DSNHLI2

LOAD DSNWLI2

Load

CALL DSNALI
(’CONNECT’)
(’OPEN’)

(’CLOSE’)
(’DISCONNECT’)

Call

DSNALI

(Process

connection

requests)

CALL DSNWLI

CALL DSNHLI

(SQL calls)

DSNHLI (dummy

application

entry point)

DSNWLI (dummy

application

entry point)

CALL DSNHLI2

(Transfer calls

to real CAF SQL

entry point)

CALL DSNWLI2

(Transfer calls

to real CAF

IFI)

DSNWLI

DSNHLI2

(Process

SQL stmts)

DB2

(IFI calls)

Figure 242. Sample call attachment facility configuration

Chapter 30. Programming for the call attachment facility 865



v “Error messages and dsntrace” on page 885
v “Program examples for CAF” on page 886.

Summary of connection functions
You can use the following functions with CALL DSNALI:

CONNECT
Establishes the task (TCB) as a user of the named DB2 subsystem. When the
first task within an address space issues a connection request, the address
space is also initialized as a user of DB2. See “CONNECT: Syntax and usage”
on page 872.

OPEN
Allocates a DB2 plan. You must allocate a plan before DB2 can process SQL
statements. If you did not request the CONNECT function, OPEN implicitly
establishes the task, and optionally the address space, as a user of DB2. See
“OPEN: Syntax and usage” on page 876.

CLOSE
Optionally commits or abends any database changes and deallocates the plan.
If OPEN implicitly requests the CONNECT function, CLOSE removes the task,
and possibly the address space, as a user of DB2. See “CLOSE: Syntax and
usage” on page 878.

DISCONNECT
Removes the task as a user of DB2 and, if this is the last or only task in the
address space with a DB2 connection, terminates the address space connection
to DB2. See “DISCONNECT: Syntax and usage” on page 879.

TRANSLATE
Returns an SQLCODE and printable text in the SQLCA that describes a DB2
hexadecimal error reason code. See “TRANSLATE: Syntax and usage” on page
881. You cannot call the TRANSLATE function from the Fortran language.

Implicit connections
If you do not explicitly specify executable SQL statements in a CALL DSNALI
statement of your CAF application, CAF initiates implicit CONNECT and OPEN
requests to DB2. Although CAF performs these connection requests using the
following default values, the requests are subject to the same DB2 return codes and
reason codes as explicitly specified requests.

Implicit connections use the following defaults:

Subsystem name
The default name specified in the module DSNHDECP. CAF uses the
installation default DSNHDECP, unless your own DSNHDECP is in a library in
a STEPLIB of JOBLIB concatenation, or in the link list. In a data sharing group,
the default subsystem name is the group attachment name.

Plan name
The member name of the database request module (DBRM) that DB2 produced
when you precompiled the source program that contains the first SQL call. If
your program can make its first SQL call from different modules with different
DBRMs, you cannot use a default plan name; you must use an explicit call
using the OPEN function.

If your application includes both SQL and IFI calls, you must issue at least one
SQL call before you issue any IFI calls. This ensures that your application uses
the correct plan.

866 Application Programming and SQL Guide



Different types of implicit connections exist. The simplest is for application to run
neither CONNECT nor OPEN. You can also use CONNECT only or OPEN only.
Each of these implicitly connects your application to DB2. To terminate an implicit
connection, you must use the proper calls. See Table 141 on page 882 for details.

Your application program must successfully connect, either implicitly or explicitly,
to DB2 before it can execute any SQL calls to the CAF DSNHLI entry point.
Therefore, the application program must first determine the success or failure of all
implicit connection requests.

For implicit connection requests, register 15 contains the return code, and register 0
contains the reason code. The return code and reason code are also in the message
text for SQLCODE -991. The application program should examine the return and
reason codes immediately after the first executable SQL statement within the
application program. Two ways to do this are to:
v Examine registers 0 and 15 directly.
v Examine the SQLCA, and if the SQLCODE is -991, obtain the return and reason

code from the message text. The return code is the first token, and the reason
code is the second token.

If the implicit connection was successful, the application can examine the
SQLCODE for the first, and subsequent, SQL statements.

Accessing the CAF language interface
Part of the call attachment facility is a DB2 load module, DSNALI, known as the
call attachment facility language interface. DSNALI has the alias names DSNHLI2
and DSNWLI2. The module has five entry points: DSNALI, DSNHLI, DSNHLI2,
DSNWLI, and DSNWLI2:
v Entry point DSNALI handles explicit DB2 connection service requests.
v DSNHLI and DSNHLI2 handle SQL calls (use DSNHLI if your application

program link-edits CAF; use DSNHLI2 if your application program loads CAF).
v DSNWLI and DSNWLI2 handle IFI calls (use DSNWLI if your application

program link-edits CAF; use DSNWLI2 if your application program loads CAF).

You can access the DSNALI module by either explicitly issuing LOAD requests
when your program runs, or by including the module in your load module when
you link-edit your program. There are advantages and disadvantages to each
approach.

Explicit load of DSNALI
To load DSNALI, issue z/OS LOAD service requests for entry points DSNALI and
DSNHLI2. If you use IFI services, you must also load DSNWLI2. The entry point
addresses that LOAD returns are saved for later use with the CALL macro.

By explicitly loading the DSNALI module, you beneficially isolate the maintenance
of your application from future IBM maintenance to the language interface. If the
language interface changes, the change will probably not affect your load module.

You must indicate to DB2 which entry point to use. You can do this in one of two
ways:
v Specify the precompiler option ATTACH(CAF).

This causes DB2 to generate calls that specify entry point DSNHLI2. You cannot
use this option if your application is written in Fortran.

v Code a dummy entry point named DSNHLI within your load module.

Chapter 30. Programming for the call attachment facility 867



If you do not specify the precompiler option ATTACH, the DB2 precompiler
generates calls to entry point DSNHLI for each SQL request. The precompiler
does not know and is independent of the different DB2 attachment facilities.
When the calls generated by the DB2 precompiler pass control to DSNHLI, your
code corresponding to the dummy entry point must preserve the option list
passed in R1 and call DSNHLI2 specifying the same option list. For a coding
example of a dummy DSNHLI entry point, see “Using dummy entry point
DSNHLI for CAF” on page 891.

Link-editing DSNALI
You can include the CAF language interface module DSNALI in your load module
during a link-edit step. The module must be in a load module library, which is
included either in the SYSLIB concatenation or another INCLUDE library defined
in the linkage editor JCL. Because all language interface modules contain an entry
point declaration for DSNHLI, the linkage editor JCL must contain an INCLUDE
linkage editor control statement for DSNALI; for example, INCLUDE
DB2LIB(DSNALI). By coding these options, you avoid inadvertently picking up the
wrong language interface module.

If you do not need explicit calls to DSNALI for CAF functions, including DSNALI
in your load module has some advantages. When you include DSNALI during the
link-edit, you need not code the previously described dummy DSNHLI entry point
in your program or specify the precompiler option ATTACH. Module DSNALI
contains an entry point for DSNHLI, which is identical to DSNHLI2, and an entry
point DSNWLI, which is identical to DSNWLI2.

A disadvantage to link-editing DSNALI into your load module is that any IBM
maintenance to DSNALI requires a new link-edit of your load module.

General properties of CAF connections
Some of the basic properties of the connection the call attachment facility makes
with DB2 are:
v Connection name: DB2CALL. You can use the DISPLAY THREAD command to

list CAF applications having the connection name DB2CALL.
v Connection type: BATCH. BATCH connections use a single phase commit

process coordinated by DB2. Application programs can also use the SQL
COMMIT and ROLLBACK statements.

v Authorization IDs: DB2 establishes authorization identifiers for each task's
connection when it processes the connection for each task. For the BATCH
connection type, DB2 creates a list of authorization IDs based on the
authorization ID associated with the address space and the list is the same for
every task. A location can provide a DB2 connection authorization exit routine to
change the list of IDs. For information about authorization IDs and the
connection authorization exit routine, see Appendix B (Volume 2) of DB2
Administration Guide.

v Scope: The CAF processes connections as if each task is entirely isolated. When
a task requests a function, the CAF passes the functions to DB2, unaware of the
connection status of other tasks in the address space. However, the application
program and the DB2 subsystem are aware of the connection status of multiple
tasks in an address space.

Task termination
If a connected task terminates normally before the CLOSE function deallocates the
plan, DB2 commits any database changes that the thread made since the last

868 Application Programming and SQL Guide



commit point. If a connected task abends before the CLOSE function deallocates
the plan, DB2 rolls back any database changes since the last commit point.

In either case, DB2 deallocates the plan, if necessary, and terminates the task's
connection before it allows the task to terminate.

DB2 abend
If DB2 abends while an application is running, the application is rolled back to the
last commit point. If DB2 terminates while processing a commit request, DB2 either
commits or rolls back any changes at the next restart. The action taken depends on
the state of the commit request when DB2 terminates.

CAF function descriptions
To code CAF functions in C, COBOL, Fortran, or PL/I, follow the individual
language's rules for making calls to assembler routines. Specify the return code and
reason code parameters in the parameter list for each CAF call.

A description of the call attach register and parameter list conventions for
assembler language follow. Following it, the syntax description of specific functions
describe the parameters for those particular functions.

Register conventions
If you do not specify the return code and reason code parameters in your CAF
calls, CAF puts a return code in register 15 and a reason code in register 0. CAF
also supports high-level languages that cannot interrogate individual registers. See
Figure 243 on page 871 and the discussion following it for more information. The
contents of registers 2 through 14 are preserved across calls. You must conform to
the standard calling conventions listed in Table 134:

Table 134. Standard usage of registers R1 and R13-R15

Register Usage

R1 Parameter list pointer (for details, see “Call DSNALI parameter list”)

R13 Address of caller's save area

R14 Caller's return address

R15 CAF entry point address

Call DSNALI parameter list
Use a standard z/OS CALL parameter list. Register 1 points to a list of fullword
addresses that point to the actual parameters. The last address must contain a 1 in
the high-order bit. Figure 243 on page 871 shows a sample parameter list structure
for the CONNECT function.

When you code CALL DSNALI statements, you must specify all parameters that
come before the return code parameter. You cannot omit any of those parameters
by coding zeros or blanks. There are no defaults for those parameters for explicit
connection service requests. Defaults are provided only for implicit connections.

All parameters starting with the return code parameter are optional.

For C-language, when you code CALL DSNALI statements in C, you need to
specify the address of every required parameter, using the “address of” operator
(&), and not the parameter itself. For example, to pass the startecb parameter on
CONNECT, specify the address of the 4-byte integer (&secb).

Chapter 30. Programming for the call attachment facility 869

#
#
#
#



functn char[13] = "CONNECT ";
ssid char[ 5] = "DB2A";
int tecb = 0;
int secb = 0;
ptr ribptr;
int retcode;
int reascode;
ptr eibptr;

fnret = dsnali(&functn[0], &ssid[0], &tecb, &secb, &ribptr, &retcode, &reascode,
NULL, &eibptr);

For other languages except assembler language, code zero for a parameter in the
CALL DSNALI statement when you want to use the default value for that
parameter but specify subsequent parameters. For example, suppose you are
coding a CONNECT call in a COBOL program. You want to specify all parameters
except the return code parameter. Write the call in this way:
CALL ’DSNALI’ USING FUNCTN SSID TECB SECB RIBPTR

BY CONTENT ZERO BY REFERENCE REASCODE SRDURA EIBPTR.

For an assembler language call, code a comma for a parameter in the CALL
DSNALI statement when you want to use the default value for that parameter but
specify subsequent parameters. For example, code a CONNECT call like this to
specify all optional parameters except the return code parameter:
CALL DSNALI,(FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,,REASCODE,SRDURA,EIBPTR,GROUPOVERRIDE)

870 Application Programming and SQL Guide

#
#
#
#
#
#
#
#
#
#
#



Figure 243 illustrates how you can use the indicator end of parameter list to control
the return codes and reason code fields following a CAF CONNECT call. Each of
the six illustrated termination points applies to all CAF parameter lists:
1. Terminates the parameter list without specifying the parameters retcode,

reascode, and srdura, and places the return code in register 15 and the reason
code in register 0.
Terminating at this point ensures compatibility with CAF programs that require
a return code in register 15 and a reason code in register 0.

2. Terminates the parameter list after the parameter retcode, and places the return
code in the parameter list and the reason code in register 0.
Terminating at this point permits the application program to take action, based
on the return code, without further examination of the associated reason code.

3. Terminates the parameter list after the parameter reascode, and places the return
code and the reason code in the parameter list.
Terminating at this point provides support to high-level languages that are
unable to examine the contents of individual registers.
If you code your CAF application in assembler language, you can specify the
reason code parameter and omit the return code parameter. To do this, specify
a comma as a place-holder for the omitted return code parameter.

4. Terminates the parameter list after the parameter srdura.
If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode and reascode parameters. To do this, specify
commas as place-holders for the omitted parameters.

Figure 243. The parameter list for a CONNECT call

Chapter 30. Programming for the call attachment facility 871



5. Terminates the parameter list after the parameter eibptr.
If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode, reascode, or srdura parameters. To do this,
specify commas as place-holders for the omitted parameters.

6. Terminates the parameter list after the parameter groupoverride.
If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode, reascode, srdura, or eibptr parameters. To do this,
specify commas as place-holders for the omitted parameters.

Even if you specify that the return code be placed in the parameter list, it is also
placed in register 15 to accommodate high-level languages that support special
return code processing.

CONNECT: Syntax and usage
CONNECT initializes a connection to DB2. You should not confuse the CONNECT
function of the call attachment facility with the DB2 CONNECT statement that
accesses a remote location within DB2.

“DSNALI CONNECT function” shows the syntax for the CONNECT function.

DSNALI CONNECT function

�� CALL DSNALI ( function, ssnm, termecb, startecb, ribptr �

�
,retcode

,reascode
,srdura

,eibptr
,groupoverride

) ��

Parameters point to the following areas:

function
A 12-byte area containing CONNECT followed by five blanks.

ssnm
A 4-byte DB2 subsystem name or group attachment name (if used in a data
sharing group) to which the connection is made.

If your ssnm is less than four characters long, pad it on the right with blanks to
a length of four characters.

termecb
A 4-byte integer representing the application's event control block (ECB) for
DB2 termination. DB2 posts this ECB when the operator enters the STOP DB2
command or when DB2 is abnormally terminating. It indicates the type of
termination by a POST code, as shown in Table 135:

Table 135. POST codes and related termination types

POST code Termination type

8 QUIESCE

12 FORCE

16 ABTERM

872 Application Programming and SQL Guide



Before you check termecb in your CAF application program, first check the
return code and reason code from the CONNECT call to ensure that the call
completed successfully. See “Checking return codes and reason codes for CAF”
on page 889 for more information. See “MVS Programming: Assembler
Services Guide” for more information about ECBs.

startecb
A 4-byte integer representing the application's startup ECB. If DB2 has not yet
started when the application issues the call, DB2 posts the ECB when it
successfully completes its startup processing. DB2 posts at most one startup
ECB per address space. The ECB is the one associated with the most recent
CONNECT call from that address space. Your application program must
examine any nonzero CAF/DB2 reason codes before issuing a WAIT on this
ECB.

If ssnm is a group attachment name, the first DB2 subsystem that starts on the
local z/OS system and matches the specified group attachment name posts the
ECB.

ribptr
A 4-byte area in which CAF places the address of the release information block
(RIB) after the call. You can determine what release level of DB2 you are
currently running by examining field RIBREL. You can determine the
modification level within the release level by examining fields RIBCNUMB and
RIBCINFO. If the value in RIBCNUMB is greater than zero, check RIBCINFO
for modification levels.

If the RIB is not available (for example, if you name a subsystem that does not
exist), DB2 sets the 4-byte area to zeros.

The area to which ribptr points is below the 16-MB line.

Your program does not have to use the release information block, but it cannot
omit the ribptr parameter.

Macro DSNDRIB maps the release information block (RIB). It can be found in
prefix.SDSNMACS(DSNDRIB).

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If not specified, CAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code. If not specified, CAF places
the reason code in register 0.

This field is optional. If specified, you must also specify retcode.

srdura
A 10-byte area containing the string 'SRDURA(CD)'. This field is optional. If it
is provided, the value in the CURRENT DEGREE special register stays in effect
from CONNECT until DISCONNECT. If it is not provided, the value in the
CURRENT DEGREE special register stays in effect from OPEN until CLOSE. If
you specify this parameter in any language except assembler, you must also
specify the return code and reason code parameters. In assembler language,
you can omit the return code and reason code parameters by specifying
commas as place-holders.

Chapter 30. Programming for the call attachment facility 873



eibptr
A 4-byte area in which CAF puts the address of the environment information
block (EIB). The EIB contains information that you can use if you are
connecting to a DB2 subsystem that is part of a data sharing group. For
example, you can determine the name of the data sharing group, the member
to which you are connecting, and whether the subsystem is in new-function
mode. If the DB2 subsystem that you connect to is not part of a data sharing
group, then the fields in the EIB that are related to data sharing are blank. If
the EIB is not available (for example, if you name a subsystem that does not
exist), DB2 sets the 4-byte area to zeros.

The area to which eibptr points is above the 16-MB line.

You can omit this parameter when you make a CONNECT call.

If you specify this parameter in any language except assembler, you must also
specify the return code, reason code, and srdura parameters. In assembler
language, you can omit the return code, reason code, and srdura parameters by
specifying commas as place-holders.

Macro DSNDEIB maps the EIB. It can be found in
prefix.SDSNMACS(DSNDEIB).

groupoverride
An 8-byte area that the application provides. This field is optional. If this field
is provided, it contains the string 'NOGROUP'. This string indicates that the
subsystem name that is specified by ssnm is to be used as a DB2 subsystem
name, even if ssnm matches a group attachment name. If groupoverride is not
provided, ssnm is used as the group attachment name if it matches a group
attachment name. If you specify this parameter in any language except
assembler, you must also specify the return code, reason code, srdura, and
eibptr parameters. In assembler language, you can omit the return code, reason
code, srdura, and eibptr parameters by specifying commas as place-holders.

Usage: CONNECT establishes the caller's task as a user of DB2 services. If no other
task in the address space currently holds a connection with the subsystem named
by ssnm, CONNECT also initializes the address space for communication to the
DB2 address spaces. CONNECT establishes the address space's cross memory
authorization to DB2 and builds address space control blocks.

In a data sharing environment, use the groupoverride parameter on a CONNECT
call when you want to connect to a specific member of a data sharing group, and
the subsystem name of that member is the same as the group attachment name. In
general, using the groupoverride parameter is not desirable because it limits the
ability to do dynamic workload routing in a Parallel Sysplex.

Using a CONNECT call is optional. The first request from a task, either OPEN, or
an SQL or IFI call, causes CAF to issue an implicit CONNECT request. If a task is
connected implicitly, the connection to DB2 is terminated either when you execute
CLOSE or when the task terminates.

Establishing task and address space level connections is essentially an initialization
function and involves significant overhead. If you use CONNECT to establish a
task connection explicitly, it terminates when you use DISCONNECT or when the
task terminates. The explicit connection minimizes the overhead by ensuring that
the connection to DB2 remains after CLOSE deallocates a plan.

874 Application Programming and SQL Guide

#
#
#
#

#



You can run CONNECT from any or all tasks in the address space, but the address
space level is initialized only once when the first task connects.

If a task does not issue an explicit CONNECT or OPEN, the implicit connection
from the first SQL or IFI call specifies a default DB2 subsystem name. A systems
programmer or administrator determines the default subsystem name when
installing DB2. Be certain that you know what the default name is and that it
names the specific DB2 subsystem you want to use.

Practically speaking, you must not mix explicit CONNECT and OPEN requests
with implicitly established connections in the same address space. Either explicitly
specify which DB2 subsystem you want to use or allow all requests to use the
default subsystem.

Use CONNECT when:
v You need to specify a particular (non-default) subsystem name (ssnm).
v You need the value of the CURRENT DEGREE special register to last as long as

the connection (srdura).
v You need to monitor the DB2 startup ECB (startecb), the DB2 termination ECB

(termecb), or the DB2 release level.
v Multiple tasks in the address space will be opening and closing plans.
v A single task in the address space will be opening and closing plans more than

once.

The other parameters of CONNECT enable the caller to learn:
v That the operator has issued a STOP DB2 command. When this happens, DB2

posts the termination ECB, termecb. Your application can either wait on or just
look at the ECB.

v That DB2 is abnormally terminating. When this happens, DB2 posts the
termination ECB, termecb.

v That DB2 is available again (after a connection attempt that failed because DB2
was down). Wait on or look at the startup ECB, startecb. DB2 ignores this ECB if
it was active at the time of the CONNECT request.

v The current release level of DB2. Access the RIBREL field in the release
information block (RIB).

Do not issue CONNECT requests from a TCB that already has an active DB2
connection. (See “Summary of CAF behavior” on page 882 and “Error messages
and dsntrace” on page 885 for more information about CAF errors.)

Table 136 shows a CONNECT call in each language.

Table 136. Examples of CAF CONNECT calls

Language Call example

Assembler CALL
DSNALI,(FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,RETCODE,REASCODE,SRDURA,
EIBPTR, GRPOVER)

C fnret=dsnali(&functn[0],&ssid[0], &tecb, &secb,&ribptr,&retcode, &reascode, &srdura[0], &eibptr,
&grpover[0]);

COBOL CALL 'DSNALI' USING FUNCTN SSID TERMECB STARTECB RIBPTR RETCODE REASCODE
SRDURA EIBPTR GRPOVER.

Chapter 30. Programming for the call attachment facility 875



Table 136. Examples of CAF CONNECT calls (continued)

Language Call example

Fortran CALL
DSNALI(FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,RETCODE,REASCODE,SRDURA,
EIBPTR,GRPOVER)

PL/I CALL
DSNALI(FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,RETCODE,REASCODE,SRDURA,
EIBPTR,GRPOVER);

Note: DSNALI is an assembler language program; therefore, the following compiler directives must be included in
your C and PL/I applications:

C #pragma linkage(dsnali, OS)

C++
extern "OS" {

int DSNALI(
char * functn,

...); }

PL/I DCL DSNALI ENTRY OPTIONS(ASM,INTER,RETCODE);

OPEN: Syntax and usage
OPEN allocates resources to run the specified plan. Optionally, OPEN requests a
DB2 connection for the issuing task.

“DSNALI OPEN function” shows the syntax for the OPEN function.

DSNALI OPEN function

�� CALL DSNALI ( function, ssnm, plan �

�
, retcode

, reascode
, groupoverride

) ��

Parameters point to the following areas:

function
A 12-byte area containing the word OPEN followed by eight blanks.

ssnm
A 4-byte DB2 subsystem name or group attachment name (if used in a data
sharing group). Optionally, OPEN establishes a connection from ssnm to the
named DB2 subsystem. If your ssnm is less than four characters long, pad it on
the right with blanks to a length of four characters.

plan
An 8-byte DB2 plan name.

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If not specified, CAF places the return code in register 15
and the reason code in register 0.

876 Application Programming and SQL Guide



reascode
A 4-byte area in which CAF places a reason code. If not specified, CAF places
the reason code in register 0.

This field is optional. If specified, you must also specify retcode.

groupoverride
An 8-byte area that the application provides. This field is optional. If this field
is provided, it contains the string 'NOGROUP'. This string indicates that the
subsystem name that is specified by ssnm is to be used as a DB2 subsystem
name, even if ssnm matches a group attachment name. If groupoverride is not
provided, ssnm is used as the group attachment name if it matches a group
attachment name. If you specify this parameter in any language except
assembler, you must also specify the return code and reason code parameters.
In assembler language, you can omit the return code and reason code
parameters by specifying commas as place-holders.

Usage: OPEN allocates DB2 resources needed to run the plan or issue IFI requests.
If the requesting task does not already have a connection to the named DB2
subsystem, then OPEN establishes it.

OPEN allocates the plan to the DB2 subsystem named in ssnm. The ssnm
parameter, like the others, is required, even if the task issues a CONNECT call. If a
task issues CONNECT followed by OPEN, then the subsystem names for both calls
must be the same.

In a data sharing environment, use the groupoverride parameter on an OPEN call
when you want to connect to a specific member of a data sharing group, and the
subsystem name of that member is the same as the group attachment name. In
general, using the groupoverride parameter is not desirable because it limits the
ability to do dynamic workload routing in a Parallel Sysplex.

The use of OPEN is optional. If you do not use OPEN, the action of OPEN occurs
on the first SQL or IFI call from the task, using the defaults listed under “Implicit
connections” on page 866.

Do not use OPEN if the task already has a plan allocated.

Table 137 shows an OPEN call in each language.

Table 137. Examples of CAF OPEN calls

Language Call example

Assembler CALL DSNALI,(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER)

C fnret=dsnali(&functn[0],&ssid[0], &planname[0],&retcode, &reascode,&grpover[0]);

COBOL CALL 'DSNALI' USING FUNCTN SSID PLANNAME RETCODE REASCODE GRPOVER.

Fortran CALL DSNALI(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER)

PL/I CALL DSNALI(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER);

Chapter 30. Programming for the call attachment facility 877



Table 137. Examples of CAF OPEN calls (continued)

Language Call example

Note: DSNALI is an assembler language program; therefore, the following compiler directives must be included in
your C and PL/I applications:

C #pragma linkage(dsnali, OS)

C++
extern "OS" {

int DSNALI(
char * functn,

...); }

PL/I DCL DSNALI ENTRY OPTIONS(ASM,INTER,RETCODE);

CLOSE: Syntax and usage
CLOSE deallocates the plan and optionally disconnects the task, and possibly the
address space, from DB2.

“DSNALI CLOSE function” shows the syntax for the CLOSE function.

DSNALI CLOSE function

�� CALL DSNALI ( function, termop )
, retcode

, reascode

��

Parameters point to the following areas:

function
A 12-byte area containing the word CLOSE followed by seven blanks.

termop
A 4-byte terminate option, with one of these values:

SYNC Commit any modified data

ABRT Roll back data to the previous commit point.

retcode
A 4-byte area in which CAF should place the return code.

This field is optional. If not specified, CAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code. If not specified, CAF places
the reason code in register 0.

This field is optional. If specified, you must also specify retcode.

Usage: CLOSE deallocates the created plan either explicitly using OPEN or
implicitly at the first SQL call.

If you did not issue a CONNECT for the task, CLOSE also deletes the task's
connection to DB2. If no other task in the address space has an active connection to
DB2, DB2 also deletes the control block structures created for the address space
and removes the cross memory authorization.

878 Application Programming and SQL Guide



Do not use CLOSE when your current task does not have a plan allocated.

Using CLOSE is optional. If you omit it, DB2 performs the same actions when your
task terminates, using the SYNC parameter if termination is normal and the ABRT
parameter if termination is abnormal. (The function is an implicit CLOSE.) If the
objective is to shut down your application, you can improve shut down
performance by using CLOSE explicitly before the task terminates.

If you want to use a new plan, you must issue an explicit CLOSE, followed by an
OPEN, specifying the new plan name.

If DB2 terminates, a task that did not issue CONNECT should explicitly issue
CLOSE, so that CAF can reset its control blocks to allow for future connections.
This CLOSE returns the reset accomplished return code (+004) and reason code
X'00C10824'. If you omit CLOSE, then when DB2 is back on line, the task's next
connection request fails. You get either the message YOUR TCB DOES NOT HAVE
A CONNECTION, with X'00F30018' in register 0, or CAF error message DSNA201I
or DSNA202I, depending on what your application tried to do. The task must then
issue CLOSE before it can reconnect to DB2.

A task that issued CONNECT explicitly should issue DISCONNECT to cause CAF
to reset its control blocks when DB2 terminates. In this case, CLOSE is not
necessary.

Table 138 shows a CLOSE call in each language.

Table 138. Examples of CAF CLOSE calls

Language Call example

Assembler CALL DSNALI,(FUNCTN,TERMOP,RETCODE, REASCODE)

C fnret=dsnali(&functn[0], &termop[0], &retcode,&reascode);

COBOL CALL 'DSNALI' USING FUNCTN TERMOP RETCODE REASCODE.

Fortran CALL DSNALI(FUNCTN,TERMOP, RETCODE,REASCODE)

PL/I CALL DSNALI(FUNCTN,TERMOP, RETCODE,REASCODE);

Note: DSNALI is an assembler language program; therefore, the following compiler directives must be included in
your C and PL/I applications:

C #pragma linkage(dsnali, OS)

C++
extern "OS" {

int DSNALI(
char * functn,

...); }

PL/I DCL DSNALI ENTRY OPTIONS(ASM,INTER,RETCODE);

DISCONNECT: Syntax and usage
DISCONNECT terminates a connection to DB2.

“DSNALI DISCONNECT function” on page 880 shows the syntax for the
DISCONNECT function.

Chapter 30. Programming for the call attachment facility 879



DSNALI DISCONNECT function

�� CALL DSNALI ( function )
, retcode

, reascode

��

The single parameter points to the following area:

function
A 12-byte area containing the word DISCONNECT followed by two blanks.

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If not specified, CAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code. If not specified, CAF places
the reason code in register 0.

This field is optional. If specified, you must also specify retcode.

Usage: DISCONNECT removes the calling task's connection to DB2. If no other
task in the address space has an active connection to DB2, DB2 also deletes the
control block structures created for the address space and removes the cross
memory authorization.

Only those tasks that issued CONNECT explicitly can issue DISCONNECT. If
CONNECT was not used, then DISCONNECT causes an error.

If an OPEN is in effect when the DISCONNECT is issued (that is, a plan is
allocated), CAF issues an implicit CLOSE with the SYNC parameter.

Using DISCONNECT is optional. Without it, DB2 performs the same functions
when the task terminates. (The function is an implicit DISCONNECT.) If the
objective is to shut down your application, you can improve shut down
performance if you request DISCONNECT explicitly before the task terminates.

If DB2 terminates, a task that issued CONNECT must issue DISCONNECT to reset
the CAF control blocks. The function returns the reset accomplished return codes and
reason codes (+004 and X'00C10824'), and ensures that future connection requests
from the task work when DB2 is back on line.

A task that did not issue CONNECT explicitly must issue CLOSE to reset the CAF
control blocks when DB2 terminates.

Table 139 shows a DISCONNECT call in each language.

Table 139. Examples of CAF DISCONNECT calls

Language Call example

Assembler CALL DSNALI(,FUNCTN,RETCODE,REASCODE)

C fnret=dsnali(&functn[0], &retcode, &reascode);

880 Application Programming and SQL Guide



Table 139. Examples of CAF DISCONNECT calls (continued)

Language Call example

COBOL CALL 'DSNALI' USING FUNCTN RETCODE REASCODE.

Fortran CALL DSNALI(FUNCTN,RETCODE,REASCODE)

PL/I CALL DSNALI(FUNCTN,RETCODE,REASCODE);

Note: DSNALI is an assembler language program; therefore, the following compiler directives must be included in
your C and PL/I applications:

C #pragma linkage(dsnali, OS)

C++
extern "OS" {

int DSNALI(
char * functn,

...); }

PL/I DCL DSNALI ENTRY OPTIONS(ASM,INTER,RETCODE);

TRANSLATE: Syntax and usage
You can use TRANSLATE to convert a DB2 hexadecimal error reason code into a
signed integer SQLCODE and a printable error message text. The SQLCODE and
message text appear in the caller's SQLCA. You cannot call the TRANSLATE
function from the Fortran language.

TRANSLATE is useful only after an OPEN fails, and then only if you used an
explicit CONNECT before the OPEN request. For errors that occur during SQL or
IFI requests, the TRANSLATE function performs automatically.

“DSNALI TRANSLATE function” shows the syntax for the TRANSLATE function.

DSNALI TRANSLATE function

�� CALL DSNALI ( function, sqlca )
, retcode

, reascode

��

Parameters point to the following areas:

function
A 12-byte area containing the word TRANSLATE followed by three blanks.

sqlca
The program's SQL communication area (SQLCA).

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If not specified, CAF places the return code in register 15
and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code. If not specified, CAF places
the reason code in register 0.

This field is optional. If specified, you must also specify retcode.

Chapter 30. Programming for the call attachment facility 881



Usage: Use TRANSLATE to get a corresponding SQL error code and message text
for the DB2 error reason codes that CAF returns in register 0 following an OPEN
service request. DB2 places the information into the SQLCODE and SQLSTATE
host variables or related fields of the SQLCA.

The TRANSLATE function can translate those codes beginning with X'00F3', but it
does not translate CAF reason codes beginning with X'00C1'. If you receive error
reason code X'00F30040' (resource unavailable) after an OPEN request, TRANSLATE
returns the name of the unavailable database object in the last 44 characters of field
SQLERRM. If the DB2 TRANSLATE function does not recognize the error reason
code, it returns SQLCODE -924 (SQLSTATE '58006') and places a printable copy of
the original DB2 function code and the return and error reason codes in the
SQLERRM field. The contents of registers 0 and 15 do not change, unless
TRANSLATE fails; in which case, register 0 is set to X'C10205' and register 15 to
200.

Table 140 shows a TRANSLATE call in each language.

Table 140. Examples of CAF TRANSLATE calls

Language Call example

Assembler CALL DSNALI,(FUNCTN,SQLCA,RETCODE, REASCODE)

C fnret=dsnali(&functn[0], &sqlca, &retcode, &reascode);

COBOL CALL 'DSNALI' USING FUNCTN SQLCA RETCODE REASCODE.

PL/I CALL DSNALI(FUNCTN,SQLCA,RETCODE, REASCODE);

Note: DSNALI is an assembler language program; therefore, the following compiler directives must be included in
your C and PL/I applications:

C #pragma linkage(dsnali, OS)

C++
extern "OS" {

int DSNALI(
char * functn,

...); }

PL/I DCL DSNALI ENTRY OPTIONS(ASM,INTER,RETCODE);

Summary of CAF behavior
Table 141 summarizes CAF behavior after various inputs from application
programs. Use it to help plan the calls your program makes, and to help
understand where CAF errors can occur. Careful use of this table can avoid major
structural problems in your application.

In the table, an error shows as Error nnn. The corresponding reason code is
X'00C10'nnn; the message number is DSNAnnnI or DSNAnnnE. For a list of reason
codes, see “CAF return codes and reason codes” on page 885.

Table 141. Effects of CAF calls, as dependent on connection history

Previous
function

Next function

CONNECT OPEN SQL CLOSE DISCONNECT TRANSLATE

Empty: first
call

CONNECT OPEN CONNECT,
OPEN,
followed by
the SQL or IFI
call

Error 203 Error 204 Error 205

882 Application Programming and SQL Guide



Table 141. Effects of CAF calls, as dependent on connection history (continued)

Previous
function

Next function

CONNECT OPEN SQL CLOSE DISCONNECT TRANSLATE

CONNECT Error 201 OPEN OPEN,
followed by
the SQL or IFI
call

Error 203 DISCONNECT TRANSLATE

CONNECT
followed by
OPEN

Error 201 Error 202 The SQL or IFI
call

CLOSE1 DISCONNECT TRANSLATE

CONNECT
followed by
SQL or IFI call

Error 201 Error 202 The SQL or IFI
call

CLOSE1 DISCONNECT TRANSLATE

OPEN Error 201 Error 202 The SQL or IFI
call

CLOSE2 Error 204 TRANSLATE

SQL or IFI call Error 201 Error 202 The SQL or IFI
call

CLOSE2 Error 204 TRANSLATE3

Notes:

1. The task and address space connections remain active. If CLOSE fails because DB2 was down, then the CAF
control blocks are reset, the function produces return code 4 and reason code XX'00C10824', and CAF is ready for
more connection requests when DB2 is again on line.

2. A TRANSLATE request is accepted, but in this case it is redundant. CAF automatically issues a TRANSLATE
request when an SQL or IFI request fails.

Table 141 on page 882 uses the following conventions:
v The top row lists the possible CAF functions that programs can use as their call.
v The first column lists the task's most recent history of connection requests. For

example, CONNECT followed by OPEN means that the task issued CONNECT
and then OPEN with no other CAF calls in between.

v The intersection of a row and column shows the effect of the next call if it
follows the corresponding connection history. For example, if the call is OPEN
and the connection history is CONNECT, the effect is OPEN: the OPEN function
is performed. If the call is SQL and the connection history is empty (meaning
that the SQL call is the first CAF function the program), the effect is that an
implicit CONNECT and OPEN function is performed, followed by the SQL
function.

Sample scenarios
This section shows sample scenarios for connecting tasks to DB2.

A single task with implicit connections
The simplest connection scenario is a single task making calls to DB2, using no
explicit CALL DSNALI statements. The task implicitly connects to the default
subsystem name, using the default plan name.

When the task terminates:
v Any database changes are committed (if termination was normal) or rolled back

(if termination was abnormal).
v The active plan and all database resources are deallocated.

Chapter 30. Programming for the call attachment facility 883



v The task and address space connections to DB2 are terminated.

A single task with explicit connections
A more complex scenario, but still with a single task, is this:
CONNECT

OPEN allocate a plan
SQL or IFI call

...
CLOSE deallocate the current plan
OPEN allocate a new plan
SQL or IFI call

...
CLOSE

DISCONNECT

A task can have a connection to one and only one DB2 subsystem at any point in
time. A CAF error occurs if the subsystem name on OPEN does not match the one
on CONNECT. To switch to a different subsystem, the application must disconnect
from the current subsystem, then issue a connect request specifying a new
subsystem name.

Several tasks
In this scenario, multiple tasks within the address space are using DB2 services.
Each task must explicitly specify the same subsystem name on either the
CONNECT or OPEN function request. Task 1 makes no SQL or IFI calls. Its
purpose is to monitor the DB2 termination and startup ECBs, and to check the DB2
release level.
TASK 1 TASK 2 TASK 3 TASK n

CONNECT
OPEN OPEN OPEN
SQL SQL SQL
... ... ...
CLOSE CLOSE CLOSE
OPEN OPEN OPEN
SQL SQL SQL
... ... ...
CLOSE CLOSE CLOSE

DISCONNECT

Exit routines from your application
You can provide exit routines from your application for the purposes described in
the following text.

Attention exit routines
An attention exit routine enables you to regain control from DB2, during
long-running or erroneous requests, by detaching the TCB currently waiting on an
SQL or IFI request to complete. DB2 detects the abend caused by DETACH and
performs termination processing (including ROLLBACK) for that task.

The call attachment facility has no attention exit routines. You can provide your
own if necessary. However, DB2 uses enabled unlocked task (EUT) functional
recovery routines (FRRs), so if you request attention while DB2 code is running,
your routine may not get control.

884 Application Programming and SQL Guide



Recovery routines
The call attachment facility has no abend recovery routines.

Your program can provide an abend exit routine. It must use tracking indicators to
determine if an abend occurred during DB2 processing. If an abend occurs while
DB2 has control, you have these choices:
v Allow task termination to complete. Do not retry the program. DB2 detects task

termination and terminates the thread with the ABRT parameter. You lose all
database changes back to the last SYNC or COMMIT point.
This is the only action that you can take for abends that CANCEL or DETACH
cause. You cannot use additional SQL statements at this point. If you attempt to
execute another SQL statement from the application program or its recovery
routine, a return code of +256 and a reason code of X'00F30083' occurs.

v In an ESTAE routine, issue CLOSE with the ABRT parameter followed by
DISCONNECT. The ESTAE exit routine can retry so that you do not need to
reinstate the application task.

Standard z/OS functional recovery routines (FRRs) can cover only code running in
service request block (SRB) mode. Because DB2 does not support calls from SRB
mode routines, you can use only enabled unlocked task (EUT) FRRs in your
routines that call DB2.

Do not have an EUT FRR active when using CAF, processing SQL requests, or
calling IFI.

An EUT FRR can be active, but it cannot retry failing DB2 requests. An EUT FRR
retry bypasses DB2's ESTAE routines. The next DB2 request of any type, including
DISCONNECT, fails with a return code of +256 and a reason code of X'00F30050'.

With z/OS, if you have an active EUT FRR, all DB2 requests fail, including the
initial CONNECT or OPEN. The requests fail because DB2 always creates an
ARR-type ESTAE, and z/OS does not allow the creation of ARR-type ESTAEs
when an FRR is active.

Error messages and dsntrace
CAF produces no error messages unless you allocate a DSNTRACE data set. If you
allocate a DSNTRACE data set either dynamically or by including a //DSNTRACE
DD statement in your JCL, CAF writes diagnostic trace message to that data set.
You can refer to “Sample JCL for using CAF” on page 886 for sample JCL that
allocates a DSNTRACE data set. The trace message numbers contain the last three
digits of the reason codes.

CAF return codes and reason codes
CAF provides the return codes and reason codes either to the corresponding
parameters named in a CAF call or, if you choose not to use those parameters, to
registers 15 and 0. Detailed explanations of the reason codes appear in DB2 Codes.

When the reason code begins with X'00F3' (except for X'00F30006'), you can use the
CAF TRANSLATE function to obtain error message text that can be printed and
displayed. These reason codes are issued by the subsystem support for allied
memories, a part of the DB2 subsystem support subcomponent that services all
DB2 connection and work requests. For more information about the codes, along

Chapter 30. Programming for the call attachment facility 885



with abend and subsystem termination reason codes issued by other parts of
subsystem support, see Part 3 of DB2 Codes.

For SQL calls, CAF returns standard SQLCODEs in the SQLCA. See Part 2 of DB2
Codes for a list of those return codes and their meanings. CAF returns IFI return
codes and reason codes in the instrumentation facility communication area (IFCA).

Table 142 shows the CAF return codes and reason codes.

Table 142. CAF return codes and reason codes

Return code Reason code Explanation

0 X'00000000' Successful completion.

4 X'00C10824' CAF reset complete. Ready to make a new connection.

8 X'00C10831' Release level mismatch between DB2 and the and the call
attachment facility code.

2001 X'00C10201' Received a second CONNECT from the same TCB. The first
CONNECT could have been implicit or explicit.

2001 X'00C10202' Received a second OPEN from the same TCB. The first OPEN could
have been implicit or explicit.

2001 X'00C10203' CLOSE issued when there was no active OPEN.

2001 X'00C10204' DISCONNECT issued when there was no active CONNECT, or the
AXSET macro was issued between CONNECT and DISCONNECT.

2001 X'00C10205' TRANSLATE issued when there was no connection to DB2.

2001 X'00C10206' Wrong number of parameters or the end-of-list bit was off.

2001 X'00C10207' Unrecognized function parameter.

2001 X'00C10208' Received requests to access two different DB2 subsystems from the
same TCB.

204 2 CAF system error. Probable error in the attach or DB2.

Notes:

1. A CAF error probably caused by errors in the parameter lists coming from application programs. CAF errors do
not change the current state of your connection to DB2; you can continue processing with a corrected request.

2. System errors cause abends. For an explanation of the abend reason codes, see Part 3 of DB2 Codes. If tracing is
on, a descriptive message is written to the DSNTRACE data set just before the abend.

Subsystem support subcomponent codes (X’00F3’): These reason codes are issued
by the subsystem support for allied memories, a part of the DB2 subsystem
support subcomponent that services all DB2 connection and work requests. For
more information about the codes, along with abend and subsystem termination
reason codes that are issued by other parts of subsystem support, see Part 3 of DB2
Codes.

Program examples for CAF
The following pages contain sample JCL and assembler programs that access the
call attachment facility (CAF).

Sample JCL for using CAF
The sample JCL that follows is a model for using CAF in a batch (non-TSO)
environment. The DSNTRACE statement shown in this example is optional.

886 Application Programming and SQL Guide

###
#



//jobname JOB z/OS_jobcard_information
//CAFJCL EXEC PGM=CAF_application_program
//STEPLIB DD DSN=application_load_library
// DD DSN=DB2_load_library

...

//SYSPRINT DD SYSOUT=*
//DSNTRACE DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Sample assembler code for using CAF
The following sections show parts of a sample assembler program using the call
attachment facility. It demonstrates the basic techniques for making CAF calls but
does not show the code and z/OS macros needed to support those calls. For
example, many applications need a two-task structure so that attention-handling
routines can detach connected subtasks to regain control from DB2. This structure
is not shown in the code that follows.

These code segments assume the existence of a WRITE macro. Anywhere you find
this macro in the code is a good place for you to substitute code of your own. You
must decide what you want your application to do in those situations; you
probably do not want to write the error messages shown.

Loading and deleting the CAF language interface
The following code segment shows how an application can load entry points
DSNALI and DSNHLI2 for the call attachment language interface. Storing the
entry points in variables LIALI and LISQL ensures that the application has to load
the entry points only once.

When the module is done with DB2, you should delete the entries.
****************************** GET LANGUAGE INTERFACE ENTRY ADDRESSES

LOAD EP=DSNALI Load the CAF service request EP
ST R0,LIALI Save this for CAF service requests
LOAD EP=DSNHLI2 Load the CAF SQL call Entry Point
ST R0,LISQL Save this for SQL calls

* .
* . Insert connection service requests and SQL calls here
* .

DELETE EP=DSNALI Correctly maintain use count
DELETE EP=DSNHLI2 Correctly maintain use count

Connecting to DB2 for CAF
Figure 244 on page 888 shows how to issue explicit requests for certain actions
(CONNECT, OPEN, CLOSE, DISCONNECT, and TRANSLATE), using the
CHEKCODE subroutine to check the return reason codes from CAF:

Chapter 30. Programming for the call attachment facility 887



The code does not show a task that waits on the DB2 termination ECB. If you like,
you can code such a task and use the z/OS WAIT macro to monitor the ECB. You
probably want this task to detach the sample code if the termination ECB is
posted. That task can also wait on the DB2 startup ECB. This sample waits on the
startup ECB at its own task level.

On entry, the code assumes that certain variables are already set:

Variable Usage

LIALI The entry point that handles DB2 connection service requests.

LISQL The entry point that handles SQL calls.

SSID The DB2 subsystem identifier.

TECB The address of the DB2 termination ECB.

SECB The address of the DB2 startup ECB.

RIBPTR A fullword that CAF sets to contain the RIB address.

PLAN The plan name to use on the OPEN call.

****************************** CONNECT ********************************
L R15,LIALI Get the Language Interface address
MVC FUNCTN,CONNECT Get the function to call
CALL (15),(FUNCTN,SSID,TECB,SECB,RIBPTR),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not ’CONTINUE’, stop loop
USING R8,RIB Prepare to access the RIB
L R8,RIBPTR Access RIB to get DB2 release level
WRITE ’The current DB2 release level is’ RIBREL

****************************** OPEN ***********************************
L R15,LIALI Get the Language Interface address
MVC FUNCTN,OPEN Get the function to call
CALL (15),(FUNCTN,SSID,PLAN),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes

****************************** SQL ************************************
* Insert your SQL calls here. The DB2 Precompiler
* generates calls to entry point DSNHLI. You should
* specify the precompiler option ATTACH(CAF), or code
* a dummy entry point named DSNHLI to intercept
* all SQL calls. A dummy DSNHLI is shown below.
****************************** CLOSE **********************************

CLC CONTROL,CONTINUE Is everything still OK?
BNE EXIT If CONTROL not ’CONTINUE’, shut down
MVC TRMOP,ABRT Assume termination with ABRT parameter
L R4,SQLCODE Put the SQLCODE into a register
C R4,CODE0 Examine the SQLCODE
BZ SYNCTERM If zero, then CLOSE with SYNC parameter
C R4,CODE100 See if SQLCODE was 100
BNE DISC If not 100, CLOSE with ABRT parameter

SYNCTERM MVC TRMOP,SYNC Good code, terminate with SYNC parameter
DISC DS 0H Now build the CAF parmlist

L R15,LIALI Get the Language Interface address
MVC FUNCTN,CLOSE Get the function to call
CALL (15),(FUNCTN,TRMOP),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes

****************************** DISCONNECT *****************************
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not ’CONTINUE’, stop loop
L R15,LIALI Get the Language Interface address
MVC FUNCTN,DISCON Get the function to call
CALL (15),(FUNCTN),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes

Figure 244. CHEKCODE Subroutine for connecting to DB2

888 Application Programming and SQL Guide



CONTROL Used to shut down processing because of unsatisfactory return or
reason codes. Subroutine CHEKCODE sets CONTROL.

CAFCALL List-form parameter area for the CALL macro.

Checking return codes and reason codes for CAF
Figure 245 illustrates a way to check the return codes and the DB2 termination
ECB after each connection service request and SQL call. The routine sets the
variable CONTROL to control further processing within the module.

***********************************************************************
* CHEKCODE PSEUDOCODE *
***********************************************************************
*IF TECB is POSTed with the ABTERM or FORCE codes
* THEN
* CONTROL = ’SHUTDOWN’
* WRITE ’DB2 found FORCE or ABTERM, shutting down’
* ELSE /* Termination ECB was not POSTed */
* SELECT (RETCODE) /* Look at the return code */
* WHEN (0) ; /* Do nothing; everything is OK */
* WHEN (4) ; /* Warning */
* SELECT (REASCODE) /* Look at the reason code */
* WHEN (’00C10824’X) /* Ready for another CAF call */
* CONTROL = ’RESTART’ /* Start over, from the top */
* OTHERWISE
* WRITE ’Found unexpected R0 when R15 was 4’
* CONTROL = ’SHUTDOWN’
* END INNER-SELECT
* WHEN (8,12) /* Connection failure */
* SELECT (REASCODE) /* Look at the reason code */
* WHEN (’00C10831’X) /* DB2 / CAF release level mismatch*/
* WRITE ’Found a mismatch between DB2 and CAF release levels’
* WHEN (’00F30002’X, /* These mean that DB2 is down but */
* ’00F30012’X) /* will POST SECB when up again */
* DO
* WRITE ’DB2 is unavailable. I’ll tell you when it’s up.’
* WAIT SECB /* Wait for DB2 to come up */
* WRITE ’DB2 is now available.’
* END
* /**********************************************************/
* /* Insert tests for other DB2 connection failures here. */
* /* CAF Externals Specification lists other codes you can */
* /* receive. Handle them in whatever way is appropriate */
* /* for your application. */
* /**********************************************************/
* OTHERWISE /* Found a code we’re not ready for*/
* WRITE ’Warning: DB2 connection failure. Cause unknown’
* CALL DSNALI (’TRANSLATE’,SQLCA) /* Fill in SQLCA */
* WRITE SQLCODE and SQLERRM
* END INNER-SELECT
* WHEN (200)
* WRITE ’CAF found user error. See DSNTRACE dataset’
* WHEN (204)
* WRITE ’CAF system error. See DSNTRACE data set’
* OTHERWISE
* CONTROL = ’SHUTDOWN’
* WRITE ’Got an unrecognized return code’
* END MAIN SELECT
* IF (RETCODE > 4) THEN /* Was there a connection problem?*/
* CONTROL = ’SHUTDOWN’
* END CHEKCODE

Figure 245. Subroutine to check return codes from CAF and DB2, in assembler (Part 1 of 3)

Chapter 30. Programming for the call attachment facility 889

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



***********************************************************************
* Subroutine CHEKCODE checks return codes from DB2 and Call Attach.
* When CHEKCODE receives control, R13 should point to the caller’s
* save area.
***********************************************************************
CHEKCODE DS 0H

STM R14,R12,12(R13) Prolog
ST R15,RETCODE Save the return code
ST R0,REASCODE Save the reason code
LA R15,SAVEAREA Get save area address
ST R13,4(,R15) Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13

* ********************* HUNT FOR FORCE OR ABTERM ***************
TM TECB,POSTBIT See if TECB was POSTed
BZ DOCHECKS Branch if TECB was not POSTed
CLC TECBCODE(3),QUIESCE Is this "STOP DB2 MODE=FORCE"
BE DOCHECKS If not QUIESCE, was FORCE or ABTERM
MVC CONTROL,SHUTDOWN Shutdown
WRITE ’Found found FORCE or ABTERM, shutting down’
B ENDCCODE Go to the end of CHEKCODE

DOCHECKS DS 0H Examine RETCODE and REASCODE
* ********************* HUNT FOR 0 *****************************

CLC RETCODE,ZERO Was it a zero?
BE ENDCCODE Nothing to do in CHEKCODE for zero

* ********************* HUNT FOR 4 *****************************
CLC RETCODE,FOUR Was it a 4?
BNE HUNT8 If not a 4, hunt eights
CLC REASCODE,C10831 Was it a release level mismatch?
BNE HUNT824 Branch if not an 831
WRITE ’Found a mismatch between DB2 and CAF release levels’
B ENDCCODE We are done. Go to end of CHEKCODE

HUNT824 DS 0H Now look for ’CAF reset’ reason code
CLC REASCODE,C10824 Was it 4? Are we ready to restart?
BNE UNRECOG If not 824, got unknown code
WRITE ’CAF is now ready for more input’
MVC CONTROL,RESTART Indicate that we should re-CONNECT
B ENDCCODE We are done. Go to end of CHEKCODE

UNRECOG DS 0H
WRITE ’Got RETCODE = 4 and an unrecognized reason code’
MVC CONTROL,SHUTDOWN Shutdown, serious problem
B ENDCCODE We are done. Go to end of CHEKCODE

* ********************* HUNT FOR 8 *****************************
HUNT8 DS 0H

CLC RETCODE,EIGHT Hunt return code of 8
BE GOT8OR12
CLC RETCODE,TWELVE Hunt return code of 12
BNE HUNT200

GOT8OR12 DS 0H Found return code of 8 or 12
WRITE ’Found RETCODE of 8 or 12’
CLC REASCODE,F30002 Hunt for X’00F30002’
BE DB2DOWN

Figure 245. Subroutine to check return codes from CAF and DB2, in assembler (Part 2 of 3)

890 Application Programming and SQL Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



Using dummy entry point DSNHLI for CAF
Each of the four DB2 attachment facilities contains an entry point named DSNHLI.
When you use CAF but do not specify the precompiler option ATTACH(CAF), SQL
statements result in BALR instructions to DSNHLI in your program. To find the
correct DSNHLI entry point without including DSNALI in your load module, code
a subroutine with entry point DSNHLI that passes control to entry point DSNHLI2
in the DSNALI module. DSNHLI2 is unique to DSNALI and is at the same
location in DSNALI as DSNHLI. DSNALI uses 31-bit addressing. If the application
that calls this intermediate subroutine uses 24-bit addressing, this subroutine
should account for the difference.

CLC REASCODE,F30012 Hunt for X’00F30012’
BE DB2DOWN
WRITE ’DB2 connection failure with an unrecognized REASCODE’
CLC SQLCODE,ZERO See if we need TRANSLATE
BNE A4TRANS If not blank, skip TRANSLATE

* ********************* TRANSLATE unrecognized RETCODEs ********
WRITE ’SQLCODE 0 but R15 not, so TRANSLATE to get SQLCODE’
L R15,LIALI Get the Language Interface address
CALL (15),(TRANSLAT,SQLCA),VL,MF=(E,CAFCALL)
C R0,C10205 Did the TRANSLATE work?
BNE A4TRANS If not C10205, SQLERRM now filled in
WRITE ’Not able to TRANSLATE the connection failure’
B ENDCCODE Go to end of CHEKCODE

A4TRANS DS 0H SQLERRM must be filled in to get here
* Note: your code should probably remove the X’FF’
* separators and format the SQLERRM feedback area.
* Alternatively, use DB2 Sample Application DSNTIAR
* to format a message.

WRITE ’SQLERRM is:’ SQLERRM
B ENDCCODE We are done. Go to end of CHEKCODE

DB2DOWN DS 0H Hunt return code of 200
WRITE ’DB2 is down and I will tell you when it comes up’
WAIT ECB=SECB Wait for DB2 to come up
WRITE ’DB2 is now available’
MVC CONTROL,RESTART Indicate that we should re-CONNECT
B ENDCCODE

* ********************* HUNT FOR 200 ***************************
HUNT200 DS 0H Hunt return code of 200

CLC RETCODE,NUM200 Hunt 200
BNE HUNT204
WRITE ’CAF found user error, see DSNTRACE data set’
B ENDCCODE We are done. Go to end of CHEKCODE

* ********************* HUNT FOR 204 ***************************
HUNT204 DS 0H Hunt return code of 204

CLC RETCODE,NUM204 Hunt 204
BNE WASSAT If not 204, got strange code
WRITE ’CAF found system error, see DSNTRACE data set’
B ENDCCODE We are done. Go to end of CHEKCODE

* ********************* UNRECOGNIZED RETCODE *******************
WASSAT DS 0H

WRITE ’Got an unrecognized RETCODE’
MVC CONTROL,SHUTDOWN Shutdown
BE ENDCCODE We are done. Go to end of CHEKCODE

ENDCCODE DS 0H Should we shut down?
L R4,RETCODE Get a copy of the RETCODE
C R4,FOUR Have a look at the RETCODE
BNH BYEBYE If RETCODE <= 4 then leave CHEKCODE
MVC CONTROL,SHUTDOWN Shutdown

BYEBYE DS 0H Wrap up and leave CHEKCODE
L R13,4(,R13) Point to caller’s save area
RETURN (14,12) Return to the caller

Figure 245. Subroutine to check return codes from CAF and DB2, in assembler (Part 3 of 3)

Chapter 30. Programming for the call attachment facility 891



In the example that follows, LISQL is addressable because the calling CSECT used
the same register 12 as CSECT DSNHLI. Your application must also establish
addressability to LISQL.
***********************************************************************
* Subroutine DSNHLI intercepts calls to LI EP=DSNHLI
***********************************************************************

DS 0D
DSNHLI CSECT Begin CSECT

STM R14,R12,12(R13) Prologue
LA R15,SAVEHLI Get save area address
ST R13,4(,R15) Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13
L R15,LISQL Get the address of real DSNHLI
BASSM R14,R15 Branch to DSNALI to do an SQL call

* DSNALI is in 31-bit mode, so use
* BASSM to assure that the addressing
* mode is preserved.

L R13,4(,R13) Restore R13 (caller’s save area addr)
L R14,12(,R13) Restore R14 (return address)
RETURN (1,12) Restore R1-12, NOT R0 and R15 (codes)

Variable declarations for CAF
Figure 246 on page 893 shows declarations for some of the variables used in the
previous subroutines.

892 Application Programming and SQL Guide



****************************** VARIABLES ******************************
SECB DS F DB2 Startup ECB
TECB DS F DB2 Termination ECB
LIALI DS F DSNALI Entry Point address
LISQL DS F DSNHLI2 Entry Point address
SSID DS CL4 DB2 Subsystem ID. CONNECT parameter
PLAN DS CL8 DB2 Plan name. OPEN parameter
TRMOP DS CL4 CLOSE termination option (SYNC|ABRT)
FUNCTN DS CL12 CAF function to be called
RIBPTR DS F DB2 puts Release Info Block addr here
RETCODE DS F Chekcode saves R15 here
REASCODE DS F Chekcode saves R0 here
CONTROL DS CL8 GO, SHUTDOWN, or RESTART
SAVEAREA DS 18F Save area for CHEKCODE
****************************** CONSTANTS ******************************
SHUTDOWN DC CL8’SHUTDOWN’ CONTROL value: Shutdown execution
RESTART DC CL8’RESTART ’ CONTROL value: Restart execution
CONTINUE DC CL8’CONTINUE’ CONTROL value: Everything OK, cont
CODE0 DC F’0’ SQLCODE of 0
CODE100 DC F’100’ SQLCODE of 100
QUIESCE DC XL3’000008’ TECB postcode: STOP DB2 MODE=QUIESCE
CONNECT DC CL12’CONNECT ’ Name of a CAF service. Must be CL12!
OPEN DC CL12’OPEN ’ Name of a CAF service. Must be CL12!
CLOSE DC CL12’CLOSE ’ Name of a CAF service. Must be CL12!
DISCON DC CL12’DISCONNECT ’ Name of a CAF service. Must be CL12!
TRANSLAT DC CL12’TRANSLATE ’ Name of a CAF service. Must be CL12!
SYNC DC CL4’SYNC’ Termination option (COMMIT)
ABRT DC CL4’ABRT’ Termination option (ROLLBACK)
****************************** RETURN CODES (R15) FROM CALL ATTACH ****
ZERO DC F’0’ 0
FOUR DC F’4’ 4
EIGHT DC F’8’ 8
TWELVE DC F’12’ 12 (Call Attach return code in R15)
NUM200 DC F’200’ 200 (User error)
NUM204 DC F’204’ 204 (Call Attach system error)
****************************** REASON CODES (R00) FROM CALL ATTACH ****
C10205 DC XL4’00C10205’ Call attach could not TRANSLATE
C10831 DC XL4’00C10831’ Call attach found a release mismatch
C10824 DC XL4’00C10824’ Call attach ready for more input
F30002 DC XL4’00F30002’ DB2 subsystem not up
F30011 DC XL4’00F30011’ DB2 subsystem not up
F30012 DC XL4’00F30012’ DB2 subsystem not up
F30025 DC XL4’00F30025’ DB2 is stopping (REASCODE)
*
* Insert more codes here as necessary for your application
*
****************************** SQLCA and RIB **************************

EXEC SQL INCLUDE SQLCA
DSNDRIB Get the DB2 Release Information Block

****************************** CALL macro parm list *******************
CAFCALL CALL ,(*,*,*,*,*,*,*,*,*),VL,MF=L

Figure 246. Declarations for variables used in the previous subroutines

Chapter 30. Programming for the call attachment facility 893

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



894 Application Programming and SQL Guide



Chapter 31. Programming for the Resource Recovery Services
attachment facility

An application program can use the Resource Recovery Services attachment facility
(RRSAF) to connect to and use DB2 to process SQL statements, commands, or
instrumentation facility interface (IFI) calls. Programs that run in z/OS batch, TSO
foreground, and TSO background can use RRSAF.

RRSAF uses z/OS Transaction Management and Resource Recovery Services (z/OS
RRS). With RRSAF, you can coordinate DB2 updates with updates made by all
other resource managers that also use z/OS RRS in an z/OS system.

Prerequisite knowledge: Before you consider using RRSAF, you must be familiar
with the following z/OS topics:
v The CALL macro and standard module linkage conventions
v Program addressing and residency options (AMODE and RMODE)
v Creating and controlling tasks; multitasking
v Functional recovery facilities such as ESTAE, ESTAI, and FRRs
v Synchronization techniques such as WAIT/POST.
v z/OS RRS functions, such as SRRCMIT and SRRBACK.

RRSAF capabilities and requirements
To decide whether to use RRSAF, consider the following topics:
v “RRSAF capabilities”
v “RRSAF requirements” on page 896

RRSAF capabilities
An application program using RRSAF can:
v Use the z/OS System Authorization Facility and an external security product,

such as RACF, to sign on to DB2 with the authorization ID of an end user.
v Sign on to DB2 using a new authorization ID and an existing connection and

plan.
v Access DB2 from multiple z/OS tasks in an address space.
v Switch a DB2 thread among z/OS tasks within a single address space.
v Access the DB2 IFI.
v Run with or without the TSO terminal monitor program (TMP).
v Run without being a subtask of the DSN command processor (or of any DB2

code).
v Run above or below the 16-MB line.
v Establish an explicit connection to DB2, through a call interface, with control

over the exact state of the connection.
v Establish an implicit connection to DB2 (with a default subsystem identifier and

a default plan name) by using SQL statements or IFI calls without first calling
RRSAF.

v Supply event control blocks (ECBs), for DB2 to post, that signal start-up or
termination.

© Copyright IBM Corp. 1983, 2012 895

|
|
|



v Intercept return codes, reason codes, and abend codes from DB2 and translate
them into messages as desired.

Task capabilities
Any task in an address space can establish a connection to DB2 through RRSAF.

Number of connections to DB2: Each task control block (TCB) can have only one
connection to DB2. A DB2 service request issued by a program that runs under a
given task is associated with that task's connection to DB2. The service request
operates independently of any DB2 activity under any other task.

Using multiple simultaneous connections can increase the possibility of deadlocks
and DB2 resource contention. Consider this when you write your application
program.

Specifying a plan for a task: Each connected task can run a plan. Tasks within a
single address space can specify the same plan, but each instance of a plan runs
independently from the others. A task can terminate its plan and run a different
plan without completely breaking its connection to DB2.

Providing attention processing exits and recovery routines: RRSAF does not
generate task structures, and it does not provide attention processing exits or
functional recovery routines. You can provide whatever attention handling and
functional recovery your application needs, but you must use ESTAE/ESTAI type
recovery routines only.

Programming language
You can write RRSAF applications in assembler language, C, COBOL, Fortran, and
PL/I. When choosing a language to code your application in, consider these
restrictions:
v If you use z/OS macros (ATTACH, WAIT, POST, and so on), you must choose a

programming language that supports them.
v The RRSAF TRANSLATE function is not available from Fortran. To use the

function, code it in a routine written in another language, and then call that
routine from Fortran.

Tracing facility
A tracing facility provides diagnostic messages that help you debug programs and
diagnose errors in the RRSAF code. The trace information is available only in a
SYSABEND or SYSUDUMP dump.

Program preparation
Preparing your application program to run in RRSAF is similar to preparing it to
run in other environments, such as CICS, IMS, and TSO. You can prepare an
RRSAF application either in the batch environment or by using the DB2 program
preparation process. You can use the program preparation system either through
DB2I or through the DSNH CLIST. For examples and guidance in program
preparation, see Chapter 21, “Preparing an application program to run,” on page
471.

RRSAF requirements
When you write an application to use RRSAF, be aware of the following
requirements.

896 Application Programming and SQL Guide



Program size
The RRSAF code requires about 10-KB of virtual storage per address space and an
additional 10-KB for each TCB that uses RRSAF.

Use of LOAD
RRSAF uses z/OS SVC LOAD to load a module as part of the initialization
following your first service request. The module is loaded into fetch-protected
storage that has the job-step protection key. If your local environment intercepts
and replaces the LOAD SVC, then you must ensure that your version of LOAD
manages the load list element (LLE) and contents directory entry (CDE) chains like
the standard z/OS LOAD macro.

Commit and rollback operations
To commit work in RRSAF applications, use the CPIC SRRCMIT function or the
DB2 COMMIT statement. To roll back work, use the CPIC SRRBACK function or
the DB2 ROLLBACK statement. For information about coding the SRRCMIT and
SRRBACK functions, see z/OS MVS Programming: Callable Services for High-Level
Languages.

Follow these guidelines for choosing the DB2 statements or the CPIC functions for
commit and rollback operations:
v Use DB2 COMMIT and ROLLBACK statements when you know that the

following conditions are true:
– The only recoverable resource accessed by your application is DB2 data

managed by a single DB2 instance.
DB2 COMMIT and ROLLBACK statements will fail if your RRSAF
application accesses recoverable resources other than DB2 data that is
managed by a single DB2 instance.

– The address space from which syncpoint processing is initiated is the same as
the address space that is connected to DB2.

v If your application accesses other recoverable resources, or syncpoint processing
and DB2 access are initiated from different address spaces, use SRRCMIT and
SRRBACK.

Run environment
Applications that request DB2 services must adhere to several run environment
requirements. Those requirements must be met regardless of the attachment facility
you use. They are not unique to RRSAF.
v The application must be running in TCB mode.
v No EUT FRRs can be active when the application requests DB2 services. If an

EUT FRR is active, DB2's functional recovery can fail, and your application can
receive unpredictable abends.

v Different attachment facilities cannot be active concurrently within the same
address space. For example:
– An application should not use RRSAF in CICS or IMS address spaces.
– An application running in an address space that has a CAF connection to DB2

cannot connect to DB2 using RRSAF.
– An application running in an address space that has an RRSAF connection to

DB2 cannot connect to DB2 using CAF.
v One attachment facility cannot start another. This means your RRSAF

application cannot use DSN, and a DSN RUN subcommand cannot call your
RRSAF application.

Chapter 31. Programming for the Resource Recovery Services attachment facility 897



v The language interface module for RRSAF, DSNRLI, is shipped with the linkage
attributes AMODE(31) and RMODE(ANY). If your applications load RRSAF
below the 16-MB line, you must link-edit DSNRLI again.

How to use RRSAF
To use RRSAF, you must first make available the RRSAF language interface load
module, DSNRLI. For information about loading or link-editing this module, see
“Accessing the RRSAF language interface” on page 900.

When the language interface is available, your program can make use of the
RRSAF in two ways:
v Implicitly, by including SQL statements or IFI calls in your program just as you

would in any program. The RRSAF facility establishes the connections to DB2
using default values for the pertinent parameters as described in “Implicit
connections” on page 899.

v Explicitly, by issuing CALL DSNRLI statements with the appropriate options.
For the general form of the statements, see “RRSAF function descriptions” on
page 905.

The first element of each option list is a function, which describes the action you
want RRSAF to take. For a list of available functions and what they do, see
“Summary of connection functions.” The effect of any function depends in part on
what functions the program has already performed. Before using any function, be
sure to read the description of its usage. Also read “Summary of connection
functions,” which describes the influence of previously invoked functions.

Summary of connection functions
You can use the following functions with CALL DSNRLI:

IDENTIFY
Establishes the task as a user of the named DB2 subsystem. When the first task
within an address space issues a connection request, the address space is
initialized as a user of DB2. See “IDENTIFY: Syntax and usage” on page 906.

SWITCH TO
Directs RRSAF, SQL or IFI requests to a specified DB2 subsystem. See
“SWITCH TO: Syntax and usage” on page 909.

SIGNON
Provides to DB2 a user ID and, optionally, one or more secondary
authorization IDs that are associated with the connection. See “SIGNON:
Syntax and usage” on page 912.

AUTH SIGNON
Provides to DB2 a user ID, an Accessor Environment Element (ACEE) and,
optionally, one or more secondary authorization IDs that are associated with
the connection. See “AUTH SIGNON: Syntax and usage” on page 916.

CONTEXT SIGNON
Provides to DB2 a user ID and, optionally, one or more secondary
authorization IDs that are associated with the connection. You can execute
CONTEXT SIGNON from an unauthorized program. See “CONTEXT
SIGNON: Syntax and usage” on page 920.

SET_ID
Sets end-user information that is passed to DB2 when the next SQL request is

898 Application Programming and SQL Guide

|
|

|
|
|
|

|
|
|



processed. SET_ID establishes a new value for the client program ID that can
be used to identify the end user. See “SET_ID: Syntax and usage” on page 924.

SET_CLIENT_ID
Sets end-user information that is passed to DB2 when the next SQL request is
processed. SET_CLIENT_ID establishes new values for the client user ID, the
application program name, the workstation name, and the accounting token.
See “SET_CLIENT_ID: Syntax and usage” on page 925.

CREATE THREAD
Allocates a DB2 plan or package. CREATE THREAD must complete before the
application can execute SQL statements. See “CREATE THREAD: Syntax and
usage” on page 928.

TERMINATE THREAD
Deallocates the plan. See “TERMINATE THREAD: Syntax and usage” on page
930.

TERMINATE IDENTIFY
Removes the task as a user of DB2 and, if this is the last or only task in the
address space that has a DB2 connection, terminates the address space
connection to DB2. See “TERMINATE IDENTIFY: Syntax and usage” on page
931.

TRANSLATE
Returns an SQL code and printable text, in the SQLCA, that describes a DB2
error reason code. You cannot call the TRANSLATE function from the Fortran
language. See “TRANSLATE: Syntax and usage” on page 933.

Implicit connections
If you do not explicitly specify the IDENTIFY function in a CALL DSNRLI
statement, RRSAF initiates an implicit connection to DB2 if the application includes
SQL statements or IFI calls. An implicit connection causes RRSAF to initiate
implicit IDENTIFY and CREATE THREAD requests to DB2. Although RRSAF
performs the connection request by using the following default values, the request
is subject to the same DB2 return codes and reason codes as are explicitly specified
requests.

Implicit connections use the following defaults:

Subsystem name
The default name specified in the module DSNHDECP. RRSAF uses the
installation default DSNHDECP, unless your own DSNHDECP is in a library in
a STEPLIB of JOBLIB concatenation, or in the link list. In a data sharing group,
the default subsystem name is the group attachment name.

Plan name
The member name of the database request module (DBRM) that DB2 produced
when you precompiled the source program that contains the first SQL call. If
your program can make its first SQL call from different modules with different
DBRMs, you cannot use a default plan name; you must use an explicit call
using the CREATE THREAD function.

If your application includes both SQL and IFI calls, you must issue at least one
SQL call before you issue any IFI calls. This ensures that your application uses
the correct plan.

Authorization ID
The 7-byte user ID that is associated with the address space, unless an

Chapter 31. Programming for the Resource Recovery Services attachment facility 899

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|



authorized function has built an Accessor Environment Element (ACEE) for the
address space. If an authorized function has built an ACEE, DB2 passes the
8-byte user ID from the ACEE.

For an implicit connection request, your application should not explicitly specify
either IDENTIFY or CREATE THREAD. It can execute other explicit RRSAF calls
after the implicit connection. An implicit connection does not perform any
SIGNON processing. Your application can execute SIGNON at any point of
consistency. To terminate an implicit connection, you must use the proper calls. See
“Summary of RRSAF behavior” on page 904 for details.

Your application program must successfully connect, either implicitly or explicitly,
to DB2 before it can execute any SQL calls to the RRSAF DSNHLI entry point.
Therefore, the application program must first determine the success or failure of all
implicit connection requests.

For implicit connection requests, register 15 contains the return code, and register 0
contains the reason code. The return code and reason code are also in the message
text for SQLCODE -981. The application program should examine the return and
reason codes immediately after the first executable SQL statement within the
application program. Two ways to do this are to:
v Examine registers 0 and 15 directly.
v Examine the SQLCA, and if the SQLCODE is -981, obtain the return and reason

code from the message text. The return code is the first token, and the reason
code is the second token.

If the implicit connection is successful, the application can examine the SQLCODE
for the first, and subsequent, SQL statements.

Accessing the RRSAF language interface
Figure 247 on page 901 shows the general structure of RRSAF and a program that
uses it.

900 Application Programming and SQL Guide

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|



Part of RRSAF is a DB2 load module, DSNRLI, the RRSAF language interface
module. DSNRLI has the alias names DSNHLIR and DSNWLIR. The module has
five entry points: DSNRLI, DSNHLI, DSNHLIR, DSNWLI, and DSNWLIR:

(’IDENTIFY’)

Application RRSAF

Language

Interface

RRSAF

Mainline

Code

LOAD DSNRLI

LOAD DSNRLIR

LOAD DSNWLIR

Load

CALL DSNRLI

(’SWITCH TO’)
(’SIGNON’)
(’AUTH SIGNON’)

(’CONTEXT SIGNON’)
(’CREATE THREAD’)
(’TERMINATE THREAD’)

(’TERMINATE IDENTIFY’)

Call DSNRLI

(Process

connection

requests)

CALL DSNWLI
CALL DSNHLI

(SQL calls)

DSNHLI (dummy

application

entry point)

DSNWLI (dummy

application

entry point)

CALL DSNHLIR

(Transfer calls

to real RRSAF

SQL entry point)

CALL DSNWLIR

(Transfer calls

to real RRSAF

IFI)

DSNWLIR

DSNHLIR

(Process

SQL stmts)

DB2

(’SET_ID’)
(’SET_CLIENT_ID’)

Figure 247. Sample RRSAF configuration

Chapter 31. Programming for the Resource Recovery Services attachment facility 901



v Entry point DSNRLI handles explicit DB2 connection service requests.
v DSNHLI and DSNHLIR handle SQL calls. Use DSNHLI if your application

program link-edits RRSAF; use DSNHLIR if your application program loads
RRSAF.

v DSNWLI and DSNWLIR handle IFI calls. Use DSNWLI if your application
program link-edits RRSAF; use DSNWLIR if your application program loads
RRSAF.

You can access the DSNRLI module by explicitly issuing LOAD requests when
your program runs, or by including the DSNRLI module in your load module
when you link-edit your program. There are advantages and disadvantages to each
approach.

Explicit Load of DSNRLI
To load DSNRLI, issue z/OS LOAD macros for entry points DSNRLI and
DSNHLIR. If you use IFI services, you must also load DSNWLIR. Save the entry
point address that LOAD returns and use it in the CALL macro.

By explicitly loading the DSNRLI module, you can isolate the maintenance of your
application from future IBM maintenance to the language interface. If the language
interface changes, the change will probably not affect your load module.

You must indicate to DB2 which entry point to use. You can do this in one of two
ways:
v Specify the precompiler option ATTACH(RRSAF).

This causes DB2 to generate calls that specify entry point DSNHLIR. You cannot
use this option if your application is written in Fortran.

v Code a dummy entry point named DSNHLI within your load module.
If you do not specify the precompiler option ATTACH, the DB2 precompiler
generates calls to entry point DSNHLI for each SQL request. The precompiler
does not know and is independent of the different DB2 attachment facilities.
When the calls generated by the DB2 precompiler pass control to DSNHLI, your
code corresponding to the dummy entry point must preserve the option list
passed in register 1 and call DSNHLIR specifying the same option list. For a
coding example of a dummy DSNHLI entry point, see “Using dummy entry
point DSNHLI for RRSAF” on page 937.

Link-editing DSNRLI
You can include DSNRLI when you link-edit your load module. For example, you
can use a linkage editor control statement like this in your JCL:
INCLUDE DB2LIB(DSNRLI).

By coding this statement, you avoid linking the wrong language interface module.

When you include DSNRLI during the link-edit, you do not include a dummy
DSNHLI entry point in your program or specify the precompiler option ATTACH.
Module DSNRLI contains an entry point for DSNHLI, which is identical to
DSNHLIR, and an entry point DSNWLI, which is identical to DSNWLIR.

A disadvantage of link-editing DSNRLI into your load module is that if IBM
makes a change to DSNRLI, you must link-edit your program again.

General properties of RRSAF connections
Some of the basic properties of an RRSAF connection with DB2 are:

902 Application Programming and SQL Guide



Connection name and connection type: The connection name and connection type
are RRSAF. You can use the DISPLAY THREAD command to list RRSAF
applications that have the connection name RRSAF.

Authorization id: Each DB2 connection is associated with a set of authorization
IDs. A connection must have a primary ID, and can have one or more secondary
IDs. Those identifiers are used for:
v Validating access to DB2
v Checking privileges on DB2 objects
v Assigning ownership of DB2 objects
v Identifying the user of a connection for audit, performance, and accounting

traces.

RRSAF relies on the z/OS System Authorization Facility (SAF) and a security
product, such as RACF, to verify and authorize the authorization IDs. An
application that connects to DB2 through RRSAF must pass those identifiers to
SAF for verification and authorization checking. RRSAF retrieves the identifiers
from SAF.

A location can provide an authorization exit routine for a DB2 connection to
change the authorization IDs and to indicate whether the connection is allowed.
The actual values assigned to the primary and secondary authorization IDs can
differ from the values provided by a SIGNON or AUTH SIGNON request. A site's
DB2 signon exit routine can access the primary and secondary authorization IDs
and can modify the IDs to satisfy the site's security requirements. The exit can also
indicate whether the signon request should be accepted.

For information about authorization IDs and the connection and signon exit
routines, see Appendix B (Volume 2) of DB2 Administration Guide.

Scope: The RRSAF processes connections as if each task is entirely isolated. When a
task requests a function, RRSAF passes the function to DB2, regardless of the
connection status of other tasks in the address space. However, the application
program and the DB2 subsystem have access to the connection status of multiple
tasks in an address space.

Do not mix RRSAF connections with other connection types in a single address
space. The first connection to DB2 made from an address space determines the
type of connection allowed.

Task termination
If an application that is connected to DB2 through RRSAF terminates normally
before the TERMINATE THREAD or TERMINATE IDENTIFY functions deallocate
the plan, then RRS commits any changes made after the last commit point.

If the application terminates abnormally before the TERMINATE THREAD or
TERMINATE IDENTIFY functions deallocate the plan, then z/OS RRS rolls back
any changes made after the last commit point.

In either case, DB2 deallocates the plan, if necessary, and terminates the
application's connection.

DB2 abend
If DB2 abends while an application is running, DB2 rolls back changes to the last
commit point. If DB2 terminates while processing a commit request, DB2 either

Chapter 31. Programming for the Resource Recovery Services attachment facility 903



commits or rolls back any changes at the next restart. The action taken depends on
the state of the commit request when DB2 terminates.

Summary of RRSAF behavior
Table 143 and Table 144 summarize RRSAF behavior after various inputs from
application programs. Errors are identified by the DB2 reason code that RRSAF
returns. For a list of reason codes, see the X'C1' reason codes in Part 3 of DB2
Codes. Use these tables to understand the order in which your application must
issue RRSAF calls, SQL statements, and IFI requests.

In these tables, the first column lists the most recent RRSAF or DB2 function
executed. The first row lists the next function executed. The contents of the
intersection of a row and column indicate the result of calling the function in the
first column followed by the function in the first row. For example, if you issue
TERMINATE THREAD, then you execute SQL or issue an IFI call, RRSAF returns
reason code X'00C12219'.

Table 143 summarizes RRSAF behavior when the next call is the IDENTIFY,
SWITCH TO, SIGNON, or CREATE THREAD function.

Table 143. Effect of call order when next call is IDENTIFY, SWITCH TO, SIGNON, or CREATE THREAD

Previous function

Next function

IDENTIFY SWITCH TO
SIGNON, AUTH SIGNON,
or CONTEXT SIGNON CREATE THREAD

Empty: first call IDENTIFY X'00C12205' X'00C12204' X'00C12204'

IDENTIFY X'00F30049' Switch to ssnm Signon 1 X'00C12217'

SWITCH TO IDENTIFY Switch to ssnm Signon 1 CREATE THREAD

SIGNON, AUTH SIGNON,
or CONTEXT SIGNON

X'00F30049' Switch to ssnm Signon 1 CREATE THREAD

CREATE THREAD X'00F30049' Switch to ssnm Signon 1 X'00C12202'

TERMINATE THREAD X'00C12201' Switch to ssnm Signon 1 CREATE THREAD

IFI X'00F30049' Switch to ssnm Signon 1 X'00C12202'

SQL X'00F30049' Switch to ssnm X'00F30092'2 X'00C12202'

SRRCMIT or SRRBACK X'00F30049' Switch to ssnm Signon 1 X'00C12202'

Notes:

1. Signon means the signon to DB2 through either SIGNON, AUTH SIGNON, or CONTEXT SIGNON.

2. SIGNON, AUTH SIGNON, or CONTEXT SIGNON are not allowed if any SQL operations are requested after
CREATE THREAD or after the last SRRCMIT or SRRBACK request.

Table 144 summarizes RRSAF behavior when the next call is the SQL or IFI,
TERMINATE THREAD, TERMINATE IDENTIFY, or TRANSLATE function.

Table 144. Effect of call order when next call is SQL or IFI, TERMINATE THREAD, TERMINATE IDENTIFY, or
TRANSLATE

Previous function

Next function

SQL or IFI TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

Empty: first call SQL or IFI call 3 X'00C12204' X'00C12204' X'00C12204'

IDENTIFY SQL or IFI call 3 X'00C12203' TERMINATE IDENTIFY TRANSLATE

SWITCH TO SQL or IFI call 3 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

904 Application Programming and SQL Guide

||

|

|

||
|
||

|||||

|||||

|||||

|
|
||||

|||||

|||||

|||||

|||||

|||||

|

|

|
|
|

||
|

|

|

||||

|||||

|||||

|||||



Table 144. Effect of call order when next call is SQL or IFI, TERMINATE THREAD, TERMINATE IDENTIFY, or
TRANSLATE (continued)

Previous function

Next function

SQL or IFI TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

SIGNON, AUTH SIGNON,
or CONTEXT SIGNON

SQL or IFI call 3 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

CREATE THREAD SQL or IFI call 3 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

TERMINATE THREAD SQL or IFI call 3 X'00C12203' TERMINATE IDENTIFY TRANSLATE

IFI SQL or IFI call 3 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

SQL SQL or IFI call 3 X'00F30093'1 X'00F30093'2 TRANSLATE

SRRCMIT or SRRBACK SQL or IFI call 3 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

Notes:

1. TERMINATE THREAD is not allowed if any SQL operations are requested after CREATE THREAD or after the
last SRRCMIT or SRRBACK request.

2. TERMINATE IDENTIFY is not allowed if any SQL operations are requested after CREATE THREAD or after the
last SRRCMIT or SRRBACK request.

3. Using implicit connect with SQL or IFI calls causes RRSAF to issue an implicit IDENTIFY and CREATE THREAD.
If you continue with explicit RRSAF statements after an implicit connect, you must follow the standard order of
explicit RRSAF calls. Implicit connect does not issue a SIGNON. Therefore, you might need to issue an explicit
SIGNON to satisfy the standard order requirement. For example, an SQL statement followed by an explicit
TERMINATE THREAD requires an explicit SIGNON before issuing the TERMINATE THREAD.

RRSAF function descriptions
To code RRSAF functions in C, COBOL, Fortran, or PL/I, follow the individual
language's rules for making calls to assembler language routines. Specify the return
code and reason code parameters in the parameter list for each RRSAF call.

This section contains the following information:
v “Register conventions”
v “Parameter conventions for function calls” on page 906
v “IDENTIFY: Syntax and usage” on page 906
v “SWITCH TO: Syntax and usage” on page 909
v “SIGNON: Syntax and usage” on page 912
v “AUTH SIGNON: Syntax and usage” on page 916
v “CONTEXT SIGNON: Syntax and usage” on page 920
v “SET_ID: Syntax and usage” on page 924
v “SET_CLIENT_ID: Syntax and usage” on page 925
v “CREATE THREAD: Syntax and usage” on page 928
v “TERMINATE THREAD: Syntax and usage” on page 930
v “TERMINATE IDENTIFY: Syntax and usage” on page 931
v “TRANSLATE: Syntax and usage” on page 933

Register conventions
Table 145 on page 906 summarizes the register conventions for RRSAF calls.

If you do not specify the return code and reason code parameters in your RRSAF
calls, RRSAF puts a return code in register 15 and a reason code in register 0. If
you specify the return code and reason code parameters, RRSAF places the return

Chapter 31. Programming for the Resource Recovery Services attachment facility 905

|
|

|

|

||||

|
|
||||

|||||

|||||

|||||

|||||

|||||

|

|
|

|
|

|
|
|
|
|
|

|
|



code in register 15 and in the return code parameter to accommodate high-level
languages that support special return code processing. RRSAF preserves the
contents of registers 2 through 14.

Table 145. Register conventions for RRSAF calls

Register Usage

R1 Parameter list pointer

R13 Address of caller's save area

R14 Caller's return address

R15 RRSAF entry point address

Parameter conventions for function calls
For assembler language: Use a standard parameter list for an z/OS CALL. This
means that when you issue the call, register 1 must contain the address of a list of
pointers to the parameters. Each pointer is a 4-byte address. The last address must
contain the value 1 in the high-order bit.

In an assembler language call, code a comma for a parameter in the CALL DSNRLI
statement when you want to use the default value for that parameter and specify
subsequent parameters. For example, code an IDENTIFY call like this to specify all
parameters except the return code parameter:
CALL DSNRLI,(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB,,REASCODE)

For C-language: When you code CALL DSNRLI statements in C, you need to
specify the address of every parameter, using the "address of" operator (&), and
not the parameter itself. For example, to pass the pklistptr parameter on the
"CREATE THREAD" specify the address of the 4-byte pointer to the structure
(&pklistptr):
fnret=dsnrli(&crthrdfn[0], &plan[0], &collid[0], &reuse[0], &retcode,

&reascode, &pklistptr);

For all languages: When you code CALL DSNRLI statements in any language,
specify all parameters that come before the return code parameter. You cannot omit
any of those parameters by coding zeros or blanks. There are no defaults for those
parameters.

All parameters starting with Return Code are optional.

For all languages except assembler language: Code 0 for an optional parameter in
the CALL DSNRLI statement when you want to use the default value for that
parameter but specify subsequent parameters. For example, suppose you are
coding an IDENTIFY call in a COBOL program. You want to specify all parameters
except the return code parameter. Write the call in this way:
CALL ’DSNRLI’ USING IDFYFN SSNM RIBPTR EIBPTR TERMECB STARTECB

BY CONTENT ZERO BY REFERENCE REASCODE.

IDENTIFY: Syntax and usage
IDENTIFY initializes a connection to DB2.

“DSNRLI IDENTIFY function” on page 907 shows the syntax for the IDENTIFY
function.

906 Application Programming and SQL Guide

#
#
#
#
#

#
#



DSNRLI IDENTIFY function

�� CALL DSNRLI ( function, ssnm, ribptr, eibptr, termecb, startecb �

�
,retcode

,reascode
,groupoverride

) ��

Parameters point to the following areas:

function
An 18-byte area containing IDENTIFY followed by 10 blanks.

ssnm
A 4-byte DB2 subsystem name or group attachment name (if used in a data
sharing group) to which the connection is made. If ssnm is less than four
characters long, pad it on the right with blanks to a length of four characters.

ribptr
A 4-byte area in which RRSAF places the address of the release information
block (RIB) after the call. This can be used to determine the release level of the
DB2 subsystem to which the application is connected. You can determine the
modification level within the release level by examining fields RIBCNUMB and
RIBCINFO. If the value in RIBCNUMB is greater than zero, check RIBCINFO
for modification levels.

If the RIB is not available (for example, if you name a subsystem that does not
exist), DB2 sets the 4-byte area to zeros.

The area to which ribptr points is below the 16-MB line.

This parameter is required, although the application does not need to refer to
the returned information.

eibptr
A 4-byte area in which RRSAF places the address of the environment
information block (EIB) after the call. The EIB contains environment
information, such as the data sharing group, the member name for the DB2 to
which the IDENTIFY request was issued, and whether the subsystem is in
new-function mode. If the DB2 subsystem is not in a data sharing group, then
RRSAF sets the data sharing group and member names to blanks. If the EIB is
not available (for example, if ssnm names a subsystem that does not exist),
RRSAF sets the 4-byte area to zeros.

The area to which eibptr points is above the 16-MB line.

This parameter is required, although the application does not need to refer to
the returned information.

termecb
The address of the application's event control block (ECB) used for DB2
termination. DB2 posts this ECB when the system operator enters the
command STOP DB2 or when DB2 is terminating abnormally. Specify a value
of 0 if you do not want to use a termination ECB.

RRSAF puts a POST code in the ECB to indicate the type of termination as
shown in Table 146 on page 908.

Chapter 31. Programming for the Resource Recovery Services attachment facility 907

#
#
#
#



Table 146. Post codes for types of DB2 termination

POST code Termination type

8 QUIESCE

12 FORCE

16 ABTERM

startecb
The address of the application's startup ECB. If DB2 has not started when the
application issues the IDENTIFY call, DB2 posts the ECB when DB2 startup
has completed. Enter a value of zero if you do not want to use a startup ECB.
DB2 posts a maximum of one startup ECB per address space. The ECB posted
is associated with the most recent IDENTIFY call from that address space. The
application program must examine any nonzero RRSAF or DB2 reason codes
before issuing a WAIT on this ECB.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places a reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode or its default (by
specifying a comma or zero, depending on the language).

groupoverride
An 8-byte area that the application provides. This field is optional. If this field
is provided, it contains the string 'NOGROUP'. This string indicates that the
subsystem name that is specified by ssnm is to be used as a DB2 subsystem
name, even if ssnm matches a group attachment name. If groupoverride is not
provided, ssnm is used as the group attachment name if it matches a group
attachment name. If you specify this parameter in any language except
assembler, you must also specify the return code and reason code parameters.
In assembler language, you can omit the return code and reason code
parameters by specifying commas as place-holders.

Usage
IDENTIFY establishes the caller's task as a user of DB2 services. If no other task in
the address space currently is connected to the subsystem named by ssnm, then
IDENTIFY also initializes the address space to communicate with the DB2 address
spaces. IDENTIFY establishes the cross-memory authorization of the address space
to DB2 and builds address space control blocks.

During IDENTIFY processing, DB2 determines whether the user address space is
authorized to connect to DB2. DB2 invokes the z/OS SAF and passes a primary
authorization ID to SAF. That authorization ID is the 7-byte user ID associated
with the address space, unless an authorized function has built an ACEE for the
address space. If an authorized function has built an ACEE, DB2 passes the 8-byte
user ID from the ACEE. SAF calls an external security product, such as RACF, to
determine if the task is authorized to use:
v The DB2 resource class (CLASS=DSNR)
v The DB2 subsystem (SUBSYS=ssnm)

908 Application Programming and SQL Guide



v Connection type RRSAF

If that check is successful, DB2 calls the DB2 connection exit to perform additional
verification and possibly change the authorization ID. DB2 then sets the connection
name to RRSAF and the connection type to RRSAF.

In a data sharing environment, use the groupoverride parameter on an IDENTIFY
call when you want to connect to a specific member of a data sharing group, and
the subsystem name of that member is the same as the group attachment name. In
general, using the groupoverride parameter is not desirable because it limits the
ability to do dynamic workload routing in a Parallel Sysplex.

Table 147 shows an IDENTIFY call in each language.

Table 147. Examples of RRSAF IDENTIFY calls

Language Call example

Assembler CALL DSNRLI,(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB,
RETCODE,REASCODE,GRPOVER)

C fnret=dsnrli(&idfyfn[0],&ssnm[0], &ribptr, &eibptr, &termecb, &startecb, &retcode,
&reascode,&grpover[0]);

COBOL CALL 'DSNRLI' USING IDFYFN SSNM RIBTPR EIBPTR TERMECB STARTECB RETCODE
REASCODE GRPOVER.

Fortran CALL DSNRLI(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB,
RETCODE,REASCODE,GRPOVER)

PL/I CALL DSNRLI(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB,
RETCODE,REASCODE,GRPOVER);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

SWITCH TO: Syntax and usage
You can use SWITCH TO to direct RRSAF, SQL, or IFI requests to a specified DB2
subsystem.

SWITCH TO is useful only after a successful IDENTIFY call. If you have
established a connection with one DB2 subsystem, then you must issue SWITCH
TO before you make an IDENTIFY call to another DB2 subsystem.

“DSNRLI SWITCH TO function” on page 910 shows the syntax for the SWITCH
TO function.

Chapter 31. Programming for the Resource Recovery Services attachment facility 909



DSNRLI SWITCH TO function

�� CALL DSNRLI ( function,ssnm �

�
, retcode

, reascode
, groupoverride

) ��

Parameters point to the following areas:

function
An 18-byte area containing SWITCH TO followed by nine blanks.

ssnm
A 4-byte DB2 subsystem name or group attachment name (if used in a data
sharing group) to which the connection is made. If ssnm is less than four
characters long, pad it on the right with blanks to a length of four characters.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

groupoverride
An 8-byte area that the application provides. This field is optional. If this field
is provided, it contains the string 'NOGROUP'. This string indicates that the
subsystem name that is specified by ssnm is to be used as a DB2 subsystem
name, even if ssnm matches a group attachment name. If groupoverride is not
provided, ssnm is used as the group attachment name if it matches a group
attachment name. If you specify this parameter in any language except
assembler, you must also specify the return code and reason code parameters.
In assembler language, you can omit the return code and reason code
parameters by specifying commas as place-holders.

Usage
Use SWITCH TO to establish connections to multiple DB2 subsystems from a
single task. If you make a SWITCH TO call to a DB2 subsystem before you have
issued an initial IDENTIFY call, DB2 returns return Code 4 and reason code
X'00C12205' as a warning that the task has not yet identified to any DB2
subsystem.

After you establish a connection to a DB2 subsystem, you must make a SWITCH
TO call before you identify to another DB2 subsystem. If you do not make a
SWITCH TO call before you make an IDENTIFY call to another DB2 subsystem,
then DB2 returns return Code = X'200' and reason code X'00C12201'.

910 Application Programming and SQL Guide



In a data sharing environment, use the groupoverride parameter on an SWITCH TO
call when you want to connect to a specific member of a data sharing group, and
the subsystem name of that member is the same as the group attachment name. In
general, using the groupoverride parameter is not desirable because it limits the
ability to do dynamic workload routing in a Parallel Sysplex.

This example shows how you can use SWITCH TO to interact with three DB2
subsystems.
RRSAF calls for subsystem db21:

IDENTIFY
SIGNON
CREATE THREAD

Execute SQL on subsystem db21
SWITCH TO db22
RRSAF calls on subsystem db22:

IDENTIFY
SIGNON
CREATE THREAD

Execute SQL on subsystem db22
SWITCH TO db23
RRSAF calls on subsystem db23:

IDENTIFY
SIGNON
CREATE THREAD

Execute SQL on subsystem 23
SWITCH TO db21
Execute SQL on subsystem 21
SWITCH TO db22
Execute SQL on subsystem 22
SWITCH TO db21
Execute SQL on subsystem 21
SRRCMIT (to commit the UR)
SWITCH TO db23
Execute SQL on subsystem 23
SWITCH TO db22
Execute SQL on subsystem 22
SWITCH TO db21
Execute SQL on subsystem 21
SRRCMIT (to commit the UR)

Table 148 shows a SWITCH TO call in each language.

Table 148. Examples of RRSAF SWITCH TO calls

Language Call example

Assembler CALL DSNRLI,(SWITCHFN,SSNM,RETCODE,REASCODE,GRPOVER)

C fnret=dsnrli(&switchfn[0], &ssnm[0], &retcode, &reascode,&grpover[0]);

COBOL CALL 'DSNRLI' USING SWITCHFN RETCODE REASCODE GRPOVER.

Fortran CALL DSNRLI(SWITCHFN,RETCODE,REASCODE,GRPOVER)

PL/I CALL DSNRLI(SWITCHFN,RETCODE,REASCODE,GRPOVER);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

Chapter 31. Programming for the Resource Recovery Services attachment facility 911



SIGNON: Syntax and usage
SIGNON establishes a primary authorization ID and can establish one or more
secondary authorization IDs for a connection.

“DSNRLI SIGNON function” shows the syntax for the SIGNON function.

DSNRLI SIGNON function

�� CALL DSNRLI ( function, correlation-id, accounting-token, accounting-interval �

�
,retcode

,reascode
,user

,appl
,ws

,xid
,accounting-string

) ��

Parameters point to the following areas:

function
An 18-byte area containing SIGNON followed by twelve blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is
displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in output from the
command DISPLAY THREAD. If you do not want to specify a correlation ID,
fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKEN field, which is mapped by DSNDQWHC DSECT. Setting the
value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If
you do not want to specify an accounting token, fill the 22-byte area with
blanks.

You can also change the value of the DB2 accounting token with RRS AUTH
SIGNON, CONTEXT SIGNON or SET_CLIENT_ID. You can retrieve the DB2
accounting token with the CURRENT CLIENT_ACCTNG special register only
if the DDF accounting string is not set.

accounting-interval
A 6-byte area with which you can control when DB2 writes an accounting
record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid
accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

912 Application Programming and SQL Guide

#

#
#
#
#
#
#
#
#

#
#
#
#

#
#
#
#
#
#
#



If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call SIGNON with a new authorization ID.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client end user. You can use this
parameter to provide the identity of the client end user for accounting and
monitoring purposes. DB2 displays this user ID in DISPLAY THREAD output
and in DB2 accounting and statistics trace records. Setting the user ID sets the
value of the CURRENT CLIENT_USERID special register. If user is less than 16
characters long, you must pad it on the right with blanks to a length of 16
characters.

This field is optional. If you specify this parameter, you must also specify
retcode and reascode. If you do not specify this parameter, no user ID is
associated with the connection.

appl
A 32-byte area that contains the application or transaction name of the end
user's application. You can use this parameter to provide the identity of the
client end user for accounting and monitoring purposes. DB2 displays the
application name in the DISPLAY THREAD output and in DB2 accounting and
statistics trace records. Setting the application name sets the value of the
CURRENT CLIENT_APPLNAME special register. If appl is less than 32
characters long, you must pad it on the right with blanks to a length of 32
characters.

This field is optional. If you specify this parameter, you must also specify
retcode, reascode, and user. If you do not specify this parameter, no application
or transaction is associated with the connection.

ws An 18-byte area that contains the workstation name of the client end user. You
can use this parameter to provide the identity of the client end user for
accounting and monitoring purposes. DB2 displays the workstation name in
the DISPLAY THREAD output and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

This field is optional. If you specify this parameter, you must also specify
retcode, reascode, user, and appl. If you do not specify this parameter, no
workstation name is associated with the connection.

xid
A 4-byte area into which you put one of the following values:

0 Indicates that the thread is not part of a global transaction. The
0 value must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that

Chapter 31. Programming for the Resource Recovery Services attachment facility 913

#



DB2 should retrieve the global transaction ID from RRS. If a
global transaction ID already exists for the task, the thread
becomes part of the associated global transaction. Otherwise,
RRS generates a new global transaction ID. The value 1 must
be specified as a binary integer. Alternatively, if you want DB2
to return the generated global transaction ID to the caller,
specify an address instead of 1.

address The 4-byte address of an area into which you enter a global
transaction ID for the thread. If the global transaction ID
already exists, the thread becomes part of the associated global
transaction. Otherwise, RRS creates a new global transaction
with the ID that you specify.

The global transaction ID has the format shown in Table 149.

However, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID
by setting the format ID field, which is shown in Table 149, to
binary -1 ('FFFFFFF'X). DB2 then replaces the contents of the
area with the generated transaction ID. The area at the
specified address must be in writable storage and have a
length of at least 140 bytes to accommodate the largest possible
transaction ID value.

Table 149. Format of a user-created global transaction ID

Field description Length in bytes Data type

Format ID 4 Integer

Global transaction ID length (1 - 64) 4 Integer

Branch qualifier length (1 - 64) 4 Integer

Global transaction ID 1 to 64 Character

Branch qualifier 1 to 64 Character

A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and
modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This field is optional. If you specify this parameter, you must also specify
retcode, reascode, user, appl and xid. If you do not specify this parameter, no
accounting string is associated with the connection.

You can specify this field only in DB2 Version 8 new-function mode.

You can also change the value of the accounting string with RRS AUTH
SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

914 Application Programming and SQL Guide

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#

#

#

#

#
#
#
#
#
#
#

#
#
#

#

#
#



You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Usage
SIGNON causes a new primary authorization ID and an optional secondary
authorization IDs to be assigned to a connection. Your program does not need to
be an authorized program to issue the SIGNON call. For that reason, before you
issue the SIGNON call, you must issue the external security interface macro
RACROUTE REQUEST=VERIFY to do the following:
v Define and populate an ACEE to identify the user of the program.
v Associate the ACEE with the user's TCB.
v Verify that the user is defined to RACF and authorized to use the application.

See z/OS Security Server RACF Macros and Interfaces for more information about the
RACROUTE macro.

Generally, you issue a SIGNON call after an IDENTIFY call and before a CREATE
THREAD call. You can also issue a SIGNON call if the application is at a point of
consistency, and one of the following conditions is true:
v The value of reuse in the CREATE THREAD call was RESET.
v The value of reuse in the CREATE THREAD call was INITIAL, no held cursors

are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If there are open held cursors or the
package or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is
permitted only if the primary authorization ID has not changed.

Table 150 shows a SIGNON call in each language.

Table 150. Examples of RRSAF SIGNON calls

Language Call example

assembler CALL DSNRLI,(SGNONFN,CORRID,ACCTTKN,ACCTINT,
RETCODE,REASCODE,USERID,APPLNAME,WSNAME)

C fnret=dsnrli(&sgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &retcode, &reascode, &userid[0],
&applname[0], &wsname[0]);

COBOL CALL 'DSNRLI' USING SGNONFN CORRID ACCTTKN ACCTINT RETCODE REASCODE
USERID APPLNAME WSNAME.

Fortran CALL DSNRLI(SGNONFN,CORRID,ACCTTKN,ACCTINT,
RETCODE,REASCODE,USERID,APPLNAME,WSNAME)

PL/I CALL DSNRLI(SGNONFN,CORRID,ACCTTKN,ACCTINT,
RETCODE,REASCODE,USERID,APPLNAME,WSNAME);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

Chapter 31. Programming for the Resource Recovery Services attachment facility 915

#
#
#
#
#
#
#



AUTH SIGNON: Syntax and usage
AUTH SIGNON allows an APF-authorized program to pass either of the following
to DB2:
v A primary authorization ID and, optionally, one or more secondary

authorization IDs.
v An ACEE that is used for authorization checking

AUTH SIGNON establishes a primary authorization ID and can establish one or
more secondary authorization IDs for the connection.

“DSNRLI AUTH SIGNON function” shows the syntax for the AUTH SIGNON
function.

DSNRLI AUTH SIGNON function

�� CALL DSNRLI ( function, correlation-id, accounting-token, �

� accounting-interval, primary-authid, ACEE-address, secondary-authid �

�
,retcode

,reascode
,user

,appl
,ws

,xid
,accounting-string

) ��

Parameters point to the following areas:

function
An 18-byte area containing AUTH SIGNON followed by seven blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is
displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in output from the
command DISPLAY THREAD. If you do not want to specify a correlation ID,
fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKEN field, which is mapped by DSNDQWHC DSECT. Setting the
value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If
you do not want to specify an accounting token, fill the 22-byte area with
blanks.

You can also change the value of the DB2 accounting token with RRS
SIGNON, CONTEXT SIGNON or SET_CLIENT_ID. You can retrieve the DB2
accounting token with the CURRENT CLIENT_ACCTNG special register only
if the DDF accounting string is not set.

916 Application Programming and SQL Guide

#

#
#
#
#
#
#
#
#

#
#
#
#



accounting-interval
A 6-byte area with which you can control when DB2 writes an accounting
record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid
accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call SIGNON with a new authorization ID.

primary-authid
An 8-byte area in which you can put a primary authorization ID. If you are not
passing the authorization ID to DB2 explicitly, put X'00' or a blank in the first
byte of the area.

ACEE-address
The 4-byte address of an ACEE that you pass to DB2. If you do not want to
provide an ACEE, specify 0 in this field.

secondary-authid
An 8-byte area in which you can put a secondary authorization ID. If you do
not pass the authorization ID to DB2 explicitly, put X'00' or a blank in the first
byte of the area. If you enter a secondary authorization ID, you must also enter
a primary authorization ID.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client end user. You can use this
parameter to provide the identity of the client end user for accounting and
monitoring purposes. DB2 displays this user ID in DISPLAY THREAD output
and in DB2 accounting and statistics trace records. Setting the user ID sets the
value of the CURRENT CLIENT_USERID special register. If user is less than 16
characters long, you must pad it on the right with blanks to a length of 16
characters.

This field is optional. If you specify this parameter, you must also specify
retcode and reascode. If you do not specify this parameter, no user ID is
associated with the connection.

appl
A 32-byte area that contains the application or transaction name of the end
user's application. You can use this parameter to provide the identity of the
client end user for accounting and monitoring purposes. DB2 displays the
application name in the DISPLAY THREAD output and in DB2 accounting and

Chapter 31. Programming for the Resource Recovery Services attachment facility 917

#
#
#
#
#
#
#



statistics trace records. Setting the application name sets the value of the
CURRENT CLIENT_APPLNAME special register. If appl is less than 32
characters long, you must pad it on the right with blanks to a length of 32
characters.

This field is optional. If you specify this parameter, you must also specify
retcode, reascode, and user. If you do not specify this parameter, no application
or transaction is associated with the connection.

ws An 18-byte area that contains the workstation name of the client end user. You
can use this parameter to provide the identity of the client end user for
accounting and monitoring purposes. DB2 displays the workstation name in
the DISPLAY THREAD output and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

This field is optional. If you specify this parameter, you must also specify
retcode, reascode, user, and appl. If you do not specify this parameter, no
workstation name is associated with the connection.

You can also change the value of the workstation name with RRS SIGNON,
CONTEXT SIGNON or SET_CLIENT_ID. You can retrieve the workstation
name with the CURRENT CLIENT_WRKSTNNAME special register.

xid
A 4-byte area into which you put one of the following values:

0 Indicates that the thread is not part of a global transaction. The
0 value must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that
DB2 should retrieve the global transaction ID from RRS. If a
global transaction ID already exists for the task, the thread
becomes part of the associated global transaction. Otherwise,
RRS generates a new global transaction ID. The value 1 must
be specified as a binary integer. Alternatively, if you want DB2
to return the generated global transaction ID to the caller,
specify an address instead of 1.

address The 4-byte address of an area into which you enter a global
transaction ID for the thread. If the global transaction ID
already exists, the thread becomes part of the associated global
transaction. Otherwise, RRS creates a new global transaction
with the ID that you specify.

The global transaction ID has the format shown in Table 149 on
page 914.

However, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID
by setting the format ID field, which is shown in Table 149 on
page 914, to binary -1 ('FFFFFFF'X). DB2 then replaces the
contents of the area with the generated transaction ID. The area
at the specified address must be in writable storage and have a
length of at least 140 bytes to accommodate the largest possible
transaction ID value.

A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and

918 Application Programming and SQL Guide

#
#
#
#
#
#
#

#
#
#

#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#



modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This field is optional. If you specify this parameter, you must also specify
retcode, reascode, user, appl and xid. If you do not specify this parameter, no
accounting string is associated with the connection.

You can specify this field only in DB2 Version 8 new-function mode.

You can also change the value of the accounting string with RRS SIGNON,
CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Usage
AUTH SIGNON causes a new primary authorization ID and optional secondary
authorization IDs to be assigned to a connection.

Generally, you issue an AUTH SIGNON call after an IDENTIFY call and before a
CREATE THREAD call. You can also issue an AUTH SIGNON call if the
application is at a point of consistency, and one of the following conditions is true:
v The value of reuse in the CREATE THREAD call was RESET.
v The value of reuse in the CREATE THREAD call was INITIAL, no held cursors

are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If there are open held cursors or the
package or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is
permitted only if the primary authorization ID has not changed.

Table 151 shows a AUTH SIGNON call in each language.

Table 151. Examples of RRSAF AUTH SIGNON calls

Language Call example

Assembler CALL DSNRLI,(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR,
SAUTHID,RETCODE,REASCODE,USERID,APPLNAME,WSNAME)

C fnret=dsnrli(&asgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &pauthid[0], &aceeptr,
&sauthid[0], &retcode, &reascode, &userid[0], &applname[0], &wsname[0]);

COBOL CALL 'DSNRLI' USING ASGNONFN CORRID ACCTTKN ACCTINT PAUTHID ACEEPTR
SAUTHID RETCODE REASCODE USERID APPLNAME WSNAME.

Fortran CALL DSNRLI(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR,
SAUTHID,RETCODE,REASCODE,USERID,APPLNAME,WSNAME)

PL/I CALL DSNRLI(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR,
SAUTHID,RETCODE,REASCODE,USERID,APPLNAME,WSNAME);

Chapter 31. Programming for the Resource Recovery Services attachment facility 919

#
#
#
#
#
#
#

#
#
#

#

#
#

#
#
#
#
#
#
#



Table 151. Examples of RRSAF AUTH SIGNON calls (continued)

Language Call example

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

CONTEXT SIGNON: Syntax and usage
CONTEXT SIGNON establishes a primary authorization ID and one or more
secondary authorization IDs for a connection.

“DSNRLI CONTEXT SIGNON function” shows the syntax for the CONTEXT
SIGNON function.

DSNRLI CONTEXT SIGNON function

�� CALL DSNRLI ( function, correlation-id, accounting-token, accounting-interval, context-key �

�
,retcode

,reascode
,user

,appl
,ws

,xid
,accounting-string

) ��

Parameters point to the following areas:

function
An 18-byte area containing CONTEXT SIGNON followed by four blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is
displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in output from the
command DISPLAY THREAD. If you do not want to specify a correlation ID,
fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKEN field, which is mapped by DSNDQWHC DSECT. Setting the
value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If
you do not want to specify an accounting token, fill the 22-byte area with
blanks.

920 Application Programming and SQL Guide

#

#
#
#
#
#
#
#
#



You can also change the value of the DB2 accounting token with RRS
SIGNON, AUTH SIGNON, or SET_CLIENT_ID. You can retrieve the DB2
accounting token with the CURRENT CLIENT_ACCTNG special register only
if the DDF accounting string is not set.

accounting-interval
A 6-byte area with which you can control when DB2 writes an accounting
record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid
accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call SIGNON with a new authorization ID.

context-key
A 32-byte area in which you put the context key that you specified when you
called the RRS Set Context Data (CTXSDTA) service to save the primary
authorization ID and an optional ACEE address.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client end user. You can use this
parameter to provide the identity of the client end user for accounting and
monitoring purposes. DB2 displays this user ID in DISPLAY THREAD output
and in DB2 accounting and statistics trace records. Setting the user ID sets the
value of the CURRENT CLIENT_USERID special register. If user is less than 16
characters long, you must pad it on the right with blanks to a length of 16
characters.

This field is optional. If you specify this parameter, you must also specify
retcode and reascode. If you do not specify this parameter, no user ID is
associated with the connection.

appl
A 32-byte area that contains the application or transaction name of the end
user's application. You can use this parameter to provide the identity of the
client end user for accounting and monitoring purposes. DB2 displays the
application name in the DISPLAY THREAD output and in DB2 accounting and
statistics trace records. Setting the application name sets the value of the
CURRENT CLIENT_APPLNAME special register. If appl is less than 32
characters long, you must pad it on the right with blanks to a length of 32
characters.

Chapter 31. Programming for the Resource Recovery Services attachment facility 921

#
#
#
#

#
#
#
#
#
#
#



This field is optional. If you specify this parameter,you must also specify
retcode, reascode, and user. If you do not specify this parameter, no application
or transaction is associated with the connection.

ws An 18-byte area that contains the workstation name of the client end user. You
can use this parameter to provide the identity of the client end user for
accounting and monitoring purposes. DB2 displays the workstation name in
the DISPLAY THREAD output and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

This field is optional. If you specify this parameter, you must also specify
retcode, reascode, user, and appl. If you do not specify this parameter, no
workstation name is associated with the connection.

You can also change the value of the workstation name with RRS SIGNON,
AUTH SIGNON, or SET_CLIENT_ID. You can retrieve the workstation name
with the CLIENT_WRKSTNNAME special register.

xid
A 4-byte area into which you put one of the following values:

0 Indicates that the thread is not part of a global transaction. The
0 value must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that
DB2 should retrieve the global transaction ID from RRS. If a
global transaction ID already exists for the task, the thread
becomes part of the associated global transaction. Otherwise,
RRS generates a new global transaction ID. The value 1 must
be specified as a binary integer. Alternatively, if you want DB2
to return the generated global transaction ID to the caller,
specify an address instead of 1.

address The 4-byte address of an area into which you enter a global
transaction ID for the thread. If the global transaction ID
already exists, the thread becomes part of the associated global
transaction. Otherwise, RRS creates a new global transaction
with the ID that you specify.

The global transaction ID has the format shown in Table 149 on
page 914.

However, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID
by setting the format ID field, which is shown in Table 149 on
page 914, to binary -1 ('FFFFFFF'X). DB2 then replaces the
contents of the area with the generated transaction ID. The area
at the specified address must be in writable storage and have a
length of at least 140 bytes to accommodate the largest possible
transaction ID value.

A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and
modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace

922 Application Programming and SQL Guide

#
#
#
#
#
#
#

#
#
#

#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#

#
#
#



records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This field is optional. If you specify this parameter, you must also specify
retcode, reascode, user, appl and xid. If you do not specify this parameter, no
accounting string is associated with the connection.

You can specify this field only in DB2 Version 8 new-function mode.

You can also change the value of the accounting string with RRS SIGNON,
AUTH SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Usage
CONTEXT SIGNON relies on the RRS context services functions Set Context Data
(CTXSDTA) and Retrieve Context Data (CTXRDTA). Before you invoke CONTEXT
SIGNON, you must have called CTXSDTA to store a primary authorization ID and
optionally, the address of an ACEE in the context data whose context key you
supply as input to CONTEXT SIGNON.

CONTEXT SIGNON establishes a new primary authorization ID for the connection
and optionally causes one or more secondary authorization IDs to be assigned.
CONTEXT SIGNON uses the context key to retrieve the primary authorization ID
from data associated with the current RRS context. DB2 uses the RRS context
services function CTXRDTA to retrieve context data that contains the authorization
ID and ACEE address. The context data must have the following format:

Version Number
A 4-byte area that contains the version number of the context data.
Set this area to 1.

Server Product Name
An 8-byte area that contains the name of the server product that
set the context data.

ALET A 4-byte area that can contain an ALET value. DB2 does not
reference this area.

ACEE Address A 4-byte area that contains an ACEE address or 0 if an ACEE is not
provided. DB2 requires that the ACEE is in the home address space
of the task.

primary-authid An 8-byte area that contains the primary authorization ID to be
used. If the authorization ID is less than 8 bytes in length, pad it
on the right with blank characters to a length of 8 bytes.

If the new primary authorization ID is not different than the current primary
authorization ID (established at IDENTIFY time or at a previous SIGNON
invocation), DB2 invokes only the signon exit. If the value has changed, then DB2
establishes a new primary authorization ID and new SQL authorization ID and
then invokes the signon exit.

Chapter 31. Programming for the Resource Recovery Services attachment facility 923

#
#
#
#

#
#
#

#

#
#

#
#
#
#
#
#
#



If you pass an ACEE address, then CONTEXT SIGNON uses the value in
ACEEGRPN as the secondary authorization ID if the length of the group name
(ACEEGRPL) is not 0.

Generally, you issue a CONTEXT SIGNON call after an IDENTIFY call and before
a CREATE THREAD call. You can also issue a CONTEXT SIGNON call if the
application is at a point of consistency, and one of the following conditions is true:
v The value of reuse in the CREATE THREAD call was RESET.
v The value of reuse in the CREATE THREAD call was INITIAL, no held cursors

are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If there are open held cursors or the
package or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is
permitted only if the primary authorization ID has not changed.

Table 152 shows a CONTEXT SIGNON call in each language.

Table 152. Examples of RRSAF CONTEXT SIGNON calls

Language Call example

Assembler CALL DSNRLI,(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY,
RETCODE,REASCODE,USERID,APPLNAME,WSNAME)

C fnret=dsnrli(&csgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &ctxtkey[0], &retcode,
&reascode, &userid[0], &applname[0], &wsname[0]);

COBOL CALL 'DSNRLI' USING CSGNONFN CORRID ACCTTKN ACCTINT CTXTKEY RETCODE
REASCODE USERID APPLNAME WSNAME.

Fortran CALL DSNRLI(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE,
USERID,APPLNAME,WSNAME)

PL/I CALL DSNRLI(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY,
RETCODE,REASCODE,USERID,APPLNAME,WSNAME);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

SET_ID: Syntax and usage
SET_ID sets end-user information that is passed to DB2 when the next SQL request
is processed. SET_ID establishes a new value for the client program ID that can be
used to identify the end user.

“DSNRLI SET_ID function” shows the syntax of the SET_ID function.

DSNRLI SET_ID function

�� CALL DSNRLI ( function, program-id )
, retcode

, reascode

��

924 Application Programming and SQL Guide



Parameters point to the following areas:

function
An 18-byte area containing SET_ID followed by 12 blanks.

program-id
An 80-byte area containing the caller-provided string to be passed to DB2. If
program-id is less than 80 characters, you must pad it with blanks on the right
to a length of 80 characters.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

Usage
SET_ID establishes a new value for program-id that can be used to identify the end
user. The calling program defines the contents of program-id. DB2 places the
contents of program-id into IFCID 316 records, along with other statistics, so that
you can identify which program is associated with a particular SQL statement.

Table 153 shows a SET_ID call in each language.

Table 153. Examples of RRSAF SET_ID calls

Language Call example

Assembler CALL DSNRLI,(SETIDFN,PROGID,RETCODE,REASCODE)

C fnret=dsnrli(&setidfn[0], &progid[0], &retcode, &reascode);

COBOL CALL 'DSNRLI' USING SETIDFN PROGID RETCODE REASCODE.

Fortran CALL DSNRLI(SETIDFN,PROGID,RETCODE,REASCODE)

PL/I CALL DSNRLI(SETIDFN,PROGID,RETCODE,REASCODE);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

SET_CLIENT_ID: Syntax and usage
SET_CLIENT_ID sets end-user information that is passed to DB2 when the next
SQL request is processed. SET_CLIENT_ID establishes new values for the client
user ID, the application program name, the workstation name, the accounting
token, and the DDF client accounting string.

Chapter 31. Programming for the Resource Recovery Services attachment facility 925

|

#
#
#
#



“DSNRLI SET_CLIENT_ID function” shows the syntax of the SET_CLIENT_ID
function.

DSNRLI SET_CLIENT_ID function

�� CALL DSNRLI ( function, accounting-token, user, appl, ws �

� )
,retcode

,reascode
,accounting-string

��

Parameters point to the following areas:

function
An 18-byte area containing SET_CLIENT_ID followed by 5 blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is placed in the DB2 accounting and statistics trace records in the
QWHCTOKEN field, which is mapped by DSNDQWHC DSECT. If
accounting-token is less than 22 characters long, you must pad it on the right
with blanks to a length of 22 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

You can also change the value of the DB2 accounting token with RRS
SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can retrieve the DB2
accounting token with the CURRENT CLIENT_ACCTNG special register only
if the DDF accounting string is not set.

user
A 16-byte area that contains the user ID of the client end user. You can use this
parameter to provide the identity of the client end user for accounting and
monitoring purposes. DB2 places this user ID in DISPLAY THREAD output
and in DB2 accounting and statistics trace records. If user is less than 16
characters long, you must pad it on the right with blanks to a length of 16
characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

You can also change the value of the client user ID with RRS SIGNON, AUTH
SIGNON, or CONTEXT SIGNON. You can retrieve the client user ID with the
CLIENT_USERID special register.

appl
An 32-byte area that contains the application or transaction name of the end
user’s application. You can use this parameter to provide the identity of the
client end user for accounting and monitoring purposes. DB2 places the
application name in DISPLAY THREAD output and in DB2 accounting and
statistics trace records. If appl is less than 32 characters, you must pad it on the
right with blanks to a length of 32 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

You can also change the value of the application name with RRS SIGNON,
AUTH SIGNON, or CONTEXT SIGNON. You can retrieve the application
name with the CLIENT_APPLNAME special register.

926 Application Programming and SQL Guide

|
|
|

|

|||||||||||||||||
|

|
||||||||||||||||||#||||

||||

|

|
|

|
|
|
|
|
|

|

|
|
|
|

|
#
#
#
#
#
#

#

#
#
#

|
#
#
#
#
#
#

#

#
#
#



ws An 18-byte area that contains the workstation name of the client end user. You
can use this parameter to provide the identity of the client end user for
accounting and monitoring purposes. DB2 places this workstation name in
DISPLAY THREAD output and in DB2 accounting and statistics trace records.
If ws is less than 18 characters, you must pad it on the right with blanks to a
length of 18 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

You can also change the value of the workstation name with RRS SIGNON,
AUTH SIGNON, or CONTEXT SIGNON. You can retrieve the workstation
name with the CLIENT_WRKSTNNAME special register.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This field is optional. If you specify this parameter, you must also specify
retcode and reascode. If you do not specify this parameter, no accounting string
is associated with the connection.

You can also change the value of the accounting string with RRS SIGNON,
AUTH SIGNON, or CONTEXT SIGNON.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Usage
SET_CLIENT_ID establishes new values that can be used to identify the end user.
The calling program defines the contents of these parameters. DB2 places the
parameter values in DISPLAY THREAD output and in DB2 accounting and
statistics trace records.

Table 154 shows a SET_CLIENT_ID call in each language.

Table 154. Examples of RRSAF SET_CLIENT_ID calls

Language Call example

Assembler CALL DSNRLI,(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE)

Chapter 31. Programming for the Resource Recovery Services attachment facility 927

|#
#
#
#
#
#

#

#
#
#

|
|

|
|

|
|

|
|

|

#
#
#
#
#
#
#

#
#
#

#
#

#
#
#
#
#
#
#

|
#
#
#
#

|

||

||

||



Table 154. Examples of RRSAF SET_CLIENT_ID calls (continued)

Language Call example

C fnret=dsnrli(&seclidfn[0], &acct[0], &user[0], &appl[0], &ws[0], &retcode, &reascode);

COBOL CALL 'DSNRLI' USING SECLIDFN ACCT USER APPL WS RETCODE REASCODE.

Fortran CALL DSNRLI(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE)

PL/I CALL DSNRLI(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

CREATE THREAD: Syntax and usage
CREATE THREAD allocates DB2 resources for the application.

“DSNRLI CREATE THREAD function” shows the syntax of the CREATE THREAD
function.

DSNRLI CREATE THREAD function

�� CALL DSNRLI ( function, plan, collection, reuse �

�
, retcode

, reascode
, pklistptr

) ��

Parameters point to the following areas:

function
An 18-byte area containing CREATE THREAD followed by five blanks.

plan
An 8-byte DB2 plan name. If you provide a collection name instead of a plan
name, specify the character ? in the first byte of this field. DB2 then allocates a
special plan named ?RRSAF and uses the collection parameter. If you do not
provide a collection name in the collection field, you must enter a valid plan
name in this field.

collection
An 18-byte area in which you enter a collection name. When you provide a
collection name and put the character ? in the plan field, DB2 allocates a plan
named ?RRSAF and a package list that contains two entries:
v This collection name
v An entry that contains * for the location, collection name, and package name

If you provide a plan name in the plan field, DB2 ignores the value in this
field.

928 Application Programming and SQL Guide

|

||

||

||

||

||

|
|

||

||
|
|
|

||
|

|



reuse
An 8-byte area that controls the action DB2 takes if a SIGNON call is issued
after a CREATE THREAD call. Specify either of these values in this field:
v RESET - to release any held cursors and reinitialize the special registers
v INITIAL - to disallow the SIGNON

This parameter is required. If the 8-byte area does not contain either RESET or
INITIAL, then the default value is INITIAL.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

pklistptr
A 4-byte field that can contain a pointer to a user-supplied data area that
contains a list of collection IDs. A collection ID is an SQL identifier of 1 to 128
letters, digits, or the underscore character that identifies a collection of
packages. The length of the data area is a maximum of 2050 bytes. The data
area contains a 2-byte length field, followed by up to 2048 bytes of collection
ID entries, separated by commas.

When you specify a pointer to a set of collection IDs (in the pklistptr
parameter) and the character ? in the plan parameter, DB2 allocates a plan
named ?RRSAF and a package list in the data area that pklistptr points to. If
you also specify a value for the collection parameter, DB2 ignores that value.

Each collection entry must be of the form collection-ID.*, *.collection-ID.*, or *.*.*.
collection-ID and must follow the naming conventions for a collection ID, as
specified in Chapter 1 of DB2 Command Reference.

This parameter is optional. If you specify this parameter, you must also specify
retcode and reascode.

If you provide a plan name in the plan field, DB2 ignores the pklistptr value.

Using a package list can have a negative impact on performance. For better
performance, specify a short package list.

Usage
CREATE THREAD allocates the DB2 resources required to issue SQL or IFI
requests. If you specify a plan name, RRSAF allocates the named plan.

If you specify ? in the first byte of the plan name and provide a collection name,
DB2 allocates a special plan named ?RRSAF and a package list that contains the
following entries:
v The collection name
v An entry that contains * for the location, collection ID, and package name

If you specify ? in the first byte of the plan name and specify pklistptr, DB2
allocates a special plan named ?RRSAF and a package list that contains the
following entries:
v The collection names that you specify in the data area to which pklistptr points

Chapter 31. Programming for the Resource Recovery Services attachment facility 929

|
|
|
|
|



v An entry that contains * for the location, collection ID, and package name

The collection names are used to locate a package associated with the first SQL
statement in the program. The entry that contains *.*.* lets the application access
remote locations and access packages in collections other than the default collection
that is specified at create thread time.

The application can use the SQL statement SET CURRENT PACKAGESET to
change the collection ID that DB2 uses to locate a package.

When DB2 allocates a plan named ?RRSAF, DB2 checks authorization to execute
the package in the same way as it checks authorization to execute a package from
a requester other than DB2 UDB for z/OS. See Part 3 (Volume 1) of DB2
Administration Guide for more information about authorization checking for
package execution.

Table 155 shows a CREATE THREAD call in each language.

Table 155. Examples of RRSAF CREATE THREAD calls

Language Call example

Assembler CALL DSNRLI,(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLISTPTR)

C fnret=dsnrli(&crthrdfn[0], &plan[0], &collid[0], &reuse[0], &retcode, &reascode, &pklistptr);

COBOL CALL 'DSNRLI' USING CRTHRDFN PLAN COLLID REUSE RETCODE REASCODE
PKLSTPTR.

Fortran CALL DSNRLI(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLSTPTR)

PL/I CALL DSNRLI(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLSTPTR);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

TERMINATE THREAD: Syntax and usage
TERMINATE THREAD deallocates DB2 resources that were previously allocated
for an application by CREATE THREAD.

“DSNRLI TERMINATE THREAD function” shows the syntax of the TERMINATE
THREAD function.

DSNRLI TERMINATE THREAD function

�� CALL DSNRLI ( function, )
, retcode

, reascode

��

Parameters point to the following areas:

930 Application Programming and SQL Guide



function
An 18-byte area containing TERMINATE THREAD followed by two blanks.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

Usage
TERMINATE THREAD deallocates the DB2 resources associated with a plan. Those
resources were previously allocated through CREATE THREAD. You can then use
CREATE THREAD to allocate another plan using the same connection.

If you issue TERMINATE THREAD, and the application is not at a point of
consistency, RRSAF returns reason code X'00C12211'.

Table 156 shows a TERMINATE THREAD call in each language.

Table 156. Examples of RRSAF TERMINATE THREAD calls

Language Call example

Assembler CALL DSNRLI,(TRMTHDFN,RETCODE,REASCODE)

C fnret=dsnrli(&trmthdfn[0], &retcode, &reascode);

COBOL CALL 'DSNRLI' USING TRMTHDFN RETCODE REASCODE.

Fortran CALL DSNRLI(TRMTHDFN,RETCODE,REASCODE)

PL/I CALL DSNRLI(TRMTHDFN,RETCODE,REASCODE);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

TERMINATE IDENTIFY: Syntax and usage
TERMINATE IDENTIFY terminates a connection to DB2.

“DSNRLI TERMINATE IDENTIFY function” on page 932 shows the syntax of the
TERMINATE IDENTIFY function.

Chapter 31. Programming for the Resource Recovery Services attachment facility 931



DSNRLI TERMINATE IDENTIFY function

�� CALL DSNRLI ( function )
, retcode

, reascode

��

Parameters point to the following areas:

function
An 18-byte area containing TERMINATE IDENTIFY.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

Usage
TERMINATE IDENTIFY removes the calling task's connection to DB2. If no other
task in the address space has an active connection to DB2, DB2 also deletes the
control block structures created for the address space and removes the
cross-memory authorization.

If the application is not at a point of consistency when you issue TERMINATE
IDENTIFY, RRSAF returns reason code X'00C12211'.

If the application allocated a plan, and you issue TERMINATE IDENTIFY without
first issuing TERMINATE THREAD, DB2 deallocates the plan before terminating
the connection.

Issuing TERMINATE IDENTIFY is optional. If you do not, DB2 performs the same
functions when the task terminates.

If DB2 terminates, the application must issue TERMINATE IDENTIFY to reset the
RRSAF control blocks. This ensures that future connection requests from the task
are successful when DB2 restarts.

Table 157 shows a TERMINATE IDENTIFY call in each language.

Table 157. Examples of RRSAF TERMINATE IDENTIFY calls

Language Call example

Assembler CALL DSNRLI,(TMIDFYFN,RETCODE,REASCODE)

C fnret=dsnrli(&tmidfyfn[0], &retcode, &reascode);

COBOL CALL 'DSNRLI' USING TMIDFYFN RETCODE REASCODE.

Fortran CALL DSNRLI(TMIDFYFN,RETCODE,REASCODE)

932 Application Programming and SQL Guide



Table 157. Examples of RRSAF TERMINATE IDENTIFY calls (continued)

Language Call example

PL/I CALL DSNRLI(TMIDFYFN,RETCODE,REASCODE);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

TRANSLATE: Syntax and usage
TRANSLATE converts a hexadecimal reason code for a DB2 error into a signed
integer SQLCODE and a printable error message. The SQLCODE and message text
are placed in the caller's SQLCA. You cannot call the TRANSLATE function from
the Fortran language.

Issue TRANSLATE only after a successful IDENTIFY operation. For errors that
occur during SQL or IFI requests, the TRANSLATE function performs
automatically.

“DSNRLI TRANSLATE function” shows the syntax of the TRANSLATE function.

DSNRLI TRANSLATE function

�� CALL DSNRLI ( function, sqlca )
, retcode

, reascode

��

Parameters point to the following areas:

function
An 18-byte area containing the word TRANSLATE followed by nine blanks.

sqlca
The program's SQL communication area (SQLCA).

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify this parameter, RRSAF places
the reason code in register 0.

If you specify this parameter, you must also specify retcode.

Chapter 31. Programming for the Resource Recovery Services attachment facility 933



Usage
Use TRANSLATE to get a corresponding SQL error code and message text for the
DB2 error reason codes that RRSAF returns in register 0 following a CREATE
THREAD service request. DB2 places this information in the SQLCODE and
SQLSTATE host variables or related fields of the SQLCA.

The TRANSLATE function translates codes that begin with X'00F3', but it does not
translate RRSAF reason codes that begin with X'00C1'. If you receive error reason
code X'00F30040' (resource unavailable) after an OPEN request, TRANSLATE
returns the name of the unavailable database object in the last 44 characters of field
SQLERRM. If the DB2 TRANSLATE function does not recognize the error reason
code, it returns SQLCODE -924 (SQLSTATE '58006') and places a printable copy of
the original DB2 function code and the return and error reason codes in the
SQLERRM field. The contents of registers 0 and 15 do not change, unless
TRANSLATE fails. In this case, register 0 is set to X'00C12204', and register 15 is
set to 200.

Table 158 shows a TRANSLATE call in each language.

Table 158. Examples of RRSAF TRANSLATE calls

Language Call example

Assembler CALL DSNRLI,(XLATFN,SQLCA,RETCODE,REASCODE)

C fnret=dsnrli(&connfn[0], &sqlca, &retcode, &reascode);

COBOL CALL 'DSNRLI' USING XLATFN SQLCA RETCODE REASCODE.

PL/I CALL DSNRLI(XLATFN,SQLCA,RETCODE,REASCODE);

Note: DSNRLI is an assembler language program; therefore, you must include the following compiler directives in
your C, C++, and PL/I applications:

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

RRSAF connection examples
This section shows sample examples for connecting tasks to DB2.

Example of a single task
This example shows a single task running in an address space. z/OS RRS controls
commit processing when the task terminates normally.
IDENTIFY
SIGNON
CREATE THREAD
SQL or IFI...
TERMINATE IDENTIFY

Example of multiple tasks
This example shows multiple tasks in an address space. Task 1 executes no SQL
statements and makes no IFI calls. Its purpose is to monitor DB2 termination and
startup ECBs and to check the DB2 release level.

934 Application Programming and SQL Guide



TASK 1 TASK 2 TASK 3 TASK n

IDENTIFY IDENTIFY IDENTIFY IDENTIFY
SIGNON SIGNON SIGNON
CREATE THREAD CREATE THREAD CREATE THREAD

SQL SQL SQL
... ... ...
SRRCMIT SRRCMIT SRRCMIT
SQL SQL SQL
... ... ...
SRRCMIT SRRCMIT SRRCMIT
... ... ...

TERMINATE IDENTIFY

Example of calling SIGNON to reuse a DB2 thread
This example shows a DB2 thread that is to be used again by another user at a
point of consistency. The application calls SIGNON for user B, using the DB2 plan
that is allocated by the CREATE THREAD issued for user A.
IDENTIFY
SIGNON user A
CREATE THREAD

SQL
...
SRRCMIT

SIGNON user B
SQL
...
SRRCMIT

Example of switching DB2 threads between tasks
This example shows how you can switch the threads for four users (A, B, C, and
D) among two tasks (1 and 2). The steps that the applications perform are:
v Task 1 creates context a, performs a context switch to make context a active for

task 1, then identifies to a subsystem. A task must always perform an identify
operation before a context switch can occur. After the identify operation is
complete, task 1 allocates a thread for user A and performs SQL operations.
At the same time, task 2 creates context b, performs a context switch to make
context b active for task 2, identifies to the subsystem, then allocates a thread for
user B and also performs SQL operations.
When the SQL operations complete, both tasks perform RRS context switch
operations. Those operations disconnect each DB2 thread from the task under
which it was running.

v Task 1 then creates context c, identifies to the subsystem, performs a context
switch to make context c active for task 1, then allocates a thread for user C and
performs SQL operations for user C.
Task 2 does the same for user D.
When the SQL operations for user C complete, task 1 performs a context switch
operation to:
– Switch the thread for user C away from task 1.
– Switch the thread for user B to task 1.

For a context switch operation to associate a task with a DB2 thread, the DB2
thread must have previously performed an identify operation. Therefore, before
the thread for user B can be associated with task 1, task 1 must have performed
an identify operation.

v Task 2 performs two context switch operations to:
– Disassociate the thread for user D from task 2.

Chapter 31. Programming for the Resource Recovery Services attachment facility 935



– Associate the thread for user A with task 2.
Task 1 Task 2

CTXBEGC (create context a) CTXBEGC (create context b)
CTXSWCH(a,0) CTXSWCH(b,0)
IDENTIFY IDENTIFY
SIGNON user A SIGNON user B
CREATE THREAD (Plan A) CREATE THREAD (plan B)

SQL SQL
... ...

CTXSWCH(0,a) CTXSWCH(0,b)

CTXBEGC (create context c) CTXBEGC (create context d)
CTXSWCH(c,0) CTXSWCH(d,0)
IDENTIFY IDENTIFY
SIGNON user C SIGNON user D
CREATE THREAD (plan C) CREATE THREAD (plan D)

SQL SQL
... ...

CTXSWCH(b,c) CTXSWCH(0,d)
SQL (plan B) ...
... CTXSWCH(a,0)

SQL (plan A)

RRSAF return codes and reason codes
For an implicit connection request, register 15 contains the return code, and
register 0 contains the reason code. If you specify return code and reason code
parameters in an explicit RRSAF call, RRSAF puts the return code and reason code
in those parameters. Otherwise, RRSAF puts the return code in register 15 and the
reason code in register 0. See Part 3 of DB2 Codes for detailed explanations of the
reason codes.

When the reason code begins with X'00F3' (except for X'00F30006'), you can use the
RRSAF TRANSLATE function to obtain error message text that can be printed and
displayed.

For SQL calls, RRSAF returns standard SQL return codes in the SQLCA. See Part 2
of DB2 Codes for a list of those return codes and their meanings. RRSAF returns IFI
return codes and reason codes in the instrumentation facility communication area
(IFCA). See Part 3 of DB2 Codes for a list of those return codes and their meanings.

Table 159. RRSAF return codes

Return code Explanation

0 Successful completion.

4 Status information. See the reason code for details.

>4 The call failed. See the reason code for details.

Program examples for RRSAF
This section contains sample JCL for running an RRSAF application and assembler
code for accessing RRSAF.

936 Application Programming and SQL Guide

|
|



Sample JCL for using RRSAF
Use the sample JCL that follows as a model for using RRSAF in a batch
environment. The DD statement for DSNRRSAF starts the RRSAF trace. Use that
DD statement only if you are diagnosing a problem.
//jobname JOB z/OS_jobcard_information
//RRSJCL EXEC PGM=RRS_application_program
//STEPLIB DD DSN=application_load_library
// DD DSN=DB2_load_library

...

//SYSPRINT DD SYSOUT=*
//DSNRRSAF DD DUMMY
//SYSUDUMP DD SYSOUT=*

Loading and deleting the RRSAF language interface
The following code segment shows how an application loads entry points DSNRLI
and DSNHLIR of the RRSAF language interface. Storing the entry points in
variables LIRLI and LISQL ensures that the application loads the entry points only
once.

Delete the loaded modules when the application no longer needs to access DB2.
****************************** GET LANGUAGE INTERFACE ENTRY ADDRESSES

LOAD EP=DSNRLI Load the RRSAF service request EP
ST R0,LIRLI Save this for RRSAF service requests
LOAD EP=DSNHLIR Load the RRSAF SQL call Entry Point
ST R0,LISQL Save this for SQL calls

* .
* . Insert connection service requests and SQL calls here
* .

DELETE EP=DSNRLI Correctly maintain use count
DELETE EP=DSNHLIR Correctly maintain use count

Using dummy entry point DSNHLI for RRSAF
Each of the DB2 attachment facilities contains an entry point named DSNHLI.
When you use RRSAF but do not specify the precompiler option
ATTACH(RRSAF), the precompiler generates BALR instructions to DSNHLI for
SQL statements in your program. To find the correct DSNHLI entry point without
including DSNRLI in your load module, code a subroutine, with entry point
DSNHLI, that passes control to entry point DSNHLIR in the DSNRLI module.
DSNHLIR is unique to DSNRLI and is at the same location as DSNHLI in
DSNRLI. DSNRLI uses 31-bit addressing. If the application that calls this
intermediate subroutine uses 24-bit addressing, the intermediate subroutine must
account for the difference.

In the example that follows, LISQL is addressable because the calling CSECT used
the same register 12 as CSECT DSNHLI. Your application must also establish
addressability to LISQL.
***********************************************************************
* Subroutine DSNHLI intercepts calls to LI EP=DSNHLI
***********************************************************************

DS 0D
DSNHLI CSECT Begin CSECT

STM R14,R12,12(R13) Prologue
LA R15,SAVEHLI Get save area address
ST R13,4(,R15) Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13

Chapter 31. Programming for the Resource Recovery Services attachment facility 937



L R15,LISQL Get the address of real DSNHLI
BASSM R14,R15 Branch to DSNRLI to do an SQL call

* DSNRLI is in 31-bit mode, so use
* BASSM to assure that the addressing
* mode is preserved.

L R13,4(,R13) Restore R13 (caller’s save area addr)
L R14,12(,R13) Restore R14 (return address)
RETURN (1,12) Restore R1-12, NOT R0 and R15 (codes)

Connecting to DB2 for RRSAF
Figure 248 shows how to issue requests for certain RRSAF functions (IDENTIFY,
SIGNON, CREATE THREAD, TERMINATE THREAD, and TERMINATE
IDENTIFY).

The code in Figure 248 does not show a task that waits on the DB2 termination
ECB. You can code such a task and use the z/OS WAIT macro to monitor the ECB.
The task that waits on the termination ECB should detach the sample code if the
termination ECB is posted. That task can also wait on the DB2 startup ECB. The
task in Figure 248 waits on the startup ECB at its own task level.

Figure 249 on page 939 shows declarations for some of the variables that are used
in Figure 248.

***************************** IDENTIFY ********************************
L R15,LIRLI Get the Language Interface address
CALL (15),(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB),VL,MF=X

(E,RRSAFCLL)
BAL R14,CHEKCODE Call a routine (not shown) to check

* return and reason codes
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not ’CONTINUE’, stop loop
USING R8,RIB Prepare to access the RIB
L R8,RIBPTR Access RIB to get DB2 release level
WRITE ’The current DB2 release level is’ RIBREL

***************************** SIGNON **********************************
L R15,LIRLI Get the Language Interface address
CALL (15),(SGNONFN,CORRID,ACCTTKN,ACCTINT),VL,MF=(E,RRSAFCLL)
BAL R14,CHEKCODE Check the return and reason codes

*************************** CREATE THREAD *****************************
L R15,LIRLI Get the Language Interface address
CALL (15),(CRTHRDFN,PLAN,COLLID,REUSE),VL,MF=(E,RRSAFCLL)
BAL R14,CHEKCODE Check the return and reason codes

****************************** SQL ************************************
* Insert your SQL calls here. The DB2 Precompiler
* generates calls to entry point DSNHLI. You should
* code a dummy entry point of that name to intercept
* all SQL calls. A dummy DSNHLI is shown in the following
* section.
************************ TERMINATE THREAD *****************************

CLC CONTROL,CONTINUE Is everything still OK?
BNE EXIT If CONTROL not ’CONTINUE’, shut down
L R15,LIRLI Get the Language Interface address
CALL (15),(TRMTHDFN),VL,MF=(E,RRSAFCLL)
BAL R14,CHEKCODE Check the return and reason codes

************************ TERMINATE IDENTIFY ***************************
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not ’CONTINUE’, stop loop
L R15,LIRLI Get the Language Interface address
CALL (15),(TMIDFYFN),VL,MF=(E,RRSAFCLL)
BAL R14,CHEKCODE Check the return and reason codes

Figure 248. Using RRSAF to connect to DB2

938 Application Programming and SQL Guide



****************** VARIABLES SET BY APPLICATION ***********************
LIRLI DS F DSNRLI entry point address
LISQL DS F DSNHLIR entry point address
SSNM DS CL4 DB2 subsystem name for IDENTIFY
CORRID DS CL12 Correlation ID for SIGNON
ACCTTKN DS CL22 Accounting token for SIGNON
ACCTINT DS CL6 Accounting interval for SIGNON
PLAN DS CL8 DB2 plan name for CREATE THREAD
COLLID DS CL18 Collection ID for CREATE THREAD. If
* PLAN contains a plan name, not used.
REUSE DS CL8 Controls SIGNON after CREATE THREAD
CONTROL DS CL8 Action that application takes based
* on return code from RRSAF
****************** VARIABLES SET BY DB2 *******************************
STARTECB DS F DB2 startup ECB
TERMECB DS F DB2 termination ECB
EIBPTR DS F Address of environment info block
RIBPTR DS F Address of release info block
****************************** CONSTANTS ******************************
CONTINUE DC CL8’CONTINUE’ CONTROL value: Everything OK
IDFYFN DC CL18’IDENTIFY ’ Name of RRSAF service
SGNONFN DC CL18’SIGNON ’ Name of RRSAF service
CRTHRDFN DC CL18’CREATE THREAD ’ Name of RRSAF service
TRMTHDFN DC CL18’TERMINATE THREAD ’ Name of RRSAF service
TMIDFYFN DC CL18’TERMINATE IDENTIFY’ Name of RRSAF service
****************************** SQLCA and RIB **************************

EXEC SQL INCLUDE SQLCA
DSNDRIB Map the DB2 Release Information Block

******************* Parameter list for RRSAF calls ********************
RRSAFCLL CALL ,(*,*,*,*,*,*,*,*),VL,MF=L

Figure 249. Declarations for variables used in the RRSAF connection routine

Chapter 31. Programming for the Resource Recovery Services attachment facility 939



940 Application Programming and SQL Guide



Chapter 32. CICS-specific programming techniques

This section discusses some special topics of importance to CICS application
programmers:
v Controlling the CICS attachment facility from an application
v Improving thread reuse
v Detecting whether the CICS attachment facility is operational

Controlling the CICS attachment facility from an application
You can start and stop the CICS attachment facility from within an application
program. To start the attach facility, include this statement in your source code:
EXEC CICS LINK PROGRAM(’DSN2COM0’)

To stop the attachment facility, include this statement:
EXEC CICS LINK PROGRAM(’DSN2COM2’)

In addition, you can start and stop the CICS attachment facility from within an
application program by using the system programming interface SET DB2CONN.
For more information, see the CICS Transaction Server for z/OS System Programming
Reference.

Improving thread reuse
In general, you want transactions to reuse threads whenever possible, because
there is a high processor cost associated with thread creation. Part 5 (Volume 2) of
DB2 Administration Guide contains a discussion of what factors affect CICS thread
reuse and how you can write your applications to control these factors.

One of the most important things you can do to maximize thread reuse is to close
all cursors that you declared WITH HOLD before each sync point, because DB2
does not automatically close them. A thread for an application that contains an
open cursor cannot be reused. It is a good programming practice to close all
cursors immediately after you finish using them. For more information about the
effects of declaring cursors WITH HOLD in CICS applications, see “Held and
non-held cursors” on page 122.

Detecting whether the CICS attachment facility is operational
You can use the INQUIRE EXITPROGRAM command in your applications to test
whether the CICS attachment is available. The following example shows how to do
this:
STST DS F
ENTNAME DS CL8
EXITPROG DS CL8...

MVC ENTNAME,=CL8’DSNCSQL’
MVC EXITPROG,=CL8’DSN2EXT1’
EXEC CICS INQUIRE EXITPROGRAM(EXITPROG) X

ENTRYNAME(ENTNAME) CONNECTST(STST) NOHANDLE
CLC EIBRESP,DFHRESP(NORMAL)
BNE NOTREADY
CLC STST,DFHVALUE(CONNECTED)
BNE NOTREADY

© Copyright IBM Corp. 1983, 2012 941

|
|
|
|



UPNREADY DS 0H
attach is up

NOTREADY DS 0H
attach isn’t up yet

In this example, the INQUIRE EXITPROGRAM command tests whether the
resource manager for SQL, DSNCSQL, is up and running. CICS returns the results
in the EIBRESP field of the EXEC interface block (EIB) and in the field whose name
is the argument of the CONNECTST parameter (in this case, STST). If the EIBRESP
value indicates that the command completed normally and the STST value
indicates that the resource manager is available, it is safe to execute SQL
statements. For more information about the INQUIRE EXITPROGRAM command,
see CICS Transaction Server for z/OS System Programming Reference.

Attention
The stormdrain effect is a condition that occurs when a system continues to
receive work, even though that system is down.

When both of the following conditions are true, the stormdrain effect can
occur:
v The CICS attachment facility is down.
v You are using INQUIRE EXITPROGRAM to avoid AEY9 abends.

For more information on the stormdrain effect and how to avoid it, see
Chapter 2 of DB2 Data Sharing: Planning and Administration.

If the CICS attachment facility is started and you are using standby mode, you do
not need to test whether the CICS attachment facility is up before executing SQL.
When an SQL statement is executed, and the CICS attachment facility is in standby
mode, the attachment issues SQLCODE -923 with a reason code that indicates that
DB2 is not available. See CICS DB2 Guide for information about the
STANDBYMODE and CONNECTERROR parameters, and DB2 Codes for an
explanation of SQLCODE -923.

942 Application Programming and SQL Guide

|
|
|
|
|
|
|



Chapter 33. WebSphere MQ with DB2

WebSphere MQ is a message handling system that enables applications to
communicate in a distributed environment across different operating systems and
networks.

WebSphere MQ handles the communication from one program to another by using
application programming interfaces (APIs). You can use any of the following APIs
to interact with the WebSphere MQ message handling system:
v Message Queue Interface (MQI)
v Application Messaging Interface (AMI)
v WebSphere MQ classes for Java
v WebSphere MQ classes for Java Message Service (JMS)

Restriction: The AMI has been deprecated.

DB2 provides its own application programming interface to the WebSphere MQ
message handling system through a set of external user-defined functions, which
are called DB2 MQ functions. You can use these functions in SQL statements to
combine DB2 database access with WebSphere MQ message handling. The DB2
MQ functions use either the AMI or the MQI.

Restriction: All DB2 MQ functions that use AMI are deprecated. You can convert
those applications that use the AMI-based functions to use the MQI-based
functions.

WebSphere MQ messages
WebSphere MQ uses messages to pass information between applications.

Messages consist of the following parts:
v The message attributes, which identify the message and its properties.
v The message data, which is the application data that is carried in the message.

WebSphere MQ message handling
Conceptually, the WebSphere MQ message handling system takes a piece of
information (the message) and sends it to its destination. MQ guarantees delivery
despite any network disruptions that might occur.

In WebSphere MQ, a destination is called a message queue, and a queue resides in
a queue manager. Applications can put messages on queues or get messages from
them.

DB2 communicates with the WebSphere message handling system through a set of
external user-defined functions, which are called DB2 MQ functions. These
functions use either the MQI or the AMI.

Restriction: The AMI and all DB2 MQ functions that use the AMI have been
deprecated.

© Copyright IBM Corp. 1983, 2012 943

|

|

|
|
|

#
#
#

#

#

#

#

#

#
#
#
#
#

#
#
#

|
|

|

|

|

|

|

|
|
|

|
|
|

#
#
#

#
#



When you send a message by using the AMI or MQI, you must specify following
three components:

message data
Defines what is sent from one program to another.

service
Defines where the message is going to or coming from. The parameters for
managing a queue are defined in the service, which is typically defined by
a system administrator. The complexity of the parameters in the service is
hidden from the application program.

policy Defines how the message is handled. Policies control such items as:
v The attributes of the message, for example, the priority.
v Options for send and receive operations, for example, whether an

operation is part of a unit of work.

The default service and policy are set as part of defining the WebSphere MQ
configuration for a particular installation of DB2. (This action is typically
performed by a system administrator.) DB2 provides the default service
DB2.DEFAULT.SERVICE and the default policy DB2.DEFAULT.POLICY.

How services and policies are stored and managed depends on whether you are
using the AMI or the MQI.

WebSphere MQ message handling with the MQI
One way to send and receive WebSphere MQ messages from DB2 applications is to
use the DB2 MQ functions that use MQI.

These MQI-based functions use the services and policies that are defined in two
DB2 tables, SYSIBM.MQSERVICE_TABLE and SYSIBM.MQPOLICY_TABLE. These
tables are user-managed and are typically created and maintained by a system
administrator. Each table contains a row for the default service and policy that are
provided by DB2.

The application program does not need know the details of the services and
policies that are defined in these tables. The application need only specify which
service and policy to use for each message that it sends and receives. The
application specifies this information when it calls a DB2 MQ function.

DB2 MQI services: A service describes a destination to which an application
sends messages or from which an application receives messages. DB2 MQI services
are defined in the DB2 table SYSIBM.MQSERVICE_TABLE.

The MQI-based DB2 MQ functions use the services that are defined in the DB2
table SYSIBM.MQSERVICE_TABLE. This table is user-managed and is typically
created and maintained by a system administrator. This table contains a row for
each defined service, including your customized services and the default service
that is provided by DB2.

The application program does not need know the details of the defined services.
When an application program calls an MQI-based DB2 MQ function, the program
selects a service from SYSIBM.MQSERVICE_TABLE by specifying it as a parameter.

DB2 MQI policies: A policy controls how the MQ messages are handled. DB2
MQI policies are defined in the DB2 table SYSIBM.MQPOLICY_TABLE.

944 Application Programming and SQL Guide

#
#

#
#

#
#
#
#
#

##

#

#
#

|
|
|
|

#
#

#
#
#

#
#
#
#
#

#
#
#
#

#
#
#

#
#
#
#
#

#
#
#

#
#



The MQI-based DB2 MQ functions use the policies that are defined in the DB2
table SYSIBM.MQPOLICY_TABLE. This table is user-managed and is typically
created and maintained by a system administrator. This table contains a row for
each defined policy, including your customized policies and the default policy that
is provided by DB2.

The application program does not need know the details of the defined policies.
When an application program calls an MQI-based DB2 MQ function, the program
selects a policy from SYSIBM.MQPOLICY_TABLE by specifying it as a parameter.

WebSphere MQ message handling with the AMI
One way to send and receive WebSphere MQ messages from DB2 applications is to
use the DB2 MQ functions that use AMI. However, be aware that this interface and
the associated DB2 MQ functions have been deprecated.

Restriction: The AMI and the DB2 MQ functions that use the AMI have been
deprecated. You can convert those applications that use the AMI-based functions to
use the MQI-based functions.

The AMI-based functions use the services and policies that are defined in AMI
configuration files, which are in XML format. Typically, these files are created and
maintained by a system administrator. These files also define any default services
and policies, including the defaults that are provided by DB2.

The application program does not need know the details of the services and
policies that are defined in these files. The application need only specify which
service and policy to use for each message that it sends and receives. The
application specifies this information when it calls a DB2 MQ function.

The AMI uses the service and policy to interpret and construct the MQ headers
and message descriptors. The AMI does not act on the message data.

AMI services: A service describes a destination to which an application sends
messages or from which an application receives messages. AMI services are
defined in AMI configuration files.

Restriction: The AMI and the DB2 MQ functions that use the AMI have been
deprecated.

The AMI-based DB2 MQ functions use the services that are defined in AMI
configuration files, which are in XML format. These files are typically created and
maintained by a system administrator. These files contain all of the defined
services, including your customized services and any default services, such as the
one that DB2 provides.

The application program does not need know the details of the defined services.
When an application program calls an AMI-based DB2 MQ function, the program
selects a service from the AMI configuration file by specifying it as a parameter.

AMI policies: A policy controls how the MQ messages are handled. AMI policies
are defined in AMI configuration files.

Restriction: The AMI and the DB2 MQ functions that use the AMI have been
deprecated.

Chapter 33. WebSphere MQ with DB2 945

#
#
#
#
#

#
#
#

|
#
#
#

#
#
#

|
|
|
|

|
|
|
|

|
|

|
|
|

#
#

|
|
|
|
|

|
|
|

|
|

#
#



The AMI-based DB2 MQ functions use the policies that are defined in AMI
configuration files, which are in XML format. These files are typically created and
maintained by a system administrator. These files contain all of the defined
policies, including your customized policies and any default policies, such as the
one that DB2 provides.

The application program does not need know the details of the defined policies.
When an application program calls an AMI-based DB2 MQ function, the program
selects a policy from the AMI configuration file by specifying it as a parameter.

WebSphere MQ functions and stored procedures
You can use the DB2 MQ functions and stored procedures to send messages to a
message queue or to receive messages from the message queue.

The DB2 MQ functions support the following types of operations:
v Send and forget, where no reply is needed.
v Read or receive, where one or all messages are either read without removing

them from the queue, or received and removed from the queue.
v Request and response, where a sending application needs a response to a

request.
v Publish and subscribe, where messages are assigned to specific publisher

services and are sent to queues. Applications that subscribe to the corresponding
subscriber service can monitor specific messages.

You can use the DB2 MQ functions and stored procedures to send messages to a
message queue or to receive messages from the message queue. You can send a
request to a message queue and receive a response, and you can also publish
messages to the WebSphere MQ publisher and subscribe to messages that have
been published with specific topics. The DB2 MQ XML functions and stored
procedures enable you to query XML documents and then publish the results to a
message queue.

The WebSphere MQ server is located on the same z/OS system as the DB2
database server. The DB2 MQ functions and stored procedures are registered with
the DB2 database server and provide access to the WebSphere MQ server by using
either the AMI or the MQI.

The DB2 MQ functions include scalar functions, table functions, and XML-specific
functions. For each of these functions, you can call a version that uses the MQI or
a version that uses the AMI. (Any exceptions are noted in the description of these
functions.) The function signatures are the same. However, the qualifying schema
names are different. To call an MQI-based function, specify the schema name
DB2MQ. To call an AMI-based function, specify the schema names DB2MQ1C,
DB2MQ1N, DB2MQ2C, or DB2MQ2N.

Restriction: All DB2 MQ functions that use the AMI have been deprecated. You
can convert those applications that use the AMI-based functions to use the
MQI-based functions.

Requirement: Before you can call the version of these functions that uses MQI ,
you need to populate the DB2 MQ tables.

The following table describes the DB2 MQ scalar functions.

946 Application Programming and SQL Guide

|
|
|
|
|

|
|
|

|
#

#
|

|

|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

#
#
#
#

#
#
#
#
#
#
#

#
#
#

#
#

|



Table 160. DB2 MQ scalar functions

Scalar function Description

MQPUBLISH (publisher-service,
service-policy, msg-data, topic-list,
correlation-id)

MQPUBLISH publishes a message, as specified in the msg-data variable, to the
WebSphere MQ publisher that is specified in the publisher-service variable. It
uses the quality of service policy as specified in the service-policy variable. The
topic-list variable specifies a list of topics for the message. The optional
correlation-id variable specifies the correlation id that is to be associated with
this message. The return value is 1 if successful or 0 if not successful.

Restriction: MQPublish uses the AMI only. A version of MQPublish that uses
the MQI is not available..

MQREAD (receive-service,
service-policy)

MQREAD returns a message in a VARCHAR variable from the MQ location
specified by receive-service, using the policy defined in service-policy. This
operation does not remove the message from the head of the queue but instead
returns it. If no messages are available to be returned, a null value is returned.

MQREADCLOB (receive-service,
service-policy)

MQREADCLOB returns a message in a CLOB variable from the MQ location
specified by receive-service, using the policy defined in service-policy. This
operation does not remove the message from the head of the queue but instead
returns it. If no messages are available to be returned, a null value is returned.

MQRECEIVE (receive-service,
service-policy, correlation-id)

MQRECEIVE returns a message in a VARCHAR variable from the MQ location
specified by receive-service, using the policy defined in service-policy. This
operation removes the message from the queue. If correlation-id is specified, the
first message with a matching correlation identifier is returned; if correlation-id is
not specified, the message at the beginning of queue is returned. If no messages
are available to be returned, a null value is returned.

MQRECEIVECLOB (receive-service,
service-policy, correlation-id)

MQRECEIVECLOB returns a message in a CLOB variable from the MQ location
specified by receive-service, using the policy defined in service-policy. This
operation removes the message from the queue. If correlation-id is specified, the
first message with a matching correlation identifier is returned; if correlation-id is
not specified, the message at the head of queue is returned. If no messages are
available to be returned, a null value is returned.

MQSEND (send-service,
service-policy, msg-data, correlation-id)

MQSEND sends the data in a VARCHAR or CLOB variable msg-data to the MQ
location specified by send-service, using the policy defined in service-policy. An
optional user-defined message correlation identifier can be specified by
correlation-id. The return value is 1 if successful or 0 if not successful.

MQSUBSCRIBE (subscriber-service,
service-policy, topic-list)

MQSUBSCRIBE registers interest in WebSphere MQ messages that are
published to the list of topics that are specified in the topic-list variable. The
subscriber-service variable specifies a logical destination for messages that match
the specified list of topics. Messages that match each topic are placed on the
queue at the specified destination, using the policy specified in the service-policy
variable. These messages can be read or received by issuing a subsequent call to
MQREAD, MQREADALL, MQREADCLOB, MQREADALLCLOB, MQRECEIVE,
MQRECEIVEALL, MQRECEIVECLOB, or MQRECEIVEALLCLOB. The return
value is 1 if successful or 0 if not successful.

Restriction: MQSUBSCRIBE uses the AMI only. A version of MQSUBSCRIBE
that uses the MQI is not available.

MQUNSUBSCRIBE
(subscriber-service, service-policy,
topic-list)

MQUNSUBSCRIBE unregisters previously specified interest in WebSphere MQ
messages that are published to the list of topics that are specified in the topic-list
variable. The subscriber-service, service-policy, and topic-list variables specify
which subscription is to be cancelled. The return value is 1 if successful or 0 if
not successful.

Restriction: MQUNSUBSCRIBE uses the AMI only. A version of MQSUBSCRIBE
that uses the MQI is not available.

Chapter 33. WebSphere MQ with DB2 947

||

||

|
|
|

|
|
|
|
|
|

#
#

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

#
#

|
|
|

|
|
|
|
|

#
#



Table 160. DB2 MQ scalar functions (continued)

Scalar function Description

Notes:

1. You can send or receive messages in VARCHAR variables or CLOB variables. The maximum length for a message
in a VARCHAR variable is 32 KB. The maximum length for a message in a CLOB variable is 2 MB.

2. Restriction: The versions of these MQ functions that are in the DB2MQ1C, DB2MQ1N, DB2MQ2C, and
DB2MQ2N schemas are deprecated. (Those functions use the AMI.) Instead use the version of these functions in
the DB2MQ schema. (Those functions use the MQI.) The exceptions are MQPUBLISH, MQSUBSCRIBE, and
MQUNSUBSCRIBE. Although the AMI-based versions of these functions are deprecated, a version of these
functions does not exist in the DB2MQ schema.

The following table describes the MQ table functions that DB2 can use.

Table 161. DB2 MQ table functions

Table functions Description

MQREADALL (receive-service,
service-policy, num-rows)

MQREADALL returns a table that contains the messages and message metadata
in VARCHAR variables from the MQ location specified by receive-service, using
the policy defined in service-policy. This operation does not remove the messages
from the queue. If num-rows is specified, a maximum of num-rows messages is
returned; if num-rows is not specified, all available messages are returned.

MQREADALLCLOB (receive-service,
service-policy, num-rows)

MQREADALLCLOB returns a table that contains the messages and message
metadata in CLOB variables from the MQ location specified by receive-service,
using the policy defined in service-policy. This operation does not remove the
messages from the queue. If num-rows is specified, a maximum of num-rows
messages is returned; if num-rows is not specified, all available messages are
returned.

MQRECEIVEALL (receive-service,
service-policy, correlation-id,
num-rows)

MQRECEIVEALL returns a table that contains the messages and message
metadata in VARCHAR variables from the MQ location specified by
receive-service, using the policy defined in service-policy. This operation removes
the messages from the queue. If correlation-id is specified, only those messages
with a matching correlation identifier are returned; if correlation-id is not
specified, all available messages are returned. If num-rows is specified, a
maximum of num-rows messages is returned; if num-rows is not specified, all
available messages are returned.

MQRECEIVEALLCLOB
(receive-service, service-policy,
correlation-id, num-rows)

MQRECEIVEALLCLOB returns a table that contains the messages and message
metadata in CLOB variables from the MQ location specified by receive-service,
using the policy defined in service-policy. This operation removes the messages
from the queue. If correlation-id is specified, only those messages with a
matching correlation identifier are returned; if correlation-id is not specified, all
available messages are returned. If num-rows is specified, a maximum of
num-rows messages is returned; if num-rows is not specified, all available
messages are returned.

Notes:

1. You can send or receive messages in VARCHAR variables or CLOB variables. The maximum length for a message
in a VARCHAR variable is 32 KB. The maximum length for a message in a CLOB variable is 2 MB.

2. The first column of the result table of a DB2 MQ table function contains the message. For a description of the
other columns, see DB2 SQL Reference.

3. Restriction: The versions of these MQ functions that are in the DB2MQ1C, DB2MQ1N, DB2MQ2C, and
DB2MQ2N schemas are deprecated. (Those functions use the AMI.) Instead use the version of these functions in
the DB2MQ schema. (Those functions use the MQI.)

The following table describes the MQ functions that DB2 can use to work with
XML data.

948 Application Programming and SQL Guide

|

||

#

#
#

#
#
#
#
#
|

|

||

||

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

#

#
#

#
#

#
#
#
|

|
|



Restriction: All of these DB2 MQ XML-specific functions have been deprecated.

Table 162. DB2 MQ XML-specific functions

XML-specific function Description

MQREADXML (receive-service,
service-policy)

MQREADXML returns the first message in a queue without removing the
message from the queue.

MQREADALLXML (receive-service,
service-policy)

MQREADALLXML returns a table that contains messages from a queue without
removing the messages from the queue.

MQRECEIVEXML (receive-service,
service-policy, correlation-id)

MQRECEIVEXML returns a message from the queue and removes that message
from the queue.

MQRECEIVEALLXML
(receive-service, service-policy,
correlation-id)

MQRECEIVEALLXML returns a table that contains messages from a queue and
removes the messages from the queue.

MQSENDXML (send-service,
service-policy, correlation-id)

MQSENDXML sends a message and does not expect a reply.

MQSENDXMLFILE (send-service,
service-policy, correlation-id)

MQSENDXMLFILE sends a message that contains a file and does not expect a
reply.

MQSENDXMLFILECLOB
(send-service, service-policy,
correlation-id)

MQSENDXMLFILECLOB sends a message that contains a file and does not
expect a reply.

MQPUBLISHXML (publisher-service,
service-policy, correlation-id)

MQPUBLISHXML sends a message to a queue to be picked up by applications
that monitor the queue.

You can use the WebSphere MQ XML stored procedures to retrieve an XML
document from a message queue, decompose it into untagged data, and store the
data in DB2 UDB tables. You can also compose an XML document from DB2 data
and send the document to an MQSeries(R) message queue.

The following table shows WebSphere MQ XML stored procedures for
decomposition.

Restriction: All of these DB2 MQ XML decomposition stored procedures have been
deprecated.

Table 163. DB2 MQ XML decomposition stored procedures

XML decomposition stored
procedure Description

DXXMQINSERT and
DXXMQINSERTALL

Decompose incoming XML documents from a message queue and store the data
in new or existing database tables. The DXXMQINSERT and
DXXMQINSERTALL stored procedures require an enabled XML collection name
as input.

DXXMQINSERTCLOB and
DXXMQINSERTALLCLOB

Decompose incoming XML documents from a message queue and store the data
in new or existing database tables. The DXXMQINSERTCLOB and
DXXMQINSERTALLCLOB stored procedures require an enabled XML collection
name as input.

DXXMQSHRED and
DXXMQSHREDAll

Shred incoming XML documents from a message queue and store the data in
new or existing database tables. The DXXMQSHRED and DXXMQSHREDAll
stored procedures take a DAD file as input; they do not require an enabled
XML collection name as input.

DXXMQSHREDCLOB and
DXXMQSHREDALLCLOB

Shred incoming XML documents from a message queue and store the data in
new or existing database tables. The DXXMQSHREDCLOB and
DXXMQSHREDALLCLOB stored procedures take a DAD file as input; they do
not require an enabled XML collection name as input.

Chapter 33. WebSphere MQ with DB2 949

#

||

||

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

#
#
#
#

#
#

#
#

||

|
||

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|



The following table shows WebSphere MQ XML stored procedures for
composition.

Restriction: All of these DB2 MQ XML composition stored procedures have been
deprecated.

Table 164. DB2 MQ XML composition stored procedures

XML composition stored
procedure Description

DXXMQGEN and
DXXMQGENALL

Generate XML documents from existing database tables and send the generated
XML documents to a message queue. The DXXMQGEN and DXXMQGENALL
stored procedures take a DAD file as input; they do not require an enabled
XML collection name as input.

DXXMQRETRIEVE and
DXXMQRETRIEVECLOB

Generate XML documents from existing database tables and send the generated
XML documents to a message queue. The DXXMQRETRIEVE and
DXXMQRETRIEVECLOB stored procedures require an enabled XML collection
name as input.

See Appendix J, “DB2-supplied stored procedures,” on page 1131 for more
information about WebSphere MQ stored procedures for composing and
decomposing XML data.

Commit environment for AMI-based DB2 MQ functions and
stored procedures

DB2 provides two versions of commit when you use AMI-based DB2 MQ functions
and stored procedures: a single-phase commit and a two-phase commit.

Restriction: The AMI and the DB2 MQ functions that use the AMI have been
deprecated.

The schema name when you use AMI-based DB2 MQ functions and stored
procedures for a single-phase commit is DB2MQ1N. The schema name when you
use AMI-based DB2 MQ functions and stored procedures for a two-phase commit
is DB2MQ2N. The schema names DB2MQ1C and DB2MQ2C, are still valid, but
they do not support the parameter style that allows the value to contain binary '0'.

You need to assign these two versions of the AMI-based DB2 MQ functions and
stored procedures to different WLM environments, which guarantees that the
versions are never invoked from the same address space.

For MQI-based DB2 MQ functions, you can specify whether the function is for
one-phase commit or two-phase commit by using the value in the SYNCPOINT
column of the table SYSIBM.MQPOLICY_TABLE.

Single-phase commit in WebSphere MQ
If your application uses single-phase commit, any DB2 COMMIT or ROLLBACK
operations are independent of WebSphere MQ operations. If a transaction is rolled
back, the messages that have been sent to a queue within the current unit of work
are not discarded.

This type of commit is typically used in the case of application error. You might
want to use WebSphere MQ messaging functions to notify a system programmer

950 Application Programming and SQL Guide

|

#
#

#
#

||

|
||

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

#
#

#
#

#
#
#
#
#

|
|
|

#
#
#

|
|
|
|
|

|
|



that an application error has occurred. The application issues a ROLLBACK after
the error occurs, but the message is still delivered to the queue that contains the
error messages.

In a single-phase commit environment, WebSphere MQ controls its own queue
operations. A DB2 COMMIT or ROLLBACK does not affect when or if messages
are added to or deleted from an MQ queue.

Two-phase commit in WebSphere MQ
If your application uses two-phase commit, RRS coordinates the commit process. If
a transaction is rolled back, the messages that have been sent to a queue within the
current unit of work are discarded.

This type of commit is typically used when a transaction causes a message to be
sent, which causes another transaction to be initiated. For example, assume that a
sales transaction causes a WebSphere MQ message to be sent to a queue. The
message causes your inventory system to order replacement merchandise. That
message should be discarded if the transaction representing the sale is rolled back.

In a two-phase commit environment, if you want to force messages to be added to
or deleted from an MQ queue, you need to issue a COMMIT in your application
program after you call a DB2 MQ function.

DB2 MQ tables
The DB2 MQ tables contain service and policy definitions that are used by the
MQI-based DB2 MQ functions. You must populate the DB2 MQ tables before you
can use these MQI-based functions.

The DB2 MQ tables are SYSIBM.MQSERVICE_TABLE and
SYSIBM.MQPOLICY_TABLE. These tables are user-managed. You need to create
them during the installation or migration process. Sample job DSNTIJMQ creates
these tables with one default row in each table.

If you previously used the AMI-based DB2 MQ functions, you used AMI
configuration files instead of these tables. To use the MQI-based DB2 MQ
functions, you need to move the data from those configuration files to the DB2
tables SYSIBM.MQSERVICE_TABLE and SYSIBM.MQPOLICY_TABLE .

The following table describes the columns for SYSIBM.MQSERVICE_TABLE.

Column name Description

SERVICENAME This column contains the service name,
which is an optional input parameter of the
MQ functions.

This column is the primary key for the
SYSIBM.MQSERVICE_TABLE table.

QUEUEMANAGER This column contains the name of the queue
manager where the MQ functions are to
establish a connection.

INPUTQUEUE This column contains the name of the queue
from which the MQ functions are to send
and retrieve messages.

Chapter 33. WebSphere MQ with DB2 951

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

#

#
#
#

#
#
#
#

#
#
#
#

#

###

##
#
#

#
#

##
#
#

##
#
#



Column name Description

CODEDCHARSETID This column contains the character set
identifier for character data in the messages
that are sent and received by the MQ
functions.

This column corresponds to the
CodedCharSetId field in the message
descriptor structure (MQMD). MQ functions
use the value in this column to set the
CodedCharSetId field.

The default value for this column is 0, which
sets the CodedCharSetId field of the MQMD
to the value MQCCSI_Q_MGR.

ENCODING This column contains the encoding value for
the numeric data in the messages that are
sent and received by the MQ functions.

This column corresponds to the Encoding
field in the message descriptor structure
(MQMD). MQ functions use the value in this
column to set the Encoding field.

The default value for this column is 0, which
sets the Encoding field in the MQMD to the
value MQENC_NATIVE.

DESC_SHORT This column contains the short description of
the service.

DESC_LONG This column contains the detailed description
of the service.

The following table describes the columns for SYSIBM.MQPOLICY_TABLE.

Table 165. SYSIBM.MQPOLICY_TABLE column descriptions

Column name Description

POLICYNAME This column contains the policy name, which is
an optional input parameter of the MQ
functions.

This column is the primary key for the
SYSIBM.MQPOLICY_TABLE table.

SEND_PRIORITY This column contains the priority of the
message.

This column corresponds to the Priority field in
the message descriptor structure (MQMD). MQ
functions use the value in this column to set the
Priority field.

The default value for this column is -1, which
sets the Priority field in the MQMD to the value
MQQPRI_PRIORITY_AS_Q_DEF.

952 Application Programming and SQL Guide

##

##
#
#
#

#
#
#
#
#

#
#
#

##
#
#

#
#
#
#

#
#
#

##
#

##
#
#

#

##

##

##
#
#

#
#

##
#

#
#
#
#

#
#
#



Table 165. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_PERSISTENCE This column indicates whether the message
persists despite any system failures or instances
of restarting the queue manager.

This column corresponds to the Persistence field
in the message descriptor structure (MQMD).
MQ functions use the value in this column to set
the Persistence field.

This column can have the following values:

Q Sets the Persistence field in the MQMD to
the value
MQPER_PERSISTENCE_AS_Q_DEF. This
value is the default.

Y Sets the Persistence field in the MQMD to
the value MQPER_PERSISTENT.

N Sets the Persistence field in the MQMD to
the value MQPER_NOT_ PERSISTENT.

SEND_EXPIRY This column contains the message expiration
time, in tenths of a second.

This column corresponds to the Expiry field in
the message descriptor structure (MQMD). MQ
functions use the value in this column to set the
Expiry field.

The default value is -1, which sets the Expiry
field to the value MQEI_UNLIMITED.

SEND_RETRY_COUNT This column contains the number of times that
the MQ function is to try to send a message if
the procedure fails.

The default value is 5.

SEND_RETRY_INTERVAL This column contains the interval, in
milliseconds, between each attempt to send a
message.

The default value is 1000.

Chapter 33. WebSphere MQ with DB2 953

#

##

##
#
#

#
#
#
#

#

##
#
#
#

##
#

##
#

##
#

#
#
#
#

#
#

##
#
#

#

##
#
#

#



Table 165. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_NEW_CORRELID This column specifies how the correlation
identifier is to be set if a correlation identifier is
not passed as an input parameter in the MQ
function. The correlation identifier is set in the
CorrelId field in the message descriptor
structure (MQMD).

This column can have one of the following
values:

N Sets the CorrelId field in the MQMD to
binary zeros. This value is the default.

Y Specifies that the queue manager is to
generate a new correlation identifier and set
the CorrelId field in the MQMD to that
value. This 'Y' value is equivalent to setting
the MQPMO_NEW_CORREL_ID option in
the Options field in the put message options
structure (MQPMO).

SEND_RESPONSE_MSGID This column specifies how the MsgId field in the
message descriptor structure (MQMD) is to be
set for report and reply messages.

This column corresponds to the Report field in
the MQMD. MQ functions use the value in this
column to set the Report field.

This column can have one of the following
values:

N Sets the MQRO_NEW_MSG_ID option in
the Report field in the MQMD. This value is
the default.

P Sets the MQRO_PASS_MSG_ID option in
the Report field in the MQMD.

SEND_RESPONSE_CORRELID This column specifies how the CorrelID field in
the message descriptor structure (MQMD) is to
be set for report and reply messages.

This column corresponds to the Report field in
the MQMD. MQ functions use the value in this
column to set the Report field.

This column can have one of the following
values:

C Sets the
MQRO_COPY_MSG_ID_TO_CORREL_ID
option in the Report field in the MQMD.
This value is the default.

P Sets the MQRO_PASS_CORREL_ID option
in the Report field in the MQMD.

954 Application Programming and SQL Guide

#

##

##
#
#
#
#
#

#
#

##
#

##
#
#
#
#
#
#

##
#
#

#
#
#

#
#

##
#
#

##
#

##
#
#

#
#
#

#
#

##
#
#
#

##
#



Table 165. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_EXCEPTION_ACTION This column specifies what to do with the
original message when it cannot be delivered to
the destination queue.

This column corresponds to the Report field in
the message descriptor structure (MQMD). MQ
functions use the value in this column to set the
Report field.

This column can have one of the following
values:

Q Sets the MQRO_DEAD_LETTER_Q option
in the Report field in the MQMD. This
value is the default.

D Sets the MQRO_DISCARD_MSG option in
the Report field in the MQMD.

P Sets the
MQRO_PASS_DISCARD_AND_EXPIRY
option in the Report field in the MQMD.

SEND_REPORT_EXCEPTION This column specifies whether an exception
report message is to be generated when a
message cannot be delivered to the specified
destination queue and if so, what that report
message should contain.

This column corresponds to the Report field in
the message descriptor structure (MQMD). MQ
functions use the value in this column to set the
Report field.

This column can have one of the following
values:

N Specifies that an exception report message is
not to be generated. No options in the
Report field are set. This value is the
default.

E Sets the MQRO_EXCEPTION option in the
Report field in the MQMD.

F Sets the
MQRO_EXCEPTION_WITH_FULL_DATA
option in the Report field in the MQMD.

Chapter 33. WebSphere MQ with DB2 955

#

##

##
#
#

#
#
#
#

#
#

##
#
#

##
#

##
#
#

##
#
#
#
#

#
#
#
#

#
#

##
#
#
#

##
#

##
#
#



Table 165. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_REPORT_COA This column specifies whether the queue
manager is to send a confirm-on-arrival (COA)
report message when the message is placed in
the destination queue, and if so, what that COA
message is to contain.

This column corresponds to the Report field in
the message descriptor structure (MQMD). MQ
functions use the value in this column to set the
Report field.

This column can have one of the following
values:

N Specifies that a COA message is not to be
sent. No options in the Report field are set.
This value is the default.

C Sets the MQRO_COA option in the Report
field in the MQMD.

D Sets the MQRO_COA_WITH_DATA option
in the Report field in the MQMD.

F Sets the MQRO_COA_WITH_FULL_DATA
option in the Report field in the MQMD.

SEND_REPORT_COD This column specifies whether the queue
manager is to send a confirm-on-delivery (COD)
report message when an application retrieves
and deletes a message from the destination
queue, and if so, what that COD message is to
contain.

This column corresponds to the Report field in
the message descriptor structure (MQMD). MQ
functions use the value in this column to set the
Report field.

This column can have one of the following
values:

N Specifies that a COD message is not to be
sent. No options in the Report field are set.
This value is the default.

C Sets the MQRO_COD option in the Report
field in the MQMD.

D Sets the MQRO_COD_WITH_DATA option
in the Report field in the MQMD.

F Sets the MQRO_COD_WITH_FULL_DATA
option in the Report field in the MQMD.

956 Application Programming and SQL Guide

#

##

##
#
#
#
#

#
#
#
#

#
#

##
#
#

##
#

##
#

##
#

##
#
#
#
#
#

#
#
#
#

#
#

##
#
#

##
#

##
#

##
#



Table 165. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_REPORT_EXPIRY This column specifies whether the queue
manager is to send an expiration report message
if a message is discarded before it is delivered to
an application, and if so, what that message is to
contain.

This column corresponds to the Report field in
the message descriptor structure (MQMD). MQ
functions use the value in this column to set the
Report field.

This column can have one of the following
values:

N Specifies that an expiration report message
is not to be sent. No options in the Report
field are set.This value is the default.

C Sets the MQRO_EXPIRATION option in the
Report field in the MQMD.

D Sets the MQRO_EXPIRATION_WITH_DATA
option in the Report field in the MQMD.

F Sets the
MQRO_EXPIRATION_WITH_FULL_DATA
option in the Report field in the MQMD.

SEND_REPORT_ACTION This column specifies whether the receiving
application sends a positive action notification
(PAN), a negative action notification (NAN), or
both.

This column corresponds to the Report field in
the message descriptor structure (MQMD). MQ
functions use the value in this column to set the
Report field.

This column can have one of the following
values:

N Specifies that neither notification is to be
sent. No options in the Report field are set.
This value is the default.

P Sets the MQRO_PAN option in the Report
field in the MQMD.

T Sets the MQRO_NAN option in the Report
field in the MQMD.

B Sets both the MQRO_PAN and
MQRO_NAN options in the Report field in
the MQMD.

Chapter 33. WebSphere MQ with DB2 957

#

##

##
#
#
#
#

#
#
#
#

#
#

##
#
#

##
#

##
#

##
#
#

##
#
#
#

#
#
#
#

#
#

##
#
#

##
#

##
#

##
#
#



Table 165. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_MSG_TYPE This column contains the type of message.

This column corresponds to the MsqType field
in the message descriptor structure (MQMD).
MQ functions use the value in this column to set
the MsqType field.

This column can have one of the following
values:

DTG
Sets the MsgType field in the MQMD to
MQMT_DATAGRAM. This value is the
default.

REQ
Sets the MsgType field in the MQMD to
MQMT_REQUEST.

RLY
Sets the MsgType field in the MQMD to
MQMT_REPLY.

RPT
Sets the MsgType field in the MQMD to
MQMT_REPORT.

REPLY_TO_Q This column contains the name of the message
queue to which the application that issued the
MQGET call is to send reply and report
messages.

This column corresponds to the ReplyToQ field
in the message descriptor structure (MQMD).
MQ functions use the value in this column to set
the ReplyToQ field.

The default value for this column is SAME AS
INPUT_Q, which sets the name to the queue
name that is defined in the service that was used
for sending the message. If no service was
specified, the name is set to
DB2MQ_DEFAULT_Q, which is the name of the
input queue for the default service.

REPLY_TO_QMGR This column contains the name of the queue
manager to which the reply and report messages
are to be sent.

This column corresponds to the ReplyToQMgr
field in the message descriptor structure
(MQMD). MQ functions use the value in this
column to set the ReplyToQMgr field.

The default value for this column is SAME AS
INPUT_QMGR, which sets the name to the
queue manager name that is defined in the
service that was used for sending the message. If
no service was specified, the name is set to the
name of the queue manager for the default
service.

958 Application Programming and SQL Guide

#

##

##

#
#
#
#

#
#

#
#
#
#

#
#
#

#
#
#

#
#
#

##
#
#
#

#
#
#
#

#
#
#
#
#
#
#

##
#
#

#
#
#
#

#
#
#
#
#
#
#



Table 165. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

RCV_WAIT_INTERVAL This column contains the time, in milliseconds,
that DB2 is to wait for messages to arrive in the
queue.

This column corresponds to the WaitInterval
field in the get message options structure
(MQGMO). MQ functions use the value in this
column to set the WaitInterval field.

The default is 10.

RCV_CONVERT This column indicates whether to convert the
application data in the message to conform to
the CodedCharSetId and Encoding values that
are defined for the queue manager.

This column corresponds to the Options field in
the get message options structure (MQGMO).
MQ functions use the value in this column to set
the Options field.

This column can have one of the following
values:

Y Sets the MQGMO_CONVERT option in the
Options field in the MQGMO. This value is
the default.

N Specifies that no data is to be converted.

RCV_ACCEPT_TRUNC_MSG This column specifies the behavior of the MQ
function when oversized messages are retrieved.

This column corresponds to the Options field in
the get message options structure (MQGMO).
MQ functions use the value in this column to set
the Options field.

This column can have one of the following
values:

Y ets the
MQGMO_ACCEPT_TRUNCATED_MSG
option in the Options field in the MQGMO.
This value is the default.

N Specifies that no messages are to be
truncated. If the message is too large to fit
in the buffer, the MQ function terminates
with an error.

Recommendation: Set this column to Y. In this
case, if the message buffer is too small to hold
the complete message, the MQ function can fill
the buffer with as much of the message as the
buffer can hold.

Chapter 33. WebSphere MQ with DB2 959

#

##

##
#
#

#
#
#
#

#

##
#
#
#

#
#
#
#

#
#

##
#
#

##

##
#

#
#
#
#

#
#

##
#
#
#

##
#
#
#

#
#
#
#
#



Table 165. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

REV_OPEN_SHARED This column specifies the input queue mode
when messages are retrieved.

This column corresponds to the Options
parameter for an MQOPEN call. MQ functions
use the value in this column to set the Options
parameter.

This column can have one of the following
values:

S Sets the MQOO_INPUT_SHARED option.
This value is the default.

E Sets the MQ option
MQOO_INPUT_EXCLUSIVE option.

D Sets the MQ option
MQOO_INPUT_AS_Q_DEF option.

SYNCPOINT This column indicates whether the MQ function
is to operate within the protocol for a normal
unit of work.

This column can have one of the following
values:

Y Specifies that the MQ function is to operate
within the protocol for a normal unit of
work. Use this value for two-phase commit
environments. This value is the default.

N Specifies that the MQ function is to operate
outside the protocol for a normal unit of
work. Use this value for one-phase commit
environments.

DESC_SHORT This column contains the short description of the
policy.

DESC_LONG This column contains the long description of the
policy.

Converting applications to use the MQI functions
The AMI-based DB2 MQ functions have been deprecated. You need to make some
changes to any applications that reference these AMI-based functions so that they
reference the replacement MQI-based functions.

The DB2 MQ functions were originally implemented with the Application
Messaging Interface (AMI). These AMI-based functions have since been
deprecated. A newer version of these MQ functions is implemented with the
Message Queue Interface (MQI). These MQI-based functions have the same
signatures as the AMI-based functions, but have different qualifying schema
names. Also, the MQI-based functions use DB2 tables instead of AMI configuration
files.

To convert an application to use the MQI functions, perform the following actions:
1. Set up the DB2 MQ functions that are based on MQI by performing the

following actions:

960 Application Programming and SQL Guide

#

##

##
#

#
#
#
#

#
#

##
#

##
#

##
#

##
#
#

#
#

##
#
#
#

##
#
#
#

##
#

##
#
#

#

|
|
|

|
|
|
|
|
|
|

|

|
|



a. Run installation job DSNTIJMQ. This job binds the new MQI-based DB2
MQ functions and creates the tables SYSIBM.MQSERVICE_TABLE and
SYSIBM.MQPOLICY_TABLE.

b. Convert the contents of the AMI configuration files to rows in the tables
SYSIBM.MQSERVICE_TABLE and SYSIBM.MQPOLICY_TABLE.

2. If the application contains unqualified references to DB2 MQ functions, set the
CURRENT PATH special register to the schema name DB2MQ.

3. If the application contains qualified references to DB2 MQ functions, change the
schema names in those references from the old names (DB2MQ1N, DB2MQ2N,
DB2MQ1C, and DB2MQ2C) to DB2MQ.

4. Change the size of any host variables to accommodate for the following larger
message sizes:
v DB2 MQ functions for VARCHAR data can have a maximum message size

of 32 KB.
v DB2 MQ functions for CLOB data can have a maximum message size of 2

MB.

How to use WebSphere MQ functions
This section describes some of the common scenarios for using DB2 MQ functions
and provides examples of their use:
v “Basic messaging”
v “Sending messages with WebSphere MQ” on page 962
v “Retrieving messages ” on page 963
v “Application-to-application connectivity ” on page 964

For information about using WebSphere MQ stored procedures, see Appendix J,
“DB2-supplied stored procedures,” on page 1131.

Basic messaging
The most basic form of messaging with the DB2 MQ functions occurs when all
database applications connect to the same DB2 database server. Clients can be local
to the database server or distributed in a network environment.

In a simple scenario, client A invokes the MQSEND function to send a user-defined
string to the location that is defined by the default service. DB2 executes the MQ
functions that perform this operation on the database server. At some later time,
client B invokes the MQRECEIVE function to remove the message at the head of
the queue that is defined by the default service, and return it to the client. DB2
executes the MQ functions that perform this operation on the database server.

Database clients can use simple messaging in a number of ways:
v Data collection

Information is received in the form of messages from one or more sources. An
information source can be any application. The data is received from queues and
stored in database tables for additional processing.

v Workload distribution
Work requests are posted to a queue that is shared by multiple instances of the
same application. When an application instance is ready to perform some work,
it receives a message that contains a work request from the head of the queue.
Multiple instances of the application can share the workload that is represented
by a single queue of pooled requests.

v Application signaling

Chapter 33. WebSphere MQ with DB2 961

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|

#
#

|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

|

|
|
|
|
|

|



In a situation where several processes collaborate, messages are often used to
coordinate their efforts. These messages might contain commands or requests for
work that is to be performed. For more information about this technique, see
“Application-to-application connectivity ” on page 964.

The following scenario extends basic messaging to incorporate remote messaging.
Assume that machine A sends a message to machine B.
1. The DB2 client executes an MQSEND function call, specifying a target service

that has been defined to be a remote queue on machine B.
2. The MQ functions perform the work to send the message. The WebSphere MQ

server on machine A accepts the message and guarantees that it will deliver it
to the destination that is defined by the service and the current MQ
configuration of machine A. The server determines that the destination is a
queue on machine B. The server then attempts to deliver the message to the
WebSphere MQ server on machine B, retrying as needed.

3. The WebSphere MQ server on machine B accepts the message from the server
on machine A and places it in the destination queue on machine B.

4. A WebSphere MQ client on machine B requests the message at the head of the
queue.

Sending messages with WebSphere MQ
When you use MQSEND, you choose what data to send, where to send it, and
when to send it. This type of messaging is called send and forget; the sender only
sends a message, relying on WebSphere MQ to ensure that the message reaches its
destination.

If you send more than one column of information, separate the columns with the
characters || ’ ’ ||.

Example: MQSEND (LASTNAME || ’ ’ || FIRSTNAME)

The following examples use the DB2MQ2N schema for two-phase commit, with
the default service DB2.DEFAULT.SERVICE and the default policy
DB2.DEFAULT.POLICY. For more information about two-phase commit, see
“Commit environment for AMI-based DB2 MQ functions and stored procedures”
on page 950.

Example: The following SQL SELECT statement sends a message that consists of
the string "Testing msg":
SELECT DB2MQ2N.MQSEND (’Testing msg’)

FROM SYSIBM.SYSDUMMY1;
COMMIT;

The MQSEND function is invoked once because SYSIBM.SYSDUMMY1 has only
one row. Because this MQSEND function uses two-phase commit, the COMMIT
statement ensures that the message is added to the queue.

When you use single-phase commit, you do not need to use a COMMIT statement.
For example:
SELECT DB2MQ1N.MQSEND (’Testing msg’)

FROM SYSIBM.SYSDUMMY1;

The MQ operation causes the message to be added to the queue.

962 Application Programming and SQL Guide

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

#
#

#

|
|
|
|
|

|
|

#
#
#

|
|
|

|
|

#
#

|



Example: Assume that you have an EMPLOYEE table, with VARCHAR columns
LASTNAME, FIRSTNAME, and DEPARTMENT. To send a message that contains
this information for each employee in DEPARTMENT 5LGA, issue the following
SQL SELECT statement:
SELECT DB2MQ2N.MQSEND (LASTNAME || ’ ’ || FIRSTNAME || ’ ’ || DEPARTMENT)

FROM EMPLOYEE WHERE DEPARTMENT = ’5lGA’;
COMMIT;

Message content can be any combination of SQL statements, expressions, functions,
and user-specified data. Because this MQSEND function uses two-phase commit,
the COMMIT statement ensures that the message is added to the MQ queue.

Retrieving messages
The DB2 MQ functions allow messages to be either read or received. The difference
between reading and receiving is that reading returns the message at the head of a
queue without removing it from the queue, whereas receiving causes the message
to be removed from the queue. A message that is retrieved using a receive
operation can be retrieved only once, whereas a message that is retrieved using a
read operation allows the same message to be retrieved many times.

The following examples use the DB2MQ2N schema for two-phase commit, with
the default service DB2.DEFAULT.SERVICE and the default policy
DB2.DEFAULT.POLICY. For more information about two-phase commit, see
“Commit environment for AMI-based DB2 MQ functions and stored procedures”
on page 950.

Example: The following SQL SELECT statement reads the message at the head of
the queue that is specified by the default service and policy:
SELECT DB2MQ2N.MQREAD()

FROM SYSIBM.SYSDUMMY1;

The MQREAD function is invoked once because SYSIBM.SYSDUMMY1 has only
one row. The SELECT statement returns a VARCHAR(4000) string. If no messages
are available to be read, a null value is returned. Because MQREAD does not
change the queue, you do not need to use a COMMIT statement.

Example: The following SQL SELECT statement causes the contents of a queue to
be materialized as a DB2 table:
SELECT T.*

FROM TABLE(DB2MQ2N.MQREADALL()) T;

The result table T of the table function consists of all the messages in the queue,
which is defined by the default service, and the metadata about those messages.
The first column of the materialized result table is the message itself, and the
remaining columns contain the metadata. The SELECT statement returns both the
messages and the metadata.

To return only the messages, issue the following statement:
SELECT T.MSG

FROM TABLE(DB2MQ2N.MQREADALL()) T;

The result table T of the table function consists of all the messages in the queue,
which is defined by the default service, and the metadata about those messages.
This SELECT statement returns only the messages.

Chapter 33. WebSphere MQ with DB2 963

|
|
|
|

#
#
#

|
|
|

|
|
|
|
|
|
|

#
#
#
#
#

|
|

#
#

|
|
|
|

|
|

#
#

|
|
|
|
|

|

#
#

|
|
|



Example: The following SQL SELECT statement receives (removes) the message at
the head of the queue:
SELECT DB2MQ2N.MQRECEIVE()

FROM SYSIBM.SYSDUMMY1;
COMMIT;

The MQRECEIVE function is invoked once because SYSIBM.SYSDUMMY1 has
only one row. The SELECT statement returns a VARCHAR(4000) string. Because
this MQRECEIVE function uses two-phase commit, the COMMIT statement
ensures that the message is removed from the queue. If no messages are available
to be retrieved, a null value is returned, and the queue does not change.

Example: Assume that you have a MESSAGES table with a single
VARCHAR(2000) column. The following SQL INSERT statement inserts all of the
messages from the default service queue into the MESSAGES table in your DB2
database:
INSERT INTO MESSAGES

SELECT T.MSG
FROM TABLE(DB2MQ2N.MQRECEIVEALL()) T;

COMMIT;

The result table T of the table function consists of all the messages in the default
service queue and the metadata about those messages. The SELECT statement
returns only the messages. The INSERT statement stores the messages into a table
in your database.

Application-to-application connectivity
Application-to-application connectivity is typically used to solve the problem of
putting together a diverse set of application subsystems. To facilitate application
integration, WebSphere MQ provides the means to interconnect applications. This
section describes two common scenarios:
v Request-and-reply communication method
v Publish-and-subscribe method

Request-and-reply communication method: The request-and-reply method
enables one application to request the services of another application. One way to
do this is for the requester to send a message to the service provider to request
that some work be performed. When the work has been completed, the provider
might decide to send results, or just a confirmation of completion, back to the
requester. Unless the requester waits for a reply before continuing, WebSphere MQ
must provide a way to associate the reply with its request.

WebSphere MQ provides a correlation identifier to correlate messages in an
exchange between a requester and a provider. The requester marks a message with
a known correlation identifier. The provider marks its reply with the same
correlation identifier. To retrieve the associated reply, the requester provides that
correlation identifier when receiving messages from the queue. The first message
with a matching correlation identifier is returned to the requester.

The following examples use the DB2MQ1N schema for single-phase commit. For
more information about single-phase commit, see “Commit environment for
AMI-based DB2 MQ functions and stored procedures” on page 950.

Example: The following SQL SELECT statement sends a message consisting of the
string "Msg with corr id" to the service MYSERVICE, using the policy MYPOLICY
with correlation identifier CORRID1:

964 Application Programming and SQL Guide

|
|

#
#
#

|
|
|
|
|

|
|
|
|

#
#
#
#

|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

#
#
#

|
|
|



SELECT DB2MQ1N.MQSEND (’MYSERVICE’, ’MYPOLICY’, ’Msg with corr id’, ’CORRID1’)
FROM SYSIBM.SYSDUMMY1;

The MQSEND function is invoked once because SYSIBM.SYSDUMMY1 has only
one row. Because this MQSEND uses single-phase commit, WebSphere MQ adds
the message to the queue, and you do not need to use a COMMIT statement.

Example: The following SQL SELECT statement receives the first message that
matches the identifier CORRID1 from the queue that is specified by the service
MYSERVICE, using the policy MYPOLICY:
SELECT DB2MQ1N.MQRECEIVE (’MYSERVICE’, ’MYPOLICY’, ’CORRID1’)

FROM SYSIBM.SYSDUMMY1;

The SELECT statement returns a VARCHAR(4000) string. If no messages are
available with this correlation identifier, a null value is returned, and the queue
does not change.

Publish-and-subscribe method: Another common method of application
integration is for one application to notify other applications about events of
interest. An application can do this by sending a message to a queue that is
monitored by other applications. The message can contain a user-defined string or
can be composed from database columns.

Simple data publication: In many cases, only a simple message needs to be sent
using the MQSEND function. When a message needs to be sent to multiple
recipients concurrently, the distribution list facility of the MQSeries® AMI can be
used.

You define distribution lists by using the AMI administration tool. A distribution list
comprises a list of individual services. A message that is sent to a distribution list
is forwarded to every service defined within the list. Publishing messages to a
distribution list is especially useful when there are multiple services that are
interested in every message.

Example: The following example shows how to send a message to the distribution
list "InterestedParties":
SELECT DB2MQ2N.MQSEND (’InterestedParties’,’Information of general interest’)

FROM SYSIBM.SYSDUMMY1;

When you require more control over the messages that a particular service should
receive, you can use the MQPUBLISH function, in conjunction with the WebSphere
MQSeries Integrator facility. This facility provides a publish-and-subscribe system,
which provides a scalable, secure environment in which many subscribers can
register to receive messages from multiple publishers. Subscribers are defined by
queues, which are represented by service names.

MQPUBLISH allows you to specify a list of topics that are associated with a
message. Topics allow subscribers to more clearly specify the messages they
receive. The following sequence illustrates how the publish-and-subscribe
capabilities are used:
1. An MQSeries administrator configures the publish-and-subscribe capability of

the WebSphere MQSeries Integrator facility.
2. Interested applications subscribe to subscriber services that are defined in the

WebSphere MQSeries Integrator configuration. Each subscriber selects relevant
topics and can also use the content-based subscription techniques that are
provided by Version 2 of the WebSphere MQSeries Integrator facility.

Chapter 33. WebSphere MQ with DB2 965

#
#

|
|
|

|
|
|

#
#

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

#
#

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|



3. A DB2 application publishes a message to a specified publisher service. The
message indicates the topic it concerns.

4. The MQSeries functions provided by DB2 UDB for z/OS handle the mechanics
of publishing the message. The message is sent to the WebSphere MQSeries
Integrator facility by using the specified service policy.

5. The WebSphere MQSeries Integrator facility accepts the message from the
specified service, performs any processing defined by the WebSphere MQSeries
Integrator configuration, and determines which subscriptions the message
satisfies. It then forwards the message to the subscriber queues that match the
subscriber service and topic of the message.

6. Applications that subscribe to the specific service, and register an interest in the
specific topic, will receive the message in their receiving service.

Example: To publish the last name, first name, department, and age of employees
who are in department 5LGA, using all the defaults and a topic of EMP, you can
use the following statement:
SELECT DB2MQ2N.MQPUBLISH (LASTNAME || ’ ’ || FIRSTNAME || ’ ’ ||

DEPARTMENT || ’ ’ || char(AGE), 'EMP')
FROM DSN8810.EMP
WHERE DEPARTMENT = ’5LGA’;

Example: The following statement publishes messages that contain only the last
name of employees who are in department 5LGA to the HR_INFO_PUB publisher
service using the SPECIAL_POLICY service policy:
SELECT DB2MQ2N.MQPUBLISH (’HR_INFO_PUB’, ’SPECIAL_POLICY’, LASTNAME,

’ALL_EMP:5LGA’, ’MANAGER’)
FROM DSN8810.EMP
WHERE DEPARTMENT = ’5LGA’;

The messages indicate that the sender has the MANAGER correlation id. The topic
string demonstrates that multiple topics, concatenated using a ':' (a colon) can be
specified. In this example, the use of two topics allows subscribers of both the
ALL_EMP and the 5LGA topics to receive these messages.

To receive published messages, you must first register your application's interest in
messages of a given topic and indicate the name of the subscriber service to which
messages are sent. An AMI subscriber service defines a broker service and a
receiver service. The broker service is how the subscriber communicates with the
publish-and-subscribe broker. The receiver service is the location where messages
that match the subscription request are sent.

Example: The following statement subscribes to the topic ALL_EMP and indicates
that messages be sent to the subscriber service, "aSubscriber":
SELECT DB2MQ2N.MQSUBSCRIBE (’aSubscriber’,’ALL_EMP’)

FROM SYSIBM.SYSDUMMY1;

When an application is subscribed, messages published with the topic, ALL_EMP,
are forwarded to the receiver service that is defined by the subscriber service. An
application can have multiple concurrent subscriptions. Messages that match the
subscription topic can be retrieved by using any of the standard message retrieval
functions.

Example: The following statement non-destructively reads the first message, where
the subscriber service, "aSubscriber", defines the receiver service as
"aSubscriberReceiver":

966 Application Programming and SQL Guide

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

#
#
#
#

|
|
|

#
#
#
#

|
|
|
|

|
|
|
|
|
|

|
|

#
#

|
|
|
|
|

|
|
|



SELECT DB2MQ2N.MQREAD (’aSubscriberReceiver’)
FROM SYSIBM.SYSDUMMY1;

To display both the messages and the topics with which they are published, you
can use one of the table functions.

Example: The following statement receives the first five messages from
"aSubscriberReceiver" and display both the message and the topic for each of the
five messages:
SELECT t.msg, t.topic

FROM table (DB2MQ2N.MQRECEIVEALL (’aSubscriberReceiver’,5)) t;

Example: To read all of the messages with the topic ALL_EMP, issue the following
statement:
SELECT t.msg

FROM table (DB2MQ2N.MQREADALL (’aSubscriberReceiver’)) t
WHERE t.topic = ’ALL_EMP’;

Note: If you use MQRECEIVEALL with a constraint, your application receives the
entire queue, not just those messages that are published with the topic ALL_EMP.
This is because the table function is performed before the constraint is applied.

When you are no longer interested in having your application subscribe to a
particular topic, you must explicitly unsubscribe.

Example: The following statement unsubscribes from the ALL_EMP topic of the
"aSubscriber" subscriber service:
SELECT DB2MQ2N.MQUNSUBSCRIBE (’aSubscriber’, ’ALL_EMP’)

FROM SYSIBM.SYSDUMMY1;

After you issue the preceding statement, the publish-and-subscribe broker no
longer delivers messages that match the ALL_EMP topic to the "aSubscriber"
subscriber service.

Automated Publication: Another important method in application message
publishing is automated publication. Using the trigger facility within DB2 UDB for
z/OS, you can automatically publish messages as part of a trigger invocation.
Although other techniques exist for automated message publication, the
trigger-based approach allows you more freedom in constructing the message
content and more flexibility in defining the actions of a trigger. As with the use of
any trigger, you must be aware of the frequency and cost of execution.

Example: The following example shows how you can use the MQSeries functions
of DB2 UDB for z/OS with a trigger to publish a message each time a new
employee is hired:
CREATE TRIGGER new_employee AFTER INSERT ON DSN8810.EMP

REFERENCING NEW AS n
FOR EACH ROW MODE DB2SQL
SELECT DB2MQ2N.MQPUBLISH (’HR_INFO_PUB’, current date || ’ ’ ||

LASTNAME || ’ ’ || DEPARTMENT, ’NEW_EMP’);

Any users or applications that subscribe to the HR_INFO_PUB service with a
registered interest in the NEW_EMP topic will receive a message that contains the
date, the name, and the department of each new employee when rows are inserted
into the DSN8810.EMP table.

Chapter 33. WebSphere MQ with DB2 967

#
#

|
|

|
|
|

#
#

|
|

#
#
#

|
|
|

|
|

|
|

#
#

|
|
|

|
|
|
|
|
|
|

|
|
|

#
#
#
#
#

|
|
|
|



Asynchronous messaging in DB2 UDB for z/OS and OS/390
Programs can communicate with each other by sending data in messages rather
than using constructs like synchronous remote procedure calls. With asynchronous
messaging, the program that sends the message proceeds with its processing after
sending the message without waiting for a reply. If the program needs information
from the reply, the program suspends processing and waits for a reply message. If
the messaging programs use an intermediate queue that holds messages, the
requestor program and the receiver program do not need to be running at the
same time. The requestor program places a request message on a queue and then
exits. The receiver program retrieves the request from the queue and processes the
request.

Asynchronous operations require that the service provider is capable of accepting
requests from clients without notice. An asynchronous listener is a program that
monitors message transporters, such as WebSphere MQ, and performs actions
based on the message type. An asynchronous listener can use WebSphere MQ to
receive all messages that are sent to an endpoint. An asynchronous listener can
also register a subscription with a publish or subscribe infrastructure to restrict the
messages that are received to messages that satisfy specified constraints.

Examples: The following examples show some common uses of asynchronous
messaging:

Message accumulator
You can accumulate the messages that are sent asynchronously so that the
listener checks for messages and stores those messages automatically in a
database. This database, which acts as a message accumulator, can save all
messages for a particular endpoint, such as an audit trail. The
asynchronous listener can subscribe to a subset of messages, such as save
only high value stock trades. The message accumulator stores entire
messages, and does not provide for selection, transformation, or mapping
of message contents to database structures. The message accumulator does
not reply to messages.

Message event handler
The asynchronous event handler listens for messages and invokes the
appropriate handler (such as a stored procedure) for the message endpoint.
You can call any arbitrary stored procedure. The asynchronous listener lets
you select, map, or reformat message contents for insertion into one or
more database structures.

Asynchronous messaging has the following benefits:
v The client and database do not need to be available at the same time. If the

client is available intermittently, or if the client fails between the time the request
is issued and the response is sent, it is still possible for the client to receive the
reply. Or, if the client is on a mobile computer and becomes disconnected from
the database, and if a response is sent, the client can still receive the reply.

v The content of the messages in the database contain information about when to
process particular requests. The messages in the database use priorities and the
request contents to determine how to schedule the requests.

v An asynchronous message listener can delegate a request to a different node. It
can forward the request to a second computer to complete the processing. When
the request is complete, the second computer returns a response directly to the
endpoint that is specified in the message.

968 Application Programming and SQL Guide

|
#

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

#

#
#
#
#
#

#
#
#

#
#
#
#



v An asynchronous listener can respond to a message from a supplied client, or
from a user-defined application. The number of environments that can act as a
database client is greatly expanded. Clients such as factory automation
equipment, pervasive devices, or embedded controllers can communicate with
DB2® Universal Database either directly through WebSphere MQ or through
some gateway that supports WebSphere MQ.

MQListener in DB2 for OS/390 and z/OS
DB2 UDB for OS/390 and z/OS provides an asynchronous listener, MQListener.
MQListener is a framework for tasks that read from WebSphere MQ queues and
call DB2 stored procedures with messages as those messages arrive.

MQListener combines messaging with database operations. You can configure the
MQListener daemon to listen to the WebSphere MQ message queues that you
specify in a configuration database. MQListener reads the messages that arrive
from the queue and calls DB2 stored procedures using the messages as input
parameters. If the message requires a reply, MQListener creates a reply from the
output that is generated by the stored procedure. The message retrieval order is
fixed at the highest priority first, and then within each priority the first message
received is the first message served.

MQListener runs as a single multi-threaded process on z/OS UNIX System
Services. Each thread or task establishes a connection to its configured message
queue for input. Each task also connects to a DB2 database on which to run the
stored procedure. The information about the queue and the stored procedure is
stored in a table in the configuration database. The combination of the queue and
the stored procedure is a task.

MQListener is a daemon process, so it can run without attaching to any terminal.

MQListener tasks are grouped together into named configurations. By default, the
configuration name is empty. If you do not specify the name of a configuration for
a task, MQListener uses the configuration with an empty name.

Transaction support: There is support for both one-phase and two-phase commit
environments. A one-phase commit environment is where DB interactions and MQ
interactions are independent. A two-phase commit environment is where DB
interactions and MQ interactions are combined in a single unit of work.

'db2mqln1' is the name of the executable for one phase and 'db2mqln2' is the name
of the executable for two phase.

Logical ordering of messages: The two-phase commit version of the MQListener
stored procedure processes messages that are in a group in logical order. The
single-phase commit version of the MQListener stored procedure processes
messages that are in a group in physical order.

Stored Procedure Interface: The stored procedure interface for MQListener takes
the incoming message as input and returns the reply, which might be NULL, as
output:
schema.proc(in inMsg inMsgType, out outMsg outMsgType)

The data type for inMsgType and the data type for outMsgType can be VARCHAR,
CLOB, or BLOB of any length and are determined at startup. The input data type
and output data type can be different data types. If an incoming message is a

Chapter 33. WebSphere MQ with DB2 969

#
#
#
#
#
#

#

#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#

#

#
#
#

#
#
#
#

#
#

#
#
#
#

#
#
#

#

#
#
#



request and has a specified reply-to queue, the message in outMsg will be sent to
the specified queue. The incoming message can be one of the following message
types:
v Datagram
v Datagram with report requested
v Request message with reply
v Request message with reply and report requested

Configuring and running MQListener in DB2 UDB for OS/390
and z/OS

Use the following procedure to configure the environment for MQListener and to
develop a simple application that receives a message, inserts the message in a
table, and creates a simple response message:
1. Configure MQListener to run in the DB2 environment.
2. Configure WebSphere MQ for MQListener.
3. Configure MQListener task.
4. Create the sample stored procedure to work with MQListener.
5. Run a simple MQListener application.

Configuring MQListener to run in the DB2 environment
Configure your database environment so that your applications can use messaging
with database operations.

Customize and run installation job DSNTIJML, which is located in
prefix.SDSNSAMP data set. The job will do the following tasks:
1. Untar and create the necessary files and libraries in z/OS UNIX System

Services under the path where MQListener is installed.
2. Create the MQListener configuration table (SYSMQL.LISTENERS) in the default

database DSNDB04.
3. Bind the DBRM's to the plan DB2MQLSN.

Note: If MQListener is not installed in the default path, '/usr/lpp/db2' , you must
replace all occurrences of the string '/usr/lpp/db2' in the samples DSNTEJML,
DSNTEJSP and DSNTIJML with the path name where MQListener is installed
before you run DSNTIJML.

The samples DSNTEJML, DSNTEJSP and DSNTIJML are located in
prefix.SDSNSAMP data set.

Ensure that the person who runs the installation job has required authority to
create the configuration table and to bind the DBRM's.

Follow the instructions in the README file that is created in the MQListener
installation path in z/OS UNIX System Services to complete the configuration
process.

Logging and Tracing: Two new environment variables are introduced that control
logging and tracing. The environment variables are defined in .profile file. Refer to
the README file for more details.

MQLSNTRC
When this ENV variable is set to 1, it will write function entry, data, and
exit points to a unique HFS file. A unique trace file is generated when any

970 Application Programming and SQL Guide

#
#
#

#

#

#

#

#

#

#
#
#

#

#

#

#

#

#
#
#

#
#

#
#

#
#

#

#
#
#
#

#
#

#
#

#
#
#

#
#
#

#
#
#



of the MQListener commands are run. This trace file will be used by IBM
software support for debugging if the customer reports any problem.
Unless requested, this variable should not be defined.

MQLSNLOG
The log file contains diagnostic information about the major events. This
ENV variable is set to the name of the file where all log information will
be written. Alternatively, it can be configured to use the syslogd daemon
interface for writing log records. All instances of MQListener daemon
running one or more tasks will share the same file. For monitoring
MQListener daemon, this variable should always be set. When MQListener
daemon is running, open the log/trace files only in read mode (use
cat/more/tail commands in z/OS UNIX System Services to open the files)
because they are used by the daemon process for writing. Follow the
instructions in the README file that is created in the MQListener
installation path.

Configuration table : SYSMQL.LISTENERS: Table 166 describes each of the
columns of the configuration table:

Table 166. Description of Columns of SYSMQL.LISTENERS

Column name Description

CONFIGURATIONNAME1 The configuration name. The configuration name allows
you to group several tasks into the same configuration.
A single instance of MQListener can run all of the tasks
that are defined within a configuration name.

QUEUEMANAGER1 The name of the Websphere MQ subsystem that contains
the queues that are to be used.

INPUTQUEUE1 The name of the queue in the Websphere MQ subsystem
that is to be monitored for incoming messages. The
combination of the input queue and the queue manager
are unique within a configuration

PROCNODE Currently unused

PROCSCHEMA The schema name of the stored procedure that will be
called by MQListener

PROCNAME The name of the stored procedure that will be called by
MQListener

PROCTYPE Currently unused

NUMINSTANCES The number of duplicate instances of a single task that
are to run in this configuration

WAITMILLIS The time MQListener waits (in milliseconds) after
processing the current message before it looks for the
next message

MINQUEDEPTH Currently unused

Note:

1. Composite primary key.

Configuring Websphere MQ for MQListener
You can run a simple MQListener application with a simple WebSphere MQ
configuration. More complex applications might need a more complex
configuration. Configure at least two kinds of WebSphere MQ entities: the queue

Chapter 33. WebSphere MQ with DB2 971

#
#
#

#
#
#
#
#
#
#
#
#
#
#
#

#
#

##

##

##
#
#
#

##
#

##
#
#
#

##

##
#

##
#

##

##
#

##
#
#

##

#

#
#

#
#
#
#



manager and some local queues. Configure these entities for use in such instances
as transaction management, deadletter queue, backout queue, and backout retry
threshold.

To configure WebSphere MQ for a simple MQListener application, do the
following:
1. Create MQSeries QueueManager:

Define the MQSeries subsystem to z/OS and then issue the following
command from a z/OS console to start the queue manager:
<command-prefix-string> START QMGR

command-prefix-string is the command prefix for the MQSeries subsystem.
2. Create Queues under MQSeries QueueManager:

In a simple MQListener application, you typically use the following WebSphere
MQ queues:

Deadletter queue
The deadletter queue in WebSphere MQ holds messages that cannot be
processed. MQListener uses this queue to hold replies that cannot be
delivered, for example, because the queue to which the replies should be
sent is full. A deadletter queue is useful in any MQ installation especially
for recovering messages that are not sent.

Backout queue
For MQListener tasks that use two-phase commit, the backout queue
serves a similar purpose as the deadletter queue. MQListener places the
original request in the backout queue after the request is rolled back a
specified number of times (called the backout threshold).

Administration queue
The administration queue is used for routing control messages, such as
shutdown and restart, to MQListener. If you do not supply an
administration queue, the only way to shut down MQListener is to issue a
kill command.

Application input and output queues
The application uses input queues and output queues. The application
receives messages from the input queue and sends replies and exceptions
to the output queue.

Create your local queues by using CSQUTIL utility or by using MQSeries
operations and control panels from ISPF (csqorexx). The following is an example of
the JCL that is used to create your local queues. In this example, MQND is the
name of the queue manager:
//*
//* ADMIN_Q : Admin queue
//* BACKOUT_Q : Backout queue
//* IN_Q : Input queue having a backout queue with threshold=3
//* REPLY_Q : output queue or reply queue
//* DEADLLETTER_Q: Dead letter queue
//*
//DSNTECU EXEC PGM=CSQUTIL,PARM=’MQND’
//STEPLIB DD DSN=MQS.SCSQANLE,DISP=SHR
// DD DSN=MQS.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

COMMAND DDNAME(CREATEQ)
/*

972 Application Programming and SQL Guide

#
#
#

#
#

#

#
#

#

#

#

#
#

#
#
#
#
#
#

#
#
#
#
#

#
#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#



//CREATEQ DD *
DEFINE QLOCAL(’ADMIN_Q’) REPLACE +

DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED)

DEFINE QLOCAL(’BACKOUT_Q’) REPLACE +
DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED)

DEFINE QLOCAL(’REPLY_Q’) REPLACE +
DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED)

DEFINE QLOCAL(’IN_Q’) REPLACE +
DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED) +
BOQNAME(’BACKOUT_Q’) +
BOTHRESH(3)

DEFINE QLOCAL(’DEADLETTER_Q’) REPLACE +
DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED)

ALTER QMGR DEADQ (’DEADLETTER_Q’) REPLACE
/*

Configuring MQListener tasks
Use the MQListener command, db2mqln1 or db2mqln2, to configure MQListener
tasks. Issue the command from z/OS UNIX System Services command line in any
directory. Alternatively, you can put the command in a file, grant execute
permission and use the BPXBATCH utility to invoke the script from JCL. The
sample script files are provided and are located in /MQListener-install-path/
mqlsn/listener/script directory in z/OS UNIX System Services. Sample JCL
(DSNTEJML) is also provided that invokes the script files and is located in
prefix.SDSNSAMP. The add parameter with the db2mqln1 or db2mqln2 command
updates a row in the DB2 table SYSMQL.LISTENERS.
v To add an MQListener configuration, issue the following command:

db2mqln1/db2mqln2 add
-ssID <subsystem name>
-config <configuration name>
-queueManager <queuemanager name>

Chapter 33. WebSphere MQ with DB2 973

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#
#
#
#
#
#

#

#
#
#
#



-inputQueue <inputqueue name>
-procName <stored-procedure name>
-procSchema <stored-procedure schema name>
-numInstances <number of instances>

v To display information about the configuration, issue the following command:
db2mqln1/db2mqln2 show

-ssID <subsystem name>
-config <configuration name>

To display information about all the configurations, issue the following
command:
db2mqln1/db2mqln2 show

-ssID <subsystem name>
-config all

v To remove the messaging tasks, issue the following command:
db2mqln1/db2mqln2 remove

-ssID <subsystem name>
-config <configuration name>
-queueManager <queuemanager name>
-inputQueue <inputqueue name>

v To run the MQListener task, issue the following command:
db2mqln1/db2mqln2 run

-ssID <subsystem name>
-config <configuration name>
-adminQueue <adminqueue name>
-adminQMgr <adminqueuemanager name>

v To shutdown the MQListener daemon, issue the following command:
db2mqln1/db2mqln2 admin

-adminQueue <adminqueue name>
-adminQMgr <adminqueuemanager name>
-adminCommand shutdown

v To restart the MQListener daemon, issue the following command:
db2mqln1/db2mqln2 admin

-adminQueue <adminqueue name>
-adminQMgr <adminqueuemanager name>
-adminCommand restart

v To get help with the command and the valid parameters, issue the following
command:
db2mqln1/db2mqln2 help

v To get help for a particular parameter, issue the following command, where
'command' is a specific parameter:
db2mqln1/db2mqln2 help <command>

Restrictions:

v Use the same queue manager for the request queue and the reply queue.
v MQListener does not support logical messages that are composed of multiple

physical messages. MQListener processes physical messages independently.

MQListener error processing
MQListener reads from WebSphere MQ message queues and calls DB2 stored
procedures with those messages. If any errors occur during this process and the
conditions are such that the message is to be sent to the deadletter queue,
MQListener returns a reason code to the deadletter queue.

Specifically, MQListener performs the following actions:

974 Application Programming and SQL Guide

#
#
#
#

#

#
#
#

#
#

#
#
#

#

#
#
#
#
#

#

#
#
#
#
#

#

#
#
#
#

#

#
#
#
#

#
#

#

#
#

#

#

#

#
#

#

#
#
#
#

#



v prefixes the message with an MQ dead letter header (MQDLH) structure
v sets the reason field in the MQDLH structure to the appropriate reason code
v sends the message to the deadletter queue

The following table describes the reason codes that the MQListener daemon
returns.

Table 167. Reason codes that MQListener returns

Reason code Explanation

900 The call to a stored procedure was successful but an error occurred during the DB2 commit
process and either of the following conditions were true:

v No exception report was requested.1

v An exception report was requested, but could not be delivered.

This reason code applies only to one-phase commit environments.

901 The call to the specified stored procedure failed and the disposition of the MQ message is
that an exception report be generated and the original message be sent the deadletter
queue.

902 All of the following conditions occurred:

v The disposition of the MQ message is that an exception report is not to be generated. 1

v The stored procedure was called unsuccessfully the number of times that is specified as
the backout threshold.

v The name of the backout queue is the same as the deadletter queue.

This reason code applies only to two-phase commit environments.

MQRC_TRUNCATED_
MSG__FAILED

The size of the MQ message is greater than the input parameter of the stored procedure
that is to be invoked. In one-phase commit environments, this oversized message is sent to
the dead letter queue. In two-phase commit environments, this oversized message is sent to
the deadletter queue only when the message cannot be delivered to the backout queue.

Notes:

1. To specify that the receiver application generate exception reports if errors
occur, set the report field in the MQMD structure that was used when sending
the message to one of the following values:
v MQRO_EXCEPTION
v MQRO_EXCEPTION_WITH_DATA
v MQRO_EXCEPTION_WITH_FULL_DATA

For more information about the report field, see the WebSphere MQ
Information Center at http://publib.boulder.ibm.com/infocenter/wmqv6/
v6r0/index.jsp.

Creating a sample stored procedure to use with MQListener
Create a sample stored procedure, named APROC, that can be used by MQListener
to store a message in a table. The stored procedure returns the string OK if the
message is successfully inserted into the table.

The following steps create DB2 objects that you can use with MQListener
applications:
1. Create a simple table using SPUFI or DSNTEP2 in the subsystem where you

want to run MQListener:
CREATE TABLE PROCTABLE (MSG VARCHAR(25) CHECK (MSG NOT LIKE ’FAIL%’));

Chapter 33. WebSphere MQ with DB2 975

#

#

#

#
#

##

##

##
#

#

#

#

##
#
#

##

#

#
#

#

#

#
#
#
#
#
#
#

#

#
#
#

#

#

#

#
#
#

#

#
#
#

#
#

#
#

#



The table contains a check constraint so that messages that start with the
characters FAIL cannot be inserted into the table. The check constraint is used
to demonstrate the behavior of MQListener when the stored procedure fails.

2. Create the following SQL stored procedure and define it to the same DB2
subsystem:
CREATE PROCEDURE TEST.APROC (

IN PIN VARCHAR(25),
OUT POUT VARCHAR(2))
LANGUAGE SQL
FENCED
NOT DETERMINISTIC
NO DBINFO
COLLID TESTLSRN
WLM ENVIRONMENT TESTWLMX
ASUTIME NO LIMIT
STAY RESIDENT NO
PROGRAM TYPE MAIN
SECURITY USER
PROCEDURE1: BEGIN

INSERT INTO PROCTABLE VALUES(PIN);
SET POUT = ’OK’;

END PROCEDURE1

TESTLSRN is the name of the collection that is used for this stored procedure
and TESTWLMX is the name of the WLM environment where this stored
procedure will run.

3. Bind the collection TESTLSRN to the plan DB2MQLSN, which is used by
MQListener:
BIND PLAN(DB2MQLSN) +

PKLIST(LSNR.*,TESTLSRN.*) +
ACTION(REP) DISCONNECT(EXPLICIT);

MQListener examples
The following examples show a simple MQListener application. The application
receives a message, inserts the message into a table, and generates a simple
response message. To simulate a processing failure, the application includes a
check constraint on the table that contains the message. The constraint prevents
any string that begins with the characters 'fail' from being inserted into the table. If
you attempt to insert a message that violates the check constraint, the example
application returns an error message and re-queues the failing message to the
backout queue.

In this example, the following assumptions are made:
v MQListener is installed and configured for subsystem DB7A.
v MQND is the name of MQSeries subsystem that is defined. The Queue Manager

is running, and the following local queues are defined in the DB7A subsystem:
ADMIN_Q : Admin queue
BACKOUT_Q : Backout queue
IN_Q : Input queue that has a backout queue withthreshold = 3
REPLY_Q : Output queue or Reply queue
DEADLLETTER_Q : Dead letter queue

v The person who is running the MQListener daemon has execute permission on
the DB2MQLSN plan.

Before you run the MQListener daemon, add the following configuration, named
ACFG, to the configuration table by issuing the following command:

976 Application Programming and SQL Guide

#
#
#

#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#

#
#

#
#
#

#

#
#
#
#
#
#
#
#

#

#

#
#
#
#
#
#
#

#
#

#
#



db2mqln2 add
-ssID DB7A
-config ACFG
-queueManager MQND
-inputQueue IN_Q
-procName APROC
-procSchema TEST

Run the MQListener daemon for two-phase commit for the added configuration
'ACFG'. To run MQListener with all of the tasks specified in a configuration, issue
the following command:
db2mqln2 run

-ssID DB7A
-config ACFG
-adminQueue ADMIN_Q
-adminQMgr MQND

The following examples show how to use MQListener to send a simple message
and then inspect the results of the message in the WebSphere MQ queue manager
and the database. The examples include queries to determine if the input queue
contains a message or to determine if a record is placed in the table by the stored
procedure.

MQListener example 1: Running a simple application:

1. Start with a clean database table by issuing the following SQL statement:
delete from PROCTABLE

2. Send a datagram to the input queue, 'IN_Q', with the message as 'sample
message'. Refer to Websphere MQ sample CSQ4BCK1 to send a message to the
queue. Specify the MsgType option for 'Message Descriptor' as
'MQMT_DATAGRAM'.

3. Query the table by using the following statement to verify that the sample
message is inserted:
select * from PROCTABLE

4. Display the number of messages that remain on the input queue to verify that
the message has been removed. Issue the following command from a z/OS
console:
/-MQND display queue(’In_Q’) curdepth

MQListener example 2: Sending requests to the input queue and inspecting the
reply:

1. Start with a clean database table by issuing the following SQL statement:
delete from PROCTABLE

2. Send a request to the input queue, 'IN_Q', with the message as 'another sample
message'. Refer to Websphere MQ sample CSQ4BCK1 to send a message to the
queue. Specify the MsgType option for 'Message Descriptor' as
'MQMT_REQUEST' and the queue name for ReplytoQ option.

3. Query the table by using the following statement to verify that the sample
message is inserted:
select * from PROCTABLE

4. Display the number of messages that remain on the input queue to verify that
the message has been removed. Issue the following command from a z/OS
console:
/-MQND display queue(’In_Q’) curdepth

Chapter 33. WebSphere MQ with DB2 977

#
#
#
#
#
#
#

#
#
#

#
#
#
#
#

#
#
#
#
#

#

#

#

#
#
#
#

#
#

#

#
#
#

#

#
#

#

#

#
#
#
#

#
#

#

#
#
#

#



5. Look at the ReplytoQ name that you specified when you sent the request
message for the reply by using the WebSphere MQ sample program CSQ4BCJ1.
Verify that the string 'OK' is generated by the stored procedure.

MQListener example 3: Testing an unsuccessful insert operation: If you send a
message that starts with the string 'fail', the constraint in the table definition is
violated, and the stored procedure fails.
1. Start with a clean database table by issuing the following SQL statement:

delete from PROCTABLE

2. Send a request to the input queue, 'IN_Q', with the message as 'failing sample
message'. Refer to Websphere MQ sample CSQ4BCK1 to send a message to the
queue. Specify the MsgType option for 'Message Descriptor' as
'MQMT_REQUEST' and the queue name for ReplytoQ option.

3. Query the table by using the following statement to verify that the sample
message is not inserted:
select * from PROCTABLE

4. Display the number of messages that remain on the input queue to verify that
the message has been removed. Issue the following command from a z/OS
console:
/-MQND display queue(’In_Q’) curdepth

5. Look at the Backout queue and find the original message by using the
WebSphere MQ sample program CSQ4BCJ1.

Note: In this example, if a request message with added options for 'exception
report' is sent (the Report option is specified for 'Message Descriptor'), an
exception report is sent to reply queue and original message is sent to the
deadletter queue.

978 Application Programming and SQL Guide

#
#
#

#
#
#

#

#

#
#
#
#

#
#

#

#
#
#

#

#
#

#
#
#
#



Chapter 34. Using DB2 as a web services consumer and
provider

Web services are a set of resources and components that applications can use over
HTTP. You can use DB2 as a web services provider and a web services consumer.

DB2 as a web services consumer
DB2 can act as a client for web services, which allows you to be a consumer of
web services in your DB2 applications. web services employs Simple Object Access
Protocol (SOAP). SOAP is an XML protocol that consists of the following
characteristics:
v An envelope that defines a framework for describing the contents of a message

and how to process the message
v A set of encoding rules for expressing instances of application-defined data types
v A convention for representing SOAP requests and responses

The SOAPHTTPV and SOAPHTTPC user-defined functions
DB2 provides user-defined functions with which you can work with SOAP and
consume web services in SQL statements. The user-defined functions are two
varieties of SOAPHTTPV for VARCHAR data and two varieties of SOAPHTTPC
for CLOB data. The user-defined functions perform the following actions:
1. Compose a SOAP request
2. Post the request to the service endpoint
3. Receive the SOAP response
4. Return the content of the SOAP body

When a consumer receives the result of a web services request, the SOAP envelope
is stripped and the XML document is returned. An application program can
process the result data and perform a variety of operations, including inserting or
updating a table with the result data.

SOAPHTTPV and SOAPHTTPC are user-defined functions that allow DB2 to work
with SOAP and to consume web services in SQL statements. These functions are
overloaded functions that are used for VARCHAR or CLOB data of different sizes,
depending on the SOAP body. Web services can be invoked in one of four ways,
depending on the size of the input data and the result data. SOAPHTTPV returns
VARCHAR(32672) data and SOAPHTTPC returns CLOB(1M) data. Both functions
accept either VARCHAR(32672) or CLOB(1M) as the input body.

Example: The following example shows an HTTP post header that posts a SOAP
request envelope to a host. The SOAP envelope body shows a temperature request
for Barcelona.
POST /soap/servlet/rpcrouter HTTP/1.0
Host: services.xmethods.net
Connection: Keep-Alive User-Agent: DB2SOAP/1.0
Content-Type: text/xml; charset="UTF-8"
SOAPAction: ""
Content-Length: 410

<?xml version=’1.0’ encoding=’UTF-8’?>

© Copyright IBM Corp. 1983, 2012 979



<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:SOAP-ENC=http://schemas.xmlsoap.org/soap/encoding/
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema >

<SOAP-ENV:Body>
<ns:getTemp xmlns:ns="urn:xmethods-Temperature">

<city>Barcelona</city>
</ns:getTemp>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example: The following example is the result of the preceding example. This
example shows the HTTP response header with the SOAP response envelope. The
result shows that the temperature is 85 degrees Fahrenheit in Barcelona.
HTTP/1.1 200 OK
Date: Wed, 31 Jul 2002 22:06:41 GMT
Server: Enhydra-MultiServer/3.5.2
Status: 200
Content-Type: text/xml; charset=utf-8
Servlet-Engine: Lutris Enhydra Application Server/3.5.2

(JSP 1.1; Servlet 2.2; Java™ 1.3.1_04;
Linux 2.4.7-10smp i386; java.vendor=Sun Microsystems Inc.)

Content-Length: 467
Set-Cookie:JSESSIONID=JLEcR34rBc2GTIkn-0F51ZDk;Path=/soap
X-Cache: MISS from www.xmethods.net
Keep-Alive: timeout=15, max=10
Connection: Keep-Alive

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema >

<SOAP-ENV:Body>
<ns1:getTempResponse xmlns:ns1="urn:xmethods-Temperature"
SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ >

<return xsi:type="xsd:float">85</return>
</ns1:getTempResponse>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

Example: The following example shows how to insert the result from a web
service into a table
INSERT INTO MYTABLE(XMLCOL) VALUES (DB2XML.SOAPHTTPC(

’http://www.myserver.com/services/db2sample/list.dadx/SOAP’,
’http://tempuri.org/db2sample/list.dadx’
’<listDepartments xmlns="http://tempuri.org/db2sample/listdadx">

<deptno>A00</deptno>
</ListDepartments>’))

The SOAPHTTPNV and SOAPHTTPNC user-defined functions
DB2 provides SOAPHTTPNV and SOAPHTTPNC user-defined functions with
which you can work with SOAP and consume web services in SQL statements. The
user-defined functions are two varieties of SOAPHTTPNV for VARCHAR data and
two varieties of SOAPHTTPNC for CLOB data. The user-defined functions perform
the following actions:
1. Post the input SOAP request to the service endpoint.
2. Receive and return the SOAP response

SOAPHTTPNV and SOAPHTTPNC allow you to specify a complete SOAP
message as input and return complete SOAP messages from the specified web
service as a CLOB or VARCHAR representation of the returned XML data. .

980 Application Programming and SQL Guide

#

#
#
#
#
#

#

#

#
#
#



SOAPHTTPNV returns VARCHAR(32672) data and SOAPHTTPNC returns
CLOB(1M) data. Both functions accept either VARCHAR(32672) or CLOB(1M) as
the input body.

Example: The following example shows how to insert the complete result from a
web service into a table using SOAPHTTPNC.

INSERT INTO EMPLOYEE(XMLCOL)
VALUES (DB2XML.SOAPHTTPNC(

’http://www.myserver.com/services/db2sample/list.dadx/SOAP’,
’http://tempuri.org/db2sample/list.dadx’,
’<?xml version="1.0" encoding="UTF-8" ?>’ ||
’<SOAP-ENV:Envelope ’ ||
’xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" ’ ||
’xmlns:xsd="http://www.w3.org/2001/XMLSchema" ’ ||
’xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">’ ||
’<SOAP-ENV:Body>’ ||
’<listDepartments xmlns="http://tempuri.org/db2sample/list.dadx">

<deptNo>A00</deptNo>
</listDepartments>’ ||
’</SOAP-ENV:Body>’ ||
’</SOAP-ENV:Envelope>’))

SQLSTATEs for DB2 as a web services consumer
Table 168 shows the possible SQLSTATE values that DB2 returns for error
conditions related to using DB2 as a web services consumer.

Table 168. SQLSTATE values that DB2 returns for error conditions related to using DB2 as a
web services consumer

SQLSTATE Description

38301 An unexpected NULL value was pass as input to the function.

38302 The function was unable to allocate space.

38304 An unknown protocol was specified on the endpoint URL.

38305 An invalid URL was specified on the endpoint URL.

38306 An error occurred while attempting to create a TCP/IP socket.

38307 An error occurred while attempting to bind a TCP/IP socket.

38308 The function could not resolve the specified hostname.

38309 An error occurred while attempting to connect to the specified server.

38310 An error occurred while attempting to retrieve information from the
protocol.

38311 An error occurred while attempting to set socket options.

38312 The function received unexpected data returned for the web service.

38313 The web service did not return data of the proper content type.

38314 An error occurred while initializing the XML parser.

38315 An error occurred while creating the XML parser.

38316 An error occurred while establishing a handler for the XML parser.

38317 The XML parser encountered an error while parsing the result data.

38318 The XML parser could not convert the result data to the database
codepage.

38319 The function could not allocate memory when creating a TCP/IP socket.

38320 An error occurred while attempting to send the request to the specified
server.

Chapter 34. Using DB2 as a web services consumer and provider 981

#
#
#

#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#



Table 168. SQLSTATE values that DB2 returns for error conditions related to using DB2 as a
web services consumer (continued)

SQLSTATE Description

38321 The function was unable to send the entire request to the specified server.

38322 An error occurred while attempting to read the result data from the
specified server.

38323 An error occurred while waiting for data to be returned from the specified
server.

38324 The function encountered an internal error while attempting to format the
input message.

38325 The function encountered an internal error while attempting to add
namespace information to the input message.

38327 The XML parser could not strip the SOAP envelope from the result
message.

38328 An error occurred while processing an SSL connection.

38350 An unexpected NULL value was specified for the endpoint, action, or
SOAP input.

38351 A dynamic memory allocation error.

38352 An unknown or unsupported transport protocol.

38353 An invalid URL was specified.

38354 An error occurred while resolving the hostname.

38355 A memory exception for socket.

38356 An error occurred during socket connect.

38357 An error occurred while setting socket options.

38358 An error occurred during input/output control (ioctl) to verify HTTPS
enablement.

38359 An error occurred while reading from the socket.

38360 An error occurred due to socket timeout.

38361 No response from the specified host.

38362 An error occurred due to an unexpected HTTP return or content type

38363 The TCP/IP stack was not enabled for HTTPS.

DB2 as a web services provider
DB2 allows you to enable your DB2 data and applications as web services through
the Web Services Object Runtime Framework (WORF). You can define a web
service in DB2 by using a Document Access Definition Extension (DADX). In the
DADX file, you can define web services based on SQL statements and stored
procedures. Based on your definitions in the DADX file, WORF performs the
following actions:
v Handles the connection to DB2 and the execution of the SQL and the stored

procedure call
v Converts the result to a web service
v Handles the generation of any Web Services Definition Language (WSDL) and

UDDI (Universal Description, Discovery, and Integration) information that the
client application needs

982 Application Programming and SQL Guide

##
#

##

##

##

##

##

##

##

##
#

##

##

##

##

##



For more information about using DB2 as a web services provider, see DB2
Information Integrator Application Developer's Guide.

Chapter 34. Using DB2 as a web services consumer and provider 983



984 Application Programming and SQL Guide



Chapter 35. Programming techniques: Questions and answers

This chapter answers some frequently asked questions about database
programming techniques. It contains the following topics.

Providing a unique key for a table
Question: How can I provide a unique identifier for a table that has no unique
column?

Answer: Add a column with the data type ROWID or an identity column. ROWID
columns and identity columns contain a unique value for each row in the table.
You can define the column as GENERATED ALWAYS, which means that you
cannot insert values into the column, or GENERATED BY DEFAULT, which means
that DB2 generates a value if you do not specify one. If you define the ROWID or
identity column as GENERATED BY DEFAULT, you need to define a unique index
that includes only that column to guarantee uniqueness.

For more information about using DB2-generated values as unique keys, see
Chapter 11, “Using DB2-generated values as keys,” on page 271.

Scrolling through previously retrieved data
Question: When a program retrieves data from the database, how can the program
scroll backward through the data?

Answer: Use one of the following techniques:
v Use a scrollable cursor.
v If the table contains a ROWID or an identity column, retrieve the values from

that column into an array. Then use the ROWID or identity column values to
retrieve the rows in reverse order.

These options are described in more detail in “Using a scrollable cursor” and
“Using a ROWID or identity column” on page 986.

Using a scrollable cursor
Using a scrollable cursor to fetch backward through data involves these basic steps:
1. Declare the cursor with the SCROLL parameter.
2. Open the cursor.
3. Execute a FETCH statement to position the cursor at the end of the result table.
4. In a loop, execute FETCH statements that move the cursor backward and then

retrieve the data.
5. When you have retrieved all the data, close the cursor.

You can use code like the following example to retrieve department names in
reverse order from table DSN8810.DEPT:
/**************************/
/* Declare host variables */
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

char[37] hv_deptname;
EXEC SQL END DECLARE SECTION;

© Copyright IBM Corp. 1983, 2012 985

|
|



/**********************************************************/
/* Declare scrollable cursor to retrieve department names */
/**********************************************************/
EXEC SQL DECLARE C1 SCROLL CURSOR FOR

SELECT DEPTNAME FROM DSN8810.DEPT;...
/**********************************************************/
/* Open the cursor and position it after the end of the */
/* result table. */
/**********************************************************/
EXEC SQL OPEN C1;
EXEC SQL FETCH AFTER FROM C1;
/**********************************************************/
/* Fetch rows backward until all rows are fetched. */
/**********************************************************/
while(SQLCODE==0) {

EXEC SQL FETCH PRIOR FROM C1 INTO :hv_deptname;

...
}
EXEC SQL CLOSE C1;

Using a ROWID or identity column
If your table contains a ROWID column or an identity column, you can use that
column to rapidly retrieve the rows in reverse order. When you perform the
original SELECT, you can store the ROWID or identity column value for each row
you retrieve. Then, to retrieve the values in reverse order, you can execute SELECT
statements with a WHERE clause that compares the ROWID or identity column
value to each stored value.

For example, suppose you add ROWID column DEPTROWID to table
DSN8810.DEPT. You can use code like the following example to select all
department names, then retrieve the names in reverse order:
/**************************/
/* Declare host variables */
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS ROWID hv_dept_rowid;
char[37] hv_deptname;

EXEC SQL END DECLARE SECTION;
/***************************/
/* Declare other variables */
/***************************/
struct rowid_struct {

short int length;
char data[40]; /* ROWID variable structure */

}
struct rowid_struct rowid_array[200];

/* Array to hold retrieved */
/* ROWIDs. Assume no more */
/* than 200 rows will be */
/* retrieved. */

short int i,j,n;
/***********************************************/
/* Declare cursor to retrieve department names */
/***********************************************/
EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNAME, DEPTROWID FROM DSN8810.DEPT;...
/**********************************************************/
/* Retrieve the department name and ROWID from DEPT table */
/* and store the ROWID in an array. */
/**********************************************************/

986 Application Programming and SQL Guide



EXEC SQL OPEN C1;
i=0;
while(SQLCODE==0) {

EXEC SQL FETCH C1 INTO :hv_deptname, :hv_dept_rowid;
rowid_array[i].length=hv_dept_rowid.length;
for(j=0;j<hv_dept_rowid.length;j++)

rowid_array[i].data[j]=hv_dept_rowid.data[j];
i++;

}
EXEC SQL CLOSE C1;
n=i-1; /* Get the number of array elements */
/**********************************************************/
/* Use the ROWID values to retrieve the department names */
/* in reverse order. */
/**********************************************************/
for(i=n;i>=0;i--) {

hv_dept_rowid.length=rowid_array[i].length;
for(j=0;j<hv_dept_rowid.length;j++)

hv_dept_rowid.data[j]=rowid_array[i].data[j];
EXEC SQL SELECT DEPTNAME INTO :hv_deptname

FROM DSN8810.DEPT
WHERE DEPTROWID=:hv_dept_rowid;

}

Scrolling through a table in any direction
Question: How can I fetch rows from a table in any direction?

Answer: Declare your cursor as scrollable. When you select rows from the table,
you can use the various forms of the FETCH statement to move to an absolute row
number, move ahead or back a certain number of rows, to the first or last row,
before the first row or after the last row, forward, or backward. You can use any
combination of these FETCH statements to change direction repeatedly.

You can use code like the following example to move forward in the department
table by 10 records, backward five records, and forward again by three records:
/**************************/
/* Declare host variables */
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

char[37] hv_deptname;
EXEC SQL END DECLARE SECTION;
/**********************************************************/
/* Declare scrollable cursor to retrieve department names */
/**********************************************************/
EXEC SQL DECLARE C1 SCROLL CURSOR FOR

SELECT DEPTNAME FROM DSN8810.DEPT;...
/**********************************************************/
/* Open the cursor and position it before the start of */
/* the result table. */
/**********************************************************/
EXEC SQL OPEN C1;
EXEC SQL FETCH BEFORE FROM C1;
/**********************************************************/
/* Fetch first 10 rows */
/**********************************************************/
for(i=0;i<10;i++)
{

EXEC SQL FETCH NEXT FROM C1 INTO :hv_deptname;
}
/**********************************************************/
/* Save the value in the tenth row */
/**********************************************************/

Chapter 35. Programming techniques: Questions and answers 987



tenth_row=hv_deptname;
/**********************************************************/
/* Fetch backward 5 rows */
/**********************************************************/
for(i=0;i<5;i++)
{

EXEC SQL FETCH PRIOR FROM C1 INTO :hv_deptname;
}
/**********************************************************/
/* Save the value in the fifth row */
/**********************************************************/
fifth_row=hv_deptname;
/**********************************************************/
/* Fetch forward 3 rows */
/**********************************************************/
for(i=0;i<3;i++)
{

EXEC SQL FETCH NEXT FROM C1 INTO :hv_deptname;
}
/**********************************************************/
/* Save the value in the eighth row */
/**********************************************************/
eighth_row=hv_deptname;
/**********************************************************/
/* Close the cursor */
/**********************************************************/
EXEC SQL CLOSE C1;

Updating data as it is retrieved from the database
Question: How can I update rows of data as I retrieve them?

Answer: On the SELECT statement, use the FOR UPDATE clause without a column
list, or the FOR UPDATE OF clause with a column list. For a more efficient
program, specify a column list with only those columns that you intend to update.
Then use the positioned UPDATE statement. The clause WHERE CURRENT OF
identifies the cursor that points to the row you want to update.

Updating previously retrieved data
Question: How can you scroll backward and update data that was retrieved
previously?

Answer: Use a scrollable cursor that is declared with the FOR UPDATE clause.
Using a scrollable cursor to update backward involves these basic steps:
1. Declare the cursor with the SENSITIVE STATIC SCROLL parameters.
2. Open the cursor.
3. Execute a FETCH statement to position the cursor at the end of the result table.
4. FETCH statements that move the cursor backward, until you reach the row that

you want to update.
5. Execute the UPDATE WHERE CURRENT OF statement to update the current

row.
6. Repeat steps 4 and 5 until you have update all the rows that you need to.
7. When you have retrieved and updated all the data, close the cursor.

Updating thousands of rows
Question: Are there any special techniques for updating large volumes of data?

988 Application Programming and SQL Guide



Answer: Yes. When updating large volumes of data using a cursor, you can
minimize the amount of time that you hold locks on the data by declaring the
cursor with the HOLD option and by issuing commits frequently.

Retrieving thousands of rows
Question: Are there any special techniques for fetching and displaying large
volumes of data?

Answer: There are no special techniques; but for large numbers of rows, efficiency
can become very important. In particular, you need to be aware of locking
considerations, including the possibilities of lock escalation.

If your program allows input from a terminal before it commits the data and
thereby releases locks, it is possible that a significant loss of concurrency results.
Review the description of locks in “The ISOLATION option” on page 412 while
designing your program. Then review the expected use of tables to predict
whether you could have locking problems.

Using SELECT *
Question: What are the implications of using SELECT * ?

Answer: Generally, you should select only the columns you need because DB2 is
sensitive to the number of columns selected. Use SELECT * only when you are
sure you want to select all columns. One alternative is to use views defined with
only the necessary columns, and use SELECT * to access the views. Avoid SELECT
* if all the selected columns participate in a sort operation (SELECT DISTINCT and
SELECT...UNION, for example).

Optimizing retrieval for a small set of rows
Question: How can I tell DB2 that I want only a few of the thousands of rows that
satisfy a query?

Answer: Use OPTIMIZE FOR n ROWS or FETCH FIRST n ROWS ONLY.

DB2 usually optimizes queries to retrieve all rows that qualify. But sometimes you
want to retrieve only the first few rows. For example, to retrieve the first row that
is greater than or equal to a known value, code:
SELECT column list FROM table
WHERE key >= value
ORDER BY key ASC

Even with the ORDER BY clause, DB2 might fetch all the data first and sort it
afterwards, which could be wasteful. Instead, you can write the query in one of the
following ways:
SELECT * FROM table
WHERE key >= value
ORDER BY key ASC
OPTIMIZE FOR 1 ROW

SELECT * FROM table
WHERE key >= value
ORDER BY key ASC
FETCH FIRST n ROWS ONLY

Chapter 35. Programming techniques: Questions and answers 989



Use OPTIMIZE FOR 1 ROW to influence the access path. OPTIMIZE FOR 1 ROW
tells DB2 to select an access path that returns the first qualifying row quickly.

Use FETCH FIRST n ROWS ONLY to limit the number of rows in the result table
to n rows. FETCH FIRST n ROWS ONLY has the following benefits:
v When you use FETCH statements to retrieve data from a result table, FETCH

FIRST n ROWS ONLY causes DB2 to retrieve only the number of rows that you
need. This can have performance benefits, especially in distributed applications.
If you try to execute a FETCH statement to retrieve the n+1st row, DB2 returns a
+100 SQLCODE.

v When you use FETCH FIRST ROW ONLY in a SELECT INTO statement, you
never retrieve more than one row. Using FETCH FIRST ROW ONLY in a
SELECT INTO statement can prevent SQL errors that are caused by
inadvertently selecting more than one value into a host variable.

When you specify FETCH FIRST n ROWS ONLY but not OPTIMIZE FOR n ROWS,
OPTIMIZE FOR n ROWS is implied. When you specify FETCH FIRST n ROWS
ONLY and OPTIMIZE FOR m ROWS, and m is less than n, DB2 optimizes the
query for m rows. If m is greater than n, DB2 optimizes the query for n rows.

Adding data to the end of a table
Question: How can I add data to the end of a table?

Answer: Though the question is often asked, it has no meaning in a relational
database. The rows of a base table are not ordered; hence, the table does not have
an “end”.

To get the effect of adding data to the “end” of a table, define a unique index on a
TIMESTAMP column in the table definition. Then, when you retrieve data from the
table, use an ORDER BY clause naming that column. The newest insert appears
last.

Translating requests from end users into SQL statements
Question: A program translates requests from end users into SQL statements before
executing them, and users can save a request. How can the corresponding SQL
statement be saved?

Answer: You can save the corresponding SQL statements in a table with a column
having a data type of VARCHAR(n), where n is the maximum length of any SQL
statement. You must save the source SQL statements, not the prepared versions.
That means that you must retrieve and then prepare each statement before
executing the version stored in the table. In essence, your program prepares an
SQL statement from a character string and executes it dynamically. (For a
description of dynamic SQL, see Chapter 24, “Coding dynamic SQL in application
programs,” on page 595.)

Changing the table definition
Question: How can I write an SQL application that allows users to create new
tables, add columns to them, increase the length of character columns, rearrange
the columns, and delete columns?

990 Application Programming and SQL Guide



Answer: Your program can dynamically execute CREATE TABLE and ALTER
TABLE statements entered by users to create new tables, add columns to existing
tables, or increase the length of VARCHAR columns. Added columns initially
contain either the null value or a default value. Both statements, like any data
definition statement, are relatively expensive to execute; consider the effects of
locks.

You cannot rearrange or delete columns in a table without dropping the entire
table. You can, however, create a view on the table, which includes only the
columns you want, in the order you want. This has the same effect as redefining
the table.

For a description of dynamic SQL execution, see Chapter 24, “Coding dynamic
SQL in application programs,” on page 595.

Storing data that does not have a tabular format
Question: How can I store a large volume of data that is not defined as a set of
columns in a table?

Answer: You can store the data in a table in a VARCHAR column or a LOB
column.

Finding a violated referential or check constraint
Question: When a referential or check constraint has been violated, how do I
determine which one it is?

Answer: When you receive an SQL error because of a constraint violation, print out
the SQLCA. You can use the DSNTIAR routine described in “Calling DSNTIAR to
display SQLCA fields” on page 98 to format the SQLCA for you. Check the SQL
error message insertion text (SQLERRM) for the name of the constraint. For
information on possible violations, see SQLCODEs -530 through -548 in Part 2 of
DB2 Codes.

Chapter 35. Programming techniques: Questions and answers 991



992 Application Programming and SQL Guide



Part 7. Appendixes

© Copyright IBM Corp. 1983, 2012 993



994 Application Programming and SQL Guide



Appendix A. DB2 sample tables

Most of the examples in this book refer to the tables described in this appendix. As
a group, the tables include information that describes employees, departments,
projects, and activities, and make up a sample application that exemplifies most of
the features of DB2. The sample storage group, databases, tablespaces, tables, and
views are created when you run the installation sample jobs DSNTEJ1 and
DSNTEJ7. DB2 sample objects that include LOBs are created in job DSNTEJ7. All
other sample objects are created in job DSNTEJ1. The CREATE INDEX statements
for the sample tables are not shown here; they, too, are created by the DSNTEJ1
and DSNTEJ7 sample jobs.

Authorization on all sample objects is given to PUBLIC in order to make the
sample programs easier to run. The contents of any table can easily be reviewed by
executing an SQL statement, for example SELECT * FROM DSN8810.PROJ. For
convenience in interpreting the examples, the department and employee tables are
listed here in full.

The following topics provide additional information:
v “Activity table (DSN8810.ACT)”
v “Department table (DSN8810.DEPT)” on page 996
v “Employee table (DSN8810.EMP)” on page 998
v “Employee photo and resume table (DSN8810.EMP_PHOTO_RESUME)” on page

1001
v “Project table (DSN8810.PROJ)” on page 1002
v “Project activity table (DSN8810.PROJACT)” on page 1003
v “Employee to project activity table (DSN8810.EMPPROJACT)” on page 1004
v “Unicode sample table (DSN8810.DEMO_UNICODE)” on page 1005
v “Relationships among the sample tables” on page 1006
v “Views on the sample tables” on page 1006
v “Storage of sample application tables” on page 1011

Activity table (DSN8810.ACT)
The activity table describes the activities that can be performed during a project.
The table resides in database DSN8D81A and is created with the following
statement:
CREATE TABLE DSN8810.ACT

(ACTNO SMALLINT NOT NULL,
ACTKWD CHAR(6) NOT NULL,
ACTDESC VARCHAR(20) NOT NULL,
PRIMARY KEY (ACTNO) )

IN DSN8D81A.DSN8S81P
CCSID EBCDIC;

Content of the activity table:

Table 169 on page 996 shows the content of the columns.

© Copyright IBM Corp. 1983, 2012 995



Table 169. Columns of the activity table

Column Column Name Description

1 ACTNO Activity ID (the primary key)

2 ACTKWD Activity keyword (up to six characters)

3 ACTDESC Activity description

The activity table has these indexes:

Table 170. Indexes of the activity table

Name On Column Type of Index

DSN8810.XACT1 ACTNO Primary, ascending

DSN8810.XACT2 ACTKWD Unique, ascending

Relationship to other tables:

The activity table is a parent table of the project activity table, through a foreign
key on column ACTNO.

Department table (DSN8810.DEPT)
The department table describes each department in the enterprise and identifies its
manager and the department to which it reports.

The table, shown in Table 173 on page 997, resides in table space
DSN8D81A.DSN8S81D and is created with the following statement:
CREATE TABLE DSN8810.DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY (DEPTNO) )

IN DSN8D81A.DSN8S81D
CCSID EBCDIC;

Because the table is self-referencing, and also is part of a cycle of dependencies, its
foreign keys must be added later with these statements:
ALTER TABLE DSN8810.DEPT

FOREIGN KEY RDD (ADMRDEPT) REFERENCES DSN8810.DEPT
ON DELETE CASCADE;

ALTER TABLE DSN8810.DEPT
FOREIGN KEY RDE (MGRNO) REFERENCES DSN8810.EMP

ON DELETE SET NULL;

Content of the department table:

Table 171 shows the content of the columns.

Table 171. Columns of the department table

Column Column Name Description

1 DEPTNO Department ID, the primary key

996 Application Programming and SQL Guide



Table 171. Columns of the department table (continued)

Column Column Name Description

2 DEPTNAME A name describing the general activities of the
department

3 MGRNO Employee number (EMPNO) of the department
manager

4 ADMRDEPT ID of the department to which this department
reports; the department at the highest level reports
to itself

5 LOCATION The remote location name

Table 172 shows the indexes of the department table:

Table 172. Indexes of the department table

Name On Column Type of Index

DSN8810.XDEPT1 DEPTNO Primary, ascending

DSN8810.XDEPT2 MGRNO Ascending

DSN8810.XDEPT3 ADMRDEPT Ascending

Table 173 shows the content of the department table:

Table 173. DSN8810.DEPT: department table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A00 SPIFFY COMPUTER
SERVICE DIV.

000010 A00 ----------------

B01 PLANNING 000020 A00 ----------------
C01 INFORMATION CENTER 000030 A00 ----------------
D01 DEVELOPMENT CENTER ------ A00 ----------------
E01 SUPPORT SERVICES 000050 A00 ----------------
D11 MANUFACTURING

SYSTEMS
000060 D01 ----------------

D21 ADMINISTRATION
SYSTEMS

000070 D01 ----------------

E11 OPERATIONS 000090 E01 ----------------
E21 SOFTWARE SUPPORT 000100 E01 ----------------
F22 BRANCH OFFICE F2 ------ E01 ----------------
G22 BRANCH OFFICE G2 ------ E01 ----------------
H22 BRANCH OFFICE H2 ------ E01 ----------------
I22 BRANCH OFFICE I2 ------ E01 ----------------
J22 BRANCH OFFICE J2 ------ E01 ----------------

The LOCATION column contains nulls until sample job DSNTEJ6 updates this
column with the location name.

Relationship to other tables:

The table is self-referencing: the value of the administering department must be a
department ID.

The table is a parent table of:

Appendix A. DB2 sample tables 997



v The employee table, through a foreign key on column WORKDEPT
v The project table, through a foreign key on column DEPTNO.

It is a dependent of the employee table, through its foreign key on column
MGRNO.

Employee table (DSN8810.EMP)
The employee table identifies all employees by an employee number and lists basic
personnel information.

The table shown in Table 176 on page 999 and Table 177 on page 1000 resides in
the partitioned table space DSN8D81A.DSN8S81E. Because it has a foreign key
referencing DEPT, that table and the index on its primary key must be created first.
Then EMP is created with the following statement:
CREATE TABLE DSN8810.EMP

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) ,
PHONENO CHAR(4) CONSTRAINT NUMBER CHECK

(PHONENO >= ’0000’ AND
PHONENO <= ’9999’) ,

HIREDATE DATE ,
JOB CHAR(8) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DATE ,
SALARY DECIMAL(9,2) ,
BONUS DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,
PRIMARY KEY (EMPNO) ,
FOREIGN KEY RED (WORKDEPT) REFERENCES DSN8810.DEPT

ON DELETE SET NULL )
EDITPROC DSN8EAE1
IN DSN8D81A.DSN8S81E
CCSID EBCDIC;

Content of the employee table:

Table 174 shows the content of the columns. The table has a check constraint,
NUMBER, which checks that the phone number is in the numeric range 0000 to
9999.

Table 174. Columns of the employee table

Column Column Name Description

1 EMPNO Employee number (the primary key)

2 FIRSTNME First name of employee

3 MIDINIT Middle initial of employee

4 LASTNAME Last name of employee

5 WORKDEPT ID of department in which the employee works

6 PHONENO Employee telephone number

7 HIREDATE Date of hire

8 JOB Job held by the employee

9 EDLEVEL Number of years of formal education

998 Application Programming and SQL Guide



Table 174. Columns of the employee table (continued)

Column Column Name Description

10 SEX Sex of the employee (M or F)

11 BIRTHDATE Date of birth

12 SALARY Yearly salary in dollars

13 BONUS Yearly bonus in dollars

14 COMM Yearly commission in dollars

Table 175 shows the indexes of the employee table:

Table 175. Indexes of the employee table

Name On Column Type of Index

DSN8810.XEMP1 EMPNO Primary, partitioned, ascending

DSN8810.XEMP2 WORKDEPT Ascending

Table 176 and Table 177 on page 1000 show the content of the employee table:

Table 176. Left half of DSN8810.EMP: employee table. Note that a blank in the MIDINIT column is an actual value of
" " rather than null.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

000010 CHRISTINE I HAAS A00 3978 1965-01-01
000020 MICHAEL L THOMPSON B01 3476 1973-10-10
000030 SALLY A KWAN C01 4738 1975-04-05
000050 JOHN B GEYER E01 6789 1949-08-17
000060 IRVING F STERN D11 6423 1973-09-14
000070 EVA D PULASKI D21 7831 1980-09-30
000090 EILEEN W HENDERSON E11 5498 1970-08-15
000100 THEODORE Q SPENSER E21 0972 1980-06-19
000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16
000120 SEAN O'CONNELL A00 2167 1963-12-05
000130 DOLORES M QUINTANA C01 4578 1971-07-28
000140 HEATHER A NICHOLLS C01 1793 1976-12-15
000150 BRUCE ADAMSON D11 4510 1972-02-12
000160 ELIZABETH R PIANKA D11 3782 1977-10-11
000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15
000180 MARILYN S SCOUTTEN D11 1682 1973-07-07
000190 JAMES H WALKER D11 2986 1974-07-26
000200 DAVID BROWN D11 4501 1966-03-03
000210 WILLIAM T JONES D11 0942 1979-04-11
000220 JENNIFER K LUTZ D11 0672 1968-08-29
000230 JAMES J JEFFERSON D21 2094 1966-11-21
000240 SALVATORE M MARINO D21 3780 1979-12-05
000250 DANIEL S SMITH D21 0961 1969-10-30
000260 SYBIL P JOHNSON D21 8953 1975-09-11
000270 MARIA L PEREZ D21 9001 1980-09-30
000280 ETHEL R SCHNEIDER E11 8997 1967-03-24
000290 JOHN R PARKER E11 4502 1980-05-30
000300 PHILIP X SMITH E11 2095 1972-06-19
000310 MAUDE F SETRIGHT E11 3332 1964-09-12
000320 RAMLAL V MEHTA E21 9990 1965-07-07
000330 WING LEE E21 2103 1976-02-23
000340 JASON R GOUNOT E21 5698 1947-05-05

Appendix A. DB2 sample tables 999



Table 176. Left half of DSN8810.EMP: employee table (continued). Note that a blank in the MIDINIT column is an
actual value of " " rather than null.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

200010 DIAN J HEMMINGER A00 3978 1965-01-01
200120 GREG ORLANDO A00 2167 1972-05-05
200140 KIM N NATZ C01 1793 1976-12-15
200170 KIYOSHI YAMAMOTO D11 2890 1978-09-15
200220 REBA K JOHN D11 0672 1968-08-29
200240 ROBERT M MONTEVERDE D21 3780 1979-12-05
200280 EILEEN R SCHWARTZ E11 8997 1967-03-24
200310 MICHELLE F SPRINGER E11 3332 1964-09-12
200330 HELENA WONG E21 2103 1976-02-23
200340 ROY R ALONZO E21 5698 1947-05-05

Table 177. Right half of DSN8810.EMP: employee table

(EMPNO) JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

(000010) PRES 18 F 1933-08-14 52750.00 1000.00 4220.00
(000020) MANAGER 18 M 1948-02-02 41250.00 800.00 3300.00
(000030) MANAGER 20 F 1941-05-11 38250.00 800.00 3060.00
(000050) MANAGER 16 M 1925-09-15 40175.00 800.00 3214.00
(000060) MANAGER 16 M 1945-07-07 32250.00 600.00 2580.00
(000070) MANAGER 16 F 1953-05-26 36170.00 700.00 2893.00
(000090) MANAGER 16 F 1941-05-15 29750.00 600.00 2380.00
(000100) MANAGER 14 M 1956-12-18 26150.00 500.00 2092.00
(000110) SALESREP 19 M 1929-11-05 46500.00 900.00 3720.00
(000120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
(000130) ANALYST 16 F 1925-09-15 23800.00 500.00 1904.00
(000140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00
(000150) DESIGNER 16 M 1947-05-17 25280.00 500.00 2022.00
(000160) DESIGNER 17 F 1955-04-12 22250.00 400.00 1780.00
(000170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
(000180) DESIGNER 17 F 1949-02-21 21340.00 500.00 1707.00
(000190) DESIGNER 16 M 1952-06-25 20450.00 400.00 1636.00
(000200) DESIGNER 16 M 1941-05-29 27740.00 600.00 2217.00
(000210) DESIGNER 17 M 1953-02-23 18270.00 400.00 1462.00
(000220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
(000230) CLERK 14 M 1935-05-30 22180.00 400.00 1774.00
(000240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00
(000250) CLERK 15 M 1939-11-12 19180.00 400.00 1534.00
(000260) CLERK 16 F 1936-10-05 17250.00 300.00 1380.00
(000270) CLERK 15 F 1953-05-26 27380.00 500.00 2190.00
(000280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00
(000290) OPERATOR 12 M 1946-07-09 15340.00 300.00 1227.00
(000300) OPERATOR 14 M 1936-10-27 17750.00 400.00 1420.00
(000310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00
(000320) FIELDREP 16 M 1932-08-11 19950.00 400.00 1596.00
(000330) FIELDREP 14 M 1941-07-18 25370.00 500.00 2030.00
(000340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00
(200010) SALESREP 18 F 1933-08-14 46500.00 1000.00 4220.00
(200120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
(200140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00
(200170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
(200220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
(200240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00
(200280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00
(200310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00

1000 Application Programming and SQL Guide



Table 177. Right half of DSN8810.EMP: employee table (continued)

(EMPNO) JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

(200330) FIELDREP 14 F 1941-07-18 25370.00 500.00 2030.00
(200340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00

Relationship to other tables:

The table is a parent table of:
v The department table, through a foreign key on column MGRNO
v The project table, through a foreign key on column RESPEMP.

It is a dependent of the department table, through its foreign key on column
WORKDEPT.

Employee photo and resume table (DSN8810.EMP_PHOTO_RESUME)
The employee photo and resume table complements the employee table. Each row
of the photo and resume table contains a photo of the employee, in two formats,
and the employee"s resume. The photo and resume table resides in table space
DSN8D81A.DSN8S81E. The following statement creates the table:
CREATE TABLE DSN8810.EMP_PHOTO_RESUME

(EMPNO CHAR(06) NOT NULL,
EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
PSEG_PHOTO BLOB(500K),
BMP_PHOTO BLOB(100K),
RESUME CLOB(5K))
PRIMARY KEY (EMPNO)

IN DSN8D81L.DSN8S81B
CCSID EBCDIC;

DB2 requires an auxiliary table for each LOB column in a table. These statements
define the auxiliary tables for the three LOB columns in
DSN8810.EMP_PHOTO_RESUME:
CREATE AUX TABLE DSN8810.AUX_BMP_PHOTO

IN DSN8D81L.DSN8S81M
STORES DSN8810.EMP_PHOTO_RESUME
COLUMN BMP_PHOTO;

CREATE AUX TABLE DSN8810.AUX_PSEG_PHOTO
IN DSN8D81L.DSN8S81L
STORES DSN8810.EMP_PHOTO_RESUME
COLUMN PSEG_PHOTO;

CREATE AUX TABLE DSN8810.AUX_EMP_RESUME
IN DSN8D81L.DSN8S81N
STORES DSN8810.EMP_PHOTO_RESUME
COLUMN RESUME;

Content of the employee photo and resume table:

Table 178 shows the content of the columns.

Table 178. Columns of the employee photo and resume table

Column Column Name Description

1 EMPNO Employee ID (the primary key)

Appendix A. DB2 sample tables 1001



Table 178. Columns of the employee photo and resume table (continued)

Column Column Name Description

2 EMP_ROWID Row ID to uniquely identify each row of the table.
DB2 supplies the values of this column.

3 PSEG_PHOTO Employee photo, in PSEG format

4 BMP_PHOTO Employee photo, in BMP format

5 RESUME Employee resume

Table 179 shows the indexes for the employee photo and resume table:

Table 179. Indexes of the employee photo and resume table

Name On Column Type of Index

DSN8810.XEMP_PHOTO_RESUME EMPNO Primary, ascending

Table 180 shows the indexes for the auxiliary tables for the employee photo and
resume table:

Table 180. Indexes of the auxiliary tables for the employee photo and resume table

Name On Table Type of Index

DSN8810.XAUX_BMP_PHOTO DSN8810.AUX_BMP_PHOTO Unique

DSN8810.XAUX_PSEG_PHOTO DSN8810.AUX_PSEG_PHOTO Unique

DSN8810.XAUX_EMP_RESUME DSN8810.AUX_EMP_RESUME Unique

Relationship to other tables:

The table is a parent table of the project table, through a foreign key on column
RESPEMP.

Project table (DSN8810.PROJ)
The project table describes each project that the business is currently undertaking.
Data contained in each row include the project number, name, person responsible,
and schedule dates.

The table resides in database DSN8D81A. Because it has foreign keys referencing
DEPT and EMP, those tables and the indexes on their primary keys must be
created first. Then PROJ is created with the following statement:
CREATE TABLE DSN8810.PROJ

(PROJNO CHAR(6) PRIMARY KEY NOT NULL,
PROJNAME VARCHAR(24) NOT NULL WITH DEFAULT

’PROJECT NAME UNDEFINED’,
DEPTNO CHAR(3) NOT NULL REFERENCES

DSN8810.DEPT ON DELETE RESTRICT,
RESPEMP CHAR(6) NOT NULL REFERENCES

DSN8810.EMP ON DELETE RESTRICT,
PRSTAFF DECIMAL(5, 2) ,
PRSTDATE DATE ,
PRENDATE DATE ,
MAJPROJ CHAR(6))

IN DSN8D81A.DSN8S81P
CCSID EBCDIC;

1002 Application Programming and SQL Guide



Because the table is self-referencing, the foreign key for that restraint must be
added later with:
ALTER TABLE DSN8810.PROJ

FOREIGN KEY RPP (MAJPROJ) REFERENCES DSN8810.PROJ
ON DELETE CASCADE;

Content of the project table:

Table 181 shows the content of the columns.

Table 181. Columns of the project table

Column Column Name Description

1 PROJNO Project ID (the primary key)

2 PROJNAME Project name

3 DEPTNO ID of department responsible for the project

4 RESPEMP ID of employee responsible for the project

5 PRSTAFF Estimated mean number of persons needed
between PRSTDATE and PRENDATE to achieve
the whole project, including any subprojects

6 PRSTDATE Estimated project start date

7 PRENDATE Estimated project end date

8 MAJPROJ ID of any project of which this project is a part

Table 182 shows the indexes for the project table:

Table 182. Indexes of the project table

Name On Column Type of Index

DSN8810.XPROJ1 PROJNO Primary, ascending

DSN8810.XPROJ2 RESPEMP Ascending

Relationship to other tables:

The table is self-referencing: a nonnull value of MAJPROJ must be a project
number. The table is a parent table of the project activity table, through a foreign
key on column PROJNO. It is a dependent of:
v The department table, through its foreign key on DEPTNO
v The employee table, through its foreign key on RESPEMP.

Project activity table (DSN8810.PROJACT)
The project activity table lists the activities performed for each project. The table
resides in database DSN8D81A. Because it has foreign keys referencing PROJ and
ACT, those tables and the indexes on their primary keys must be created first.
Then PROJACT is created with the following statement:
CREATE TABLE DSN8810.PROJACT

(PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
ACSTAFF DECIMAL(5,2) ,
ACSTDATE DATE NOT NULL,
ACENDATE DATE ,
PRIMARY KEY (PROJNO, ACTNO, ACSTDATE),
FOREIGN KEY RPAP (PROJNO) REFERENCES DSN8810.PROJ

Appendix A. DB2 sample tables 1003



ON DELETE RESTRICT,
FOREIGN KEY RPAA (ACTNO) REFERENCES DSN8810.ACT

ON DELETE RESTRICT)
IN DSN8D81A.DSN8S81P
CCSID EBCDIC;

Content of the project activity table:

Table 183 shows the content of the columns.

Table 183. Columns of the project activity table

Column Column Name Description

1 PROJNO Project ID

2 ACTNO Activity ID

3 ACSTAFF Estimated mean number of employees needed to
staff the activity

4 ACSTDATE Estimated activity start date

5 ACENDATE Estimated activity completion date

Table 184 shows the index of the project activity table:

Table 184. Index of the project activity table

Name On Columns Type of Index

DSN8810.XPROJAC1 PROJNO, ACTNO,
ACSTDATE

primary, ascending

Relationship to other tables:

The table is a parent table of the employee to project activity table, through a
foreign key on columns PROJNO, ACTNO, and EMSTDATE. It is a dependent of:
v The activity table, through its foreign key on column ACTNO
v The project table, through its foreign key on column PROJNO

Employee to project activity table (DSN8810.EMPPROJACT)
The employee to project activity table identifies the employee who performs an
activity for a project, tells the proportion of the employee's time required, and
gives a schedule for the activity.

The table resides in database DSN8D81A. Because it has foreign keys referencing
EMP and PROJACT, those tables and the indexes on their primary keys must be
created first. Then EMPPROJACT is created with the following statement:
CREATE TABLE DSN8810.EMPPROJACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DECIMAL(5,2) ,
EMSTDATE DATE ,
EMENDATE DATE ,
FOREIGN KEY REPAPA (PROJNO, ACTNO, EMSTDATE)

REFERENCES DSN8810.PROJACT
ON DELETE RESTRICT,

1004 Application Programming and SQL Guide



FOREIGN KEY REPAE (EMPNO) REFERENCES DSN8810.EMP
ON DELETE RESTRICT)

IN DSN8D81A.DSN8S81P
CCSID EBCDIC;

Content of the employee to project activity table:

Table 185 shows the content of the columns.

Table 185. Columns of the employee to project activity table

Column Column Name Description

1 EMPNO Employee ID number

2 PROJNO Project ID of the project

3 ACTNO ID of the activity within the project

4 EMPTIME A proportion of the employee's full time (between
0.00 and 1.00) to be spent on the activity

5 EMSTDATE Date the activity starts

6 EMENDATE Date the activity ends

Table 186 shows the indexes for the employee to project activity table:

Table 186. Indexes of the employee to project activity table

Name On Columns Type of Index

DSN8810.XEMPPROJACT1 PROJNO, ACTNO,
EMSTDATE, EMPNO

Unique, ascending

DSN8810.XEMPPROJACT2 EMPNO Ascending

Relationship to other tables:

The table is a dependent of:
v The employee table, through its foreign key on column EMPNO
v The project activity table, through its foreign key on columns PROJNO, ACTNO,

and EMSTDATE.

Unicode sample table (DSN8810.DEMO_UNICODE)
The Unicode sample table is used to verify that data conversions to and from
EBCDIC and Unicode are working as expected. The table resides in database
DSN8D81A, and is defined with the following statement:
CREATE TABLE DSN8810.DEMO_UNICODE

(LOWER_A_TO_Z CHAR(26) ,
UPPER_A_TO_Z CHAR(26) ,
ZERO_TO_NINE CHAR(10) ,
X00_TO_XFF VARCHAR(256) FOR BIT DATA)

IN DSN8D81E.DSN8S81U
CCSID UNICODE;

Content of the Unicode sample table:

Table 187 on page 1006 shows the content of the columns:

Appendix A. DB2 sample tables 1005

|

|
|
|

|
|
|
|
|
|
|

|

|



Table 187. Columns of the Unicode sample table

Column Column Name Description

1 LOWER_A_TO_Z Array of characters, 'a' to 'z'

2 UPPER_A_TO_Z Array of characters, 'A' to 'Z'

3 ZERO_TO_NINE Array of characters, '0' to '9'

4 X00_TO_XFF Array of characters, x'00' to x'FF'

This table has no indexes

Relationship to other tables:

This table has no relationship to other tables.

Relationships among the sample tables
Figure 250 shows relationships among the tables. These are established by foreign
keys in dependent tables that reference primary keys in parent tables. You can find
descriptions of the columns with descriptions of the tables.

Views on the sample tables
DB2 creates a number of views on the sample tables for use in the sample
applications. Table 188 on page 1007 indicates the tables on which each view is
defined and the sample applications that use the view. All view names have the
qualifier DSN8810.

CASCADE

CASCADE
RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

SET
NULL

SET
NULL

DEPT

EMP

PROJ

ACT

PROJACT

EMPPROJACT

EMP_PHOTO_RESUME

Figure 250. Relationships among tables in the sample application

1006 Application Programming and SQL Guide

||

|||

|||

|||

|||

|||
|

|

|

|



Table 188. Views on sample tables

View name On tables or views Used in application

VDEPT DEPT Organization
Project

VHDEPT DEPT Distributed organization

VEMP EMP Distributed organization
Organization
Project

VPROJ PROJ Project

VACT ACT Project

VPROJACT PROJACT Project

VEMPPROJACT EMPROJACT Project

VDEPMG1 DEPT
EMP

Organization

VEMPDPT1 DEPT
EMP

Organization

VASTRDE1 DEPT

VASTRDE2 VDEPMG1
EMP

Organization

VPROJRE1 PROJ
EMP

Project

VPSTRDE1 VPROJRE1
VPROJRE2

Project

VPSTRDE2 VPROJRE1 Project

VFORPLA VPROJRE1
EMPPROJACT

Project

VSTAFAC1 PROJACT
ACT

Project

VSTAFAC2 EMPPROJACT
ACT
EMP

Project

VPHONE EMP
DEPT

Phone

VEMPLP EMP Phone

The following SQL statements are used to create the sample views:

CREATE VIEW DSN8810.VDEPT
AS SELECT ALL DEPTNO ,

DEPTNAME,
MGRNO ,
ADMRDEPT

FROM DSN8810.DEPT;

Figure 251. VDEPT

Appendix A. DB2 sample tables 1007



CREATE VIEW DSN8810.VHDEPT
AS SELECT ALL DEPTNO ,

DEPTNAME,
MGRNO ,
ADMRDEPT,
LOCATION

FROM DSN8810.DEPT;

Figure 252. VHDEPT

CREATE VIEW DSN8810.VEMP
AS SELECT ALL EMPNO ,

FIRSTNME,
MIDINIT ,
LASTNAME,
WORKDEPT

FROM DSN8810.EMP;

Figure 253. VEMP

CREATE VIEW DSN8810.VPROJ
AS SELECT ALL

PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTAFF,
PRSTDATE, PRENDATE, MAJPROJ

FROM DSN8810.PROJ ;

Figure 254. VPROJ

CREATE VIEW DSN8810.VACT
AS SELECT ALL ACTNO ,

ACTKWD ,
ACTDESC

FROM DSN8810.ACT ;

Figure 255. VACT

CREATE VIEW DSN8810.VPROJACT
AS SELECT ALL

PROJNO,ACTNO, ACSTAFF, ACSTDATE, ACENDATE
FROM DSN8810.PROJACT ;

Figure 256. VPROJACT

CREATE VIEW DSN8810.VEMPPROJACT
AS SELECT ALL

EMPNO, PROJNO, ACTNO, EMPTIME, EMSTDATE, EMENDATE
FROM DSN8810.EMPPROJACT ;

Figure 257. VEMPPROJACT

CREATE VIEW DSN8810.VDEPMG1
(DEPTNO, DEPTNAME, MGRNO, FIRSTNME, MIDINIT,
LASTNAME, ADMRDEPT)

AS SELECT ALL
DEPTNO, DEPTNAME, EMPNO, FIRSTNME, MIDINIT,
LASTNAME, ADMRDEPT
FROM DSN8810.DEPT LEFT OUTER JOIN DSN8810.EMP
ON MGRNO = EMPNO ;

Figure 258. VDEPMG1

1008 Application Programming and SQL Guide



CREATE VIEW DSN8810.VEMPDPT1
(DEPTNO, DEPTNAME, EMPNO, FRSTINIT, MIDINIT,
LASTNAME, WORKDEPT)

AS SELECT ALL
DEPTNO, DEPTNAME, EMPNO, SUBSTR(FIRSTNME, 1, 1), MIDINIT,
LASTNAME, WORKDEPT
FROM DSN8810.DEPT RIGHT OUTER JOIN DSN8810.EMP
ON WORKDEPT = DEPTNO ;

Figure 259. VEMPDPT1

CREATE VIEW DSN8810.VASTRDE1
(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,
DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)
AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,
D1.LASTNAME, ’1’,
D2.DEPTNO,D2.DEPTNAME,D2.MGRNO,D2.FIRSTNME,D2.MIDINIT,
D2.LASTNAME
FROM DSN8810.VDEPMG1 D1, DSN8810.VDEPMG1 D2
WHERE D1.DEPTNO = D2.ADMRDEPT ;

Figure 260. VASTRDE1

CREATE VIEW DSN8810.VASTRDE2
(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,
DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)
AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,
D1.LASTNAME,’2’,
D1.DEPTNO,D1.DEPTNAME,E2.EMPNO,E2.FIRSTNME,E2.MIDINIT,
E2.LASTNAME
FROM DSN8810.VDEPMG1 D1, DSN8810.EMP E2
WHERE D1.DEPTNO = E2.WORKDEPT;

Figure 261. VASTRDE2

CREATE VIEW DSN8810.VPROJRE1
(PROJNO,PROJNAME,PROJDEP,RESPEMP,FIRSTNME,MIDINIT,
LASTNAME,MAJPROJ)
AS SELECT ALL

PROJNO,PROJNAME,DEPTNO,EMPNO,FIRSTNME,MIDINIT,
LASTNAME,MAJPROJ
FROM DSN8810.PROJ, DSN8810.EMP
WHERE RESPEMP = EMPNO ;

Figure 262. VPROJRE1

CREATE VIEW DSN8810.VPSTRDE1
(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,
PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)
AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME,
P2.PROJNO,P2.PROJNAME,P2.RESPEMP,P2.FIRSTNME,P2.MIDINIT,
P2.LASTNAME

FROM DSN8810.VPROJRE1 P1,
DSN8810.VPROJRE1 P2

WHERE P1.PROJNO = P2.MAJPROJ ;

Figure 263. VPSTRDE1

Appendix A. DB2 sample tables 1009



CREATE VIEW DSN8810.VPSTRDE2
(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,
PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)
AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME,
P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME

FROM DSN8810.VPROJRE1 P1
WHERE NOT EXISTS

(SELECT * FROM DSN8810.VPROJRE1 P2
WHERE P1.PROJNO = P2.MAJPROJ) ;

Figure 264. VPSTRDE2

CREATE VIEW DSN8810.VFORPLA
(PROJNO,PROJNAME,RESPEMP,PROJDEP,FRSTINIT,MIDINIT,LASTNAME)
AS SELECT ALL

F1.PROJNO,PROJNAME,RESPEMP,PROJDEP, SUBSTR(FIRSTNME, 1, 1),
MIDINIT, LASTNAME
FROM DSN8810.VPROJRE1 F1 LEFT OUTER JOIN DSN8810.EMPPROJACT F2
ON F1.PROJNO = F2.PROJNO;

Figure 265. VFORPLA

CREATE VIEW DSN8810.VSTAFAC1
(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,
EMPTIME,STDATE,ENDATE, TYPE)
AS SELECT ALL

PA.PROJNO, PA.ACTNO, AC.ACTDESC,’ ’, ’ ’, ’ ’, ’ ’,
PA.ACSTAFF, PA.ACSTDATE,
PA.ACENDATE,’1’

FROM DSN8810.PROJACT PA, DSN8810.ACT AC
WHERE PA.ACTNO = AC.ACTNO ;

Figure 266. VSTAFAC1

CREATE VIEW DSN8810.VSTAFAC2
(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,
EMPTIME,STDATE, ENDATE, TYPE)
AS SELECT ALL

EP.PROJNO, EP.ACTNO, AC.ACTDESC, EP.EMPNO,EM.FIRSTNME,
EM.MIDINIT, EM.LASTNAME, EP.EMPTIME, EP.EMSTDATE,
EP.EMENDATE,’2’

FROM DSN8810.EMPPROJACT EP, DSN8810.ACT AC, DSN8810.EMP EM
WHERE EP.ACTNO = AC.ACTNO AND EP.EMPNO = EM.EMPNO ;

Figure 267. VSTAFAC2

1010 Application Programming and SQL Guide



Storage of sample application tables
Figure 270 shows how the sample tables are related to databases and storage
groups. Two databases are used to illustrate the possibility. Normally, related data
is stored in the same database.

In addition to the storage group and databases shown in Figure 270, the storage
group DSN8G81U and database DSN8D81U are created when you run DSNTEJ2A.

CREATE VIEW DSN8810.VPHONE
(LASTNAME,
FIRSTNAME,
MIDDLEINITIAL,
PHONENUMBER,
EMPLOYEENUMBER,
DEPTNUMBER,
DEPTNAME)

AS SELECT ALL LASTNAME,
FIRSTNME,
MIDINIT ,
VALUE(PHONENO,’ ’),
EMPNO,
DEPTNO,
DEPTNAME

FROM DSN8810.EMP, DSN8810.DEPT
WHERE WORKDEPT = DEPTNO;

Figure 268. VPHONE

CREATE VIEW DSN8810.VEMPLP
(EMPLOYEENUMBER,
PHONENUMBER)

AS SELECT ALL EMPNO ,
PHONENO

FROM DSN8810.EMP ;

Figure 269. VEMPLP

Storage group:

Databases:

Table
spaces:

DSN8G 0vr

DSN8D A
application

data

vr DSN8D P
common for

programming
tables

vr

DSN8S D
department

table

vr DSN8S E
employee

table

vr

Separate
spaces for

other
application

tables

DSN8S P
common for

programming
tables

vr

vr is a 2-digit version identifer.

LOB spaces
for employee

photo and
resume table

DSN8D L
LOB application

data

vr

Figure 270. Relationship among sample databases and table spaces

Appendix A. DB2 sample tables 1011



Storage group
The default storage group, SYSDEFLT, created when DB2 is installed, is not used to
store sample application data. The storage group used to store sample application
data is defined by this statement:
CREATE STOGROUP DSN8G810

VOLUMES (DSNV01)
VCAT DSNC810;

Databases
The default database, created when DB2 is installed, is not used to store the
sample application data. DSN8D81P is the database that is used for tables that are
related to programs. The remainder of the databases are used for tables that are
related to applications. They are defined by the following statements:
CREATE DATABASE DSN8D81A

STOGROUP DSN8G810
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D81P
STOGROUP DSN8G810
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D81L
STOGROUP DSN8G810
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D81E
STOGROUP DSN8G810
BUFFERPOOL BP0
CCSID UNICODE;

CREATE DATABASE DSN8D81U
STOGROUP DSN8G81U
CCSID EBCDIC;

Table spaces
The following table spaces are explicitly defined by the following statements. The
table spaces not explicitly defined are created implicitly in the DSN8D81A
database, using the default space attributes.
CREATE TABLESPACE DSN8S81D

IN DSN8D81A
USING STOGROUP DSN8G810

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81E
IN DSN8D81A
USING STOGROUP DSN8G810

PRIQTY 20
SECQTY 20
ERASE NO

NUMPARTS 4
(PART 1 USING STOGROUP DSN8G810

PRIQTY 12

1012 Application Programming and SQL Guide

|
|
|

|
|
|
|
|
|
|
|



SECQTY 12,
PART 3 USING STOGROUP DSN8G810

PRIQTY 12
SECQTY 12)

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
COMPRESS YES
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81B
IN DSN8D81L
USING STOGROUP DSN8G810

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE
LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE LOB TABLESPACE DSN8S81M
IN DSN8D81L
LOG NO;

CREATE LOB TABLESPACE DSN8S81L
IN DSN8D81L
LOG NO;

CREATE LOB TABLESPACE DSN8S81N
IN DSN8D81L
LOG NO;

CREATE TABLESPACE DSN8S81C
IN DSN8D81P
USING STOGROUP DSN8G810

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE TABLE
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81P
IN DSN8D81A
USING STOGROUP DSN8G810

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE ROW
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81R
IN DSN8D81A
USING STOGROUP DSN8G810

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81S
IN DSN8D81A
USING STOGROUP DSN8G810

Appendix A. DB2 sample tables 1013



PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81Q
IN DSN8D81P
USING STOGROUP DSN8G810

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE PAGE
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81U
IN DSN8D81E
USING STOGROUP DSN8G810

PRIQTY 5
SECQTY 5
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID UNICODE;

1014 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|



Appendix B. Sample applications

This appendix describes the DB2 sample applications and the environments under
which each application runs. It also provides information on how to use the
applications, and how to print the application listings.

Several sample applications come with DB2 to help you with DB2 programming
techniques and coding practices within each of the four environments: batch, TSO,
IMS, and CICS. The sample applications contain various applications that might
apply to managing to company.

You can examine the source code for the sample application programs in the online
sample library included with the DB2 product. The name of this sample library is
prefix.SDSNSAMP.

Types of sample applications
Organization application: The organization application manages the following
company information:
v Department administrative structure
v Individual departments
v Individual employees.

Management of information about department administrative structures involves
how departments relate to other departments. You can view or change the
organizational structure of an individual department, and the information about
individual employees in any department. The organization application runs
interactively in the ISPF/TSO, IMS, and CICS environments and is available in
PL/I and COBOL.

Project application: The project application manages information about a
company's project activities, including the following:
v Project structures
v Project activity listings
v Individual project processing
v Individual project activity estimate processing
v Individual project staffing processing.

Each department works on projects that contain sets of related activities.
Information available about these activities includes staffing assignments,
completion-time estimates for the project as a whole, and individual activities
within a project. The project application runs interactively in IMS and CICS and is
available in PL/I only.

Phone application: The phone application lets you view or update individual
employee phone numbers. There are different versions of the application for
ISPF/TSO, CICS, IMS, and batch:
v ISPF/TSO applications use COBOL and PL/I.
v CICS and IMS applications use PL/I.
v Batch applications use C, C++, COBOL, FORTRAN, and PL/I.

Stored procedure applications: There are three sets of stored procedure
applications:

© Copyright IBM Corp. 1983, 2012 1015



v IFI applications
These applications let you pass DB2 commands from a client program to a
stored procedure, which runs the commands at a DB2 server using the
instrumentation facility interface (IFI). There are two sets of client programs and
stored procedures. One set has a PL/I client and stored procedure; the other set
has a C client and stored procedure.

v ODBA application
This application demonstrates how you can use the IMS ODBA interface to
access IMS databases from stored procedures. The stored procedure accesses the
IMS sample DL/I database. The client program and the stored procedure are
written in COBOL.

v Utilities stored procedure application
This application demonstrates how to call the utilities stored procedure. For
more information on the utilities stored procedure, see Appendix B of DB2
Utility Guide and Reference.

v SQL procedure applications
These applications demonstrate how to write, prepare, and invoke SQL
procedures. One set of applications demonstrates how to prepare SQL
procedures using JCL. The other set of applications shows how to prepare SQL
procedures using the SQL procedure processor. The client programs are written
in C.

v WLM refresh application
This application is a client program that calls the DB2–supplied stored procedure
WLM_REFRESH to refresh a WLM environment. This program is written in C.

v System parameter reporting application
This application is a client program that calls the DB2–supplied stored procedure
DSNWZP to display the current settings of system parameters. This program is
written in C.

All stored procedure applications run in the TSO batch environment.

User-defined function applications: The user-defined function applications consist
of a client program that invokes the sample user-defined functions and a set of
user-defined functions that perform the following functions:
v Convert the current date to a user-specified format
v Convert a date from one format to another
v Convert the current time to a user-specified format
v Convert a date from one format to another
v Return the day of the week for a user-specified date
v Return the month for a user-specified date
v Format a floating point number as a currency value
v Return the table name for a table, view, or alias
v Return the qualifier for a table, view or alias
v Return the location for a table, view or alias
v Return a table of weather information

All programs are written in C or C++ and run in the TSO batch environment.

LOB application: The LOB application demonstrates how to perform the following
tasks:
v Define DB2 objects to hold LOB data
v Populate DB2 tables with LOB data using the LOAD utility, or using INSERT

and UPDATE statements when the data is too large for use with the LOAD
utility

1016 Application Programming and SQL Guide



v Manipulate the LOB data using LOB locators

The programs that create and populate the LOB objects use DSNTIAD and run in
the TSO batch environment. The program that manipulates the LOB data is written
in C and runs under ISPF/TSO.

Using the sample applications
You can use the applications interactively by accessing data in the sample tables on
screen displays (panels). You can also access the sample tables in batch when using
the phone applications. Part 2 of DB2 Installation Guide contains detailed
information about using each application. All sample objects have PUBLIC
authorization, which makes the samples easier to run.

Application languages and environments:Table 189 shows the environments under
which each application runs, and the languages the applications use for each
environment.

Table 189. Application languages and environments

Programs ISPF/TSO IMS CICS Batch SPUFI

Dynamic SQL
programs

Assembler

PL/I

Exit routines Assembler Assembler Assembler Assembler Assembler

Organization COBOL COBOL

PL/I

COBOL

PL/I

Phone COBOL

PL/I

Assembler1

PL/I PL/I COBOL

FORTRAN

PL/I

C

C++

Project PL/I PL/I

SQLCA
formatting
routines

Assembler Assembler Assembler Assembler

Stored
procedures

COBOL PL/I

C

SQL

User-defined
functions

C

C++

LOBs C

Notes:

1. Assembler subroutine DSN8CA.

Application programs: Tables 190 through 192 on pages 1018 through 1020 provide
the program names, JCL member names, and a brief description of some of the
programs included for each of the three environments: TSO, IMS, and CICS.

Appendix B. Sample applications 1017



TSO
Table 190. Sample DB2 applications for TSO

Application Program name

Preparation
JCL member
name 1

Attachment
facility Description

Phone DSN8BC3 DSNTEJ2C DSNELI This COBOL batch program lists employee
telephone numbers and updates them if
requested.

Phone DSN8BD3 DSNTEJ2D DSNELI This C batch program lists employee telephone
numbers and updates them if requested.

Phone DSN8BE3 DSNTEJ2E DSNELI This C++ batch program lists employee
telephone numbers and updates them if
requested.

Phone DSN8BP3 DSNTEJ2P DSNELI This PL/I batch program lists employee
telephone numbers and updates them if
requested.

Phone DSN8BF3 DSNTEJ2F DSNELI This FORTRAN program lists employee
telephone numbers and updates them if
requested.

Organization DSN8HC3 DSNTEJ3C or
DSNTEJ6

DSNALI This COBOL ISPF program displays and
updates information about a local department. It
can also display and update information about
an employee at a local or remote location.

Phone DSN8SC3 DSNTEJ3C DSNALI This COBOL ISPF program lists employee
telephone numbers and updates them if
requested.

Phone DSN8SP3 DSNTEJ3P DSNALI This PL/I ISPF program lists employee
telephone numbers and updates them if
requested.

UNLOAD DSNTIAUL DSNTEJ2A DSNELI This assembler language program allows you to
unload the data from a table or view and to
produce LOAD utility control statements for the
data.

Dynamic SQL DSNTIAD DSNTIJTM DSNELI This assembler language program dynamically
executes non-SELECT statements read in from
SYSIN; that is, it uses dynamic SQL to execute
non-SELECT SQL statements.

Dynamic SQL DSNTEP2 DSNTEJ1P or
DSNTEJ1L

DSNELI This PL/I program dynamically executes SQL
statements read in from SYSIN. Unlike
DSNTIAD, this application can also execute
SELECT statements.

1018 Application Programming and SQL Guide



Table 190. Sample DB2 applications for TSO (continued)

Application Program name

Preparation
JCL member
name 1

Attachment
facility Description

Stored
procedures

DSN8EP1 DSNTEJ6P DSNELI These applications consist of a calling program,
a stored procedure program, or both. Samples
that are prepared by jobs DSNTEJ6P, DSNTEJ6S,
DSNTEJ6D, and DSNTEJ6T execute DB2
commands using the instrumentation facility
interface (IFI). DSNTEJ6P and DSNTEJ6S
prepare a PL/I version of the application.
DSNTEJ6D and DSNTEJ6T prepare a version in
C. The C stored procedure uses result sets to
return commands to the client. The sample that
is prepared by DSNTEJ61 and DSNTEJ62
demonstrates a stored procedure that accesses
IMS databases through the ODBA interface. The
sample that is prepared by DSNTEJ6U invokes
the utilities stored procedure. The sample that is
prepared by jobs DSNTEJ63 and DSNTEJ64
demonstrates how to prepare an SQL procedure
using JCL. The sample that is prepared by job
DSNTEJ65 demonstrates how to prepare an SQL
procedure using the SQL procedure processor.
The sample that is prepared by job DSNTEJ6W
demonstrates how to prepare and run a client
program that calls a DB2–supplied stored
procedure to refresh a WLM environment. The
sample that is prepared by job DSNTEJ6Z
demonstrates how to prepare and run a client
program that calls a DB2–supplied stored
procedure to display the current settings of
system parameters.

DSN8EP2 DSNTEJ6S DSNALI

DSN8EPU DSNTEJ6U DSNELI

DSN8ED1 DSNTEJ6D DSNELI

DSN8ED2 DSNTEJ6T DSNALI

DSN8EC1 DSNTEJ61 DSNRLI

DSN8EC2 DSNTEJ62 DSNELI

DSN8ES1 DSNTEJ63 DSNELI

DSN8ED3 DSNTEJ64 DSNELI

DSN8ES2 DSNTEJ65 DSNELI

DSN8ED6 DSNTEJ6W DSNELI

DSN8ED7 DSNTEJ6Z DSNELI

User-defined
functions

DSN8DUAD DSNTEJ2U DSNELI These applications consist of a set of
user-defined scalar functions that can be
invoked through SPUFI or DSNTEP2 and one
user-defined table function, DSN8DUWF, that
can be invoked by client program DSN8DUWC.
DSN8EUDN and DSN8EUMN are written in
C++. All other programs are written in C.

DSN8DUAT DSNTEJ2U DSNELI

DSN8DUCD DSNTEJ2U DSNELI

DSN8DUCT DSNTEJ2U DSNELI

DSN8DUCY DSNTEJ2U DSNELI

DSN8DUTI DSNTEJ2U DSNELI

DSN8DUWC DSNTEJ2U DSNELI

DSN8DUWF DSNTEJ2U DSNELI

DSN8EUDN DSNTEJ2U DSNELI

DSN8EUMN DSNTEJ2U DSNELI

LOBs DSN8DLPL DSNTEJ71 DSNELI These applications demonstrate how to populate
a LOB column that is greater than 32KB,
manipulate the data using the POSSTR and
SUBSTR built-in functions, and display the data
in ISPF using GDDM®.

DSN8DLCT DSNTEJ71 DSNELI

DSN8DLRV DSNTEJ73 DSNELI

DSN8DLPV DSNTEJ75 DSNELI

Notes:

1. For information about the DD statements in the sample JCL, see “Using the
DB2 precompiler” on page 474.

Appendix B. Sample applications 1019

#
#



IMS
Table 191. Sample DB2 applications for IMS

Application Program name JCL member name1 Description

Organization DSN8IC0
DSN8IC1
DSN8IC2

DSNTEJ4C IMS COBOL
Organization
Application

Organization DSN8IP0
DSN8IP1
DSN8IP2

DSNTEJ4P IMS PL/I
Organization
Application

Project DSN8IP6
DSN8IP7
DSN8IP8

DSNTEJ4P IMS PL/I Project
Application

Phone DSN8IP3 DSNTEJ4P IMS PL/I Phone
Application. This
program lists
employee telephone
numbers and updates
them if requested.

Notes:

1. For information about the DD statements in the sample JCL, see “Using the
DB2 precompiler” on page 474.

CICS
Table 192. Sample DB2 applications for CICS

Application Program name JCL member name1 Description

Organization DSN8CC0
DSN8CC1
DSN8CC2

DSNTEJ5C CICS COBOL
Organization
Application

Organization DSN8CP0
DSN8CP1
DSN8CP2

DSNTEJ5P CICS PL/I
Organization
Application

Project DSN8CP6
DSN8CP7
DSN8CP8

DSNTEJ5P CICS PL/I Project
Application

Phone DSN8CP3 DSNTEJ5P CICS PL/I Phone
Application. This
program lists
employee telephone
numbers and updates
them if requested.

Notes:

1. For information about the DD statements in the sample JCL, see “Using the
DB2 precompiler” on page 474.

1020 Application Programming and SQL Guide

#
#

#
#



Appendix C. Running the productivity-aid sample programs

DB2 provides four sample programs that many users find helpful as productivity
aids. These programs are shipped as source code, so you can modify them to meet
your needs. The programs are:

DSNTIAUL The sample unload program. This program, which is written in
assembler language, is a simple alternative to the UNLOAD utility.
It unloads some or all rows from up to 100 DB2 tables. With
DSNTIAUL, you can unload data of any DB2 built-in data type or
distinct type. You can unload up to 32 KB of data from a LOB
column. DSNTIAUL unloads the rows in a form that is compatible
with the LOAD utility and generates utility control statements for
LOAD. DSNTIAUL also lets you execute any SQL non-SELECT
statement that can be executed dynamically. See “Running
DSNTIAUL” on page 1022.

DSNTIAD A sample dynamic SQL program that is written in assembler
language. With this program, you can execute any SQL statement
that can be executed dynamically, except a SELECT statement. See
“Running DSNTIAD” on page 1026.

DSNTEP2 A sample dynamic SQL program that is written in the PL/I
language. With this program, you can execute any SQL statement
that can be executed dynamically. You can use the source version
of DSNTEP2 and modify it to meet your needs, or, if you do not
have a PL/I compiler at your installation, you can use the object
code version of DSNTEP2. See “Running DSNTEP2 and DSNTEP4”
on page 1028.

DSNTEP4 A sample dynamic SQL program that is written in the PL/I
language. This program is identical to DSNTEP2 except DSNTEP4
uses multi-row fetch for increased performance. You can use the
source version of DSNTEP4 and modify it to meet your needs, or,
if you do not have a PL/I compiler at your installation, you can
use the object code version of DSNTEP4. See “Running DSNTEP2
and DSNTEP4” on page 1028.

Because these four programs also accept the static SQL statements CONNECT, SET
CONNECTION, and RELEASE, you can use the programs to access DB2 tables at
remote locations.

Retrieval of UTF-16 Unicode data: You can use DSNTEP2, DSNTEP4, and
DSNTIAUL to retrieve Unicode UTF-16 graphic data. However, these programs
might not be able to display some characters, if those characters have no mapping
in the target SBCS EBCDIC CCSID.

DSNTIAUL and DSNTIAD are shipped only as source code, so you must
precompile, assemble, link, and bind them before you can use them. If you want to
use the source code version of DSNTEP2 or DSNTEP4, you must precompile,
compile, link, and bind it. You need to bind the object code version of DSNTEP2 or
DSNTEP4 before you can use it. Usually a system administrator prepares the
programs as part of the installation process. Table 193 on page 1022 indicates
which installation job prepares each sample program. All installation jobs are in
data set DSN810.SDSNSAMP.

© Copyright IBM Corp. 1983, 2012 1021

||
|
|
|
|
|
|

#
#
#
#

|
|
|



Table 193. Jobs that prepare DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Program name Program preparation job

DSNTIAUL DSNTEJ2A

DSNTIAD DSNTIJTM

DSNTEP2 (source) DSNTEJ1P

DSNTEP2 (object) DSNTEJ1L

DSNTEP4 (source) DSNTEJ1P

DSNTEP4 (object) DSNTEJ1L

To run the sample programs, use the DSN RUN command, which is described in
detail in Chapter 2 of DB2 Command Reference. Table 194 lists the load module
name and plan name that you must specify, and the parameters that you can
specify when you run each program. See the following sections for the meaning of
each parameter.

Table 194. DSN RUN option values for DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Program name Load module Plan Parameters

DSNTIAUL DSNTIAUL DSNTIB81 SQL
number of rows per fetch
TOLWARN(NO|YES)

DSNTIAD DSNTIAD DSNTIA81 RC0
SQLTERM(termchar)

DSNTEP2 DSNTEP2 DSNTEP81 ALIGN(MID)
or ALIGN(LHS)

NOMIXED or MIXED
SQLTERM(termchar)
TOLWARN(NO|YES)

DSNTEP4 DSNTEP4 DSNTP481 ALIGN(MID)
or ALIGN(LHS)

NOMIXED or MIXED
SQLTERM(termchar)
TOLWARN(NO|YES)

The remainder of this chapter contains the following information about running
each program:
v Descriptions of the input parameters
v Data sets that you must allocate before you run the program
v Return codes from the program
v Examples of invocation

See the sample jobs that are listed in Table 193 for a working example of each
program.

Running DSNTIAUL
This section contains information that you need when you run DSNTIAUL,
including parameters, data sets, return codes, and invocation examples.

To retrieve data from a remote site by using the multi-row fetch capability for
enhanced performance, bind DSNTIAUL with the DBPROTOCOL(DRDA) option.
To run DSNTIAUL remotely when it is bound with the DBPROTOCOL(PRIVATE)
option, switch DSNTIAUL to single-row fetch mode by specifying 1 for the

1022 Application Programming and SQL Guide

#

#

#

#
#
#
#



number of rows per fetch parameter. When multi-row fetch is used, parallelism
might be disabled in the last parallel group in the top-level query block for a
query. For very simple queries, parallelism might be disabled for the entire query
when multi-row fetch is used. To obtain full parallelism when running DSNTIAUL,
switch DSNTIAUL to single-row fetch mode by specifying 1 for the number of
rows per fetch parameter.

DSNTIAUL parameters:

SQL
Specify SQL to indicate that your input data set contains one or more complete
SQL statements, each of which ends with a semicolon. You can include any
SQL statement that can be executed dynamically in your input data set. In
addition, you can include the static SQL statements CONNECT, SET
CONNECTION, or RELEASE. DSNTIAUL uses the SELECT statements to
determine which tables to unload and dynamically executes all other
statements except CONNECT, SET CONNECTION, and RELEASE. DSNTIAUL
executes CONNECT, SET CONNECTION, and RELEASE statically to connect
to remote locations.

number of rows per fetch
Specify a number from 1 to 32767 to specify the number of rows per fetch that
DSNTIAUL retrieves. If you do not specify this number, DSNTIAUL retrieves
100 rows per fetch. This parameter can be specified with the SQL parameter.

Specify 1 to retrieve data from a remote site when DSNTIAUL is bound with
the DBPROTOCOL(PRIVATE) option.

TOLWARN
Specify NO (the default) or YES to indicate whether DSNTIAUL continues to
retrieve rows after receiving an SQL warning:

(NO) If a warning occurs when DSNTIAUL executes an OPEN or FETCH to
retrieve rows, DSNTIAUL stops retrieving rows. If the SQLWARN1,
SQLWARN2, SQLWARN6, or SQLWARN7 flag is set when DSNTIAUL
executes a FETCH to retrieve rows, DSNTIAUL continues to retrieve
rows.

Exception:

(YES) If a warning occurs when DSNTIAUL executes an OPEN or FETCH to
retrieve rows, DSNTIAUL continues to retrieve rows.

If you do not specify the SQL parameter, your input data set must contain one or
more single-line statements (without a semicolon) that use the following syntax:
table or view name [WHERE conditions] [ORDER BY columns]

Each input statement must be a valid SQL SELECT statement with the clause
SELECT * FROM omitted and with no ending semicolon. DSNTIAUL generates a
SELECT statement for each input statement by appending your input line to
SELECT * FROM, then uses the result to determine which tables to unload. For this
input format, the text for each table specification can be a maximum of 72 bytes
and must not span multiple lines.

You can use the input statements to specify SELECT statements that join two or
more tables or select specific columns from a table. If you specify columns, you
need to modify the LOAD statement that DSNTIAUL generates.

DSNTIAUL data sets:

Appendix C. Running the productivity-aid sample programs 1023

#
#
#
#
#
#

|
|
|
|

#
#

#
#
#

##
#
#
#
#

#

##
#



Data set Description

SYSIN Input data set.

You cannot enter comments in DSNTIAUL input.

The record length for the input data set must be at least 72 bytes.
DSNTIAUL reads only the first 72 bytes of each record.

SYSPRINT Output data set. DSNTIAUL writes informational and error
messages in this data set.

The record length for the SYSPRINT data set is 121 bytes.

SYSPUNCH Output data set. DSNTIAUL writes the LOAD utility control
statements in this data set.

SYSRECnn Output data sets. The value nn ranges from 00 to 99. You can have
a maximum of 100 output data sets for a single execution of
DSNTIAUL. Each data set contains the data that is unloaded when
DSNTIAUL processes a SELECT statement from the input data set.
Therefore, the number of output data sets must match the number
of SELECT statements (if you specify parameter SQL) or table
specifications in your input data set.

Define all data sets as sequential data sets. You can specify the record length and
block size of the SYSPUNCH and SYSRECnn data sets. The maximum record
length for the SYSPUNCH and SYSRECnn data sets is 32760 bytes.

DSNTIAUL return codes:

Table 195. DSNTIAUL return codes

Return code Meaning

0 Successful completion.

4 An SQL statement received a warning code.

v If TOLWARN(YES) is specified, and the warning occurred on a FETCH
or OPEN during the processing of a SELECT statement, DB2 performs
the unload operation.

v Otherwise if the SQL statement was a SELECT statement, DB2 did not
perform the associated unload operation.

If DB2 returns a +394, which indicates that it is using optimization hints,
or a +395, which indicates one or more invalid optimization hints, DB2
performs the unload operation.

8 An SQL statement received an error code. If the SQL statement was a
SELECT statement, DB2 did not perform the associated unload operation.

12 DSNTIAUL could not open a data set, an SQL statement returned a
severe error code (-8nn or -9nn), or an error occurred in the SQL message
formatting routine.

Examples of DSNTIAUL invocation: Suppose that you want to unload the rows for
department D01 from the project table. Because you can fit the table specification
on one line, and you do not want to execute any non-SELECT statements, you do
not need the SQL parameter. Your invocation looks like the one that is shown in
Figure 271 on page 1025:

1024 Application Programming and SQL Guide

##

#
#
#

#
#

#
#
#



If you want to obtain the LOAD utility control statements for loading rows into a
table, but you do not want to unload the rows, you can set the data set names for
the SYSRECnn data sets to DUMMY. For example, to obtain the utility control
statements for loading rows into the department table, you invoke DSNTIAUL as
shown in Figure 272:

Now suppose that you also want to use DSNTIAUL to do these things:
v Unload all rows from the project table
v Unload only rows from the employee table for employees in departments with

department numbers that begin with D, and order the unloaded rows by
employee number

v Lock both tables in share mode before you unload them
v Retrieve 250 rows per fetch

For these activities, you must specify the SQL parameter and specify the number of
rows per fetch when you run DSNTIAUL. Your DSNTIAUL invocation is shown in
Figure 273 on page 1026:

//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) -

LIB(’DSN810.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),
// VOL=SER=SCR03
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *
DSN8810.PROJ WHERE DEPTNO='D01'

Figure 271. DSNTIAUL invocation without the SQL parameter

//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) -

LIB(’DSN810.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DUMMY
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *
DSN8810.DEPT

Figure 272. DSNTIAUL invocation to obtain LOAD control statements

Appendix C. Running the productivity-aid sample programs 1025

|

|
|



Running DSNTIAD
This section contains information that you need when you run DSNTIAD,
including parameters, data sets, return codes, and invocation examples.

DSNTIAD parameters:

RC0
If you specify this parameter, DSNTIAD ends with return code 0, even if the
program encounters SQL errors. If you do not specify RC0, DSNTIAD ends
with a return code that reflects the severity of the errors that occur. Without
RC0, DSNTIAD terminates if more than 10 SQL errors occur during a single
execution.

SQLTERM(termchar)
Specify this parameter to indicate the character that you use to end each SQL
statement. You can use any special character except one of those listed in
Table 196. SQLTERM(;) is the default.

Table 196. Invalid special characters for the SQL terminator

Name Character Hexadecimal representation

blank X'40'

comma , X'6B'

double quotation mark " X'7F'

left parenthesis ( X'4D'

right parenthesis ) X'5D'

single quotation mark ' X'7D'

underscore _ X'6D'

//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) PARMS('SQL,250') -

LIB(’DSN810.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),
// VOL=SER=SCR03
//SYSREC01 DD DSN=DSN8UNLD.SYSREC01,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),
// VOL=SER=SCR03
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *
LOCK TABLE DSN8810.EMP IN SHARE MODE;
LOCK TABLE DSN8810.PROJ IN SHARE MODE;
SELECT * FROM DSN8810.PROJ;
SELECT * FROM DSN8810.EMP

WHERE WORKDEPT LIKE ’D%’
ORDER BY EMPNO;

Figure 273. DSNTIAUL invocation with the SQL parameter

1026 Application Programming and SQL Guide

|



Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons.

Example: Suppose that you specify the parameter SQLTERM(#) to indicate that
the character # is the statement terminator. Then a CREATE TRIGGER
statement with embedded semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like the
following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

LANGUAGE SQL
BEGIN

DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;

END #

Be careful to choose a character for the statement terminator that is not used
within the statement.

DSNTIAD data sets:

Data set Description

SYSIN Input data set. In this data set, you can enter any number of
non-SELECT SQL statements, each terminated with a semicolon. A
statement can span multiple lines, but DSNTIAD reads only the
first 72 bytes of each line.

You cannot enter comments in DSNTIAD input.

SYSPRINT Output data set. DSNTIAD writes informational and error
messages in this data set. DSNTIAD sets the record length of this
data set to 121 bytes and the block size to 1210 bytes.

Define all data sets as sequential data sets.

DSNTIAD return codes:

Table 197. DSNTIAD return codes

Return code Meaning

0 Successful completion, or the user-specified parameter RC0.

4 An SQL statement received a warning code.

8 An SQL statement received an error code.

12 DSNTIAD could not open a data set, the length of an SQL statement was
more than 32760 bytes, an SQL statement returned a severe error code
(-8nn or -9nn), or an error occurred in the SQL message formatting
routine.

Example of DSNTIAD invocation: Suppose that you want to execute 20 UPDATE
statements, and you do not want DSNTIAD to terminate if more than 10 errors

Appendix C. Running the productivity-aid sample programs 1027

#
#

#
#
#
#
#
#
#
#



occur. Your invocation looks like the one that is shown in Figure 274:

Running DSNTEP2 and DSNTEP4
This section contains information that you need when you run DSNTEP2 or
DSNTEP4, including parameters, data sets, return codes, and invocation examples.

DSNTEP4 is identical to DSNTEP2 except that it uses multi-row fetch for increased
performance. When multi-row fetch is used, parallelism might be disabled in the
last parallel group in the top-level query block for a query. For very simple queries
parallelism might be disabled for the entire query when multi-row fetch is used. To
obtain full parallelism, either use DSNTEP2 or specify the control option SET
MULT_FETCH 1 for DSNTEP4.

DSNTEP2 and DSNTEP4 write their results to the data set that is defined by the
SYSPRINT DD statement. SYSPRINT data must have a logical record length of 133
bytes (LRECL=133). Otherwise, the program issues return code 12 with abend
U4038 and reason code 1. This abend occurs due to the PL/I file exception error
IBM0201S ONCODE=81. The following error message is issued: The
UNDEFINEDFILE condition was raised because of conflicting DECLARE and
OPEN attributes (FILE= SYSPRINT).

Note: When you allocate a new data set with the SYSPRINT DD statement, either
specify a DCB with LRECL=133, or do not specify the DCB parameter.

DSNTEP2 and DSNTEP4 parameters:

ALIGN(MID) or ALIGN(LHS)
Specifies the alignment.

ALIGN(MID)
Specifies that DSNTEP2 or DSNTEP4 output should be centered.
ALIGN(MID) is the default.

ALIGN(LHS)
Specifies that the DSNTEP2 or DSNTEP4 output should be left-justified.

NOMIXED or MIXED
Specifies whether DSNTEP2 or DSNTEP4 contains any DBCS characters.

NOMIXED
Specifies that the DSNTEP2 or DSNTEP4 input contains no DBCS
characters. NOMIXED is the default.

//RUNTIAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA81) PARMS('RC0') -

LIB(’DSN810.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
UPDATE DSN8810.PROJ SET DEPTNO='J01' WHERE DEPTNO='A01';
UPDATE DSN8810.PROJ SET DEPTNO='J02' WHERE DEPTNO='A02';...
UPDATE DSN8810.PROJ SET DEPTNO='J20' WHERE DEPTNO='A20';

Figure 274. DSNTIAD Invocation with the RC0 Parameter

1028 Application Programming and SQL Guide

|
|

#
#
#
#
#
#

#
#
#
#
#
#
#

#
#

|

|

|

|

|



MIXED
Specifies that the DSNTEP2 or DSNTEP4 input contains some DBCS
characters.

SQLTERM(termchar)
Specifies the character that you use to end each SQL statement. You can use
any character except one of those that are listed in Table 196 on page 1026.
SQLTERM(;) is the default.

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons.

Example: Suppose that you specify the parameter SQLTERM(#) to indicate that
the character # is the statement terminator. Then a CREATE TRIGGER
statement with embedded semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like the
following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

LANGUAGE SQL
BEGIN

DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;

END #

Be careful to choose a character for the statement terminator that is not used
within the statement.

If you want to change the SQL terminator within a series of SQL statements,
you can use the --#SET TERMINATOR control statement.

Example: Suppose that you have an existing set of SQL statements to which
you want to add a CREATE TRIGGER statement that has embedded
semicolons. You can use the default SQLTERM value, which is a semicolon, for
all of the existing SQL statements. Before you execute the CREATE TRIGGER
statement, include the --#SET TERMINATOR # control statement to change the
SQL terminator to the character #:
SELECT * FROM DEPT;
SELECT * FROM ACT;
SELECT * FROM EMPPROJACT;
SELECT * FROM PROJ;
SELECT * FROM PROJACT;
--#SET TERMINATOR #
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

See the following discussion of the SYSIN data set for more information about
the --#SET control statement.

Appendix C. Running the productivity-aid sample programs 1029

|

#
#

#
#
#
#
#
#
#
#



TOLWARN
Indicates whether DSNTEP2 or DSNTEP4 continues to process SQL SELECT
statements after receiving an SQL warning. You can specify one of the
following values:

NO Indicates that the program stops processing the SELECT statement if a
warning occurs when the program executes an OPEN or FETCH for a
SELECT statement. NO is the default value for TOLWARN.

The following exceptions exist:
v If SQLCODE +445 or SQLCODE +595 occurs when DSNTEP2 or

DSNTEP4 executes a FETCH for a SELECT statement, the program
continues to process the SELECT statement.

v If SQLCODE +802 occurs when DSNTEP2 or DSNTEP4 executes a
FETCH for a SELECT statement, the program continues to process the
SELECT statement if the TOLARTHWRN control statement is set to YES.

YES
Indicates that the program continues to process the SELECT statement if a
warning occurs when the program executes an OPEN or FETCH for a
SELECT statement.

DSNTEP2 and DSNTEP4 data sets:

Data Set Description

SYSIN Input data set. In this data set, you can enter any number of SQL
statements, each terminated with a semicolon. A statement can
span multiple lines, but DSNTEP2 or DSNTEP4 reads only the first
72 bytes of each line.

You can enter comments in DSNTEP2 or DSNTEP4 input with an
asterisk (*) in column 1 or two hyphens (--) anywhere on a line.
Text that follows the asterisk is considered to be comment text.
Text that follows two hyphens can be comment text or a control
statement. Comments are not considered in dynamic statement
caching. Comments and control statements cannot span lines.

You can enter control statements of the following form in the
DSNTEP2 and DSNTEP4 input data set:
--#SET control-option value

The control options are:

TERMINATOR
The SQL statement terminator. value is any single-byte
character other than one of those that are listed in Table 196 on
page 1026. The default is the value of the SQLTERM parameter.

ROWS_FETCH
The number of rows that are to be fetched from the result
table. value is a numeric literal between -1 and the number of
rows in the result table. -1 means that all rows are to be
fetched. The default is -1.

ROWS_OUT
The number of fetched rows that are to be sent to the output
data set. value is a numeric literal between -1 and the number
of fetched rows. -1 means that all fetched rows are to be sent to
the output data set. The default is -1.

1030 Application Programming and SQL Guide

#
#
#
#

##
#
#

#

#
#
#

#
#
#

#
#
#
#

|

|

|

|
|

|



MULT_FETCH
This option is valid only for DSNTEP4. Use MULT_FETCH to
specify the number of rows that are to be fetched at one time
from the result table. The default fetch amount for DSNTEP4 is
100 rows, but you can specify from 1 to 32676 rows.

TOLWARN
Indicates whether DSNTEP2 or DSNTEP4 continues to process
SQL SELECT statements after receiving an SQL warning. You
can specify one of the following values:

NO Indicates that the program stops processing the SELECT
statement if a warning occurs when the program executes
an OPEN or FETCH for a SELECT statement. NO is the
default value for TOLWARN.

The following exceptions exist:
v If SQLCODE +445 or SQLCODE +595 occurs when

DSNTEP2 or DSNTEP4 executes a FETCH for a SELECT
statement, the program continues to process the SELECT
statement.

v If SQLCODE +802 occurs when DSNTEP2 or DSNTEP4
executes a FETCH for a SELECT statement, the program
continues to process the SELECT statement if the
TOLARTHWRN control statement is set to YES.

YES
Indicates that the program continues to process the
SELECT statement if a warning occurs when the program
executes an OPEN or FETCH for a SELECT statement.

TOLARTHWRN
Indicates whether DSNTEP2 and DSNTEP4 continue to process
an SQL SELECT statement after an arithmetic SQL warning
(SQLCODE +802) is returned. value is either NO (the default)
or YES.

MAXERRORS
Specifies that number of errors that DSNTEP2 and DSNTEP4
handle before processing stops. The default is 10.

SYSPRINT Output data set. DSNTEP2 and DSNTEP4 write informational and
error messages in this data set. DSNTEP2 and DSNTEP4 write
output records of no more than 133 bytes.

Define all data sets as sequential data sets.

DSNTEP2 and DSNTEP4 return codes:

Table 198. DSNTEP2 and DSNTEP4 return codes

Return code Meaning

0 Successful completion.

4 An SQL statement received a warning code.

8 An SQL statement received an error code.

12 The length of an SQL statement was more than 32760 bytes, an SQL
statement returned a severe error code (-8nn or -9nn), or an error
occurred in the SQL message formatting routine.

Appendix C. Running the productivity-aid sample programs 1031

|
|
|
|
|

#
#
#
#

##
#
#
#

#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#
#

#
#
#

|
|

|

|



Example of DSNTEP2 invocation: Suppose that you want to use DSNTEP2 to
execute SQL SELECT statements that might contain DBCS characters. You also
want left-aligned output. Your invocation looks like the one in Figure 275:

Example of DSNTEP4 invocation: Suppose that you want to use DSNTEP4 to
execute SQL SELECT statements that might contain DBCS characters, and you
want center-aligned output. You also want DSNTEP4 to fetch 250 rows at a time.
Your invocation looks like the one in Figure 276:

//RUNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTEP2) PLAN(DSNTEP81) PARMS('/ALIGN(LHS) MIXED') -

LIB(’DSN810.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
SELECT * FROM DSN8810.PROJ;

Figure 275. DSNTEP2 invocation with the ALIGN(LHS) and MIXED parameters

//RUNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTEP4) PLAN(DSNTP481) PARMS('/ALIGN(MID) MIXED') -

LIB(’DSN810.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
--#SET MULT_FETCH 250
SELECT * FROM DSN8810.EMP;

Figure 276. DSNTEP4 invocation with the ALIGN(MID) and MIXED parameters and using the
MULT_FETCH control option

1032 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|



Appendix D. Programming examples

This appendix contains the following programming examples:
v Sample COBOL dynamic SQL program
v “Sample dynamic and static SQL in a C program” on page 1045
v “Sample DB2 REXX application” on page 1049
v “Sample COBOL program using DRDA access” on page 1063
v “Sample COBOL program using DB2 private protocol access” on page 1071
v “Examples of using stored procedures” on page 1077

To prepare and run these applications, use the JCL in DSN810.SDSNSAMP as a
model for your JCL. See Appendix B, “Sample applications,” on page 1015 for a list
JCL procedures for preparing sample programs. See Part 2 of DB2 Installation Guide
for information on the appropriate compiler options to use for each language.

Sample COBOL dynamic SQL program
Chapter 24, “Coding dynamic SQL in application programs,” on page 595 describes
three variations of dynamic SQL statements:
v Non-SELECT statements
v Fixed-List SELECT statements

In this case, you know the number of columns returned and their data types
when you write the program.

v Varying-List SELECT statements.
In this case, you do not know the number of columns returned and their data
types when you write the program.

This appendix documents a technique of coding varying list SELECT statements in
COBOL. See DB2 Program Directory for a list of the supported versions of COBOL.

This example program does not support BLOB, CLOB, or DBCLOB data types.

Pointers and based variables
COBOL has a POINTER type and a SET statement that provide pointers and based
variables.

The SET statement sets a pointer from the address of an area in the linkage section
or another pointer; the statement can also set the address of an area in the linkage
section. Figure 278 on page 1036 provides these uses of the SET statement. The SET
statement does not permit the use of an address in the WORKING-STORAGE
section.

Storage allocation
COBOL does not provide a means to allocate main storage within a program. You
can achieve the same end by having an initial program which allocates the storage,
and then calls a second program that manipulates the pointer. (COBOL does not
permit you to directly manipulate the pointer because errors and abends are likely
to occur.)

© Copyright IBM Corp. 1983, 2012 1033

#
#



The initial program is extremely simple. It includes a working storage section that
allocates the maximum amount of storage needed. This program then calls the
second program, passing the area or areas on the CALL statement. The second
program defines the area in the linkage section and can then use pointers within
the area.

If you need to allocate parts of storage, the best method is to use indexes or
subscripts. You can use subscripts for arithmetic and comparison operations.

Example
Figure 277 shows an example of the initial program DSN8BCU1 that allocates the
storage and calls the second program DSN8BCU2 shown in Figure 278 on page
1036. DSN8BCU2 then defines the passed storage areas in its linkage section and
includes the USING clause on its PROCEDURE DIVISION statement.

Defining the pointers, then redefining them as numeric, permits some
manipulation of the pointers that you cannot perform directly. For example, you
cannot add the column length to the record pointer, but you can add the column
length to the numeric value that redefines the pointer.

**** DSN8BCU1- DB2 SAMPLE BATCH COBOL UNLOAD PROGRAM ***********
* *
* MODULE NAME = DSN8BCU1 *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *
* UNLOAD PROGRAM *
* BATCH *
* ENTERPRISE COBOL FOR Z/OS OR *
* IBM COBOL FOR MVS & VM *
* *
* FUNCTION = THIS MODULE PROVIDES THE STORAGE NEEDED BY *
* DSN8BCU2 AND CALLS THAT PROGRAM. *
* *
* NOTES = *
* DEPENDENCIES = NONE. *
* *
* RESTRICTIONS = *
* THE MAXIMUM NUMBER OF COLUMNS IS 750, *
* WHICH IS THE SQL LIMIT. *
* *
* DATA RECORDS ARE LIMITED TO 32700 BYTES, *
* INCLUDING DATA, LENGTHS FOR VARCHAR DATA, *
* AND SPACE FOR NULL INDICATORS. *
* *
* MODULE TYPE = COBOL PROGRAM *
* PROCESSOR = ENTERPRISE COBOL FOR Z/OS OR *
* IBM COBOL FOR MVS & VM *
* MODULE SIZE = SEE LINK EDIT *
* ATTRIBUTES = REENTRANT *
* *

Figure 277. Initial program that allocates storage (Part 1 of 2)

1034 Application Programming and SQL Guide



* ENTRY POINT = DSN8BCU1 *
* PURPOSE = SEE FUNCTION *
* LINKAGE = INVOKED FROM DSN RUN *
* INPUT = NONE *
* OUTPUT = NONE *
* *
* EXIT-NORMAL = RETURN CODE 0 NORMAL COMPLETION *
* *
* EXIT-ERROR = *
* RETURN CODE = NONE *
* ABEND CODES = NONE *
* ERROR-MESSAGES = NONE *
* *
* EXTERNAL REFERENCES = *
* ROUTINES/SERVICES = *
* DSN8BCU2 - ACTUAL UNLOAD PROGRAM *
* *
* DATA-AREAS = NONE *
* CONTROL-BLOCKS = NONE *
* *
* TABLES = NONE *
* CHANGE-ACTIVITY = NONE *
* *
* *PSEUDOCODE* *
* *
* PROCEDURE *
* CALL DSN8BCU2. *
* END. *
*---------------------------------------------------------------*
/
IDENTIFICATION DIVISION.
*-----------------------
PROGRAM-ID. DSN8BCU1
*
ENVIRONMENT DIVISION.
*
CONFIGURATION SECTION.
DATA DIVISION.
*
WORKING-STORAGE SECTION.
*
01 WORKAREA-IND.

02 WORKIND PIC S9(4) COMP OCCURS 750 TIMES.
01 RECWORK.

02 RECWORK-LEN PIC S9(8) COMP VALUE 32700.
02 RECWORK-CHAR PIC X(1) OCCURS 32700 TIMES.

*
PROCEDURE DIVISION.
*

CALL ’DSN8BCU2’ USING WORKAREA-IND RECWORK.
GOBACK.

Figure 277. Initial program that allocates storage (Part 2 of 2)

Appendix D. Programming examples 1035



**** DSN8BCU2- DB2 SAMPLE BATCH COBOL UNLOAD PROGRAM ***********
* *
* MODULE NAME = DSN8BCU2 *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *
* UNLOAD PROGRAM *
* BATCH *
* ENTERPRISE COBOL FOR Z/OS OR *
* IBM COBOL FOR MVS & VM *
* *
* FUNCTION = THIS MODULE ACCEPTS A TABLE NAME OR VIEW NAME *
* AND UNLOADS THE DATA IN THAT TABLE OR VIEW. *
* READ IN A TABLE NAME FROM SYSIN. *
* PUT DATA FROM THE TABLE INTO DD SYSREC01. *
* WRITE RESULTS TO SYSPRINT. *
* *
* NOTES = *
* DEPENDENCIES = NONE. *
* *
* RESTRICTIONS = *
* THE SQLDA IS LIMITED TO 33016 BYTES. *
* THIS SIZE ALLOWS FOR THE DB2 MAXIMUM *
* OF 750 COLUMNS. *
* *
* DATA RECORDS ARE LIMITED TO 32700 BYTES, *
* INCLUDING DATA, LENGTHS FOR VARCHAR DATA, *
* AND SPACE FOR NULL INDICATORS. *
* *
* TABLE OR VIEW NAMES ARE ACCEPTED, AND ONLY *
* ONE NAME IS ALLOWED PER RUN. *
* *
* MODULE TYPE = COBOL PROGRAM *
* PROCESSOR = DB2 PRECOMPILER *
* ENTERPRISE COBOL FOR Z/OS OR *
* IBM COBOL FOR MVS & VM *
* MODULE SIZE = SEE LINK EDIT *
* ATTRIBUTES = REENTRANT *
* *
* ENTRY POINT = DSN8BCU2 *
* PURPOSE = SEE FUNCTION *
* LINKAGE = *
* CALL ’DSN8BCU2’ USING WORKAREA-IND RECWORK. *
* *
* INPUT = SYMBOLIC LABEL/NAME = WORKAREA-IND *
* DESCRIPTION = INDICATOR VARIABLE ARRAY *
* 01 WORKAREA-IND. *
* 02 WORKIND PIC S9(4) COMP OCCURS 750 TIMES. *
* *
* SYMBOLIC LABEL/NAME = RECWORK *
* DESCRIPTION = WORK AREA FOR OUTPUT RECORD *
* 01 RECWORK. *
* 02 RECWORK-LEN PIC S9(8) COMP. *
* *
* SYMBOLIC LABEL/NAME = SYSIN *
* DESCRIPTION = INPUT REQUESTS - TABLE OR VIEW *
* *

Figure 278. Called program that does pointer manipulation (Part 1 of 10)

1036 Application Programming and SQL Guide



* OUTPUT = SYMBOLIC LABEL/NAME = SYSPRINT *
* DESCRIPTION = PRINTED RESULTS *
* *
* SYMBOLIC LABEL/NAME = SYSREC01 *
* DESCRIPTION = UNLOADED TABLE DATA *
* *
* EXIT-NORMAL = RETURN CODE 0 NORMAL COMPLETION *
* EXIT-ERROR = *
* RETURN CODE = NONE *
* ABEND CODES = NONE *
* ERROR-MESSAGES = *
* DSNT490I SAMPLE COBOL DATA UNLOAD PROGRAM RELEASE 3.0*
* - THIS IS THE HEADER, INDICATING A NORMAL *
* - START FOR THIS PROGRAM. *
* DSNT493I SQL ERROR, SQLCODE = NNNNNNNN *
* - AN SQL ERROR OR WARNING WAS ENCOUNTERED *
* - ADDITIONAL INFORMATION FROM DSNTIAR *
* - FOLLOWS THIS MESSAGE. *
* DSNT495I SUCCESSFUL UNLOAD XXXXXXXX ROWS OF *
* TABLE TTTTTTTT *
* - THE UNLOAD WAS SUCCESSFUL. XXXXXXXX IS *
* - THE NUMBER OF ROWS UNLOADED. TTTTTTTT *
* - IS THE NAME OF THE TABLE OR VIEW FROM *
* - WHICH IT WAS UNLOADED. *
* DSNT496I UNRECOGNIZED DATA TYPE CODE OF NNNNN *
* - THE PREPARE RETURNED AN INVALID DATA *
* - TYPE CODE. NNNNN IS THE CODE, PRINTED *
* - IN DECIMAL. USUALLY AN ERROR IN *
* - THIS ROUTINE OR A NEW DATA TYPE. *
* DSNT497I RETURN CODE FROM MESSAGE ROUTINE DSNTIAR *
* - THE MESSAGE FORMATTING ROUTINE DETECTED *
* - AN ERROR. SEE THAT ROUTINE FOR RETURN *
* - CODE INFORMATION. USUALLY AN ERROR IN *
* - THIS ROUTINE. *
* DSNT498I ERROR, NO VALID COLUMNS FOUND *
* - THE PREPARE RETURNED DATA WHICH DID NOT *
* - PRODUCE A VALID OUTPUT RECORD. *
* - USUALLY AN ERROR IN THIS ROUTINE. *
* DSNT499I NO ROWS FOUND IN TABLE OR VIEW *
* - THE CHOSEN TABLE OR VIEWS DID NOT *
* - RETURN ANY ROWS. *
* ERROR MESSAGES FROM MODULE DSNTIAR *
* - WHEN AN ERROR OCCURS, THIS MODULE *
* - PRODUCES CORRESPONDING MESSAGES. *
* *
* EXTERNAL REFERENCES = *
* ROUTINES/SERVICES = *
* DSNTIAR - TRANSLATE SQLCA INTO MESSAGES *
* DATA-AREAS = NONE *
* CONTROL-BLOCKS = *
* SQLCA - SQL COMMUNICATION AREA *
* *
* TABLES = NONE *
* CHANGE-ACTIVITY = NONE *
* *

Figure 278. Called program that does pointer manipulation (Part 2 of 10)

Appendix D. Programming examples 1037



* *PSEUDOCODE* *
* PROCEDURE *
* EXEC SQL DECLARE DT CURSOR FOR SEL END-EXEC. *
* EXEC SQL DECLARE SEL STATEMENT END-EXEC. *
* INITIALIZE THE DATA, OPEN FILES. *
* OBTAIN STORAGE FOR THE SQLDA AND THE DATA RECORDS. *
* READ A TABLE NAME. *
* OPEN SYSREC01. *
* BUILD THE SQL STATEMENT TO BE EXECUTED *
* EXEC SQL PREPARE SQL STATEMENT INTO SQLDA END-EXEC. *
* SET UP ADDRESSES IN THE SQLDA FOR DATA. *
* INITIALIZE DATA RECORD COUNTER TO 0. *
* EXEC SQL OPEN DT END-EXEC. *
* DO WHILE SQLCODE IS 0. *
* EXEC SQL FETCH DT USING DESCRIPTOR SQLDA END-EXEC. *
* ADD IN MARKERS TO DENOTE NULLS. *
* WRITE THE DATA TO SYSREC01. *
* INCREMENT DATA RECORD COUNTER. *
* END. *
* EXEC SQL CLOSE DT END-EXEC. *
* INDICATE THE RESULTS OF THE UNLOAD OPERATION. *
* CLOSE THE SYSIN, SYSPRINT, AND SYSREC01 FILES. *
* END. *
*---------------------------------------------------------------*
/
IDENTIFICATION DIVISION.

*-----------------------
PROGRAM-ID. DSN8BCU2

*
ENVIRONMENT DIVISION.

*--------------------
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SYSIN
ASSIGN TO DA-S-SYSIN.

SELECT SYSPRINT
ASSIGN TO UT-S-SYSPRINT.

SELECT SYSREC01
ASSIGN TO DA-S-SYSREC01.

*
DATA DIVISION.

*-------------
*
FILE SECTION.
FD SYSIN

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 0 RECORDS
LABEL RECORDS ARE OMITTED
RECORDING MODE IS F.

01 CARDREC PIC X(80).
*
FD SYSPRINT

RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS MSGREC
RECORDING MODE IS F.

01 MSGREC PIC X(120).

Figure 278. Called program that does pointer manipulation (Part 3 of 10)

1038 Application Programming and SQL Guide



*
FD SYSREC01

RECORD CONTAINS 5 TO 32704 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS REC01
RECORDING MODE IS V.

01 REC01.
02 REC01-LEN PIC S9(8) COMP.
02 REC01-CHAR PIC X(1) OCCURS 1 TO 32700 TIMES

DEPENDING ON REC01-LEN.
/
WORKING-STORAGE SECTION.

*
*****************************************************
* STRUCTURE FOR INPUT *
*****************************************************
01 IOAREA.

02 TNAME PIC X(72).
02 FILLER PIC X(08).

01 STMTBUF.
49 STMTLEN PIC S9(4) COMP VALUE 92.
49 STMTCHAR PIC X(92).

01 STMTBLD.
02 FILLER PIC X(20) VALUE ’SELECT * FROM’.
02 STMTTAB PIC X(72).

*
*****************************************************
* REPORT HEADER STRUCTURE *
*****************************************************
01 HEADER.

02 FILLER PIC X(35)
VALUE ’ DSNT490I SAMPLE COBOL DATA UNLOAD ’.

02 FILLER PIC X(85) VALUE ’PROGRAM RELEASE 3.0’.
01 MSG-SQLERR.

02 FILLER PIC X(31)
VALUE ’ DSNT493I SQL ERROR, SQLCODE = ’.

02 MSG-MINUS PIC X(1).
02 MSG-PRINT-CODE PIC 9(8).
02 FILLER PIC X(81) VALUE ’ ’.

01 UNLOADED.
02 FILLER PIC X(28)

VALUE ’ DSNT495I SUCCESSFUL UNLOAD ’.
02 ROWS PIC 9(8).
02 FILLER PIC X(15) VALUE ’ ROWS OF TABLE ’.
02 TABLENAM PIC X(72) VALUE ’ ’.

01 BADTYPE.
02 FILLER PIC X(42)

VALUE ’ DSNT496I UNRECOGNIZED DATA TYPE CODE OF ’.
02 TYPCOD PIC 9(8).
02 FILLER PIC X(71) VALUE ’ ’.

01 MSGRETCD.
02 FILLER PIC X(42)

VALUE ’ DSNT497I RETURN CODE FROM MESSAGE ROUTINE’.
02 FILLER PIC X(9) VALUE ’DSNTIAR ’.
02 RETCODE PIC 9(8).
02 FILLER PIC X(62) VALUE ’ ’.

Figure 278. Called program that does pointer manipulation (Part 4 of 10)

Appendix D. Programming examples 1039



01 MSGNOCOL.
02 FILLER PIC X(120)

VALUE ’ DSNT498I ERROR, NO VALID COLUMNS FOUND’.
01 MSG-NOROW.

02 FILLER PIC X(120)
VALUE ’ DSNT499I NO ROWS FOUND IN TABLE OR VIEW’.

*****************************************************
* WORKAREAS *
*****************************************************
77 NOT-FOUND PIC S9(8) COMP VALUE +100.

*****************************************************
* VARIABLES FOR ERROR-MESSAGE FORMATTING *
00
*****************************************************
01 ERROR-MESSAGE.

02 ERROR-LEN PIC S9(4) COMP VALUE +960.
02 ERROR-TEXT PIC X(120) OCCURS 8 TIMES

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(8) COMP VALUE +120.

*****************************************************
* SQL DESCRIPTOR AREA *
*****************************************************

EXEC SQL INCLUDE SQLDA END-EXEC.
*
* DATA TYPES FOUND IN SQLTYPE, AFTER REMOVING THE NULL BIT
*
77 VARCTYPE PIC S9(4) COMP VALUE +448.
77 CHARTYPE PIC S9(4) COMP VALUE +452.
77 VARLTYPE PIC S9(4) COMP VALUE +456.
77 VARGTYPE PIC S9(4) COMP VALUE +464.
77 GTYPE PIC S9(4) COMP VALUE +468.
77 LVARGTYP PIC S9(4) COMP VALUE +472.
77 FLOATYPE PIC S9(4) COMP VALUE +480.
77 DECTYPE PIC S9(4) COMP VALUE +484.
77 INTTYPE PIC S9(4) COMP VALUE +496.
77 HWTYPE PIC S9(4) COMP VALUE +500.
77 DATETYP PIC S9(4) COMP VALUE +384.
77 TIMETYP PIC S9(4) COMP VALUE +388.
77 TIMESTMP PIC S9(4) COMP VALUE +392.

*

Figure 278. Called program that does pointer manipulation (Part 5 of 10)

1040 Application Programming and SQL Guide



*****************************************************
* THE REDEFINES CLAUSES BELOW ARE FOR 31-BIT ADDRESSING.
* IF YOUR COMPILER SUPPORTS ONLY 24-BIT ADDRESSING,
* CHANGE THE DECLARATIONS TO THESE:
* 01 RECNUM REDEFINES RECPTR PICTURE S9(8) COMPUTATIONAL.
* 01 IRECNUM REDEFINES IRECPTR PICTURE S9(8) COMPUTATIONAL.
*****************************************************
01 RECPTR POINTER.
01 RECNUM REDEFINES RECPTR PICTURE S9(9) COMPUTATIONAL.
01 IRECPTR POINTER.
01 IRECNUM REDEFINES IRECPTR PICTURE S9(9) COMPUTATIONAL.
01 I PICTURE S9(4) COMPUTATIONAL.
01 J PICTURE S9(4) COMPUTATIONAL.
01 DUMMY PICTURE S9(4) COMPUTATIONAL.
01 MYTYPE PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-IND PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-LEN PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-PREC PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-SCALE PICTURE S9(4) COMPUTATIONAL.
01 INDCOUNT PIC S9(4) COMPUTATIONAL.
01 ROWCOUNT PIC S9(4) COMPUTATIONAL.
01 WORKAREA2.

02 WORKINDPTR POINTER OCCURS 750 TIMES.
*****************************************************
* DECLARE CURSOR AND STATEMENT FOR DYNAMIC SQL
*****************************************************
*

EXEC SQL DECLARE DT CURSOR FOR SEL END-EXEC.
EXEC SQL DECLARE SEL STATEMENT END-EXEC.

*
*****************************************************
* SQL INCLUDE FOR SQLCA *
*****************************************************

EXEC SQL INCLUDE SQLCA END-EXEC.
*
77 ONE PIC S9(4) COMP VALUE +1.
77 TWO PIC S9(4) COMP VALUE +2.
77 FOUR PIC S9(4) COMP VALUE +4.
77 QMARK PIC X(1) VALUE ’?’.

*
LINKAGE SECTION.
01 LINKAREA-IND.

02 IND PIC S9(4) COMP OCCURS 750 TIMES.
01 LINKAREA-REC.

02 REC1-LEN PIC S9(8) COMP.
02 REC1-CHAR PIC X(1) OCCURS 1 TO 32700 TIMES

DEPENDING ON REC1-LEN.
01 LINKAREA-QMARK.

02 INDREC PIC X(1).
/

Figure 278. Called program that does pointer manipulation (Part 6 of 10)

Appendix D. Programming examples 1041



PROCEDURE DIVISION USING LINKAREA-IND LINKAREA-REC.
*
*****************************************************
* SQL RETURN CODE HANDLING *
*****************************************************

EXEC SQL WHENEVER SQLERROR GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

*
*****************************************************
* MAIN PROGRAM ROUTINE *
*****************************************************

SET IRECPTR TO ADDRESS OF REC1-CHAR(1).
* **OPEN FILES

OPEN INPUT SYSIN
OUTPUT SYSPRINT
OUTPUT SYSREC01.

* **WRITE HEADER
WRITE MSGREC FROM HEADER

AFTER ADVANCING 2 LINES.
* **GET FIRST INPUT

READ SYSIN RECORD INTO IOAREA.
* **MAIN ROUTINE

PERFORM PROCESS-INPUT THROUGH IND-RESULT.
*
PROG-END.

* **CLOSE FILES
CLOSE SYSIN

SYSPRINT
SYSREC01.

GOBACK.
/
***************************************************************
* *
* PERFORMED SECTION: *
* PROCESSING FOR THE TABLE OR VIEW JUST READ *
* *
***************************************************************
PROCESS-INPUT.

*
MOVE TNAME TO STMTTAB.
MOVE STMTBLD TO STMTCHAR.
EXEC SQL PREPARE SEL INTO :SQLDA FROM :STMTBUF END-EXEC.

***************************************************************
* *
* SET UP ADDRESSES IN THE SQLDA FOR DATA. *
* *
***************************************************************

IF SQLD = ZERO THEN
WRITE MSGREC FROM MSGNOCOL

AFTER ADVANCING 2 LINES
GO TO IND-RESULT.

MOVE ZERO TO ROWCOUNT.
MOVE ZERO TO REC1-LEN.
SET RECPTR TO IRECPTR.
MOVE ONE TO I.
PERFORM COLADDR UNTIL I > SQLD.

Figure 278. Called program that does pointer manipulation (Part 7 of 10)

1042 Application Programming and SQL Guide



****************************************************************
* *
* SET LENGTH OF OUTPUT RECORD. *
* EXEC SQL OPEN DT END-EXEC. *
* DO WHILE SQLCODE IS 0. *
* EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC. *
* ADD IN MARKERS TO DENOTE NULLS. *
* WRITE THE DATA TO SYSREC01. *
* INCREMENT DATA RECORD COUNTER. *
* END. *
* *
****************************************************************
* **OPEN CURSOR

EXEC SQL OPEN DT END-EXEC.
PERFORM BLANK-REC.
EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC.

* **NO ROWS FOUND
* **PRINT ERROR MESSAGE

IF SQLCODE = NOT-FOUND
WRITE MSGREC FROM MSG-NOROW

AFTER ADVANCING 2 LINES
ELSE

* **WRITE ROW AND
* **CONTINUE UNTIL
* **NO MORE ROWS

PERFORM WRITE-AND-FETCH
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

*
EXEC SQL WHENEVER NOT FOUND GOTO CLOSEDT END-EXEC.

*
CLOSEDT.

EXEC SQL CLOSE DT END-EXEC.
*
****************************************************************
* *
* INDICATE THE RESULTS OF THE UNLOAD OPERATION. *
* *
****************************************************************
IND-RESULT.

MOVE TNAME TO TABLENAM.
MOVE ROWCOUNT TO ROWS.
WRITE MSGREC FROM UNLOADED

AFTER ADVANCING 2 LINES.
GO TO PROG-END.

*
WRITE-AND-FETCH.

* ADD IN MARKERS TO DENOTE NULLS.
MOVE ONE TO INDCOUNT.
PERFORM NULLCHK UNTIL INDCOUNT = SQLD.
MOVE REC1-LEN TO REC01-LEN.
WRITE REC01 FROM LINKAREA-REC.
ADD ONE TO ROWCOUNT.
PERFORM BLANK-REC.
EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC.

*
NULLCHK.

IF IND(INDCOUNT) < 0 THEN
SET ADDRESS OF LINKAREA-QMARK TO WORKINDPTR(INDCOUNT)
MOVE QMARK TO INDREC.

ADD ONE TO INDCOUNT.

Figure 278. Called program that does pointer manipulation (Part 8 of 10)

Appendix D. Programming examples 1043



*****************************************************
* BLANK OUT RECORD TEXT FIRST *
*****************************************************
BLANK-REC.

MOVE ONE TO J.
PERFORM BLANK-MORE UNTIL J > REC1-LEN.

BLANK-MORE.
MOVE ’ ’ TO REC1-CHAR(J).
ADD ONE TO J.

*
COLADDR.

SET SQLDATA(I) TO RECPTR.
****************************************************************
*
* DETERMINE THE LENGTH OF THIS COLUMN (COLUMN-LEN)
* THIS DEPENDS ON THE DATA TYPE. MOST DATA TYPES HAVE
* THE LENGTH SET, BUT VARCHAR, GRAPHIC, VARGRAPHIC, AND
* DECIMAL DATA NEED TO HAVE THE BYTES CALCULATED.
* THE NULL ATTRIBUTE MUST BE SEPARATED TO SIMPLIFY MATTERS.
*
****************************************************************

MOVE SQLLEN(I) TO COLUMN-LEN.
* COLUMN-IND IS 0 FOR NO NULLS AND 1 FOR NULLS

DIVIDE SQLTYPE(I) BY TWO GIVING DUMMY REMAINDER COLUMN-IND.
* MYTYPE IS JUST THE SQLTYPE WITHOUT THE NULL BIT

MOVE SQLTYPE(I) TO MYTYPE.
SUBTRACT COLUMN-IND FROM MYTYPE.

* SET THE COLUMN LENGTH, DEPENDENT ON DATA TYPE
EVALUATE MYTYPE

WHEN CHARTYPE CONTINUE,
WHEN DATETYP CONTINUE,
WHEN TIMETYP CONTINUE,
WHEN TIMESTMP CONTINUE,
WHEN FLOATYPE CONTINUE,
WHEN VARCTYPE

ADD TWO TO COLUMN-LEN,
WHEN VARLTYPE

ADD TWO TO COLUMN-LEN,
WHEN GTYPE

MULTIPLY COLUMN-LEN BY TWO GIVING COLUMN-LEN,
WHEN VARGTYPE

PERFORM CALC-VARG-LEN,
WHEN LVARGTYP

PERFORM CALC-VARG-LEN,
WHEN HWTYPE

MOVE TWO TO COLUMN-LEN,
WHEN INTTYPE

MOVE FOUR TO COLUMN-LEN,
WHEN DECTYPE

PERFORM CALC-DECIMAL-LEN,
WHEN OTHER

PERFORM UNRECOGNIZED-ERROR,
END-EVALUATE.
ADD COLUMN-LEN TO RECNUM.
ADD COLUMN-LEN TO REC1-LEN.

Figure 278. Called program that does pointer manipulation (Part 9 of 10)

1044 Application Programming and SQL Guide



Sample dynamic and static SQL in a C program
Figure 279 on page 1046 illustrates dynamic SQL and static SQL embedded in a C
program. Each section of the program is identified with a comment. Section 1 of
the program shows static SQL; sections 2, 3, and 4 show dynamic SQL. The
function of each section is explained in detail in the prologue to the program.

****************************************************************
* *
* IF THIS COLUMN CAN BE NULL, AN INDICATOR VARIABLE IS *
* NEEDED. WE ALSO RESERVE SPACE IN THE OUTPUT RECORD TO *
* NOTE THAT THE VALUE IS NULL. *
* *
****************************************************************

MOVE ZERO TO IND(I).
IF COLUMN-IND = ONE THEN

SET SQLIND(I) TO ADDRESS OF IND(I)
SET WORKINDPTR(I) TO RECPTR
ADD ONE TO RECNUM
ADD ONE TO REC1-LEN.

*
ADD ONE TO I.

* PERFORMED PARAGRAPH TO CALCULATE COLUMN LENGTH
* FOR A DECIMAL DATA TYPE COLUMN
CALC-DECIMAL-LEN.

DIVIDE COLUMN-LEN BY 256 GIVING COLUMN-PREC
REMAINDER COLUMN-SCALE.

MOVE COLUMN-PREC TO COLUMN-LEN.
ADD ONE TO COLUMN-LEN.
DIVIDE COLUMN-LEN BY TWO GIVING COLUMN-LEN.

* PERFORMED PARAGRAPH TO CALCULATE COLUMN LENGTH
* FOR A VARGRAPHIC DATA TYPE COLUMN
CALC-VARG-LEN.

MULTIPLY COLUMN-LEN BY TWO GIVING COLUMN-LEN.
ADD TWO TO COLUMN-LEN.

* PERFORMED PARAGRAPH TO NOTE AN UNRECOGNIZED
* DATA TYPE COLUMN
UNRECOGNIZED-ERROR.

*
* ERROR MESSAGE FOR UNRECOGNIZED DATA TYPE
*

MOVE SQLTYPE(I) TO TYPCOD.
WRITE MSGREC FROM BADTYPE

AFTER ADVANCING 2 LINES.
GO TO IND-RESULT.

*
*****************************************************
* SQL ERROR OCCURRED - GET MESSAGE *
*****************************************************
DBERROR.

* **SQL ERROR
MOVE SQLCODE TO MSG-PRINT-CODE.
IF SQLCODE < 0 THEN MOVE ’-’ TO MSG-MINUS.
WRITE MSGREC FROM MSG-SQLERR

AFTER ADVANCING 2 LINES.
CALL ’DSNTIAR’ USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.
IF RETURN-CODE = ZERO

PERFORM ERROR-PRINT VARYING ERROR-INDEX
FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 8

ELSE
* **ERROR FOUND IN DSNTIAR
* **PRINT ERROR MESSAGE

MOVE RETURN-CODE TO RETCODE
WRITE MSGREC FROM MSGRETCD

AFTER ADVANCING 2 LINES.
GO TO PROG-END.

*
*****************************************************
* PRINT MESSAGE TEXT *
*****************************************************
ERROR-PRINT.

WRITE MSGREC FROM ERROR-TEXT (ERROR-INDEX)
AFTER ADVANCING 1 LINE.

Figure 278. Called program that does pointer manipulation (Part 10 of 10)

Appendix D. Programming examples 1045



/**********************************************************************/
/* Descriptive name = Dynamic SQL sample using C language */
/* */
/* Function = To show examples of the use of dynamic and static */
/* SQL. */
/* */
/* Notes = This example assumes that the EMP and DEPT tables are */
/* defined. They need not be the same as the DB2 Sample */
/* tables. */
/* */
/* Module type = C program */
/* Processor = DB2 precompiler, C compiler */
/* Module size = see link edit */
/* Attributes = not reentrant or reusable */
/* */
/* Input = */
/* */
/* symbolic label/name = DEPT */
/* description = arbitrary table */
/* symbolic label/name = EMP */
/* description = arbitrary table */
/* */
/* Output = */
/* */
/* symbolic label/name = SYSPRINT */
/* description = print results via printf */
/* */
/* Exit-normal = return code 0 normal completion */
/* */
/* Exit-error = */
/* */
/* Return code = SQLCA */
/* */
/* Abend codes = none */
/* */
/* External references = none */
/* */
/* Control-blocks = */
/* SQLCA - sql communication area */
/* */

Figure 279. Sample SQL in a C program (Part 1 of 4)

1046 Application Programming and SQL Guide



/* Logic specification: */
/* */
/* There are four SQL sections. */
/* */
/* 1) STATIC SQL 1: using static cursor with a SELECT statement. */
/* Two output host variables. */
/* 2) Dynamic SQL 2: Fixed-list SELECT, using same SELECT statement */
/* used in SQL 1 to show the difference. The prepared string */
/* :iptstr can be assigned with other dynamic-able SQL statements. */
/* 3) Dynamic SQL 3: Insert with parameter markers. */
/* Using four parameter markers which represent four input host */
/* variables within a host structure. */
/* 4) Dynamic SQL 4: EXECUTE IMMEDIATE */
/* A GRANT statement is executed immediately by passing it to DB2 */
/* via a varying string host variable. The example shows how to */
/* set up the host variable before passing it. */
/* */
/**********************************************************************/

#include "stdio.h"
#include "stdefs.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;
EXEC SQL BEGIN DECLARE SECTION;
short edlevel;
struct { short len;

char x1[56];
} stmtbf1, stmtbf2, inpstr;

struct { short len;
char x1[15];

} lname;
short hv1;
struct { char deptno[4];

struct { short len;
char x[36];
} deptname;

char mgrno[7];
char admrdept[4];

} hv2;
short ind[4];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE EMP TABLE

(EMPNO CHAR(6) ,
FIRSTNAME VARCHAR(12) ,
MIDINIT CHAR(1) ,
LASTNAME VARCHAR(15) ,
WORKDEPT CHAR(3) ,
PHONENO CHAR(4) ,
HIREDATE DECIMAL(6) ,
JOBCODE DECIMAL(3) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DECIMAL(6) ,
SALARY DECIMAL(8,2) ,
FORFNAME VARGRAPHIC(12) ,
FORMNAME GRAPHIC(1) ,
FORLNAME VARGRAPHIC(15) ,
FORADDR VARGRAPHIC(256) ) ;

Figure 279. Sample SQL in a C program (Part 2 of 4)

Appendix D. Programming examples 1047



EXEC SQL DECLARE DEPT TABLE
(
DEPTNO CHAR(3) ,
DEPTNAME VARCHAR(36) ,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) );

main ()
{
printf("??/n*** begin of program ***");
EXEC SQL WHENEVER SQLERROR GO TO HANDLERR;
EXEC SQL WHENEVER SQLWARNING GO TO HANDWARN;
EXEC SQL WHENEVER NOT FOUND GO TO NOTFOUND;
/******************************************************************/
/* Assign values to host variables which will be input to DB2 */
/******************************************************************/
strcpy(hv2.deptno,"M92");
strcpy(hv2.deptname.x,"DDL");
hv2.deptname.len = strlen(hv2.deptname.x);
strcpy(hv2.mgrno,"123456");
strcpy(hv2.admrdept,"abc");
/******************************************************************/
/* Static SQL 1: DECLARE CURSOR, OPEN, FETCH, CLOSE */
/* Select into :edlevel, :lname */
/******************************************************************/
printf("??/n*** begin declare ***");
EXEC SQL DECLARE C1 CURSOR FOR SELECT EDLEVEL, LASTNAME FROM EMP

WHERE EMPNO = ’000010’;
printf("??/n*** begin open ***");
EXEC SQL OPEN C1;

printf("??/n*** begin fetch ***");
EXEC SQL FETCH C1 INTO :edlevel, :lname;
printf("??/n*** returned values ***");
printf("??/n??/nedlevel = %d",edlevel);
printf("??/nlname = %s\n",lname.x1);

printf("??/n*** begin close ***");
EXEC SQL CLOSE C1;
/******************************************************************/
/* Dynamic SQL 2: PREPARE, DECLARE CURSOR, OPEN, FETCH, CLOSE */
/* Select into :edlevel, :lname */
/******************************************************************/
sprintf (inpstr.x1,

"SELECT EDLEVEL, LASTNAME FROM EMP WHERE EMPNO = ’000010’");
inpstr.len = strlen(inpstr.x1);
printf("??/n*** begin prepare ***");
EXEC SQL PREPARE STAT1 FROM :inpstr;
printf("??/n*** begin declare ***");
EXEC SQL DECLARE C2 CURSOR FOR STAT1;
printf("??/n*** begin open ***");
EXEC SQL OPEN C2;

printf("??/n*** begin fetch ***");
EXEC SQL FETCH C2 INTO :edlevel, :lname;
printf("??/n*** returned values ***");
printf("??/n??/nedlevel = %d",edlevel);
printf("??/nlname = %s\n",lname.x1);

printf("??/n*** begin close ***");
EXEC SQL CLOSE C2;

Figure 279. Sample SQL in a C program (Part 3 of 4)

1048 Application Programming and SQL Guide



Sample DB2 REXX application
The following example shows a complete DB2 REXX application named DRAW.
DRAW must be invoked from the command line of an ISPF edit session. DRAW
takes a table or view name as input and produces a SELECT, INSERT, or UPDATE
SQL statement or a LOAD utility control statement that includes the columns of
the table as output.

DRAW syntax:

�� %DRAW object-name (
SSID=ssid SELECT

TYPE= INSERT
UPDATE
LOAD

��

DRAW parameters:

/******************************************************************/
/* Dynamic SQL 3: PREPARE with parameter markers */
/* Insert into with four values. */
/******************************************************************/
sprintf (stmtbf1.x1,

"INSERT INTO DEPT VALUES (?,?,?,?)");
stmtbf1.len = strlen(stmtbf1.x1);
printf("??/n*** begin prepare ***");
EXEC SQL PREPARE s1 FROM :stmtbf1;
printf("??/n*** begin execute ***");
EXEC SQL EXECUTE s1 USING :hv2:ind;
printf("??/n*** following are expected insert results ***");
printf("??/n hv2.deptno = %s",hv2.deptno);
printf("??/n hv2.deptname.len = %d",hv2.deptname.len);
printf("??/n hv2.deptname.x = %s",hv2.deptname.x);
printf("??/n hv2.mgrno = %s",hv2.mgrno);
printf("??/n hv2.admrdept = %s",hv2.admrdept);
EXEC SQL COMMIT;
/******************************************************************/
/* Dynamic SQL 4: EXECUTE IMMEDIATE */
/* Grant select */
/******************************************************************/
sprintf (stmtbf2.x1,

"GRANT SELECT ON EMP TO USERX");
stmtbf2.len = strlen(stmtbf2.x1);
printf("??/n*** begin execute immediate ***");
EXEC SQL EXECUTE IMMEDIATE :stmtbf2;
printf("??/n*** end of program ***");
goto progend;
HANDWARN: HANDLERR: NOTFOUND: ;
printf("??/n SQLCODE = %d",SQLCODE);
printf("??/n SQLWARN0 = %c",SQLWARN0);
printf("??/n SQLWARN1 = %c",SQLWARN1);
printf("??/n SQLWARN2 = %c",SQLWARN2);
printf("??/n SQLWARN3 = %c",SQLWARN3);
printf("??/n SQLWARN4 = %c",SQLWARN4);
printf("??/n SQLWARN5 = %c",SQLWARN5);
printf("??/n SQLWARN6 = %c",SQLWARN6);
printf("??/n SQLWARN7 = %c",SQLWARN7);
progend: ;
}

Figure 279. Sample SQL in a C program (Part 4 of 4)

Appendix D. Programming examples 1049



object-name
The name of the table or view for which DRAW builds an SQL statement or
utility control statement. The name can be a one-, two-, or three-part name.
The table or view to which object-name refers must exist before DRAW can run.

object-name is a required parameter.

SSID=ssid
Specifies the name of the local DB2 subsystem.

S can be used as an abbreviation for SSID.

If you invoke DRAW from the command line of the edit session in SPUFI,
SSID=ssid is an optional parameter. DRAW uses the subsystem ID from the
DB2I Defaults panel.

TYPE=operation-type
The type of statement that DRAW builds.

T can be used as an abbreviation for TYPE.

operation-type has one of the following values:

SELECT Builds a SELECT statement in which the result table contains
all columns of object-name.

S can be used as an abbreviation for SELECT.

INSERT Builds a template for an INSERT statement that inserts values
into all columns of object-name. The template contains
comments that indicate where the user can place column
values.

I can be used as an abbreviation for INSERT.

UPDATE Builds a template for an UPDATE statement that updates
columns of object-name. The template contains comments that
indicate where the user can place column values and qualify
the update operation for selected rows.

U can be used as an abbreviation for UPDATE.

LOAD Builds a template for a LOAD utility control statement for
object-name.

L can be used as an abbreviation for LOAD.

TYPE=operation-type is an optional parameter. The default is TYPE=SELECT.

DRAW data sets:

Edit data set
The data set from which you issue the DRAW command when you are in an
ISPF edit session. If you issue the DRAW command from a SPUFI session, this
data set is the data set that you specify in field 1 of the main SPUFI panel
(DSNESP01). The output from the DRAW command goes into this data set.

DRAW return codes:

Return code Meaning

0 Successful completion.

12 An error occurred when DRAW edited the input file.

20 One of the following errors occurred:

1050 Application Programming and SQL Guide



v No input parameters were specified.
v One of the input parameters was not valid.
v An SQL error occurred when the output statement was

generated.

Examples of DRAW invocation:

Generate a SELECT statement for table DSN8810.EMP at the local subsystem. Use
the default DB2I subsystem ID.

The DRAW invocation is:
DRAW DSN8810.EMP (TYPE=SELECT

The output is:
SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,

"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,
"SALARY" , "BONUS" , "COMM"

FROM DSN8810.EMP

Generate a template for an INSERT statement that inserts values into table
DSN8810.EMP at location SAN_JOSE. The local subsystem ID is DSN.

The DRAW invocation is:
DRAW SAN_JOSE.DSN8810.EMP (TYPE=INSERT SSID=DSN

The output is:
INSERT INTO SAN_JOSE.DSN8810.EMP ( "EMPNO" , "FIRSTNME" , "MIDINIT" ,

"LASTNAME" , "WORKDEPT" , "PHONENO" , "HIREDATE" , "JOB" ,
"EDLEVEL" , "SEX" , "BIRTHDATE" , "SALARY" , "BONUS" , "COMM" )
VALUES (

-- ENTER VALUES BELOW COLUMN NAME DATA TYPE
, -- EMPNO CHAR(6) NOT NULL
, -- FIRSTNME VARCHAR(12) NOT NULL
, -- MIDINIT CHAR(1) NOT NULL
, -- LASTNAME VARCHAR(15) NOT NULL
, -- WORKDEPT CHAR(3)
, -- PHONENO CHAR(4)
, -- HIREDATE DATE
, -- JOB CHAR(8)
, -- EDLEVEL SMALLINT
, -- SEX CHAR(1)
, -- BIRTHDATE DATE
, -- SALARY DECIMAL(9,2)
, -- BONUS DECIMAL(9,2)
) -- COMM DECIMAL(9,2)

Generate a template for an UPDATE statement that updates values of table
DSN8810.EMP. The local subsystem ID is DSN.

The DRAW invocation is:
DRAW DSN8810.EMP (TYPE=UPDATE SSID=DSN

The output is:
UPDATE DSN8810.EMP SET
-- COLUMN NAME ENTER VALUES BELOW DATA TYPE

"EMPNO"= -- CHAR(6) NOT NULL
, "FIRSTNME"= -- VARCHAR(12) NOT NULL
, "MIDINIT"= -- CHAR(1) NOT NULL
, "LASTNAME"= -- VARCHAR(15) NOT NULL

Appendix D. Programming examples 1051



, "WORKDEPT"= -- CHAR(3)
, "PHONENO"= -- CHAR(4)
, "HIREDATE"= -- DATE
, "JOB"= -- CHAR(8)
, "EDLEVEL"= -- SMALLINT
, "SEX"= -- CHAR(1)
, "BIRTHDATE"= -- DATE
, "SALARY"= -- DECIMAL(9,2)
, "BONUS"= -- DECIMAL(9,2)
, "COMM"= -- DECIMAL(9,2)
WHERE

Generate a LOAD control statement to load values into table DSN8810.EMP. The
local subsystem ID is DSN.

The draw invocation is:
DRAW DSN8810.EMP (TYPE=LOAD SSID=DSN

The output is:
LOAD DATA INDDN SYSREC INTO TABLE DSN8810.EMP
( "EMPNO" POSITION( 1) CHAR(6)
, "FIRSTNME" POSITION( 8) VARCHAR
, "MIDINIT" POSITION( 21) CHAR(1)
, "LASTNAME" POSITION( 23) VARCHAR
, "WORKDEPT" POSITION( 39) CHAR(3)

NULLIF( 39)=’?’
, "PHONENO" POSITION( 43) CHAR(4)

NULLIF( 43)=’?’
, "HIREDATE" POSITION( 48) DATE EXTERNAL

NULLIF( 48)=’?’
, "JOB" POSITION( 59) CHAR(8)

NULLIF( 59)=’?’
, "EDLEVEL" POSITION( 68) SMALLINT

NULLIF( 68)=’?’
, "SEX" POSITION( 71) CHAR(1)

NULLIF( 71)=’?’
, "BIRTHDATE" POSITION( 73) DATE EXTERNAL

NULLIF( 73)=’?’
, "SALARY" POSITION( 84) DECIMAL EXTERNAL(9,2)

NULLIF( 84)=’?’
, "BONUS" POSITION( 90) DECIMAL EXTERNAL(9,2)

NULLIF( 90)=’?’
, "COMM" POSITION( 96) DECIMAL EXTERNAL(9,2)

NULLIF( 96)=’?’
)

DRAW source code:

1052 Application Programming and SQL Guide



/* REXX ***************************************************************/
L1 = WHEREAMI()
/*
DRAW creates basic SQL queries by retrieving the description of a
table. You must specify the name of the table or view to be queried.
You can specify the type of query you want to compose. You might need
to specify the name of the DB2 subsystem.
>>--DRAW-----tablename-----|---------------------------|-------><

|-(-|-Ssid=subsystem-name-|-|
| +-Select-+ |
|-Type=-|-Insert-|----|

|-Update-|
+--Load--+

Ssid=subsystem-name
subsystem-name specified the name of a DB2 subsystem.

Select
Composes a basic query for selecting data from the columns of a
table or view. If TYPE is not specified, SELECT is assumed.
Using SELECT with the DRAW command produces a query that would
retrieve all rows and all columns from the specified table. You
can then modify the query as needed.
A SELECT query of EMP composed by DRAW looks like this:

SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,
"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,
"SALARY" , "BONUS" , "COMM"

FROM DSN8810.EMP
If you include a location qualifier, the query looks like this:

SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,
"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,
"SALARY" , "BONUS" , "COMM"

FROM STLEC1.DSN8810.EMP

Figure 280. REXX sample program DRAW (Part 1 of 10)

Appendix D. Programming examples 1053



To use this SELECT query, type the other clauses you need. If
you are selecting from more than one table, use a DRAW command
for each table name you want represented.

Insert
Composes a basic query to insert data into the columns of a table
or view.
The following example shows an INSERT query of EMP that
DRAW composed:

INSERT INTO DSN8810.EMP ( "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" ,
"WORKDEPT" , "PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" ,
"BIRTHDATE" , "SALARY" , "BONUS" , "COMM" )

VALUES (
-- ENTER VALUES BELOW COLUMN NAME DATA TYPE

, -- EMPNO CHAR(6) NOT NULL
, -- FIRSTNME VARCHAR(12) NOT NULL
, -- MIDINIT CHAR(1) NOT NULL
, -- LASTNAME VARCHAR(15) NOT NULL
, -- WORKDEPT CHAR(3)
, -- PHONENO CHAR(4)
, -- HIREDATE DATE
, -- JOB CHAR(8)
, -- EDLEVEL SMALLINT
, -- SEX CHAR(1)
, -- BIRTHDATE DATE
, -- SALARY DECIMAL(9,2)
, -- BONUS DECIMAL(9,2)
) -- COMM DECIMAL(9,2)

To insert values into EMP, type values to the left of the
column names. See DB2 SQL Reference for more information on
INSERT queries.

Update
Composes a basic query to change the data in a table or view.
The following example shows an UPDATE query of EMP composed
by DRAW:

Figure 280. REXX sample program DRAW (Part 2 of 10)

1054 Application Programming and SQL Guide



UPDATE DSN8810.EMP SET
-- COLUMN NAME ENTER VALUES BELOW DATA TYPE

"EMPNO"= -- CHAR(6) NOT NULL
, "FIRSTNME"= -- VARCHAR(12) NOT NULL
, "MIDINIT"= -- CHAR(1) NOT NULL
, "LASTNAME"= -- VARCHAR(15) NOT NULL
, "WORKDEPT"= -- CHAR(3)
, "PHONENO"= -- CHAR(4)
, "HIREDATE"= -- DATE
, "JOB"= -- CHAR(8)
, "EDLEVEL"= -- SMALLINT
, "SEX"= -- CHAR(1)
, "BIRTHDATE"= -- DATE
, "SALARY"= -- DECIMAL(9,2)
, "BONUS"= -- DECIMAL(9,2)
, "COMM"= -- DECIMAL(9,2)
WHERE

To use this UPDATE query, type the changes you want to make to
the right of the column names, and delete the lines you don’t
need. Be sure to complete the WHERE clause. For information on
writing queries to update data, refer to DB2 SQL Reference.

Load
Composes a load statement to load the data in a table.
The following example shows a LOAD statement of EMP composed
by DRAW:

LOAD DATA INDDN SYSREC INTO TABLE DSN8810 .EMP
( "EMPNO" POSITION( 1) CHAR(6)
, "FIRSTNME" POSITION( 8) VARCHAR
, "MIDINIT" POSITION( 21) CHAR(1)
, "LASTNAME" POSITION( 23) VARCHAR
, "WORKDEPT" POSITION( 39) CHAR(3)

NULLIF( 39)=’?’
, "PHONENO" POSITION( 43) CHAR(4)

NULLIF( 43)=’?’
, "HIREDATE" POSITION( 48) DATE EXTERNAL

NULLIF( 48)=’?’
, "JOB" POSITION( 59) CHAR(8)

NULLIF( 59)=’?’
, "EDLEVEL" POSITION( 68) SMALLINT

NULLIF( 68)=’?’
, "SEX" POSITION( 71) CHAR(1)

NULLIF( 71)=’?’
, "BIRTHDATE" POSITION( 73) DATE EXTERNAL

NULLIF( 73)=’?’
, "SALARY" POSITION( 84) DECIMAL EXTERNAL(9,2)

NULLIF( 84)=’?’
, "BONUS" POSITION( 90) DECIMAL EXTERNAL(9,2)

NULLIF( 90)=’?’
, "COMM" POSITION( 96) DECIMAL EXTERNAL(9,2)

NULLIF( 96)=’?’
)

Figure 280. REXX sample program DRAW (Part 3 of 10)

Appendix D. Programming examples 1055



To use this LOAD statement, type the changes you want to make,
and delete the lines you don’t need. For information on writing
queries to update data, refer to
DB2 Utility Guide and Reference.

*/
L2 = WHEREAMI()

/**********************************************************************/
/* TRACE ?R */
/**********************************************************************/
Address ISPEXEC
"ISREDIT MACRO (ARGS) NOPROCESS"
If ARGS = "" Then
Do

Do I = L1+2 To L2-2;Say SourceLine(I);End
Exit (20)

End
Parse Upper Var Args Table "(" Parms
Parms = Translate(Parms," ",",")
Type = "SELECT" /* Default */
SSID = "" /* Default */
"VGET (DSNEOV01)"
If RC = 0 Then SSID = DSNEOV01
If (Parms <> "") Then
Do Until(Parms = "")
Parse Var Parms Var "=" Value Parms

If Var = "T" | Var = "TYPE" Then Type = Value
Else
If Var = "S" | Var = "SSID" Then SSID = Value
Else

Exit (20)
End
"CONTROL ERRORS RETURN"
"ISREDIT (LEFTBND,RIGHTBND) = BOUNDS"
"ISREDIT (LRECL) = DATA_WIDTH" /*LRECL*/
BndSize = RightBnd - LeftBnd + 1
If BndSize > 72 Then BndSize = 72
"ISREDIT PROCESS DEST"
Select

When rc = 0 Then
’ISREDIT (ZDEST) = LINENUM .ZDEST’

When rc <= 8 Then /* No A or B entered */
Do

zedsmsg = ’Enter "A"/"B" line cmd’
zedlmsg = ’DRAW requires an "A" or "B" line command’
’SETMSG MSG(ISRZ001)’
Exit 12

End
When rc < 20 Then /* Conflicting line commands - edit sets message */

Exit 12
When rc = 20 Then

zdest = 0
Otherwise

Exit 12
End

Figure 280. REXX sample program DRAW (Part 4 of 10)

1056 Application Programming and SQL Guide



SQLTYPE. = "UNKNOWN TYPE"
VCHTYPE = 448; SQLTYPES.VCHTYPE = ’VARCHAR’
CHTYPE = 452; SQLTYPES.CHTYPE = ’CHAR’
LVCHTYPE = 456; SQLTYPES.LVCHTYPE = ’VARCHAR’
VGRTYP = 464; SQLTYPES.VGRTYP = ’VARGRAPHIC’
GRTYP = 468; SQLTYPES.GRTYP = ’GRAPHIC’
LVGRTYP = 472; SQLTYPES.LVGRTYP = ’VARGRAPHIC’
FLOTYPE = 480; SQLTYPES.FLOTYPE = ’FLOAT’
DCTYPE = 484; SQLTYPES.DCTYPE = ’DECIMAL’
INTYPE = 496; SQLTYPES.INTYPE = ’INTEGER’
SMTYPE = 500; SQLTYPES.SMTYPE = ’SMALLINT’
DATYPE = 384; SQLTYPES.DATYPE = ’DATE’
TITYPE = 388; SQLTYPES.TITYPE = ’TIME’
TSTYPE = 392; SQLTYPES.TSTYPE = ’TIMESTAMP’
Address TSO "SUBCOM DSNREXX" /* HOST CMD ENV AVAILABLE? */
IF RC THEN /* NO, LET’S MAKE ONE */

S_RC = RXSUBCOM(’ADD’,’DSNREXX’,’DSNREXX’) /* ADD HOST CMD ENV */
Address DSNREXX "CONNECT" SSID
If SQLCODE ^= 0 Then Call SQLCA
Address DSNREXX "EXECSQL DESCRIBE TABLE :TABLE INTO :SQLDA"
If SQLCODE ^= 0 Then Call SQLCA
Address DSNREXX "EXECSQL COMMIT"
Address DSNREXX "DISCONNECT"
If SQLCODE ^= 0 Then Call SQLCA
Select

When (Left(Type,1) = "S") Then
Call DrawSelect

When (Left(Type,1) = "I") Then
Call DrawInsert

When (Left(Type,1) = "U") Then
Call DrawUpdate

When (Left(Type,1) = "L") Then
Call DrawLoad

Otherwise EXIT (20)
End
Do I = LINE.0 To 1 By -1

LINE = COPIES(" ",LEFTBND-1)||LINE.I
’ISREDIT LINE_AFTER ’zdest’ = DATALINE (Line)’

End
line1 = zdest + 1
’ISREDIT CURSOR = ’line1 0
Exit

Figure 280. REXX sample program DRAW (Part 5 of 10)

Appendix D. Programming examples 1057



/**********************************************************************/
WHEREAMI:; RETURN SIGL
/**********************************************************************/
/* Draw SELECT */
/**********************************************************************/
DrawSelect:

Line.0 = 0
Line = "SELECT"
Do I = 1 To SQLDA.SQLD

If I > 1 Then Line = Line ’,’
ColName = ’"’SQLDA.I.SQLNAME’"’
Null = SQLDA.I.SQLTYPE//2
If Length(Line)+Length(ColName)+LENGTH(" ,") > BndSize THEN
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
Line = " "

End
Line = Line ColName

End I
If Line ^= "" Then
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
Line = " "

End
L = Line.0 + 1; Line.0 = L
Line.L = "FROM" TABLE
Return

/**********************************************************************/
/* Draw INSERT */
/**********************************************************************/
DrawInsert:

Line.0 = 0
Line = "INSERT INTO" TABLE "("
Do I = 1 To SQLDA.SQLD

If I > 1 Then Line = Line ’,’
ColName = ’"’SQLDA.I.SQLNAME’"’
If Length(Line)+Length(ColName) > BndSize THEN
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
Line = " "

End
Line = Line ColName
If I = SQLDA.SQLD Then Line = Line ’)’

End I
If Line ^= "" Then
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
Line = " "

End

Figure 280. REXX sample program DRAW (Part 6 of 10)

1058 Application Programming and SQL Guide



L = Line.0 + 1; Line.0 = L
Line.L = " VALUES ("
L = Line.0 + 1; Line.0 = L
Line.L = ,
"-- ENTER VALUES BELOW COLUMN NAME DATA TYPE"
Do I = 1 To SQLDA.SQLD

If SQLDA.SQLD > 1 & I < SQLDA.SQLD Then
Line = " , --"

Else
Line = " ) --"

Line = Line Left(SQLDA.I.SQLNAME,18)
Type = SQLDA.I.SQLTYPE
Null = Type//2
If Null Then Type = Type - 1
Len = SQLDA.I.SQLLEN
Prcsn = SQLDA.I.SQLLEN.SQLPRECISION
Scale = SQLDA.I.SQLLEN.SQLSCALE
Select
When (Type = CHTYPE ,

|Type = VCHTYPE ,
|Type = LVCHTYPE ,
|Type = GRTYP ,
|Type = VGRTYP ,
|Type = LVGRTYP ) THEN

Type = SQLTYPES.Type"("STRIP(LEN)")"
When (Type = FLOTYPE ) THEN

Type = SQLTYPES.Type"("STRIP((LEN*4)-11) ")"
When (Type = DCTYPE ) THEN

Type = SQLTYPES.Type"("STRIP(PRCSN)","STRIP(SCALE)")"
Otherwise

Type = SQLTYPES.Type
End
Line = Line Type
If Null = 0 Then
Line = Line "NOT NULL"
L = Line.0 + 1; Line.0 = L
Line.L = Line

End I
Return

Figure 280. REXX sample program DRAW (Part 7 of 10)

Appendix D. Programming examples 1059



/**********************************************************************/
/* Draw UPDATE */
/**********************************************************************/
DrawUpdate:

Line.0 = 1
Line.1 = "UPDATE" TABLE "SET"
L = Line.0 + 1; Line.0 = L
Line.L = ,
"-- COLUMN NAME ENTER VALUES BELOW DATA TYPE"
Do I = 1 To SQLDA.SQLD

If I = 1 Then
Line = " "

Else
Line = " ,"

Line = Line Left(’"’SQLDA.I.SQLNAME’"=’,21)
Line = Line Left(" ",20)
Type = SQLDA.I.SQLTYPE
Null = Type//2
If Null Then Type = Type - 1
Len = SQLDA.I.SQLLEN
Prcsn = SQLDA.I.SQLLEN.SQLPRECISION
Scale = SQLDA.I.SQLLEN.SQLSCALE
Select
When (Type = CHTYPE ,

|Type = VCHTYPE ,
|Type = LVCHTYPE ,
|Type = GRTYP ,
|Type = VGRTYP ,
|Type = LVGRTYP ) THEN

Type = SQLTYPES.Type"("STRIP(LEN)")"
When (Type = FLOTYPE ) THEN

Type = SQLTYPES.Type"("STRIP((LEN*4)-11) ")"
When (Type = DCTYPE ) THEN

Type = SQLTYPES.Type"("STRIP(PRCSN)","STRIP(SCALE)")"
Otherwise

Type = SQLTYPES.Type
End
Line = Line "--" Type
If Null = 0 Then
Line = Line "NOT NULL"
L = Line.0 + 1; Line.0 = L
Line.L = Line

End I
L = Line.0 + 1; Line.0 = L
Line.L = "WHERE"
Return

Figure 280. REXX sample program DRAW (Part 8 of 10)

1060 Application Programming and SQL Guide



/**********************************************************************/
/* Draw LOAD */
/**********************************************************************/
DrawLoad:

Line.0 = 1
Line.1 = "LOAD DATA INDDN SYSREC INTO TABLE" TABLE
Position = 1
Do I = 1 To SQLDA.SQLD

If I = 1 Then
Line = " ("

Else
Line = " ,"

Line = Line Left(’"’SQLDA.I.SQLNAME’"’,20)
Line = Line "POSITION("RIGHT(POSITION,5)")"
Type = SQLDA.I.SQLTYPE
Null = Type//2
If Null Then Type = Type - 1
Len = SQLDA.I.SQLLEN
Prcsn = SQLDA.I.SQLLEN.SQLPRECISION
Scale = SQLDA.I.SQLLEN.SQLSCALE
Select
When (Type = CHTYPE ,

|Type = GRTYP ) THEN
Type = SQLTYPES.Type"("STRIP(LEN)")"

When (Type = FLOTYPE ) THEN
Type = SQLTYPES.Type"("STRIP((LEN*4)-11) ")"

When (Type = DCTYPE ) THEN
Do

Type = SQLTYPES.Type "EXTERNAL"
Type = Type"("STRIP(PRCSN)","STRIP(SCALE)")"
Len = (PRCSN+2)%2

End
When (Type = DATYPE ,

|Type = TITYPE ,
|Type = TSTYPE ) THEN

Type = SQLTYPES.Type "EXTERNAL"
Otherwise

Type = SQLTYPES.Type
End
If (Type = GRTYP ,

|Type = VGRTYP ,
|Type = LVGRTYP ) THEN

Len = Len * 2
If (Type = VCHTYPE ,

|Type = LVCHTYPE ,
|Type = VGRTYP ,
|Type = LVGRTYP ) THEN

Len = Len + 2
Line = Line Type
L = Line.0 + 1; Line.0 = L

Figure 280. REXX sample program DRAW (Part 9 of 10)

Appendix D. Programming examples 1061



Line.L = Line
If Null = 1 Then
Do

Line = " "
Line = Line Left(’’,20)
Line = Line " NULLIF("RIGHT(POSITION,5)")=’?’"
L = Line.0 + 1; Line.0 = L
Line.L = Line

End
Position = Position + Len + 1

End I
L = Line.0 + 1; Line.0 = L
Line.L = " )"
Return

/**********************************************************************/
/* Display SQLCA */
/**********************************************************************/
SQLCA:

"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLSTATE="SQLSTATE"’"
"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLWARN ="SQLWARN.0",",

|| SQLWARN.1",",
|| SQLWARN.2",",
|| SQLWARN.3",",
|| SQLWARN.4",",
|| SQLWARN.5",",
|| SQLWARN.6",",
|| SQLWARN.7",",
|| SQLWARN.8",",
|| SQLWARN.9",",
|| SQLWARN.10"’"

"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLERRD ="SQLERRD.1",",
|| SQLERRD.2",",
|| SQLERRD.3",",
|| SQLERRD.4",",
|| SQLERRD.5",",
|| SQLERRD.6"’"

"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLERRP ="SQLERRP"’"
"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLERRMC ="SQLERRMC"’"
"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLCODE ="SQLCODE"’"
Exit 20

Figure 280. REXX sample program DRAW (Part 10 of 10)

1062 Application Programming and SQL Guide



Sample COBOL program using DRDA access
The following sample program demonstrates distributed data access using DRDA
access.

IDENTIFICATION DIVISION.
PROGRAM-ID. TWOPHASE.
AUTHOR.
REMARKS.
*****************************************************************
* *
* MODULE NAME = TWOPHASE *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION USING *
* TWO PHASE COMMIT AND THE DRDA DISTRIBUTED *
* ACCESS METHOD *
* *
* COPYRIGHT = 5665-DB2 (C) COPYRIGHT IBM CORP 1982, 1989 *
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 *
* *
* STATUS = VERSION 5 *
* *
* FUNCTION = THIS MODULE DEMONSTRATES DISTRIBUTED DATA ACCESS *
* USING 2 PHASE COMMIT BY TRANSFERRING AN EMPLOYEE *
* FROM ONE LOCATION TO ANOTHER. *
* *
* NOTE: THIS PROGRAM ASSUMES THE EXISTENCE OF THE *
* TABLE SYSADM.EMP AT LOCATIONS STLEC1 AND *
* STLEC2. *
* *
* MODULE TYPE = COBOL PROGRAM *
* PROCESSOR = DB2 PRECOMPILER, ENTERPRISE COBOL FOR Z/OS *
* MODULE SIZE = SEE LINK EDIT *
* ATTRIBUTES = NOT REENTRANT OR REUSABLE *
* *
* ENTRY POINT = *
* PURPOSE = TO ILLUSTRATE 2 PHASE COMMIT *
* LINKAGE = INVOKE FROM DSN RUN *
* INPUT = NONE *
* OUTPUT = *
* SYMBOLIC LABEL/NAME = SYSPRINT *
* DESCRIPTION = PRINT OUT THE DESCRIPTION OF EACH *
* STEP AND THE RESULTANT SQLCA *
* *
* EXIT NORMAL = RETURN CODE 0 FROM NORMAL COMPLETION *
* *
* EXIT ERROR = NONE *
* *
* EXTERNAL REFERENCES = *
* ROUTINE SERVICES = NONE *
* DATA-AREAS = NONE *
* CONTROL-BLOCKS = *
* SQLCA - SQL COMMUNICATION AREA *
* *
* TABLES = NONE *
* *
* CHANGE-ACTIVITY = NONE *
* *
* *
* *

Figure 281. Sample COBOL two-phase commit application for DRDA access (Part 1 of 8)

Appendix D. Programming examples 1063



* PSEUDOCODE *
* *
* MAINLINE. *
* Perform CONNECT-TO-SITE-1 to establish *
* a connection to the local connection. *
* If the previous operation was successful Then *
* Do. *
* | Perform PROCESS-CURSOR-SITE-1 to obtain the *
* | information about an employee that is *
* | transferring to another location. *
* | If the information about the employee was obtained *
* | successfully Then *
* | Do. *
* | | Perform UPDATE-ADDRESS to update the information *
* | | to contain current information about the *
* | | employee. *
* | | Perform CONNECT-TO-SITE-2 to establish *
* | | a connection to the site where the employee is *
* | | transferring to. *
* | | If the connection is established successfully *
* | | Then *
* | | Do. *
* | | | Perform PROCESS-SITE-2 to insert the *
* | | | employee information at the location *
* | | | where the employee is transferring to. *
* | | End if the connection was established *
* | | successfully. *
* | End if the employee information was obtained *
* | successfully. *
* End if the previous operation was successful. *
* Perform COMMIT-WORK to COMMIT the changes made to STLEC1 *
* and STLEC2. *
* *
* PROG-END. *
* Close the printer. *
* Return. *
* *
* CONNECT-TO-SITE-1. *
* Provide a text description of the following step. *
* Establish a connection to the location where the *
* employee is transferring from. *
* Print the SQLCA out. *
* *
* PROCESS-CURSOR-SITE-1. *
* Provide a text description of the following step. *
* Open a cursor that will be used to retrieve information *
* about the transferring employee from this site. *
* Print the SQLCA out. *
* If the cursor was opened successfully Then *
* Do. *
* | Perform FETCH-DELETE-SITE-1 to retrieve and *
* | delete the information about the transferring *
* | employee from this site. *
* | Perform CLOSE-CURSOR-SITE-1 to close the cursor. *
* End if the cursor was opened successfully. *
* *

Figure 281. Sample COBOL two-phase commit application for DRDA access (Part 2 of 8)

1064 Application Programming and SQL Guide



* FETCH-DELETE-SITE-1. *
* Provide a text description of the following step. *
* Fetch information about the transferring employee. *
* Print the SQLCA out. *
* If the information was retrieved successfully Then *
* Do. *
* | Perform DELETE-SITE-1 to delete the employee *
* | at this site. *
* End if the information was retrieved successfully. *
* *
* DELETE-SITE-1. *
* Provide a text description of the following step. *
* Delete the information about the transferring employee *
* from this site. *
* Print the SQLCA out. *
* *
* CLOSE-CURSOR-SITE-1. *
* Provide a text description of the following step. *
* Close the cursor used to retrieve information about *
* the transferring employee. *
* Print the SQLCA out. *
* *
* UPDATE-ADDRESS. *
* Update the address of the employee. *
* Update the city of the employee. *
* Update the location of the employee. *
* *
* CONNECT-TO-SITE-2. *
* Provide a text description of the following step. *
* Establish a connection to the location where the *
* employee is transferring to. *
* Print the SQLCA out. *
* *
* PROCESS-SITE-2. *
* Provide a text description of the following step. *
* Insert the employee information at the location where *
* the employee is being transferred to. *
* Print the SQLCA out. *
* *
* COMMIT-WORK. *
* COMMIT all the changes made to STLEC1 and STLEC2. *
* *
*****************************************************************

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINTER, ASSIGN TO S-OUT1.

DATA DIVISION.
FILE SECTION.
FD PRINTER

RECORD CONTAINS 120 CHARACTERS
DATA RECORD IS PRT-TC-RESULTS
LABEL RECORD IS OMITTED.

01 PRT-TC-RESULTS.
03 PRT-BLANK PIC X(120).

Figure 281. Sample COBOL two-phase commit application for DRDA access (Part 3 of 8)

Appendix D. Programming examples 1065



WORKING-STORAGE SECTION.

*****************************************************************
* Variable declarations *
*****************************************************************

01 H-EMPTBL.
05 H-EMPNO PIC X(6).
05 H-NAME.

49 H-NAME-LN PIC S9(4) COMP-4.
49 H-NAME-DA PIC X(32).

05 H-ADDRESS.
49 H-ADDRESS-LN PIC S9(4) COMP-4.
49 H-ADDRESS-DA PIC X(36).

05 H-CITY.
49 H-CITY-LN PIC S9(4) COMP-4.
49 H-CITY-DA PIC X(36).

05 H-EMPLOC PIC X(4).
05 H-SSNO PIC X(11).
05 H-BORN PIC X(10).
05 H-SEX PIC X(1).
05 H-HIRED PIC X(10).
05 H-DEPTNO PIC X(3).
05 H-JOBCODE PIC S9(3)V COMP-3.
05 H-SRATE PIC S9(5) COMP.
05 H-EDUC PIC S9(5) COMP.
05 H-SAL PIC S9(6)V9(2) COMP-3.
05 H-VALIDCHK PIC S9(6)V COMP-3.

01 H-EMPTBL-IND-TABLE.
02 H-EMPTBL-IND PIC S9(4) COMP OCCURS 15 TIMES.

*****************************************************************
* Includes for the variables used in the COBOL standard *
* language procedures and the SQLCA. *
*****************************************************************

EXEC SQL INCLUDE COBSVAR END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

*****************************************************************
* Declaration for the table that contains employee information *
*****************************************************************

EXEC SQL DECLARE SYSADM.EMP TABLE
(EMPNO CHAR(6) NOT NULL,
NAME VARCHAR(32),
ADDRESS VARCHAR(36) ,
CITY VARCHAR(36) ,
EMPLOC CHAR(4) NOT NULL,
SSNO CHAR(11),
BORN DATE,
SEX CHAR(1),
HIRED CHAR(10),
DEPTNO CHAR(3) NOT NULL,
JOBCODE DECIMAL(3),
SRATE SMALLINT,
EDUC SMALLINT,

Figure 281. Sample COBOL two-phase commit application for DRDA access (Part 4 of 8)

1066 Application Programming and SQL Guide



SAL DECIMAL(8,2) NOT NULL,
VALCHK DECIMAL(6))

END-EXEC.

*****************************************************************
* Constants *
*****************************************************************

77 SITE-1 PIC X(16) VALUE ’STLEC1’.
77 SITE-2 PIC X(16) VALUE ’STLEC2’.
77 TEMP-EMPNO PIC X(6) VALUE ’080000’.
77 TEMP-ADDRESS-LN PIC 99 VALUE 15.
77 TEMP-CITY-LN PIC 99 VALUE 18.

*****************************************************************
* Declaration of the cursor that will be used to retrieve *
* information about a transferring employee *
*****************************************************************

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, NAME, ADDRESS, CITY, EMPLOC,

SSNO, BORN, SEX, HIRED, DEPTNO, JOBCODE,
SRATE, EDUC, SAL, VALCHK

FROM SYSADM.EMP
WHERE EMPNO = :TEMP-EMPNO

END-EXEC.

PROCEDURE DIVISION.
A101-HOUSE-KEEPING.

OPEN OUTPUT PRINTER.

*****************************************************************
* An employee is transferring from location STLEC1 to STLEC2. *
* Retrieve information about the employee from STLEC1, delete *
* the employee from STLEC1 and insert the employee at STLEC2 *
* using the information obtained from STLEC1. *
*****************************************************************

MAINLINE.
PERFORM CONNECT-TO-SITE-1
IF SQLCODE IS EQUAL TO 0

PERFORM PROCESS-CURSOR-SITE-1
IF SQLCODE IS EQUAL TO 0

PERFORM UPDATE-ADDRESS
PERFORM CONNECT-TO-SITE-2
IF SQLCODE IS EQUAL TO 0

PERFORM PROCESS-SITE-2.
PERFORM COMMIT-WORK.

Figure 281. Sample COBOL two-phase commit application for DRDA access (Part 5 of 8)

Appendix D. Programming examples 1067



PROG-END.
CLOSE PRINTER.
GOBACK.

*****************************************************************
* Establish a connection to STLEC1 *
*****************************************************************

CONNECT-TO-SITE-1.

MOVE ’CONNECT TO STLEC1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

CONNECT TO :SITE-1
END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* When a connection has been established successfully at STLEC1,*
* open the cursor that will be used to retrieve information *
* about the transferring employee. *
*****************************************************************

PROCESS-CURSOR-SITE-1.

MOVE ’OPEN CURSOR C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

OPEN C1
END-EXEC.
PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO

PERFORM FETCH-DELETE-SITE-1
PERFORM CLOSE-CURSOR-SITE-1.

*****************************************************************
* Retrieve information about the transferring employee. *
* Provided that the employee exists, perform DELETE-SITE-1 to *
* delete the employee from STLEC1. *
*****************************************************************

FETCH-DELETE-SITE-1.

MOVE ’FETCH C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

FETCH C1 INTO :H-EMPTBL:H-EMPTBL-IND
END-EXEC.
PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO

PERFORM DELETE-SITE-1.

Figure 281. Sample COBOL two-phase commit application for DRDA access (Part 6 of 8)

1068 Application Programming and SQL Guide



*****************************************************************
* Delete the employee from STLEC1. *
*****************************************************************

DELETE-SITE-1.

MOVE ’DELETE EMPLOYEE ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
MOVE ’DELETE EMPLOYEE ’ TO STNAME
EXEC SQL

DELETE FROM SYSADM.EMP
WHERE EMPNO = :TEMP-EMPNO

END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* Close the cursor used to retrieve information about the *
* transferring employee. *
*****************************************************************

CLOSE-CURSOR-SITE-1.

MOVE ’CLOSE CURSOR C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

CLOSE C1
END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* Update certain employee information in order to make it *
* current. *
*****************************************************************

UPDATE-ADDRESS.
MOVE TEMP-ADDRESS-LN TO H-ADDRESS-LN.
MOVE ’1500 NEW STREET’ TO H-ADDRESS-DA.
MOVE TEMP-CITY-LN TO H-CITY-LN.
MOVE ’NEW CITY, CA 97804’ TO H-CITY-DA.
MOVE ’SJCA’ TO H-EMPLOC.

*****************************************************************
* Establish a connection to STLEC2 *
*****************************************************************

CONNECT-TO-SITE-2.

MOVE ’CONNECT TO STLEC2 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

CONNECT TO :SITE-2
END-EXEC.
PERFORM PTSQLCA.

Figure 281. Sample COBOL two-phase commit application for DRDA access (Part 7 of 8)

Appendix D. Programming examples 1069



*****************************************************************
* Using the employee information that was retrieved from STLEC1 *
* and updated previously, insert the employee at STLEC2. *
*****************************************************************

PROCESS-SITE-2.

MOVE ’INSERT EMPLOYEE ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

INSERT INTO SYSADM.EMP VALUES
(:H-EMPNO,
:H-NAME,
:H-ADDRESS,
:H-CITY,
:H-EMPLOC,
:H-SSNO,
:H-BORN,
:H-SEX,
:H-HIRED,
:H-DEPTNO,
:H-JOBCODE,
:H-SRATE,
:H-EDUC,
:H-SAL,
:H-VALIDCHK)

END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* COMMIT any changes that were made at STLEC1 and STLEC2. *
*****************************************************************

COMMIT-WORK.

MOVE ’COMMIT WORK ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

COMMIT
END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* Include COBOL standard language procedures *
*****************************************************************

INCLUDE-SUBS.
EXEC SQL INCLUDE COBSSUB END-EXEC.

Figure 281. Sample COBOL two-phase commit application for DRDA access (Part 8 of 8)

1070 Application Programming and SQL Guide



Sample COBOL program using DB2 private protocol access
The following sample program demonstrates distributed access data using DB2
private protocol access with two-phase commit.

IDENTIFICATION DIVISION.
PROGRAM-ID. TWOPHASE.
AUTHOR.
REMARKS.
*****************************************************************
* *
* MODULE NAME = TWOPHASE *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION USING *
* TWO PHASE COMMIT AND DB2 PRIVATE PROTOCOL *
* DISTRIBUTED ACCESS METHOD *
* *
* COPYRIGHT = 5665-DB2 (C) COPYRIGHT IBM CORP 1982, 1989 *
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 *
* *
* STATUS = VERSION 5 *
* *
* FUNCTION = THIS MODULE DEMONSTRATES DISTRIBUTED DATA ACCESS *
* USING 2 PHASE COMMIT BY TRANSFERRING AN EMPLOYEE *
* FROM ONE LOCATION TO ANOTHER. *
* *
* NOTE: THIS PROGRAM ASSUMES THE EXISTENCE OF THE *
* TABLE SYSADM.EMP AT LOCATIONS STLEC1 AND *
* STLEC2. *
* *
* MODULE TYPE = COBOL PROGRAM *
* PROCESSOR = DB2 PRECOMPILER, ENTERPRISE COBOL FOR Z/OS *
* MODULE SIZE = SEE LINK EDIT *
* ATTRIBUTES = NOT REENTRANT OR REUSABLE *
* *
* ENTRY POINT = *
* PURPOSE = TO ILLUSTRATE 2 PHASE COMMIT *
* LINKAGE = INVOKE FROM DSN RUN *
* INPUT = NONE *
* OUTPUT = *
* SYMBOLIC LABEL/NAME = SYSPRINT *
* DESCRIPTION = PRINT OUT THE DESCRIPTION OF EACH *
* STEP AND THE RESULTANT SQLCA *
* *
* EXIT NORMAL = RETURN CODE 0 FROM NORMAL COMPLETION *
* *
* EXIT ERROR = NONE *
* *
* EXTERNAL REFERENCES = *
* ROUTINE SERVICES = NONE *
* DATA-AREAS = NONE *
* CONTROL-BLOCKS = *
* SQLCA - SQL COMMUNICATION AREA *
* *
* TABLES = NONE *
* *
* CHANGE-ACTIVITY = NONE *
* *
* *

Figure 282. Sample COBOL two-phase commit application for DB2 private protocol access
(Part 1 of 7)

Appendix D. Programming examples 1071



* *
* PSEUDOCODE *
* *
* MAINLINE. *
* Perform PROCESS-CURSOR-SITE-1 to obtain the information *
* about an employee that is transferring to another *
* location. *
* If the information about the employee was obtained *
* successfully Then *
* Do. *
* | Perform UPDATE-ADDRESS to update the information to *
* | contain current information about the employee. *
* | Perform PROCESS-SITE-2 to insert the employee *
* | information at the location where the employee is *
* | transferring to. *
* End if the employee information was obtained *
* successfully. *
* Perform COMMIT-WORK to COMMIT the changes made to STLEC1 *
* and STLEC2. *
* *
* PROG-END. *
* Close the printer. *
* Return. *
* *
* PROCESS-CURSOR-SITE-1. *
* Provide a text description of the following step. *
* Open a cursor that will be used to retrieve information *
* about the transferring employee from this site. *
* Print the SQLCA out. *
* If the cursor was opened successfully Then *
* Do. *
* | Perform FETCH-DELETE-SITE-1 to retrieve and *
* | delete the information about the transferring *
* | employee from this site. *
* | Perform CLOSE-CURSOR-SITE-1 to close the cursor. *
* End if the cursor was opened successfully. *
* *
* FETCH-DELETE-SITE-1. *
* Provide a text description of the following step. *
* Fetch information about the transferring employee. *
* Print the SQLCA out. *
* If the information was retrieved successfully Then *
* Do. *
* | Perform DELETE-SITE-1 to delete the employee *
* | at this site. *
* End if the information was retrieved successfully. *
* *
* DELETE-SITE-1. *
* Provide a text description of the following step. *
* Delete the information about the transferring employee *
* from this site. *
* Print the SQLCA out. *
* *
* CLOSE-CURSOR-SITE-1. *
* Provide a text description of the following step. *
* Close the cursor used to retrieve information about *
* the transferring employee. *
* Print the SQLCA out. *
* *

Figure 282. Sample COBOL two-phase commit application for DB2 private protocol access
(Part 2 of 7)

1072 Application Programming and SQL Guide



* UPDATE-ADDRESS. *
* Update the address of the employee. *
* Update the city of the employee. *
* Update the location of the employee. *
* *
* PROCESS-SITE-2. *
* Provide a text description of the following step. *
* Insert the employee information at the location where *
* the employee is being transferred to. *
* Print the SQLCA out. *
* *
* COMMIT-WORK. *
* COMMIT all the changes made to STLEC1 and STLEC2. *
* *
*****************************************************************

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINTER, ASSIGN TO S-OUT1.

DATA DIVISION.
FILE SECTION.
FD PRINTER

RECORD CONTAINS 120 CHARACTERS
DATA RECORD IS PRT-TC-RESULTS
LABEL RECORD IS OMITTED.

01 PRT-TC-RESULTS.
03 PRT-BLANK PIC X(120).

WORKING-STORAGE SECTION.

*****************************************************************
* Variable declarations *
*****************************************************************

01 H-EMPTBL.
05 H-EMPNO PIC X(6).
05 H-NAME.

49 H-NAME-LN PIC S9(4) COMP-4.
49 H-NAME-DA PIC X(32).

05 H-ADDRESS.
49 H-ADDRESS-LN PIC S9(4) COMP-4.
49 H-ADDRESS-DA PIC X(36).

05 H-CITY.
49 H-CITY-LN PIC S9(4) COMP-4.
49 H-CITY-DA PIC X(36).

05 H-EMPLOC PIC X(4).
05 H-SSNO PIC X(11).
05 H-BORN PIC X(10).
05 H-SEX PIC X(1).
05 H-HIRED PIC X(10).
05 H-DEPTNO PIC X(3).
05 H-JOBCODE PIC S9(3)V COMP-3.
05 H-SRATE PIC S9(5) COMP.
05 H-EDUC PIC S9(5) COMP.
05 H-SAL PIC S9(6)V9(2) COMP-3.
05 H-VALIDCHK PIC S9(6)V COMP-3.

Figure 282. Sample COBOL two-phase commit application for DB2 private protocol access
(Part 3 of 7)

Appendix D. Programming examples 1073



01 H-EMPTBL-IND-TABLE.
02 H-EMPTBL-IND PIC S9(4) COMP OCCURS 15 TIMES.

*****************************************************************
* Includes for the variables used in the COBOL standard *
* language procedures and the SQLCA. *
*****************************************************************

EXEC SQL INCLUDE COBSVAR END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

*****************************************************************
* Declaration for the table that contains employee information *
*****************************************************************

EXEC SQL DECLARE SYSADM.EMP TABLE
(EMPNO CHAR(6) NOT NULL,
NAME VARCHAR(32),
ADDRESS VARCHAR(36) ,
CITY VARCHAR(36) ,
EMPLOC CHAR(4) NOT NULL,
SSNO CHAR(11),
BORN DATE,
SEX CHAR(1),
HIRED CHAR(10),
DEPTNO CHAR(3) NOT NULL,
JOBCODE DECIMAL(3),
SRATE SMALLINT,
EDUC SMALLINT,
SAL DECIMAL(8,2) NOT NULL,
VALCHK DECIMAL(6))

END-EXEC.

*****************************************************************
* Constants *
*****************************************************************

77 TEMP-EMPNO PIC X(6) VALUE ’080000’.
77 TEMP-ADDRESS-LN PIC 99 VALUE 15.
77 TEMP-CITY-LN PIC 99 VALUE 18.

*****************************************************************
* Declaration of the cursor that will be used to retrieve *
* information about a transferring employee *
*****************************************************************

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, NAME, ADDRESS, CITY, EMPLOC,

SSNO, BORN, SEX, HIRED, DEPTNO, JOBCODE,
SRATE, EDUC, SAL, VALCHK

FROM STLEC1.SYSADM.EMP
WHERE EMPNO = :TEMP-EMPNO

END-EXEC.

Figure 282. Sample COBOL two-phase commit application for DB2 private protocol access
(Part 4 of 7)

1074 Application Programming and SQL Guide



PROCEDURE DIVISION.
A101-HOUSE-KEEPING.

OPEN OUTPUT PRINTER.

*****************************************************************
* An employee is transferring from location STLEC1 to STLEC2. *
* Retrieve information about the employee from STLEC1, delete *
* the employee from STLEC1 and insert the employee at STLEC2 *
* using the information obtained from STLEC1. *
*****************************************************************

MAINLINE.
PERFORM PROCESS-CURSOR-SITE-1
IF SQLCODE IS EQUAL TO 0

PERFORM UPDATE-ADDRESS
PERFORM PROCESS-SITE-2.

PERFORM COMMIT-WORK.

PROG-END.
CLOSE PRINTER.
GOBACK.

*****************************************************************
* Open the cursor that will be used to retrieve information *
* about the transferring employee. *
*****************************************************************

PROCESS-CURSOR-SITE-1.

MOVE ’OPEN CURSOR C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

OPEN C1
END-EXEC.
PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO

PERFORM FETCH-DELETE-SITE-1
PERFORM CLOSE-CURSOR-SITE-1.

*****************************************************************
* Retrieve information about the transferring employee. *
* Provided that the employee exists, perform DELETE-SITE-1 to *
* delete the employee from STLEC1. *
*****************************************************************

FETCH-DELETE-SITE-1.

MOVE ’FETCH C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

FETCH C1 INTO :H-EMPTBL:H-EMPTBL-IND
END-EXEC.

Figure 282. Sample COBOL two-phase commit application for DB2 private protocol access
(Part 5 of 7)

Appendix D. Programming examples 1075



PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO

PERFORM DELETE-SITE-1.

*****************************************************************
* Delete the employee from STLEC1. *
*****************************************************************

DELETE-SITE-1.

MOVE ’DELETE EMPLOYEE ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
MOVE ’DELETE EMPLOYEE ’ TO STNAME
EXEC SQL

DELETE FROM STLEC1.SYSADM.EMP
WHERE EMPNO = :TEMP-EMPNO

END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* Close the cursor used to retrieve information about the *
* transferring employee. *
*****************************************************************

CLOSE-CURSOR-SITE-1.

MOVE ’CLOSE CURSOR C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

CLOSE C1
END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* Update certain employee information in order to make it *
* current. *
*****************************************************************

UPDATE-ADDRESS.
MOVE TEMP-ADDRESS-LN TO H-ADDRESS-LN.
MOVE ’1500 NEW STREET’ TO H-ADDRESS-DA.
MOVE TEMP-CITY-LN TO H-CITY-LN.
MOVE ’NEW CITY, CA 97804’ TO H-CITY-DA.
MOVE ’SJCA’ TO H-EMPLOC.

Figure 282. Sample COBOL two-phase commit application for DB2 private protocol access
(Part 6 of 7)

1076 Application Programming and SQL Guide



Examples of using stored procedures
This section contains sample programs that you can refer to when programming
your stored procedure applications. DSN810.SDSNSAMP contains sample jobs
DSNTEJ6P and DSNTEJ6S and programs DSN8EP1 and DSN8EP2, which you can
run.

Calling a stored procedure from a C program
This example shows how to call the C language version of the GETPRML stored
procedure that uses the GENERAL WITH NULLS linkage convention. Because the
stored procedure returns result sets, this program checks for result sets and
retrieves the contents of the result sets.

*****************************************************************
* Using the employee information that was retrieved from STLEC1 *
* and updated previously, insert the employee at STLEC2. *
*****************************************************************

PROCESS-SITE-2.

MOVE ’INSERT EMPLOYEE ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

INSERT INTO STLEC2.SYSADM.EMP VALUES
(:H-EMPNO,
:H-NAME,
:H-ADDRESS,
:H-CITY,
:H-EMPLOC,
:H-SSNO,
:H-BORN,
:H-SEX,
:H-HIRED,
:H-DEPTNO,
:H-JOBCODE,
:H-SRATE,
:H-EDUC,
:H-SAL,
:H-VALIDCHK)

END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* COMMIT any changes that were made at STLEC1 and STLEC2. *
*****************************************************************

COMMIT-WORK.

MOVE ’COMMIT WORK ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

COMMIT
END-EXEC.
PERFORM PTSQLCA.

*****************************************************************
* Include COBOL standard language procedures *
*****************************************************************

INCLUDE-SUBS.
EXEC SQL INCLUDE COBSSUB END-EXEC.

Figure 282. Sample COBOL two-phase commit application for DB2 private protocol access
(Part 7 of 7)

Appendix D. Programming examples 1077



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
main()
{
/************************************************************/
/* Include the SQLCA and SQLDA */
/************************************************************/
EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;
/************************************************************/
/* Declare variables that are not SQL-related. */
/************************************************************/
short int i; /* Loop counter */
/************************************************************/
/* Declare the following: */
/* - Parameters used to call stored procedure GETPRML */
/* - An SQLDA for DESCRIBE PROCEDURE */
/* - An SQLDA for DESCRIBE CURSOR */
/* - Result set variable locators for up to three result */
/* sets */
/************************************************************/
EXEC SQL BEGIN DECLARE SECTION;
char procnm[19]; /* INPUT parm -- PROCEDURE name */
char schema[9]; /* INPUT parm -- User’s schema */
long int out_code; /* OUTPUT -- SQLCODE from the */

/* SELECT operation. */
struct {

short int parmlen;
char parmtxt[254];

} parmlst; /* OUTPUT -- RUNOPTS values */
/* for the matching row in */
/* catalog table SYSROUTINES */

struct indicators {
short int procnm_ind;
short int schema_ind;
short int out_code_ind;
short int parmlst_ind;
} parmind;

/* Indicator variable structure */

struct sqlda *proc_da;
/* SQLDA for DESCRIBE PROCEDURE */

struct sqlda *res_da;
/* SQLDA for DESCRIBE CURSOR */

static volatile
SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2, *loc3;

/* Locator variables */
EXEC SQL END DECLARE SECTION;

Figure 283. Calling a stored procedure from a C program (Part 1 of 4)

1078 Application Programming and SQL Guide



/*************************************************************/
/* Allocate the SQLDAs to be used for DESCRIBE */
/* PROCEDURE and DESCRIBE CURSOR. Assume that at most */
/* three cursors are returned and that each result set */
/* has no more than five columns. */
/*************************************************************/
proc_da = (struct sqlda *)malloc(SQLDASIZE(3));
res_da = (struct sqlda *)malloc(SQLDASIZE(5));

/************************************************************/
/* Call the GETPRML stored procedure to retrieve the */
/* RUNOPTS values for the stored procedure. In this */
/* example, we request the PARMLIST definition for the */
/* stored procedure named DSN8EP2. */
/* */
/* The call should complete with SQLCODE +466 because */
/* GETPRML returns result sets. */
/************************************************************/
strcpy(procnm,"dsn8ep2 ");

/* Input parameter -- PROCEDURE to be found */
strcpy(schema," ");

/* Input parameter -- Schema name for proc */
parmind.procnm_ind=0;
parmind.schema_ind=0;
parmind.out_code_ind=0;

/* Indicate that none of the input parameters */
/* have null values */

parmind.parmlst_ind=-1;
/* The parmlst parameter is an output parm. */
/* Mark PARMLST parameter as null, so the DB2 */
/* requester doesn’t have to send the entire */
/* PARMLST variable to the server. This */
/* helps reduce network I/O time, because */
/* PARMLST is fairly large. */

EXEC SQL
CALL GETPRML(:procnm INDICATOR :parmind.procnm_ind,

:schema INDICATOR :parmind.schema_ind,
:out_code INDICATOR :parmind.out_code_ind,
:parmlst INDICATOR :parmind.parmlst_ind);

if(SQLCODE!=+466) /* If SQL CALL failed, */
{

/* print the SQLCODE and any */
/* message tokens */

printf("SQL CALL failed due to SQLCODE = %d\n",SQLCODE);
printf("sqlca.sqlerrmc = ");
for(i=0;i<sqlca.sqlerrml;i++)
printf("%c",sqlca.sqlerrmc[i]);

printf("\n");
}

Figure 283. Calling a stored procedure from a C program (Part 2 of 4)

Appendix D. Programming examples 1079



else /* If the CALL worked, */
if(out_code!=0) /* Did GETPRML hit an error? */
printf("GETPRML failed due to RC = %d\n",out_code);

/**********************************************************/
/* If everything worked, do the following: */
/* - Print out the parameters returned. */
/* - Retrieve the result sets returned. */
/**********************************************************/
else
{
printf("RUNOPTS = %s\n",parmlst.parmtxt);

/* Print out the runopts list */

/********************************************************/
/* Use the statement DESCRIBE PROCEDURE to */
/* return information about the result sets in the */
/* SQLDA pointed to by proc_da: */
/* - SQLD contains the number of result sets that were */
/* returned by the stored procedure. */
/* - Each SQLVAR entry has the following information */
/* about a result set: */
/* - SQLNAME contains the name of the cursor that */
/* the stored procedure uses to return the result */
/* set. */
/* - SQLIND contains an estimate of the number of */
/* rows in the result set. */
/* - SQLDATA contains the result locator value for */
/* the result set. */
/********************************************************/
EXEC SQL DESCRIBE PROCEDURE INTO :*proc_da;
/********************************************************/
/* Assume that you have examined SQLD and determined */
/* that there is one result set. Use the statement */
/* ASSOCIATE LOCATORS to establish a result set locator */
/* for the result set. */
/********************************************************/
EXEC SQL ASSOCIATE LOCATORS (:loc1) WITH PROCEDURE GETPRML;

/********************************************************/
/* Use the statement ALLOCATE CURSOR to associate a */
/* cursor for the result set. */
/********************************************************/
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
/********************************************************/
/* Use the statement DESRIBE CURSOR to determine the */
/* columns in the result set. */
/********************************************************/
EXEC SQL DESCRIBE CURSOR C1 INTO :*res_da;

Figure 283. Calling a stored procedure from a C program (Part 3 of 4)

1080 Application Programming and SQL Guide



Calling a stored procedure from a COBOL program
This example shows how to call a version of the GETPRML stored procedure that
uses the GENERAL WITH NULLS linkage convention from a COBOL program on
an MVS system. Because the stored procedure returns result sets, this program
checks for result sets and retrieves the contents of the result sets.

/********************************************************/
/* Call a routine (not shown here) to do the following: */
/* - Allocate a buffer for data and indicator values */
/* fetched from the result table. */
/* - Update the SQLDATA and SQLIND fields in each */
/* SQLVAR of *res_da with the addresses at which to */
/* to put the fetched data and values of indicator */
/* variables. */
/********************************************************/
alloc_outbuff(res_da);

/********************************************************/
/* Fetch the data from the result table. */
/********************************************************/
while(SQLCODE==0)
EXEC SQL FETCH C1 USING DESCRIPTOR :*res_da;

}
return;

}

Figure 283. Calling a stored procedure from a C program (Part 4 of 4)

Appendix D. Programming examples 1081



IDENTIFICATION DIVISION.
PROGRAM-ID. CALPRML.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT REPOUT
ASSIGN TO UT-S-SYSPRINT.

DATA DIVISION.
FILE SECTION.
FD REPOUT

RECORD CONTAINS 127 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS REPREC.

01 REPREC PIC X(127).

WORKING-STORAGE SECTION.
*****************************************************
* MESSAGES FOR SQL CALL *
*****************************************************
01 SQLREC.

02 BADMSG PIC X(34) VALUE
’ SQL CALL FAILED DUE TO SQLCODE = ’.

02 BADCODE PIC +9(5) USAGE DISPLAY.
02 FILLER PIC X(80) VALUE SPACES.

01 ERRMREC.
02 ERRMMSG PIC X(12) VALUE ’ SQLERRMC = ’.
02 ERRMCODE PIC X(70).
02 FILLER PIC X(38) VALUE SPACES.

01 CALLREC.
02 CALLMSG PIC X(28) VALUE

’ GETPRML FAILED DUE TO RC = ’.
02 CALLCODE PIC +9(5) USAGE DISPLAY.
02 FILLER PIC X(42) VALUE SPACES.

01 RSLTREC.
02 RSLTMSG PIC X(15) VALUE

’ TABLE NAME IS ’.
02 TBLNAME PIC X(18) VALUE SPACES.
02 FILLER PIC X(87) VALUE SPACES.

Figure 284. Calling a stored procedure from a COBOL program (Part 1 of 3)

1082 Application Programming and SQL Guide



*****************************************************
* WORK AREAS *
*****************************************************
01 PROCNM PIC X(18).
01 SCHEMA PIC X(8).
01 OUT-CODE PIC S9(9) USAGE COMP.
01 PARMLST.

49 PARMLEN PIC S9(4) USAGE COMP.
49 PARMTXT PIC X(254).

01 PARMBUF REDEFINES PARMLST.
49 PARBLEN PIC S9(4) USAGE COMP.
49 PARMARRY PIC X(127) OCCURS 2 TIMES.

01 NAME.
49 NAMELEN PIC S9(4) USAGE COMP.
49 NAMETXT PIC X(18).

77 PARMIND PIC S9(4) COMP.
77 I PIC S9(4) COMP.
77 NUMLINES PIC S9(4) COMP.
*****************************************************
* DECLARE A RESULT SET LOCATOR FOR THE RESULT SET *
* THAT IS RETURNED. *
*****************************************************
01 LOC USAGE SQL TYPE IS

RESULT-SET-LOCATOR VARYING.

*****************************************************
* SQL INCLUDE FOR SQLCA *
*****************************************************

EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
*------------------
PROG-START.

OPEN OUTPUT REPOUT.
* OPEN OUTPUT FILE

MOVE ’DSN8EP2 ’ TO PROCNM.
* INPUT PARAMETER -- PROCEDURE TO BE FOUND

MOVE SPACES TO SCHEMA.
* INPUT PARAMETER -- SCHEMA IN SYSROUTINES

MOVE -1 TO PARMIND.
* THE PARMLST PARAMETER IS AN OUTPUT PARM.
* MARK PARMLST PARAMETER AS NULL, SO THE DB2
* REQUESTER DOESN’T HAVE TO SEND THE ENTIRE
* PARMLST VARIABLE TO THE SERVER. THIS
* HELPS REDUCE NETWORK I/O TIME, BECAUSE
* PARMLST IS FAIRLY LARGE.

EXEC SQL
CALL GETPRML(:PROCNM,

:SCHEMA,
:OUT-CODE,
:PARMLST INDICATOR :PARMIND)

END-EXEC.

Figure 284. Calling a stored procedure from a COBOL program (Part 2 of 3)

Appendix D. Programming examples 1083



Calling a stored procedure from a PL/I program
This example shows how to call a version of the GETPRML stored procedure that
uses the GENERAL linkage convention from a PL/I program on an MVS system.

* MAKE THE CALL
IF SQLCODE NOT EQUAL TO +466 THEN

* IF CALL RETURNED BAD SQLCODE
MOVE SQLCODE TO BADCODE
WRITE REPREC FROM SQLREC
MOVE SQLERRMC TO ERRMCODE
WRITE REPREC FROM ERRMREC

ELSE
PERFORM GET-PARMS
PERFORM GET-RESULT-SET.

PROG-END.
CLOSE REPOUT.

* CLOSE OUTPUT FILE
GOBACK.

PARMPRT.
MOVE SPACES TO REPREC.
WRITE REPREC FROM PARMARRY(I)

AFTER ADVANCING 1 LINE.
GET-PARMS.
* IF THE CALL WORKED,

IF OUT-CODE NOT EQUAL TO 0 THEN
* DID GETPRML HIT AN ERROR?

MOVE OUT-CODE TO CALLCODE
WRITE REPREC FROM CALLREC

ELSE
* EVERYTHING WORKED

DIVIDE 127 INTO PARMLEN GIVING NUMLINES ROUNDED
* FIND OUT HOW MANY LINES TO PRINT

PERFORM PARMPRT VARYING I
FROM 1 BY 1 UNTIL I GREATER THAN NUMLINES.

GET-RESULT-SET.
*****************************************************
* ASSUME YOU KNOW THAT ONE RESULT SET IS RETURNED, *
* AND YOU KNOW THE FORMAT OF THAT RESULT SET. *
* ALLOCATE A CURSOR FOR THE RESULT SET, AND FETCH *
* THE CONTENTS OF THE RESULT SET. *
*****************************************************

EXEC SQL ASSOCIATE LOCATORS (:LOC)
WITH PROCEDURE GETPRML

END-EXEC.
* LINK THE RESULT SET TO THE LOCATOR

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC
END-EXEC.

* LINK THE CURSOR TO THE RESULT SET
PERFORM GET-ROWS VARYING I
FROM 1 BY 1 UNTIL SQLCODE EQUAL TO +100.

GET-ROWS.
EXEC SQL FETCH C1 INTO :NAME
END-EXEC.
MOVE NAME TO TBLNAME.
WRITE REPREC FROM RSLTREC
AFTER ADVANCING 1 LINE.

Figure 284. Calling a stored procedure from a COBOL program (Part 3 of 3)

1084 Application Programming and SQL Guide



C stored procedure: GENERAL
This example stored procedure does the following:
v Searches the DB2 catalog table SYSROUTINES for a row that matches the input

parameters from the client program. The two input parameters contain values
for NAME and SCHEMA.

*PROCESS SYSTEM(MVS);
CALPRML:
PROC OPTIONS(MAIN);

/************************************************************/
/* Declare the parameters used to call the GETPRML */
/* stored procedure. */
/************************************************************/
DECLARE PROCNM CHAR(18), /* INPUT parm -- PROCEDURE name */

SCHEMA CHAR(8), /* INPUT parm -- User’s schema */
OUT_CODE FIXED BIN(31),

/* OUTPUT -- SQLCODE from the */
/* SELECT operation. */

PARMLST CHAR(254) /* OUTPUT -- RUNOPTS for */
VARYING, /* the matching row in the */

/* catalog table SYSROUTINES */
PARMIND FIXED BIN(15);

/* PARMLST indicator variable */
/************************************************************/
/* Include the SQLCA */
/************************************************************/
EXEC SQL INCLUDE SQLCA;
/************************************************************/
/* Call the GETPRML stored procedure to retrieve the */
/* RUNOPTS values for the stored procedure. In this */
/* example, we request the RUNOPTS values for the */
/* stored procedure named DSN8EP2. */
/************************************************************/
PROCNM = ’DSN8EP2’;

/* Input parameter -- PROCEDURE to be found */
SCHEMA = ’ ’;

/* Input parameter -- SCHEMA in SYSROUTINES */
PARMIND = -1; /* The PARMLST parameter is an output parm. */

/* Mark PARMLST parameter as null, so the DB2 */
/* requester doesn’t have to send the entire */
/* PARMLST variable to the server. This */
/* helps reduce network I/O time, because */
/* PARMLST is fairly large. */

EXEC SQL
CALL GETPRML(:PROCNM,

:SCHEMA,
:OUT_CODE,
:PARMLST INDICATOR :PARMIND);

Figure 285. Calling a stored procedure from a PL/I program (Part 1 of 2)

IF SQLCODE¬=0 THEN /* If SQL CALL failed, */
DO;
PUT SKIP EDIT(’SQL CALL failed due to SQLCODE = ’,

SQLCODE) (A(34),A(14));
PUT SKIP EDIT(’SQLERRM = ’,

SQLERRM) (A(10),A(70));
END;

ELSE /* If the CALL worked, */
IF OUT_CODE¬=0 THEN /* Did GETPRML hit an error? */
PUT SKIP EDIT(’GETPRML failed due to RC = ’,

OUT_CODE) (A(33),A(14));
ELSE /* Everything worked. */
PUT SKIP EDIT(’RUNOPTS = ’, PARMLST) (A(11),A(200));

RETURN;
END CALPRML;

Figure 285. Calling a stored procedure from a PL/I program (Part 2 of 2)

Appendix D. Programming examples 1085



v Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

The linkage convention used for this stored procedure is GENERAL.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT statement and the value of the RUNOPTS column from SYSROUTINES.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE C
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 2
COMMIT ON RETURN NO;

1086 Application Programming and SQL Guide



C stored procedure: GENERAL WITH NULLS
This example stored procedure does the following:

#pragma runopts(plist(os))
#include <stdlib.h>

EXEC SQL INCLUDE SQLCA;

/***************************************************************/
/* Declare C variables for SQL operations on the parameters. */
/* These are local variables to the C program, which you must */
/* copy to and from the parameter list provided to the stored */
/* procedure. */
/***************************************************************/
EXEC SQL BEGIN DECLARE SECTION;
char PROCNM[19];
char SCHEMA[9];
char PARMLST[255];
EXEC SQL END DECLARE SECTION;

/***************************************************************/
/* Declare cursors for returning result sets to the caller. */
/***************************************************************/
EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME
FROM SYSIBM.SYSTABLES
WHERE CREATOR=:SCHEMA;

main(argc,argv)
int argc;
char *argv[];
{

/********************************************************/
/* Copy the input parameters into the area reserved in */
/* the program for SQL processing. */
/********************************************************/

strcpy(PROCNM, argv[1]);
strcpy(SCHEMA, argv[2]);

/********************************************************/
/* Issue the SQL SELECT against the SYSROUTINES */
/* DB2 catalog table. */
/********************************************************/

strcpy(PARMLST, ""); /* Clear PARMLST */
EXEC SQL
SELECT RUNOPTS INTO :PARMLST

FROM SYSIBM.ROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;

Figure 286. A C stored procedure with linkage convention GENERAL (Part 1 of 2)

/********************************************************/
/* Copy SQLCODE to the output parameter list. */
/********************************************************/

*(int *) argv[3] = SQLCODE;

/********************************************************/
/* Copy the PARMLST value returned by the SELECT back to*/
/* the parameter list provided to this stored procedure.*/
/********************************************************/

strcpy(argv[4], PARMLST);

/********************************************************/
/* Open cursor C1 to cause DB2 to return a result set */
/* to the caller. */
/********************************************************/

EXEC SQL OPEN C1;
}

Figure 286. A C stored procedure with linkage convention GENERAL (Part 2 of 2)

Appendix D. Programming examples 1087



v Searches the DB2 catalog table SYSROUTINES for a row that matches the input
parameters from the client program. The two input parameters contain values
for NAME and SCHEMA.

v Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

The linkage convention for this stored procedure is GENERAL WITH NULLS.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE C
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 2
COMMIT ON RETURN NO;

1088 Application Programming and SQL Guide



#pragma runopts(plist(os))
#include <stdlib.h>

EXEC SQL INCLUDE SQLCA;

/***************************************************************/
/* Declare C variables used for SQL operations on the */
/* parameters. These are local variables to the C program, */
/* which you must copy to and from the parameter list provided */
/* to the stored procedure. */
/***************************************************************/
EXEC SQL BEGIN DECLARE SECTION;
char PROCNM[19];
char SCHEMA[9];
char PARMLST[255];
struct INDICATORS {
short int PROCNM_IND;
short int SCHEMA_IND;
short int OUT_CODE_IND;
short int PARMLST_IND;
} PARM_IND;
EXEC SQL END DECLARE SECTION;

/***************************************************************/
/* Declare cursors for returning result sets to the caller. */
/***************************************************************/
EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME
FROM SYSIBM.SYSTABLES
WHERE CREATOR=:SCHEMA;

main(argc,argv)
int argc;
char *argv[];
{

/********************************************************/
/* Copy the input parameters into the area reserved in */
/* the local program for SQL processing. */
/********************************************************/

strcpy(PROCNM, argv[1]);
strcpy(SCHEMA, argv[2]);

/********************************************************/
/* Copy null indicator values for the parameter list. */
/********************************************************/

memcpy(&PARM_IND,(struct INDICATORS *) argv[5],
sizeof(PARM_IND));

Figure 287. A C stored procedure with linkage convention GENERAL WITH NULLS (Part 1 of
2)

Appendix D. Programming examples 1089



COBOL stored procedure: GENERAL
This example stored procedure does the following:
v Searches the catalog table SYSROUTINES for a row matching the input

parameters from the client program. The two input parameters contain values
for NAME and SCHEMA.

v Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

This stored procedure is able to return a NULL value for the output host variables.

The linkage convention for this stored procedure is GENERAL.

/********************************************************/
/* If any input parameter is NULL, return an error */
/* return code and assign a NULL value to PARMLST. */
/********************************************************/

if (PARM_IND.PROCNM_IND<0 ||
PARM_IND.SCHEMA_IND<0 || {

*(int *) argv[3] = 9999; /* set output return code */
PARM_IND.OUT_CODE_IND = 0; /* value is not NULL */
PARM_IND.PARMLST_IND = -1; /* PARMLST is NULL */
}

else {
/********************************************************/
/* If the input parameters are not NULL, issue the SQL */
/* SELECT against the SYSIBM.SYSROUTINES catalog */
/* table. */
/********************************************************/
strcpy(PARMLST, ""); /* Clear PARMLST */
EXEC SQL
SELECT RUNOPTS INTO :PARMLST

FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;
/********************************************************/
/* Copy SQLCODE to the output parameter list. */
/********************************************************/
*(int *) argv[3] = SQLCODE;
PARM_IND.OUT_CODE_IND = 0; /* OUT_CODE is not NULL */

}

/********************************************************/
/* Copy the RUNOPTS value back to the output parameter */
/* area. */
/********************************************************/

strcpy(argv[4], PARMLST);

/********************************************************/
/* Copy the null indicators back to the output parameter*/
/* area. */
/********************************************************/

memcpy((struct INDICATORS *) argv[5],&PARM_IND,
sizeof(PARM_IND));

/********************************************************/
/* Open cursor C1 to cause DB2 to return a result set */
/* to the caller. */
/********************************************************/

EXEC SQL OPEN C1;
}

Figure 287. A C stored procedure with linkage convention GENERAL WITH NULLS (Part 2 of
2)

1090 Application Programming and SQL Guide



The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE COBOL
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 2
COMMIT ON RETURN NO;

Appendix D. Programming examples 1091



CBL RENT
IDENTIFICATION DIVISION.
PROGRAM-ID. GETPRML.
AUTHOR. EXAMPLE.
DATE-WRITTEN. 03/25/98.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.
***************************************************
* DECLARE A HOST VARIABLE TO HOLD INPUT SCHEMA
***************************************************
01 INSCHEMA PIC X(8).

***************************************************
* DECLARE CURSOR FOR RETURNING RESULT SETS
***************************************************
*

EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME FROM SYSIBM.SYSTABLES WHERE CREATOR=:INSCHEMA

END-EXEC.
*
LINKAGE SECTION.
***************************************************
* DECLARE THE INPUT PARAMETERS FOR THE PROCEDURE
***************************************************
01 PROCNM PIC X(18).
01 SCHEMA PIC X(8).
*******************************************************
* DECLARE THE OUTPUT PARAMETERS FOR THE PROCEDURE
*******************************************************
01 OUT-CODE PIC S9(9) USAGE BINARY.
01 PARMLST.

49 PARMLST-LEN PIC S9(4) USAGE BINARY.
49 PARMLST-TEXT PIC X(254).

PROCEDURE DIVISION USING PROCNM, SCHEMA,
OUT-CODE, PARMLST.

Figure 288. A COBOL stored procedure with linkage convention GENERAL (Part 1 of 2)

*******************************************************
* Issue the SQL SELECT against the SYSIBM.SYSROUTINES
* DB2 catalog table.
*******************************************************

EXEC SQL
SELECT RUNOPTS INTO :PARMLST
FROM SYSIBM.ROUTINES
WHERE NAME=:PROCNM AND
SCHEMA=:SCHEMA

END-EXEC.

*******************************************************
* COPY SQLCODE INTO THE OUTPUT PARAMETER AREA
*******************************************************

MOVE SQLCODE TO OUT-CODE.
*******************************************************
* OPEN CURSOR C1 TO CAUSE DB2 TO RETURN A RESULT SET
* TO THE CALLER.
*******************************************************

EXEC SQL OPEN C1
END-EXEC.

PROG-END.
GOBACK.

Figure 288. A COBOL stored procedure with linkage convention GENERAL (Part 2 of 2)

1092 Application Programming and SQL Guide



COBOL stored procedure: GENERAL WITH NULLS
This example stored procedure does the following:
v Searches the DB2 SYSIBM.SYSROUTINES catalog table for a row that matches

the input parameters from the client program. The two input parameters contain
values for NAME and SCHEMA.

v Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

The linkage convention for this stored procedure is GENERAL WITH NULLS.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSIBM.SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE COBOL
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 2
COMMIT ON RETURN NO;

Appendix D. Programming examples 1093



CBL RENT
IDENTIFICATION DIVISION.
PROGRAM-ID. GETPRML.
AUTHOR. EXAMPLE.
DATE-WRITTEN. 03/25/98.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.
*
WORKING-STORAGE SECTION.
*

EXEC SQL INCLUDE SQLCA END-EXEC.
*
***************************************************
* DECLARE A HOST VARIABLE TO HOLD INPUT SCHEMA
***************************************************
01 INSCHEMA PIC X(8).
***************************************************
* DECLARE CURSOR FOR RETURNING RESULT SETS
***************************************************
*

EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME FROM SYSIBM.SYSTABLES WHERE CREATOR=:INSCHEMA

END-EXEC.
*
LINKAGE SECTION.
***************************************************
* DECLARE THE INPUT PARAMETERS FOR THE PROCEDURE
***************************************************
01 PROCNM PIC X(18).
01 SCHEMA PIC X(8).
***************************************************
* DECLARE THE OUTPUT PARAMETERS FOR THE PROCEDURE
***************************************************
01 OUT-CODE PIC S9(9) USAGE BINARY.
01 PARMLST.

49 PARMLST-LEN PIC S9(4) USAGE BINARY.
49 PARMLST-TEXT PIC X(254).

***************************************************
* DECLARE THE STRUCTURE CONTAINING THE NULL
* INDICATORS FOR THE INPUT AND OUTPUT PARAMETERS.
***************************************************
01 IND-PARM.

03 PROCNM-IND PIC S9(4) USAGE BINARY.
03 SCHEMA-IND PIC S9(4) USAGE BINARY.
03 OUT-CODE-IND PIC S9(4) USAGE BINARY.
03 PARMLST-IND PIC S9(4) USAGE BINARY.

Figure 289. A COBOL stored procedure with linkage convention GENERAL WITH NULLS
(Part 1 of 2)

1094 Application Programming and SQL Guide



PL/I stored procedure: GENERAL
This example stored procedure searches the DB2 SYSIBM.SYSROUTINES catalog
table for a row that matches the input parameters from the client program. The
two input parameters contain values for NAME and SCHEMA.

The linkage convention for this stored procedure is GENERAL.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSIBM.SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE PLI
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"

PROCEDURE DIVISION USING PROCNM, SCHEMA,
OUT-CODE, PARMLST, IND-PARM.

*******************************************************
* If any input parameter is null, return a null value
* for PARMLST and set the output return code to 9999.
*******************************************************

IF PROCNM-IND < 0 OR
SCHEMA-IND < 0
MOVE 9999 TO OUT-CODE
MOVE 0 TO OUT-CODE-IND
MOVE -1 TO PARMLST-IND

ELSE
*******************************************************
* Issue the SQL SELECT against the SYSIBM.SYSROUTINES
* DB2 catalog table.
*******************************************************

EXEC SQL
SELECT RUNOPTS INTO :PARMLST
FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND
SCHEMA=:SCHEMA

END-EXEC
MOVE 0 TO PARMLST-IND

*******************************************************
* COPY SQLCODE INTO THE OUTPUT PARAMETER AREA
*******************************************************

MOVE SQLCODE TO OUT-CODE
MOVE 0 TO OUT-CODE-IND.

*
*******************************************************
* OPEN CURSOR C1 TO CAUSE DB2 TO RETURN A RESULT SET
* TO THE CALLER.
*******************************************************

EXEC SQL OPEN C1
END-EXEC.

PROG-END.
GOBACK.

Figure 289. A COBOL stored procedure with linkage convention GENERAL WITH NULLS
(Part 2 of 2)

Appendix D. Programming examples 1095



WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 0
COMMIT ON RETURN NO;

PL/I stored procedure: GENERAL WITH NULLS
This example stored procedure searches the DB2 SYSIBM.SYSROUTINES catalog
table for a row that matches the input parameters from the client program. The
two input parameters contain values for NAME and SCHEMA.

The linkage convention for this stored procedure is GENERAL WITH NULLS.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSIBM.SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE PLI
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG

*PROCESS SYSTEM(MVS);

GETPRML:
PROC(PROCNM, SCHEMA, OUT_CODE, PARMLST)

OPTIONS(MAIN NOEXECOPS REENTRANT);

DECLARE PROCNM CHAR(18), /* INPUT parm -- PROCEDURE name */
SCHEMA CHAR(8), /* INPUT parm -- User’s SCHEMA */

OUT_CODE FIXED BIN(31), /* OUTPUT -- SQLCODE from */
/* the SELECT operation. */

PARMLST CHAR(254) /* OUTPUT -- RUNOPTS for */
VARYING; /* the matching row in */

/* SYSIBM.SYSROUTINES */

EXEC SQL INCLUDE SQLCA;

/************************************************************/
/* Execute SELECT from SYSIBM.SYSROUTINES in the catalog. */
/************************************************************/
EXEC SQL
SELECT RUNOPTS INTO :PARMLST

FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;

OUT_CODE = SQLCODE; /* return SQLCODE to caller */
RETURN;

END GETPRML;

Figure 290. A PL/I stored procedure with linkage convention GENERAL

1096 Application Programming and SQL Guide



PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 0
COMMIT ON RETURN NO;

*PROCESS SYSTEM(MVS);

GETPRML:
PROC(PROCNM, SCHEMA, OUT_CODE, PARMLST, INDICATORS)

OPTIONS(MAIN NOEXECOPS REENTRANT);

DECLARE PROCNM CHAR(18), /* INPUT parm -- PROCEDURE name */
SCHEMA CHAR(8), /* INPUT parm -- User’s schema */

OUT_CODE FIXED BIN(31), /* OUTPUT -- SQLCODE from */
/* the SELECT operation. */

PARMLST CHAR(254) /* OUTPUT -- PARMLIST for */
VARYING; /* the matching row in */

/* SYSIBM.SYSROUTINES */
DECLARE 1 INDICATORS, /* Declare null indicators for */

/* input and output parameters. */
3 PROCNM_IND FIXED BIN(15),
3 SCHEMA_IND FIXED BIN(15),
3 OUT_CODE_IND FIXED BIN(15),
3 PARMLST_IND FIXED BIN(15);

EXEC SQL INCLUDE SQLCA;

IF PROCNM_IND<0 |
SCHEMA_IND<0 THEN

DO; /* If any input parm is NULL, */
OUT_CODE = 9999; /* Set output return code. */
OUT_CODE_IND = 0;

/* Output return code is not NULL.*/
PARMLST_IND = -1; /* Assign NULL value to PARMLST. */

END;
ELSE /* If input parms are not NULL, */
DO; /* */
/************************************************************/
/* Issue the SQL SELECT against the SYSIBM.SYSROUTINES */
/* DB2 catalog table. */
/************************************************************/

EXEC SQL
SELECT RUNOPTS INTO :PARMLST

FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;
PARMLST_IND = 0; /* Mark PARMLST as not NULL. */

OUT_CODE = SQLCODE; /* return SQLCODE to caller */
OUT_CODE_IND = 0;
OUT_CODE_IND = 0; /* Output return code is not NULL.*/

END;
RETURN;

END GETPRML;

Figure 291. A PL/I stored procedure with linkage convention GENERAL WITH NULLS

Appendix D. Programming examples 1097

|



1098 Application Programming and SQL Guide



Appendix E. Recursive common table expression examples

Bill of materials (BOM) applications are a common requirement in many business
environments. Recursive SQL is very useful in creating BOM applications. To
illustrate the some of the capability of a recursive common table expression for
BOM applications, consider a table of parts with associated subparts and the
quantity of subparts required by each part. For more information about recursive
SQL, refer to “Using recursive SQL” on page 15.

For the examples in this appendix, create the following table:
CREATE TABLE PARTLIST

(PART VARCHAR(8),
SUBPART VARCHAR(8),
QUANTITY INTEGER);

Assume that the PARTLIST table is populated with the values that are in Table 199:

Table 199. PARTLIST table

PART SUBPART QUANTITY

00 01 5

00 05 3

01 02 2

01 03 3

01 04 4

01 06 3

02 05 7

02 06 6

03 07 6

04 08 10

04 09 11

05 10 10

05 11 10

06 12 10

06 13 10

07 14 8

07 12 8

Example 1: Single level explosion: Single level explosion answers the question,
"What parts are needed to build the part identified by '01'?". The list will include
the direct subparts, subparts of the subparts and so on. However, if a part is used
multiple times, its subparts are only listed once.
WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL

© Copyright IBM Corp. 1983, 2012 1099

|

|

|
|
|
|
|
|

|

|
|
|
|

|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|
|

|
|
|
|
|



SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART)

SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL
ORDER BY PART, SUBPART, QUANTITY;

The preceding query includes a common table expression, identified by the name
RPL, that expresses the recursive part of this query. It illustrates the basic elements
of a recursive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization
fullselect, gets the direct subparts of part '01'. The FROM clause of this fullselect
refers to the source table and will never refer to itself (RPL in this case). The result
of this first fullselect goes into the common table expression RPL. As in this
example, the UNION must always be a UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts of
subparts by using the FROM clause to refer to the common table expression RPL
and the source table PARTLIST with a join of a part from the source table (child) to
a subpart of the current result contained in RPL (parent). The result goes then back
to RPL again. The second operand of UNION is used repeatedly until no more
subparts exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same
part/subpart is not listed more than once.

The result of the query is shown in Table 200:

Table 200. Result table for example 1

PART SUBPART QUANTITY

01 02 2

01 03 3

01 04 4

01 06 3

02 05 7

02 06 6

03 07 6

04 08 10

04 09 11

05 10 10

05 11 10

06 12 10

06 13 10

07 12 8

17 14 8

Observe in the result that part '01' contains subpart '02' which contains subpart '06'
and so on. Further, notice that part '06' is reached twice, once through part '01'
directly and another time through part '02'. In the output, however, the subparts of
part '06' are listed only once (this is the result of using a SELECT DISTINCT).

1100 Application Programming and SQL Guide

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|
|



Remember that with recursive common table expressions it is possible to introduce
an infinite loop. In this example, an infinite loop would be created if the search
condition of the second operand that joins the parent and child tables was coded
as follows:
WHERE PARENT.SUBPART = CHILD.SUBPART

This infinite loop is created by not coding what is intended. You should carefully
determining what to code so that there is a definite end of the recursion cycle.

The result produced by this example could be produced in an application program
without using a recursive common table expression. However, such an application
would require coding a different query for every level of recursion. Furthermore,
the application would need to put all of the results back in the database to order
the final result. This approach complicates the application logic and does not
perform well. The application logic becomes more difficult and inefficient for other
bill of material queries, such as summarized and indented explosion queries.

Example 2: Summarized explosion: A summarized explosion answers the
question, "What is the total quantity of each part required to build part '01'?" The
main difference from a single level explosion is the need to aggregate the
quantities. A single level explosion indicates the quantity of subparts required for
the part whenever it is required. It does not indicate how many of each subpart is
needed to build part '01'.
WITH RPL (PART, SUBPART, QUANTITY) AS

(
SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL
SELECT PARENT.PART, CHILD.SUBPART,

PARENT.QUANTITY*CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"

FROM RPL
GROUP BY PART, SUBPART
ORDER BY PART, SUBPART;

In the preceding query, the select list of the second operand of the UNION in the
recursive common table expression, identified by the name RPL, shows the
aggregation of the quantity. To determine how many of each subpart is used, the
quantity of the parent is multiplied by the quantity per parent of a child. If a part
is used multiple times in different places, it requires another final aggregation. This
is done by the grouping the parts and subparts in the common table expression
RPL and using the SUM column function in the select list of the main fullselect.

The result of the query is shown in Table 201:

Table 201. Result table for example 2

PART SUBPART Total QTY Used

01 02 2

01 03 3

01 04 4

01 05 14

01 06 15

Appendix E. Recursive common table expression examples 1101

|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

||

|||

|||

|||

|||

|||

|||



Table 201. Result table for example 2 (continued)

PART SUBPART Total QTY Used

01 07 18

01 08 40

01 09 44

01 10 140

01 11 140

01 12 294

01 13 150

01 14 144

Consider the total quantity for subpart '06'. The value of 15 is derived from a
quantity of 3 directly for part '01' and a quantity of 6 for part '02' which is needed
two times by part '01'.

Example 3: Controlling depth: You can control the depth of a recursive query to
answer the question, "What are the first two levels of parts that are needed to
build part '01'?" For the sake of clarity in this example, the level of each part is
included in the result table.
WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS

(
SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL
SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

AND PARENT.LEVEL < 2
)

SELECT PART, LEVEL, SUBPART, QUANTITY
FROM RPL;

This query is similar to the query in example 1. The column LEVEL is introduced
to count the level each subpart is from the original part. In the initialization
fullselect, the value for the LEVEL column is initialized to 1. In the subsequent
fullselect, the level from the parent table increments by 1. To control the number of
levels in the result, the second fullselect includes the condition that the level of the
parent must be less than 2. This ensures that the second fullselect only processes
children to the second level.

The result of the query is shown in Table 202:

Table 202. Result table for example 3

PART LEVEL SUBPART QUANTITY

01 1 02 2

01 1 03 3

01 1 04 4

01 1 06 3

02 2 05 7

02 2 06 6

1102 Application Programming and SQL Guide

|

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

||

||||

||||

||||

||||

||||

||||

||||



Table 202. Result table for example 3 (continued)

PART LEVEL SUBPART QUANTITY

03 2 07 6

04 2 08 10

04 2 09 11

06 2 12 10

06 2 13 10

Appendix E. Recursive common table expression examples 1103

|

||||

||||

||||

||||

||||

||||
|
|



1104 Application Programming and SQL Guide



Appendix F. REBIND subcommands for lists of plans or
packages

If a list of packages or plans that you want to rebind is not easily specified using
asterisks, you might be able to create the needed REBIND subcommands
automatically, using the sample program DSNTIAUL.

One situation in which this technique might be useful is when a resource becomes
unavailable during a rebind of many plans or packages. DB2 normally terminates
the rebind and does not rebind the remaining plans or packages. Later, however,
you might want to rebind only the objects that remain to be rebound. You can
build REBIND subcommands for the remaining plans or packages by using
DSNTIAUL to select the plans or packages from the DB2 catalog and to create the
REBIND subcommands. You can then submit the subcommands through the DSN
command processor, as usual.

You might first need to edit the output from DSNTIAUL so that DSN can accept it
as input. The CLIST DSNTEDIT can perform much of that task for you.

This section contains the following topics:
v Overview of the procedure for generating lists of REBIND commands
v “Sample SELECT statements for generating REBIND commands”
v “Sample JCL for running lists of REBIND commands” on page 1108

Overview of the procedure for generating lists of REBIND commands
The following list is an overview of the procedures for REBIND PLAN:
1. Use DSNTIAUL to generate the REBIND PLAN subcommands for the selected

plans.
2. Use TSO edit commands to add TSO DSN commands to the sequential data

set.
3. Use DSN to execute the REBIND PLAN subcommands for the selected plans.

The following list is an overview of the procedures for REBIND PACKAGE:
1. Use DSNTIAUL to generate the REBIND PACKAGE subcommands for the

selected packages.
2. Use DSNTEDIT CLIST to delete extraneous blanks from the REBIND

PACKAGE subcommands.
3. Use TSO edit commands to add DSN commands to the sequential data set.
4. Use DSN to execute the REBIND PACKAGE subcommands for the selected

packages.

Sample SELECT statements for generating REBIND commands
Building REBIND subcommands: The examples that follow illustrate the following
techniques:
v Using SELECT to select specific packages or plans to be rebound
v Using the CONCAT operator to concatenate the REBIND subcommand syntax

around the plan or package names

© Copyright IBM Corp. 1983, 2012 1105



v Using the SUBSTR function to convert a varying-length string to a fixed-length
string

v Appending additional blanks to the REBIND PLAN and REBIND PACKAGE
subcommands, so that the DSN command processor can accept the record length
as valid input

If the SELECT statement returns rows, then DSNTIAUL generates REBIND
subcommands for the plans or packages identified in the returned rows. Put those
subcommands in a sequential data set, where you can then edit them.

For REBIND PACKAGE subcommands, delete any extraneous blanks in the
package name, using either TSO edit commands or the DB2 CLIST DSNTEDIT.

For both REBIND PLAN and REBIND PACKAGE subcommands, add the DSN
command that the statement needs as the first line in the sequential data set, and
add END as the last line, using TSO edit commands. When you have edited the
sequential data set, you can run it to rebind the selected plans or packages.

If the SELECT statement returns no qualifying rows, then DSNTIAUL does not
generate REBIND subcommands.

The examples in this section generate REBIND subcommands that work in DB2
UDB for z/OS Version 8. You might need to modify the examples for prior releases
of DB2 that do not allow all of the same syntax.

Example 1:
REBIND all plans without terminating because of unavailable resources.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN;

Example 2:
REBIND all versions of all packages without terminating because of
unavailable resources.
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’

CONCAT NAME CONCAT’.(*)) ’,1,55)
FROM SYSIBM.SYSPACKAGE;

Example 3:
REBIND all plans bound before a given date and time.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE BINDDATE <= ’yymmdd’ OR

(BINDDATE <= ’yymmdd’ AND
BINDTIME <= ’hhmmssth’);

where yymmdd represents the date portion and hhmmssth represents the
time portion of the timestamp string.

If the date specified is after 2000, you need to include another condition
that includes plans that were bound before year 2000:
WHERE

BINDDATE >= ’830101’ OR
BINDDATE <= ’yymmdd’ OR
(BINDDATE <= ’yymmdd’ AND
BINDTIME <= ’hhmmssth’);

1106 Application Programming and SQL Guide

#
#

#
#
#
#
#
#

#
#

#
#

#
#
#
#
#



Example 4:
REBIND all versions of all packages bound before a given date and time.
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’

CONCAT NAME CONCAT’.(*)) ’,1,55)
FROM SYSIBM.SYSPACKAGE
WHERE BINDTIME <= ’timestamp’;

where timestamp is an ISO timestamp string.

Example 5:
REBIND all plans bound since a given date and time.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE BINDDATE >= ’yymmdd’ AND

BINDTIME >= ’hhmmssth’;

where yymmdd represents the date portion and hhmmssth represents the
time portion of the timestamp string.

Example 6:
REBIND all versions of all packages bound since a given date and time.
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID

CONCAT’.’CONCAT NAME
CONCAT’.(*)) ’,1,55)

FROM SYSIBM.SYSPACKAGE
WHERE BINDTIME >= ’timestamp’;

where timestamp is an ISO timestamp string.

Example 7:
REBIND all plans bound within a given date and time range.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE
(BINDDATE >= ’yymmdd’ AND
BINDTIME >= ’hhmmssth’) AND
BINDDATE <= ’yymmdd’ AND
BINDTIME <= ’hhmmssth’);

where yymmdd represents the date portion and hhmmssth represents the
time portion of the timestamp string.

Example 8:
REBIND all versions of all packages bound within a given date and time
range.
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’

CONCAT NAME CONCAT’.(*)) ’,1,55)
FROM SYSIBM.SYSPACKAGE
WHERE BINDTIME >= ’timestamp1’ AND
BINDTIME <= ’timestamp2’;

where timestamp1 and timestamp2 are ISO timestamp strings.

Example 9:
REBIND all invalid plans.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE VALID = ’N’;

Appendix F. REBIND subcommands for lists of plans or packages 1107



Example 10:
REBIND all invalid versions of all packages.
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’

CONCAT NAME CONCAT’.(*)) ’,1,55)
FROM SYSIBM.SYSPACKAGE
WHERE VALID = ’N’;

Example 11:
REBIND all plans bound with ISOLATION level of cursor stability.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE ISOLATION = ’S’;

Example 12:
REBIND all versions of all packages that allow CPU and/or I/O
parallelism.
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’

CONCAT NAME CONCAT’.(*)) ’,1,55)
FROM SYSIBM.SYSPACKAGE
WHERE DEGREE=’ANY’;

Sample JCL for running lists of REBIND commands
Figure 292 on page 1109 shows the JCL that is used to rebind all versions of all
packages that are bound within the specified date and time period.

You specify the date and time period for which you want packages to be rebound
in a WHERE clause of the SELECT statement that contains the REBIND command.
In Figure 292 on page 1109, the WHERE clause looks like the following clause:
WHERE BINDTIME >= ’YYYY-MM-DD-hh.mm.ss’ AND

BINDTIME <= ’YYYY-MM-DD-hh.mm.ss’

The date and time period has the following format:

YYYY The four-digit year. For example: 2003.

MM The two-digit month, which can be a value between 01 and 12.

DD The two-digit day, which can be a value between 01 and 31.

hh The two-digit hour, which can be a value between 01 and 24.

mm The two-digit minute, which can be a value between 00 and 59.

ss The two-digit second, which can be a value between 00 and 59.

1108 Application Programming and SQL Guide

|

|
|
|

|
|

|

||

||

||

||

||

||



//REBINDS JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A,USER=SYSADM,
// REGION=1024K
//*********************************************************************/
//SETUP EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) PARMS(’SQL’) -

LIB(’DSN810.RUNLIB.LOAD’)
END

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSPUNCH DD SYSOUT=*
//SYSREC00 DD DSN=SYSADM.SYSTSIN.DATA,
// UNIT=SYSDA,DISP=SHR

Figure 292. Example JCL: Rebind all packages that were bound within a specified date and
time period (Part 1 of 2)

Appendix F. REBIND subcommands for lists of plans or packages 1109



Figure 293 on page 1111 shows some sample JCL for rebinding all plans bound
without specifying the DEGREE keyword on BIND with DEGREE(ANY).

//*********************************************************************/
//*
//* GENER= ’<SUBCOMMANDS TO REBIND ALL PACKAGES BOUND IN 1994
//*
//*********************************************************************/
//SYSIN DD *
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’
CONCAT NAME CONCAT’.(*)) ’,1,55)
FROM SYSIBM.SYSPACKAGE
WHERE BINDTIME >= ’YYYY-MM-DD-hh.mm.ss’ AND

BINDTIME <= ’YYYY-MM-DD-hh.mm.ss’;
/*
//*********************************************************************/
//*
//* STRIP THE BLANKS OUT OF THE REBIND SUBCOMMANDS
//*
//*********************************************************************/
//STRIP EXEC PGM=IKJEFT01
//SYSPROC DD DSN=SYSADM.DSNCLIST,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSNTEDIT SYSADM.SYSTSIN.DATA

//SYSIN DD DUMMY
/*
//*********************************************************************/
//*
//* PUT IN THE DSN COMMAND STATEMENTS
//*
//*********************************************************************/
//EDIT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EDIT ’SYSADM.SYSTSIN.DATA’ DATA NONUM
TOP
INSERT DSN SYSTEM(DSN)
BOTTOM
INSERT END
TOP
LIST * 99999
END SAVE

/*

//*********************************************************************/
//*
//* EXECUTE THE REBIND PACKAGE SUBCOMMANDS THROUGH DSN
//*
//*********************************************************************/
//LOCAL EXEC PGM=IKJEFT01
//DBRMLIB DD DSN=DSN810.DBRMLIB.DATA,
// DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD DSN=SYSADM.SYSTSIN.DATA,
// UNIT=SYSDA,DISP=SHR
/*

Figure 292. Example JCL: Rebind all packages that were bound within a specified date and
time period (Part 2 of 2)

1110 Application Programming and SQL Guide



//REBINDS JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A,USER=SYSADM,
// REGION=1024K
//*********************************************************************/
//SETUP EXEC TSOBATCH
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD SYSOUT=*
//SYSREC00 DD DSN=SYSADM.SYSTSIN.DATA,
// UNIT=SYSDA,DISP=SHR
//*********************************************************************/
//*
//* REBIND ALL PLANS THAT WERE BOUND WITHOUT SPECIFYING THE DEGREE
//* KEYWORD ON BIND WITH DEGREE(ANY)
//*
//*********************************************************************/
//SYSTSIN DD *
DSN S(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) PARM(’SQL’)
END

//SYSIN DD *
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME
CONCAT’) DEGREE(ANY) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE DEGREE = ’ ’;

/*
//*********************************************************************/
//*
//* PUT IN THE DSN COMMAND STATEMENTS
//*
//*********************************************************************/
//EDIT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EDIT ’SYSADM.SYSTSIN.DATA’ DATA NONUM
TOP
INSERT DSN S(DSN)
BOTTOM
INSERT END
TOP
LIST * 99999
END SAVE

/*
//*********************************************************************/
//*
//* EXECUTE THE REBIND SUBCOMMANDS THROUGH DSN
//*
//*********************************************************************/
//REBIND EXEC PGM=IKJEFT01
//STEPLIB DD DSN=SYSADM.TESTLIB,DISP=SHR
// DD DSN=DSN810.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=SYSADM.DBRMLIB.DATA,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD DSN=SYSADM.SYSTSIN.DATA,DISP=SHR
//SYSIN DD DUMMY
/*

Figure 293. Example JCL: Rebind selected plans with a different bind option

Appendix F. REBIND subcommands for lists of plans or packages 1111



1112 Application Programming and SQL Guide



Appendix G. Reserved schema names and reserved words

There are restrictions on the use of certain names that are used by the database
manager. In some cases, names are reserved and cannot be used by application
programs. In other cases, certain names are not recommended for use by
application programs though not prevented by the database manager.

Reserved schema names
In general, for distinct types, user-defined functions, stored procedures, sequences,
and triggers, schema names that begin with the prefix SYS are reserved. The
schema name for these objects cannot begin with SYS with these exceptions:
v SYSADM. The schema name can be SYSADM for all these objects.
v SYSIBM. The schema name can be SYSIBM for procedures.
v SYSPROC. The schema name can be SYSPROC for procedures.
v SYSTOOLS. The schema name can be SYSTOOLS for distinct types, user-defined

functions, procedures, and triggers if the user who executes the CREATE
statement has the SYSADM or SYSCTRL privilege.

It is also recommended not to use SESSION name as a schema name.

Reserved words
Table 203 on page 1114 lists the words that cannot be used as ordinary identifiers
in some contexts because they might be interpreted as SQL keywords. For
example, ALL cannot be a column name in a SELECT statement. Each word,
however, can be used as a delimited identifier in contexts where it otherwise
cannot be used as an ordinary identifier. For example, if the quotation mark (") is
the escape character that begins and ends delimited identifiers, “ALL” can appear
as a column name in a SELECT statement. In addition, some sections of this book
might indicate words that cannot be used in the specific context that is being
described.

© Copyright IBM Corp. 1983, 2012 1113



Table 203. SQL reserved words

ADD
AFTER
ALL
ALLOCATE
ALLOW
ALTER
AND
ANY
AS
ASENSITIVE2

ASSOCIATE
ASUTIME
AUDIT
AUX
AUXILIARY
BEFORE
BEGIN
BETWEEN
BUFFERPOOL
BY
CALL
CAPTURE
CASCADED
CASE
CAST
CCSID
CHAR
CHARACTER
CHECK
CLOSE
CLUSTER
COLLECTION
COLLID
COLUMN
COMMENT
COMMIT
CONCAT
CONDITION
CONNECT
CONNECTION
CONSTRAINT
CONTAINS
CONTINUE
CREATE
CURRENT
CURRENT_DATE
CURRENT_LC_CTYPE
CURRENT_PATH
CURRENT_TIME
CURRENT_TIMESTAMP
CURSOR
DATA

DATABASE
DAY
DAYS
DBINFO
DECLARE
DEFAULT
DELETE
DESCRIPTOR
DETERMINISTIC
DISALLOW
DISTINCT
DO
DOUBLE
DROP
DSSIZE
DYNAMIC
EDITPROC
ELSE
ELSEIF
ENCODING
ENCRYPTION2

END
ENDING2

END-EXEC1

ERASE
ESCAPE
EXCEPT
EXCEPTION2

EXECUTE
EXISTS
EXIT
EXPLAIN
EXTERNAL
FENCED
FETCH
FIELDPROC
FINAL
FOR
FREE
FROM
FULL
FUNCTION
GENERATED
GET
GLOBAL
GO
GOTO
GRANT
GROUP
HANDLER
HAVING
HOLD2

HOUR
HOURS
IF
IMMEDIATE
IN
INCLUSIVE2

INDEX
INHERIT
INNER
INOUT
INSENSITIVE
INSERT
INTO
IS
ISOBID
ITERATE2

JAR
JOIN
KEY
LABEL
LANGUAGE
LC_CTYPE
LEAVE
LEFT
LIKE
LOCAL
LOCALE
LOCATOR
LOCATORS
LOCK
LOCKMAX
LOCKSIZE
LONG
LOOP
MAINTAINED2

MATERIALIZED2

MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MODIFIES
MONTH
MONTHS
NEXTVAL2

NO
NONE2

NOT
NULL
NULLS
NUMPARTS
OBID
OF

ON
OPEN
OPTIMIZATION
OPTIMIZE
OR
ORDER
OUT
OUTER
PACKAGE
PARAMETER
PART
PADDED2

PARTITION2

PARTITIONED2

PARTITIONING2

PATH
PIECESIZE
PLAN
PRECISION
PREPARE
PREVVAL2

PRIQTY
PRIVILEGES
PROCEDURE
PROGRAM
PSID
QUERY2

QUERYNO
READS
REFERENCES
REFRESH2

RESIGNAL2

RELEASE
RENAME
REPEAT
RESTRICT
RESULT
RESULT_SET_LOCATOR
RETURN
RETURNS
REVOKE
RIGHT
ROLLBACK
ROWSET2

RUN
SAVEPOINT
SCHEMA
SCRATCHPAD
SECOND
SECONDS
SECQTY
SECURITY

SEQUENCE2

SELECT
SENSITIVE
SET
SIGNAL2

SIMPLE
SOME
SOURCE
SPECIFIC
STANDARD
STATIC
STAY
STOGROUP
STORES
STYLE
SUMMARY2

SYNONYM
SYSFUN
SYSIBM
SYSPROC
SYSTEM
TABLE
TABLESPACE
THEN
TO
TRIGGER
UNDO
UNION
UNIQUE
UNTIL
UPDATE
USER
USING
VALIDPROC
VALUE2

VALUES
VARIABLE2

VARIANT
VCAT
VIEW
VOLATILE2

VOLUMES
WHEN
WHENEVER
WHERE
WHILE
WITH
WLM
XMLELEMENT2

YEAR
YEARS

Notes:

1. COBOL only

2. New reserved word for Version 8.

1114 Application Programming and SQL Guide



IBM SQL has additional reserved words that DB2 UDB for z/OS does not enforce.
Therefore, we suggest that you do not use these additional reserved words as
ordinary identifiers in names that have a continuing use. See IBM DB2 Universal
Database SQL Reference for Cross-Platform Development for a list of the words.

Appendix G. Reserved schema names and reserved words 1115



1116 Application Programming and SQL Guide



Appendix H. Characteristics of SQL statements in DB2 UDB
for z/OS

Actions allowed on SQL statements
Table 204 shows whether a specific DB2 statement can be executed, prepared
interactively or dynamically, or processed by the requester, the server, or the
precompiler. The letter Y means yes.

Table 204. Actions allowed on SQL statements in DB2 UDB for z/OS

SQL statement Executable

Interactively or
dynamically

prepared

Processed by

Requesting
system Server Precompiler

ALLOCATE CURSOR1 Y Y Y

ALTER2 Y Y Y

ASSOCIATE LOCATORS1 Y Y Y

BEGIN DECLARE SECTION Y

CALL1 Y Y

CLOSE Y Y

COMMENT Y Y Y

COMMIT8 Y Y Y

CONNECT Y Y

CREATE2 Y Y Y

DECLARE CURSOR Y

DECLARE GLOBAL
TEMPORARY TABLE

Y Y Y

DECLARE STATEMENT Y

DECLARE TABLE Y

DELETE Y Y Y

DESCRIBE prepared statement or
table

Y Y

DESCRIBE CURSOR Y Y

DESCRIBE INPUT Y Y

DESCRIBE PROCEDURE Y Y

DROP2 Y Y Y

END DECLARE SECTION Y

EXECUTE Y Y

EXECUTE IMMEDIATE Y Y

EXPLAIN Y Y Y

FETCH Y Y

FREE LOCATOR1 Y Y Y

GET DIAGNOSTICS Y Y

GRANT2 Y Y Y

© Copyright IBM Corp. 1983, 2012 1117

||||||



Table 204. Actions allowed on SQL statements in DB2 UDB for z/OS (continued)

SQL statement Executable

Interactively or
dynamically

prepared

Processed by

Requesting
system Server Precompiler

HOLD LOCATOR1 Y Y Y

INCLUDE Y

INSERT Y Y Y

LABEL Y Y Y

LOCK TABLE Y Y Y

OPEN Y Y

PREPARE Y Y4

REFRESH TABLE Y Y Y

RELEASE connection Y Y

RELEASE SAVEPOINT Y Y Y

RENAME2 Y Y Y

REVOKE2 Y Y Y

ROLLBACK8 Y Y Y

SAVEPOINT Y Y Y

SELECT INTO Y Y

SET CONNECTION Y Y

SET CURRENT APPLICATION
ENCODING SCHEME

Y Y

SET CURRENT DEGREE Y Y Y

SET CURRENT LC_CTYPE Y Y Y

SET CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION

Y Y Y

SET CURRENT OPTIMIZATION
HINT

Y Y Y

SET CURRENT PACKAGE PATH Y Y

SET CURRENT PACKAGESET Y Y

SET CURRENT PRECISION Y Y Y

SET CURRENT REFRESH AGE Y Y Y

SET CURRENT RULES Y Y Y

SET CURRENT SQLID5 Y Y Y

SET host-variable = CURRENT
APPLICATION ENCODING
SCHEME

Y Y Y

SET host-variable = CURRENT
DATE

Y Y

SET host-variable = CURRENT
DEGREE

Y Y

SET host-variable = CURRENT
MEMBER

Y Y

1118 Application Programming and SQL Guide

||||||

|
|
|

|||||

||||||

||||||



Table 204. Actions allowed on SQL statements in DB2 UDB for z/OS (continued)

SQL statement Executable

Interactively or
dynamically

prepared

Processed by

Requesting
system Server Precompiler

SET host-variable = CURRENT
PACKAGESET

Y Y

SET host-variable = CURRENT
PATH

Y Y

SET host-variable = CURRENT
QUERY OPTIMIZATION LEVEL

Y Y

SET host-variable = CURRENT
SERVER

Y Y

SET host-variable = CURRENT
SQLID

Y Y

SET host-variable = CURRENT
TIME

Y Y

SET host-variable = CURRENT
TIMESTAMP

Y Y

SET host-variable = CURRENT
TIMEZONE

Y Y

SET PATH Y Y Y

SET SCHEMA Y Y Y

SET transition-variable =
CURRENT DATE

Y Y

SET transition-variable =
CURRENT DEGREE

Y Y

SET transition-variable =
CURRENT PATH

Y Y

SET transition-variable =
CURRENT QUERY
OPTIMIZATION LEVEL

Y Y

SET transition-variable =
CURRENT SQLID

Y Y

SET transition-variable =
CURRENT TIME

Y Y

SET transition-variable =
CURRENT TIMESTAMP

Y Y

SET transition-variable =
CURRENT TIMEZONE

Y Y

SIGNAL SQLSTATE6 Y Y

UPDATE Y Y Y

VALUES6 Y Y

VALUES INTO7 Y Y

WHENEVER Y

Appendix H. Characteristics of SQL statements in DB2 UDB for z/OS 1119

||||||



Table 204. Actions allowed on SQL statements in DB2 UDB for z/OS (continued)

SQL statement Executable

Interactively or
dynamically

prepared

Processed by

Requesting
system Server Precompiler

Notes:

1. The statement can be dynamically prepared. It cannot be issued dynamically.

2. The statement can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

3. The statement can be dynamically prepared, but only from an ODBC or CLI driver that supports dynamic CALL
statements.

4. The requesting system processes the PREPARE statement when the statement being prepared is ALLOCATE
CURSOR or ASSOCIATE LOCATORS.

5. The value to which special register CURRENT SQLID is set is used as the SQL authorization ID and the implicit
qualifier for dynamic SQL statements only when DYNAMICRULES run behavior is in effect. The CURRENT
SQLID value is ignored for the other DYNAMICRULES behaviors.

6. This statement can be used only in the triggered action of a trigger.

7. Local special registers can be referenced in a VALUES INTO statement if it results in the assignment of a single
host-variable, not if it results in setting more than one value.

8. Some processing also occurs at the requester.

SQL statements allowed in external functions and stored procedures
Table 205 shows which SQL statements in an external stored procedure or in an
external user-defined function can execute. Whether the statements can be executed
depends on the level of SQL data access with which the stored procedure or
external function is defined (NO SQL, CONTAINS SQL, READS SQL DATA, or
MODIFIES SQL DATA). The letter Y means yes.

In general, if an executable SQL statement is encountered in a stored procedure or
function defined as NO SQL, SQLSTATE 38001 is returned. If the routine is defined
to allow some level of SQL access, SQL statements that are not supported in any
context return SQLSTATE 38003. SQL statements not allowed for routines defined
as CONTAINS SQL return SQLSTATE 38004, and SQL statements not allowed for
READS SQL DATA return SQL STATE 38002.

Table 205. SQL statements in external user-defined functions and stored procedures

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

ALLOCATE CURSOR Y Y

ALTER Y

ASSOCIATE LOCATORS Y Y

BEGIN DECLARE SECTION Y1 Y Y Y

CALL Y2 Y2 Y2

CLOSE Y Y

COMMENT Y

COMMIT3 Y Y Y

CONNECT Y Y Y

CREATE Y

1120 Application Programming and SQL Guide



Table 205. SQL statements in external user-defined functions and stored
procedures (continued)

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

DECLARE CURSOR Y1 Y Y Y

DECLARE GLOBAL
TEMPORARY TABLE

Y

DECLARE STATEMENT Y1 Y Y Y

DECLARE TABLE Y1 Y Y Y

DELETE Y

DESCRIBE Y Y

DESCRIBE CURSOR Y Y

DESCRIBE INPUT Y Y

DESCRIBE PROCEDURE Y Y

DROP Y

END DECLARE SECTION Y1 Y Y Y

EXECUTE Y4 Y4 Y

EXECUTE IMMEDIATE Y4 Y4 Y

EXPLAIN Y

FETCH Y Y

FREE LOCATOR Y Y Y

GET DIAGNOSTICS Y Y Y

GRANT Y

HOLD LOCATOR Y Y Y

INCLUDE Y1 Y Y Y

INSERT Y

LABEL Y

LOCK TABLE Y Y Y

OPEN Y Y

PREPARE Y Y Y

REFRESH TABLE Y

RELEASE connection Y Y Y

RELEASE SAVEPOINT6 Y

REVOKE Y

ROLLBACK6, 7, 8 Y Y Y

ROLLBACK TO SAVEPOINT6,

7, 8

Y

SAVEPOINT6 Y

SELECT INTO Y Y

SET CONNECTION Y Y Y

SET host-variable Assignment Y5 Y Y

SET special register Y Y Y

Appendix H. Characteristics of SQL statements in DB2 UDB for z/OS 1121

|||||

|||||



Table 205. SQL statements in external user-defined functions and stored
procedures (continued)

SQL statement

Level of SQL access

NO SQL
CONTAINS

SQL
READS SQL

DATA
MODIFIES
SQL DATA

SET transition-variable
Assignment

Y5 Y Y

SIGNAL SQLSTATE Y Y Y

UPDATE Y

VALUES Y Y

VALUES INTO Y5 Y Y

WHENEVER Y1 Y Y Y

Notes:

1. Although the SQL option implies that no SQL statements can be specified,
non-executable statements are not restricted.

2. The stored procedure that is called must have the same or more restrictive level of SQL
data access than the current level in effect. For example, a routine defined as MODIFIES
SQL DATA can call a stored procedure defined as MODIFIES SQL DATA, READS SQL
DATA, or CONTAINS SQL. A routine defined as CONTAINS SQL can only call a
procedure defined as CONTAINS SQL.

3. The COMMIT statement cannot be executed in a user-defined function. The COMMIT
statement cannot be executed in a stored procedure if the procedure is in the calling
chain of a user-defined function or trigger.

4. The statement specified for the EXECUTE statement must be a statement that is allowed
for the particular level of SQL data access in effect. For example, if the level in effect is
READS SQL DATA, the statement must not be an INSERT, UPDATE, or DELETE.

5. The statement is supported only if it does not contain a subquery or query-expression.

6. RELEASE SAVEPOINT, SAVEPOINT, and ROLLBACK (with the TO SAVEPOINT clause)
cannot be executed from a user-defined function.

7. If the ROLLBACK statement (without the TO SAVEPOINT clause) is executed in a
user-defined function, an error is returned to the calling program, and the application is
placed in a must rollback state.

8. The ROLLBACK statement (without the TO SAVEPOINT clause) cannot be executed in a
stored procedure if the procedure is in the calling chain of a user-defined function or
trigger.

SQL statements allowed in SQL procedures
Table 206 on page 1123 lists the statements that are valid in an SQL procedure
body, in addition to SQL procedure statements. The table lists the statements that
can be used as the only statement in the SQL procedure and as the statements that
can be nested in a compound statement. An SQL statement can be executed in an
SQL procedure depending on whether MODIFIES SQL DATA, CONTAINS SQL, or
READS SQL DATA is specified in the stored procedure definition. See Table 205 on
page 1120 for a list of SQL statements that can be executed for each of these
parameter values.

1122 Application Programming and SQL Guide



Table 206. Valid SQL statements in an SQL procedure body

SQL statement

SQL statement is...

The only statement
in the procedure

Nested in a
compound statement

ALLOCATE CURSOR Y

ALTER DATABASE Y Y

ALTER FUNCTION Y Y

ALTER INDEX Y Y

ALTER PROCEDURE Y Y

ALTER SEQUENCE Y Y

ALTER STOGROUP Y Y

ALTER TABLE Y Y

ALTER TABLESPACE Y Y

ALTER VIEW Y Y

ASSOCIATE LOCATORS Y

BEGIN DECLARE SECTION

CALL Y

CLOSE Y

COMMENT Y Y

COMMIT1 Y Y

CONNECT Y Y

CREATE ALIAS Y Y

CREATE DATABASE Y Y

CREATE DISTINCT TYPE Y Y

CREATE FUNCTION2 Y Y

CREATE GLOBAL TEMPORARY TABLE Y Y

CREATE INDEX Y Y

CREATE PROCEDURE2 Y Y

CREATE SEQUENCE Y Y

CREATE STOGROUP Y Y

CREATE SYNONYM Y Y

CREATE TABLE Y Y

CREATE TABLESPACE Y Y

CREATE TRIGGER

CREATE VIEW Y Y

DECLARE CURSOR Y

DECLARE GLOBAL TEMPORARY TABLE Y Y

DECLARE STATEMENT

DECLARE TABLE

DELETE Y Y

DESCRIBE prepared statement or table

DESCRIBE CURSOR

Appendix H. Characteristics of SQL statements in DB2 UDB for z/OS 1123

|||

|||

|||



Table 206. Valid SQL statements in an SQL procedure body (continued)

SQL statement

SQL statement is...

The only statement
in the procedure

Nested in a
compound statement

DESCRIBE INPUT

DESCRIBE PROCEDURE

DROP Y Y

END DECLARE SECTION

EXECUTE Y

EXECUTE IMMEDIATE Y Y

EXPLAIN

FETCH Y

FREE LOCATOR

GET DIAGNOSTICS Y Y

GRANT Y Y

HOLD LOCATOR

INCLUDE

INSERT Y Y

LABEL Y Y

LOCK TABLE Y Y

OPEN Y

PREPARE FROM Y

REFRESH TABLE Y Y

RELEASE connection Y Y

RELEASE SAVEPOINT Y Y

RENAME Y Y

REVOKE Y Y

ROLLBACK1 Y Y

ROLLBACK TO SAVEPOINT1 Y Y

SAVEPOINT Y Y

SELECT

SELECT INTO Y Y

SET CONNECTION Y Y

SET host-variable Assignment3

SET special register3, 4 Y Y

SET transition-variable Assignment3

SIGNAL SQLSTATE

UPDATE Y Y

VALUES

VALUES INTO Y Y

WHENEVER

1124 Application Programming and SQL Guide

|||

|||



Table 206. Valid SQL statements in an SQL procedure body (continued)

SQL statement

SQL statement is...

The only statement
in the procedure

Nested in a
compound statement

Notes:

1. The COMMIT statement and the ROLLBACK statement (without the TO SAVEPOINT
clause) cannot be executed in a stored procedure if the procedure is in the calling chain
of a user-defined function or trigger

2. CREATE FUNCTION with LANGUAGE SQL (specified either implicitly or explicitly)
and CREATE PROCEDURE with LANGUAGE SQL are not allowed within the body of
an SQL procedure.

3. SET host-variable assignment, SET transition-variable assignment, and SET special
register are the SQL SET statements not the SQL procedure assignment statement

4. The SET SCHEMA statement cannot be executed within a SQL procedure.

Appendix H. Characteristics of SQL statements in DB2 UDB for z/OS 1125



1126 Application Programming and SQL Guide



Appendix I. Program preparation options for remote packages

Table 207 gives generic descriptions of program preparation options, lists the
equivalent DB2 option for each one, and indicates if appropriate, whether it is a
bind package (B) or a precompiler (P) option. In addition, the table indicates
whether a DB2 server supports the option.

Table 207. Program preparation options for packages

Generic option description Equivalent for Requesting DB2

Bind or
Precompile
Option DB2 Server Support

Package replacement: protect
existing packages

ACTION(ADD) B Supported

Package replacement: replace
existing packages

ACTION(REPLACE) B Supported

Package replacement: version
name

ACTION(REPLACE REPLVER
(version-id))

B Supported

Statement string delimiter APOSTSQL/QUOTESQL P Supported

DRDA access: SQL CONNECT
(Type 1)

CONNECT(1) P Supported

DRDA access: SQL CONNECT
(Type 2)

CONNECT(2) P Supported

Block protocol: Do not block data
for an ambiguous cursor

CURRENTDATA(YES) B Supported

Block protocol: Block data when
possible

CURRENTDATA(NO) B Supported

Block protocol: Never block data (Not available) Not supported

Name of remote database CURRENTSERVER(location name) B Supported as a BIND
PLAN option

Date format of statement DATE P Supported

Protocol for remote access DBPROTOCOL B Not supported

Maximum decimal precision: 15 DEC(15) P Supported

Maximum decimal precision: 31 DEC(31) P Supported

Defer preparation of dynamic
SQL

DEFER(PREPARE) B Supported

Do not defer preparation of
dynamic SQL

NODEFER(PREPARE) B Supported

Dynamic SQL Authorization DYNAMICRULES B Supported

Encoding scheme for static SQL
statements

ENCODING B Not supported

Explain option EXPLAIN B Supported

Immediately write group
bufferpool-dependent page sets
or partitions in a data sharing
environment

IMMEDWRITE B Supported

Package isolation level: CS ISOLATION(CS) B Supported

© Copyright IBM Corp. 1983, 2012 1127



Table 207. Program preparation options for packages (continued)

Generic option description Equivalent for Requesting DB2

Bind or
Precompile
Option DB2 Server Support

Package isolation level: RR ISOLATION(RR) B Supported

Package isolation level: RS ISOLATION(RS) B Supported

Package isolation level: UR ISOLATION(UR) B Supported

Keep prepared statements after
commit points

KEEPDYNAMIC B Supported

Consistency token LEVEL P Supported

Package name MEMBER B Supported

Package owner OWNER B Supported

Schema name list for user-defined
functions, distinct types, and
stored procedures

PATH B Supported

Statement decimal delimiter PERIOD/COMMA P Supported

Default qualifier QUALIFIER B Supported

Use access path hints OPTHINT B Supported

Lock release option RELEASE B Supported

Choose access path at each run
time

REOPT(ALWAYS) B Supported

Choose access path at bind time
only

REOPT(NONE) B Supported

Choose and cache access path at
only the first run or open time

REOPT(ONCE) B Supported

Creation control: create a package
despite errors

SQLERROR(CONTINUE) B Supported

Creation control: create no
package if there are errors

SQLERROR(NO PACKAGE) B Supported

Creation control: create no
package

(Not available) Supported

Time format of statement TIME P Supported

Existence checking: full VALIDATE(BIND) B Supported

Existence checking: deferred VALIDATE(RUN) B Supported

Package version VERSION P Supported

Default character subtype: system
default

(Not available) Supported

Default character subtype: BIT (Not available) Not supported

Default character subtype: SBCS (Not available) Not supported

Default character subtype: DBCS (Not available) Not supported

Default character CCSID: SBCS (Not available) Not supported

Default character CCSID: Mixed (Not available) Not supported

Default character CCSID: Graphic (Not available) Not supported

Package label (Not available) Ignored when received;
no error is returned

Privilege inheritance: retain default Supported

1128 Application Programming and SQL Guide

|

|

|
|
|||



Table 207. Program preparation options for packages (continued)

Generic option description Equivalent for Requesting DB2

Bind or
Precompile
Option DB2 Server Support

Privilege inheritance: revoke (Not available) Not supported

Appendix I. Program preparation options for remote packages 1129



1130 Application Programming and SQL Guide



Appendix J. DB2-supplied stored procedures

DB2 provides several stored procedures that you can call in your application
programs to perform a number of utility and application programming functions.

Note: These stored procedures do not propagate the transaction identifier (XID) of
the thread. These stored procedures run under a new private context rather
than under the native context of the task that called it.

DB2 provides the following stored procedures:
v The utilities stored procedure for EBCDIC input (DSNUTILS)

This stored procedure lets you invoke utilities from a local or remote client
program. See Appendix B of DB2 Utility Guide and Reference for information.

v The utilities stored procedure for Unicode input (DSNUTILU)
This stored procedure lets you invoke utilities from a local or remote client
program that generates Unicode utility control statements. See Appendix B of
DB2 Utility Guide and Reference for information.

v The DB2 Universal Database Control Center (Control Center) table space and
index information stored procedure (DSNACCQC)
This stored procedure helps you determine when utilities should be run on your
databases. This stored procedure is designed primarily for use by the Control
Center but can be invoked from any client program. See Appendix B of DB2
Utility Guide and Reference for information.

v The Control Center partition information stored procedure (DSNACCAV)
This stored procedure helps you determine when utilities should be run on your
partitioned table spaces. This stored procedure is designed primarily for use by
the Control Center but can be invoked from any client program. See Appendix B
of DB2 Utility Guide and Reference for information.

v The real-time statistics stored procedure (DSNACCOR)
This stored procedure queries the DB2 real-time statistics tables to help you
determine when you should run COPY, REORG, or RUNSTATS, or enlarge your
DB2 data sets. See Appendix B of DB2 Utility Guide and Reference for more
information.

v The WLM environment refresh stored procedure (WLM_REFRESH)
This stored procedure lets you refresh a WLM environment from a remote
workstation. See “WLM environment refresh stored procedure
(WLM_REFRESH)” on page 1133 for information.

v The CICS transaction invocation stored procedure (DSNACICS)
This stored procedure lets you invoke CICS transactions from a remote
workstation. See “The CICS transaction invocation stored procedure
(DSNACICS)” on page 1138 for more information.

v The SYSIBM.USERNAMES encryption stored procedure (DSNLEUSR)
This stored procedure lets you store encrypted values in the NEWAUTHID and
PASSWORD fields of the SYSIBM.USERNAMES catalog table. See Appendix I of
DB2 Administration Guide for more information.

v The IMS transactions stored procedure (DSNAIMS)

© Copyright IBM Corp. 1983, 2012 1131

#
#
#

|

|
|
|

#

#
#
#

#



This stored procedure allows DB2 to invoke IMS transactions and commands
easily, without maintaining their own connections to IMS. See “IMS transactions
stored procedure (DSNAIMS)” on page 1145 for more information.

v The IMS transactions stored procedure with multi-segment input support
(DSNAIMS2)
This stored procedure offers the same functionality as the DSNAIMS stored
procedure with the addition of multi-segment input support for IMS
transactions. See “IMS transactions stored procedure (DSNAIMS2)” on page 1149
for more information.

v The EXPLAIN stored procedure (DSN8EXP)
This stored procedure allows a user to perform an EXPLAIN on an SQL
statement without having the authorization to execute that SQL statement.See
“The DB2 EXPLAIN stored procedure” on page 1154for more information.

v The MQ XML stored procedures
All of the MQ XML stored procedures have been deprecated.
These stored procedures perform the following functions:

Table 208. MQ XML stored procedures

Stored procedure name Function For information, see:

DXXMQINSERT Returns a message that contains an XML
document from an MQ message queue,
decomposes the document, and stores the data
in DB2 tables that are specified by an enabled
XML collection.

“Deprecated: Store an XML
document from an MQ message
queue in DB2 tables
(DXXMQINSERT)” on page 1157

DXXMQSHRED Returns a message that contains an XML
document from an MQ message queue,
decomposes the document, and stores the data
in DB2 tables that are specified in a document
access definition (DAD) file. DXXMQSHRED
does not require an enabled XML collection.

“Deprecated: Store an XML
document from an MQ message
queue in DB2 tables
(DXXMQSHRED)” on page 1159

DXXMQINSERTCLOB Returns a message that contains an XML
document from an MQ message queue,
decomposes the document, and stores the data
in DB2 tables that are specified by an enabled
XML collection. DXXMQINSERTCLOB is
intended for an XML document with a length of
up to 1MB.

“Deprecated: Store a large XML
document from an MQ message
queue in DB2 tables
(DXXMQINSERTCLOB)” on
page 1162

DXXMQSHREDCLOB Returns a message that contains an XML
document from an MQ message queue,
decomposes the document, and stores the data
in DB2 tables that are specified in a document
access definition (DAD) file.
DXXMQSHREDCLOB does not require an
enabled XML collection. DXXMQSHREDCLOB is
intended for an XML document with a length of
up to 1MB.

“Deprecated: Store a large XML
document from an MQ message
queue in DB2 tables
(DXXMQSHREDCLOB)” on
page 1164

DXXMQINSERTALL Returns messages that contains XML documents
from an MQ message queue, decomposes the
documents, and stores the data in DB2 tables
that are specified by an enabled XML collection.
DXXMQINSERTALL is intended for XML
documents with a length of up to 3KB.

“Deprecated: Store XML
documents from an MQ
message queue in DB2 tables
(DXXMQINSERTALL)” on page
1166

1132 Application Programming and SQL Guide

#
#
#

#
#

#
#
#
#

#

#

#

##

###

##
#
#
#
#

#
#
#
#

##
#
#
#
#
#

#
#
#
#

##
#
#
#
#
#
#

#
#
#
#
#

##
#
#
#
#
#
#
#
#

#
#
#
#
#

##
#
#
#
#
#

#
#
#
#
#



Table 208. MQ XML stored procedures (continued)

Stored procedure name Function For information, see:

DXXMQSHREDALL Returns messages that contain XML documents
from an MQ message queue, decomposes the
documents, and stores the data in DB2 tables
that are specified in a document access definition
(DAD) file. DXXMQSHREDALL does not require
an enabled XML collection. DXXMQSHREDALL
is intended for XML documents with a length of
up to 3KB.

“Deprecated: Store XML
documents from an MQ
message queue in DB2 tables
(DXXMQSHREDALL)” on page
1169

DXXMQSHREDALLCLOB Returns messages that contain XML documents
from an MQ message queue, decomposes the
documents, and stores the data in DB2 tables
that are specified in a document access definition
(DAD) file. DXXMQSHREDALLCLOB does not
require an enabled XML collection.
DXXMQSHREDALLCLOB is intended for XML
documents with a length of up to 1MB.

“Deprecated: Store large XML
documents from an MQ
message queue in DB2 tables
(DXXMQSHREDALLCLOB)” on
page 1171

DXXMQINSERTALLCLOB Returns messages that contains XML documents
from an MQ message queue, decomposes the
documents, and stores the data in DB2 tables
that are specified by an enabled XML collection.
DXXMQINSERTALLCLOB is intended for XML
documents with a length of up to 1MB.

“Deprecated: Store large XML
documents from an MQ
message queue in DB2 tables
(DXXMQINSERTALLCLOB)” on
page 1174

DXXMQGEN Constructs XML documents from data that is
stored in DB2 tables that are specified in a
document access definition (DAD) file, and
sends the XML documents to an MQ message
queue. DXXMQGEN is intended for XML
documents with a length of up to 3KB.

“Deprecated: Send XML
documents to an MQ message
queue (DXXMQGEN)” on page
1176

DXXMQRETRIEVE Constructs XML documents from data that is
stored in DB2 tables that are specified in an
enabled XML collection, and sends the XML
documents to an MQ message queue.
DXXMQRETRIEVE is intended for XML
documents with a length of up to 3KB.

“Deprecated: Send XML
documents to an MQ message
queue (DXXMQRETRIEVE)” on
page 1180

DXXMQGENCLOB Constructs XML documents from data that is
stored in DB2 tables that are specified in a
document access definition (DAD) file, and
sends the XML documents to an MQ message
queue. DXXMQGENCLOB is intended for XML
documents with a length of up to 32KB.

“Deprecated: Send large XML
documents to an MQ message
queue (DXXMQGENCLOB)” on
page 1184

DXXMQRETRIEVECLOB Constructs XML documents from data that is
stored in DB2 tables that are specified in an
enabled XML collection, and sends the XML
documents to an MQ message queue.
DXXMQRETRIEVECLOB is intended for XML
documents with a length of up to 32KB.

“Deprecated: Send XML
documents to an MQ message
queue
(DXXMQRETRIEVECLOB)” on
page 1187

WLM environment refresh stored procedure (WLM_REFRESH)
The WLM_REFRESH stored procedure refreshes a WLM environment.
WLM_REFRESH can recycle the environment in which it runs, as well as any other
WLM environment.

Appendix J. DB2-supplied stored procedures 1133

#

###

##
#
#
#
#
#
#
#

#
#
#
#
#

##
#
#
#
#
#
#
#

#
#
#
#
#

##
#
#
#
#
#

#
#
#
#
#

##
#
#
#
#
#

#
#
#
#

##
#
#
#
#
#

#
#
#
#

##
#
#
#
#
#

#
#
#
#

##
#
#
#
#
#

#
#
#
#
#

#

#



Environment for WLM_REFRESH
WLM_REFRESH runs in a WLM-established stored procedures address space. The
load module for WLM_REFRESH, DSNTWR, must reside in an APF-authorized
library.

Authorization required for WLM_REFRESH
To execute the CALL statement, the SQL authorization ID of the process must have
READ access or higher to the z/OS Security Server System Authorization Facility
(SAF) resource profile ssid.WLM_REFRESH.WLM-environment-name in resource
class DSNR. This is a different resource profile from the ssid.WLMENV.WLM-
environment-name resource profile, which DB2 uses to determine whether a stored
procedure or user-defined function is authorized to run in the specified WLM
environment.

WLM_REFRESH uses an extended MCS console to monitor the operating system
response to a WLM environment refresh request. The privilege to create an
extended MCS console is controlled by the resource profile MVS.MCSOPER.* in the
OPERCMDS class. If the MVS.MCSOPER.* profile exists, or if the specific profile
MVS.MCSOPER.DSNTWR exists, the task ID that is associated with the WLM
environment in which WLM_REFRESH runs must have READ access to it.

If the MVS.VARY.* profile exists, or if the specific profile MVS.VARY.WLM exists,
the task ID that is associated with the WLM environment in which
WLM_REFRESH runs must have CONTROL access to it.

See Part 3 (Volume 1) DB2 Administration Guide for information about authorizing
access to SAF resource profiles. See z/OS MVS Planning: Operations for more
information about permitting access to the extended MCS console.

WLM_REFRESH syntax diagram
The WLM_REFRESH stored procedure refreshes a WLM environment.
WLM_REFRESH can recycle the environment in which it runs, as well as any other
WLM environment.

The following syntax diagram shows the SQL CALL statement for invoking
WLM_REFRESH. The linkage convention for WLM_REFRESH is GENERAL WITH
NULLS.

�� CALL WLM_REFRESH ( WLM-environment, ssid ,
NULL
' '

status-message, return-code ) ��

WLM_REFRESH option descriptions
WLM-environment

Specifies the name of the WLM environment that you want to refresh. This is
an input parameter of type VARCHAR(32).

1134 Application Programming and SQL Guide



ssid
Specifies the subsystem ID of the DB2 subsystem with which the WLM
environment is associated. If this parameter is NULL or blank, DB2 uses one of
the following values for this parameter:
v In a non-data sharing environment, DB2 uses the subsystem ID of the

subsystem on which WLM_REFRESH runs.
v In a data sharing environment, DB2 uses the group attach name for the data

sharing group in which WLM_REFRESH runs.

This is an input parameter of type VARCHAR(4).

status-message
Contains an informational message about the execution of the WLM refresh.
This is an output parameter of type VARCHAR(120).

return-code
Contains the return code from the WLM_REFRESH call, which is one of the
following values:

0 WLM_REFRESH executed successfully.

4 One of the following conditions exists:
v The SAF resource profile ssid.WLM_REFRESH.wlm-environment is not

defined in resource class DSNR.
v The SQL authorization ID of the process (CURRENT SQLID) is not

defined to SAF.
v The wait time to obtain a response from z/OS was exceeded.

8 The SQL authorization ID of the process (CURRENT SQLID) is not
authorized to refresh the WLM environment.

990 DSNTWR received an unexpected SQLCODE while determining the
current SQLID.

993 One of the following conditions exists:
v The WLM-environment parameter value is null, blank, or contains

invalid characters.
v The ssid value contains invalid characters.

994 The extended MCS console was not activated within the number of
seconds indicated by message DSNT5461.

995 DSNTWR is not running as an authorized program.

996 DSNTWR could not activate an extended MCS console. See message
DSNT533I for more information.

997 DSNTWR made an unsuccessful request for a message from its
extended MCS console. See message DSNT533I for more information.

998 The extended MCS console for DSNTWR posted an alert. See message
DSNT534I for more information.

999 The operating system denied an authorized WLM_REFRESH request.
See message DSNT545I for more information.

return-code is an output parameter of type INTEGER.

Example of WLM_REFRESH invocation
Suppose that you want to refresh WLM environment WLMENV1, which is
associated with a DB2 subsystem with ID DSN. Assume that you already have

Appendix J. DB2-supplied stored procedures 1135

#

##
#



READ access to the DSN.WLM_REFRESH.WLMENV1 SAF profile. The CALL
statement for WLM_REFRESH looks like this:
strcpy(WLMENV,"WLMENV1");
strcpy(SSID,"DSN");
EXEC SQL CALL SYSPROC.WLM_REFRESH(:WLMENV, :SSID, :MSGTEXT, :RC);

For a complete example of setting up access to an SAF profile and calling
WLM_REFRESH, see job DSNTEJ6W, which is in data set DSN810.SDSNSAMP.

WLM_SET_CLIENT_INFO stored procedure
This procedure allows the caller to set client information associated with the
current connection at the DB2 for z/OS server.

The following DB2 for z/OS client special registers can be changed:
v CURRENT CLIENT_ACCTNG
v CURRENT CLIENT_USERID
v CURRENT CLIENT_WRKSTNNAME
v CURRENT CLIENT_APPLNAME

The existing behavior of the CLIENT_ACCTNG register is unchanged. It will
continue to get its value from the accounting token for DSN requesters, and from
the accounting string for SQL and other requesters.

This procedure is not under transaction control and client information changes
made by the procedure are independent of committing or rolling back units of
work.

In DB2 Version 8, SYSPROC.WLM_SET_CLIENT_INFO requires new-function
mode.

Environment for WLM_SET_CLIENT_INFO
WLM_SET_CLIENT_INFO runs in a WLM-established stored procedures address
space.

Authorization for WLM_SET_CLIENT_INFO
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMSI
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

1136 Application Programming and SQL Guide

#

#
#

#

#

#

#

#

#
#
#

#
#
#

#
#

#

#
#

#

#
#
#

#

#

#

#



WLM_SET_CLIENT_INFO syntax diagram

�� WLM_SET_CLIENT_INFO ( client_userid ,
NULL

client_wrkstnname ,
NULL

client_applname ,
NULL

�

� client_acctstr
NULL

) ��

The schema is SYSPROC.

WLM_SET_CLIENT_INFO option descriptions
client_userid

An input argument of type VARCHAR(255) that specifies the user ID for the
client. If NULL is specified, the value remains unchanged. If an empty string
(") is specified, the user ID for the client is reset to the default value, which is
blank. If the value specified exceeds 16 bytes, it is truncated to 16 bytes. If the
value specified is less than 16 bytes, it is padded on the right with blanks to a
length of 16 bytes.

client_wrkstnname
An input argument of type VARCHAR(255) that specifies the workstation
name for the client. If NULL is specified, the value remains unchanged. If an
empty string (") is specified, the workstation name for the client is reset to the
default value, which is blank. If the value specified exceeds 18 bytes, it is
truncated to 18 bytes. If the value specified is less than 18 bytes, it is padded
on the right with blanks to a length of 18 bytes.

client_applname
An input argument of type VARCHAR(255) that specifies the application name
for the client. If NULL is specified, the value remains unchanged. If an empty
string (") is specified, the application name for the client is reset to the default
value, which is blank. If the value specified exceeds 32 bytes, it is truncated to
32 bytes. If the value specified is less than 32 bytes, it is padded on the right
with blanks to a length of 32 bytes.

client_acctstr
An input argument of type VARCHAR(255) that specifies the accounting string
for the client. If NULL is specified, the value remains unchanged. If an empty
string (") is specified, the accounting string for the client is reset to the default
value, which is blank. If the requester is DB2 for z/OS, and the value specified
exceeds 142 bytes, it is truncated to 142 bytes. Otherwise, if the value specified
exceeds 200 bytes, it is truncated to 200 bytes.

Example of WLM_SET_CLIENT_INFO
Set the user ID, workstation name, application name, and accounting string for the
client.

strcpy(user_id, "db2user");
strcpy(wkstn_name, "mywkstn");
strcpy(appl_name, "db2bp.exe");
strcpy(acct_str, "myacctstr");
iuser_id = 0;
iwkstn_name = 0;
iappl_name = 0;

Appendix J. DB2-supplied stored procedures 1137

#

#

#####################################
#

#
################

#
##

#

#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#

#
#

#
#
#
#
#
#
#



iacct_str = 0;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,

:appl_name:iappl_name, :acct_str:iacct_str);

Set the user ID to db2user for the client without setting the other client attributes.
strcpy(user_id, "db2user");
iuser_id = 0;
iwkstn_name = -1;
iappl_name = -1;
iacct_str = -1;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,

:appl_name:iappl_name, :acct_str:iacct_str);

Reset the user ID for the client to blank without modifying the values of the other
client attributes.

strcpy(user_id, "");
iuser_id = 0;
iwkstn_name = -1;
iappl_name = -1;
iacct_str = -1;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,

:appl_name:iappl_name, :acct_str:iacct_str);

The CICS transaction invocation stored procedure (DSNACICS)
The CICS transaction invocation stored procedure (DSNACICS) invokes CICS
server programs. DSNACICS gives workstation applications a way to invoke CICS
server programs while using TCP/IP as their communication protocol. The
workstation applications use TCP/IP and DB2 Connect to connect to a DB2 UDB
for z/OS subsystem, and then call DSNACICS to invoke the CICS server
programs.

The DSNACICS input parameters require knowledge of various CICS resource
definitions with which the workstation programmer might not be familiar. For this
reason, DSNACICS invokes the DSNACICX user exit routine. The system
programmer can write a version of DSNACICX that checks and overrides the
parameters that the DSNACICS caller passes. If no user version of DSNACICX is
provided, DSNACICS invokes the default version of DSNACICX, which does not
modify any parameters.

Environment for DSNACICS
DSNACICS runs in a WLM-established stored procedure address space and uses
the Resource Recovery Services attachment facility to connect to DB2.

If you use CICS Transaction Server for OS/390 Version 1 Release 3 or later, you can
register your CICS system as a resource manager with recoverable resource
management services (RRMS). When you do that, changes to DB2 databases that
are made by the program that calls DSNACICS and the CICS server program that
DSNACICS invokes are in the same two-phase commit scope. This means that
when the calling program performs an SQL COMMIT or ROLLBACK, DB2 and
RRS inform CICS about the COMMIT or ROLLBACK.

If the CICS server program that DSNACICS invokes accesses DB2 resources, the
server program runs under a separate unit of work from the original unit of work
that calls the stored procedure. This means that the CICS server program might
deadlock with locks that the client program acquires.

1138 Application Programming and SQL Guide

#
#
#

#

#
#
#
#
#
#
#

#
#

#
#
#
#
#
#
#

#



Authorization required for DSNACICS
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DSNACICS
v Ownership of the stored procedure
v SYSADM authority

The CICS server program that DSNACICS calls runs under the same user ID as
DSNACICS. That user ID depends on the SECURITY parameter that you specify
when you define DSNACICS. See Part 2 of DB2 Installation Guide.

The DSNACICS caller also needs authorization from an external security system,
such as RACF, to use CICS resources. See Part 2 of DB2 Installation Guide.

DSNACICS syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DSNACICS. Because the linkage convention for DSNACICS is GENERAL WITH
NULLS, if you pass parameters in host variables, you need to include a null
indicator with every host variable. Null indicators for input host variables must be
initialized before you execute the CALL statement.

DSNACICS option descriptions
parm-level

Specifies the level of the parameter list that is supplied to the stored procedure.
This is an input parameter of type INTEGER. The value must be 1.

pgm-name
Specifies the name of the CICS program that DSNACICS invokes. This is the
name of the program that the CICS mirror transaction calls, not the CICS
transaction name. This is an input parameter of type CHAR(8).

CICS-applid
Specifies the applid of the CICS system to which DSNACICS connects. This is
an input parameter of type CHAR(8).

CICS-level
Specifies the level of the target CICS subsystem:

1 The CICS subsystem is CICS for MVS/ESA Version 4 Release 1, CICS
Transaction Server for OS/390 Version 1 Release 1, or CICS Transaction
Server for OS/390 Version 1 Release 2.

2 The CICS subsystem is CICS Transaction Server for OS/390 Version 1
Release 3 or later.

This is an input parameter of type INTEGER.

�� CALL DSNACICS ( parm-level ,
NULL

pgm-name ,
NULL

CICS-applid ,
NULL

CICS-level ,
NULL

�

� connect-type ,
NULL

netname ,
NULL

mirror-trans ,
NULL

COMMAREA ,
NULL

COMMAREA-total-len ,
NULL

�

� sync-opts ,
NULL

return-code, msg-area ) ��

Appendix J. DB2-supplied stored procedures 1139



connect-type
Specifies whether the CICS connection is generic or specific. Possible values are
GENERIC or SPECIFIC. This is an input parameter of type CHAR(8).

netname
If the value of connection-type is SPECIFIC, specifies the name of the specific
connection that is to be used. This value is ignored if the value of
connection-type is GENERIC. This is an input parameter of type CHAR(8).

mirror-trans
Specifies the name of the CICS mirror transaction to invoke. This mirror
transaction calls the CICS server program that is specified in the pgm-name
parameter. mirror-trans must be defined to the CICS server region, and the
CICS resource definition for mirror-trans must specify DFHMIRS as the
program that is associated with the transaction.

If this parameter contains blanks, DSNACICS passes a mirror transaction
parameter value of null to the CICS EXCI interface. This allows an installation
to override the transaction name in various CICS user-replaceable modules. If a
CICS user exit routine does not specify a value for the mirror transaction
name, CICS invokes CICS-supplied default mirror transaction CSMI.

This is an input parameter of type CHAR(4).

COMMAREA
Specifies the communication area (COMMAREA) that is used to pass data
between the DSNACICS caller and the CICS server program that DSNACICS
calls. This is an input/output parameter of type VARCHAR(32704). In the
length field of this parameter, specify the number of bytes that DSNACICS
sends to the CICS server program.

commarea-total-len
Specifies the total length of the COMMAREA that the server program needs.
This is an input parameter of type INTEGER. This length must be greater than
or equal to the value that you specify in the length field of the COMMAREA
parameter and less than or equal to 32704. When the CICS server program
completes, DSNACICS passes the server program's entire COMMAREA, which
is commarea-total-len bytes in length, to the stored procedure caller.

sync-opts
Specifies whether the calling program controls resource recovery, using
two-phase commit protocols that are supported by RRS. Possible values are:

1 The client program controls commit processing. The CICS server region
does not perform a syncpoint when the server program returns control
to CICS. Also, the server program cannot take any explicit syncpoints.
Doing so causes the server program to abnormally terminate.

2 The target CICS server region takes a syncpoint on successful
completion of the server program. If this value is specified, the server
program can take explicit syncpoints.

When CICS has been set up to be an RRS resource manager, the client
application can control commit processing using SQL COMMIT requests. DB2
UDB for z/OS ensures that CICS is notified to commit any resources that the
CICS server program modifies during two-phase commit processing.

When CICS has not been set up to be an RRS resource manager, CICS forces
syncpoint processing of all CICS resources at completion of the CICS server
program. This commit processing is not coordinated with the commit
processing of the client program.

1140 Application Programming and SQL Guide



This option is ignored when CICS-level is 1. This is an input parameter of type
INTEGER.

return-code
Return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The request to run the CICS server program failed. The msg-area
parameter contains messages that describe the error.

This is an output parameter of type INTEGER.

msg-area
Contains messages if an error occurs during stored procedure execution. The
first messages in this area are generated by the stored procedure. Messages
that are generated by CICS or the DSNACICX user exit routine might follow
the first messages. The messages appear as a series of concatenated, viewable
text strings. This is an output parameter of type VARCHAR(500).

DSNACICX user exit routine
DSNACICS always calls user exit routine DSNACICX. You can use DSNACICX to
change the values of DSNACICS input parameters before you pass those
parameters to CICS. If you do not supply your own version of DSNACICX,
DSNACICS calls the default DSNACICX, which modifies no values and does an
immediate return to DSNACICS. The source code for the default version of
DSNACICX is in member DSNASCIX in data set prefix.SDSNSAMP. The source
code for a sample version of DSNACICX that is written in COBOL is in member
DSNASCIO in data set prefix.SDSNSAMP.

General considerations for DSNACICX
The DSNACICX exit routine must follow these rules:
v It can be written in assembler, COBOL, PL/I, or C.
v It must follow the Language Environment calling linkage when the caller is an

assembler language program.
v The load module for DSNACICX must reside in an authorized program library

that is in the STEPLIB concatenation of the stored procedure address space
startup procedure.
You can replace the default DSNACICX in the prefix.SDSNLOAD, library, or you
can put the DSNACICX load module in a library that is ahead of
prefix.SDSNLOAD in the STEPLIB concatenation. It is recommended that you
put DSNACICX in the prefix.SDSNEXIT library. Sample installation job
DSNTIJEX contains JCL for assembling and link-editing the sample source code
for DSNACICX into prefix.SDSNEXIT. You need to modify the JCL for the
libraries and the compiler that you are using.

v The load module must be named DSNACICX.
v The exit routine must save and restore the caller's registers. Only the contents of

register 15 can be modified.
v It must be written to be reentrant and link-edited as reentrant.
v It must be written and link-edited to execute as AMODE(31),RMODE(ANY).
v DSNACICX can contain SQL statements. However, if it does, you need to

change the DSNACICS procedure definition to reflect the appropriate SQL access
level for the types of SQL statements that you use in the user exit routine.

Appendix J. DB2-supplied stored procedures 1141



Specifying the DSNACICX exit routine
DSNACICS always calls an exit routine named DSNACICX. DSNACICS calls your
DSNACICX exit routine if it finds it before the default DSNACICX exit routine.
Otherwise, it calls the default DSNACICX exit routine.

When the DSNACICX exit routine is taken
The DSNACICX exit routine is taken whenever DSNACICS is called. The exit
routine is taken before DSNACICS invokes the CICS server program.

Loading a new version of the DSNACICX exit routine
DB2 loads DSNACICX only once, when DSNACICS is first invoked. If you change
DSNACICX, you can load the new version by quiescing and then resuming the
WLM application environment for the stored procedure address space in which
DSNACICS runs:
VARY WLM,APPLENV=DSNACICS-applenv-name,QUIESCE
VARY WLM,APPLENV=DSNACICS-applenv-name,RESUME

Parameter list for DSNACICX
At invocation, registers are set as described in Table 209.

Table 209. Registers at invocation of DSNACICX

Register Contains

1 Address of pointer to the exit parameter list (XPL).

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

Table 210 shows the contents of the DSNACICX exit parameter list, XPL. Member
DSNDXPL in data set prefix.SDSNMACS contains an assembler language mapping
macro for XPL. Sample exit routine DSNASCIO in data set prefix.SDSNSAMP
includes a COBOL mapping macro for XPL.

Table 210. Contents of the XPL exit parameter list

Name Hex offset Data type Description

Corresponding
DSNACICS
parameter

XPL_EYEC 0 Character, 4 bytes Eye-catcher: 'XPL '

XPL_LEN 4 Character, 4 bytes Length of the exit parameter
list

XPL_LEVEL 8 4-byte integer Level of the parameter list parm-level

XPL_PGMNAME C Character, 8 bytes Name of the CICS server
program

pgm-name

XPL_CICSAPPLID 14 Character, 8 bytes CICS VTAM applid CICS-applid

XPL_CICSLEVEL 1C 4-byte integer Level of CICS code CICS-level

XPL_CONNECTTYPE 20 Character, 8 bytes Specific or generic connection
to CICS

connect-type

XPL_NETNAME 28 Character, 8 bytes Name of the specific connection
to CICS

netname

XPL_MIRRORTRAN 30 Character, 8 bytes Name of the mirror transaction
that invokes the CICS server
program

mirror-trans

1142 Application Programming and SQL Guide



Table 210. Contents of the XPL exit parameter list (continued)

Name Hex offset Data type Description

Corresponding
DSNACICS
parameter

XPL_COMMAREAPTR 38 Address, 4 bytes Address of the COMMAREA 1

XPL_COMMINLEN 3C 4–byte integer Length of the COMMAREA
that is passed to the server
program

2

XPL_COMMTOTLEN 40 4–byte integer Total length of the
COMMAREA that is returned
to the caller

commarea-total-len

XPL_SYNCOPTS 44 4–byte integer Syncpoint control option sync-opts

XPL_RETCODE 48 4–byte integer Return code from the exit
routine

return-code

XPL_MSGLEN 4C 4–byte integer Length of the output message
area

return-code

XPL_MSGAREA 50 Character, 256 bytes Output message area msg-area3

Note:

1. The area that this field points to is specified by DSNACICS parameter COMMAREA. This area does not include
the length bytes.

2. This is the same value that the DSNACICS caller specifies in the length bytes of the COMMAREA parameter.

3. Although the total length of msg-area is 500 bytes, DSNACICX can use only 256 bytes of that area.

Example of DSNACICS invocation
The following PL/I example shows the variable declarations and SQL CALL
statement for invoking the CICS transaction that is associated with program
CICSPGM1.
/***********************/
/* DSNACICS PARAMETERS */
/***********************/
DECLARE PARM_LEVEL BIN FIXED(31);
DECLARE PGM_NAME CHAR(8);
DECLARE CICS_APPLID CHAR(8);
DECLARE CICS_LEVEL BIN FIXED(31);
DECLARE CONNECT_TYPE CHAR(8);
DECLARE NETNAME CHAR(8);
DECLARE MIRROR_TRANS CHAR(4);
DECLARE COMMAREA_TOTAL_LEN BIN FIXED(31);
DECLARE SYNC_OPTS BIN FIXED(31);
DECLARE RET_CODE BIN FIXED(31);
DECLARE MSG_AREA CHAR(500) VARYING;

DECLARE 1 COMMAREA BASED(P1),
3 COMMAREA_LEN BIN FIXED(15),
3 COMMAREA_INPUT CHAR(30),
3 COMMAREA_OUTPUT CHAR(100);

/***********************************************/
/* INDICATOR VARIABLES FOR DSNACICS PARAMETERS */
/***********************************************/
DECLARE 1 IND_VARS,

3 IND_PARM_LEVEL BIN FIXED(15),
3 IND_PGM_NAME BIN FIXED(15),
3 IND_CICS_APPLID BIN FIXED(15),
3 IND_CICS_LEVEL BIN FIXED(15),
3 IND_CONNECT_TYPE BIN FIXED(15),

Appendix J. DB2-supplied stored procedures 1143



3 IND_NETNAME BIN FIXED(15),
3 IND_MIRROR_TRANS BIN FIXED(15),
3 IND_COMMAREA BIN FIXED(15),
3 IND_COMMAREA_TOTAL_LEN BIN FIXED(15),
3 IND_SYNC_OPTS BIN FIXED(15),
3 IND_RETCODE BIN FIXED(15),
3 IND_MSG_AREA BIN FIXED(15);

/**************************/
/* LOCAL COPY OF COMMAREA */
/**************************/
DECLARE P1 POINTER;
DECLARE COMMAREA_STG CHAR(130) VARYING;

/**************************************************************/
/* ASSIGN VALUES TO INPUT PARAMETERS PARM_LEVEL, PGM_NAME, */
/* MIRROR_TRANS, COMMAREA, COMMAREA_TOTAL_LEN, AND SYNC_OPTS. */
/* SET THE OTHER INPUT PARAMETERS TO NULL. THE DSNACICX */
/* USER EXIT MUST ASSIGN VALUES FOR THOSE PARAMETERS. */
/**************************************************************/
PARM_LEVEL = 1;
IND_PARM_LEVEL = 0;

PGM_NAME = ’CICSPGM1’;
IND_PGM_NAME = 0 ;

MIRROR_TRANS = ’MIRT’;
IND_MIRROR_TRANS = 0;

P1 = ADDR(COMMAREA_STG);
COMMAREA_INPUT = ’THIS IS THE INPUT FOR CICSPGM1’;
COMMAREA_OUTPUT = ’ ’;
COMMAREA_LEN = LENGTH(COMMAREA_INPUT);
IND_COMMAREA = 0;

COMMAREA_TOTAL_LEN = COMMAREA_LEN + LENGTH(COMMAREA_OUTPUT);
IND_COMMAREA_TOTAL_LEN = 0;

SYNC_OPTS = 1;
IND_SYNC_OPTS = 0;

IND_CICS_APPLID= -1;
IND_CICS_LEVEL = -1;
IND_CONNECT_TYPE = -1;
IND_NETNAME = -1;
/*****************************************/
/* INITIALIZE OUTPUT PARAMETERS TO NULL. */
/*****************************************/
IND_RETCODE = -1;
IND_MSG_AREA= -1;
/*****************************************/
/* CALL DSNACICS TO INVOKE CICSPGM1. */
/*****************************************/
EXEC SQL
CALL SYSPROC.DSNACICS(:PARM_LEVEL :IND_PARM_LEVEL,

:PGM_NAME :IND_PGM_NAME,
:CICS_APPLID :IND_CICS_APPLID,
:CICS_LEVEL :IND_CICS_LEVEL,
:CONNECT_TYPE :IND_CONNECT_TYPE,
:NETNAME :IND_NETNAME,
:MIRROR_TRANS :IND_MIRROR_TRANS,
:COMMAREA_STG :IND_COMMAREA,
:COMMAREA_TOTAL_LEN :IND_COMMAREA_TOTAL_LEN,
:SYNC_OPTS :IND_SYNC_OPTS,
:RET_CODE :IND_RETCODE,
:MSG_AREA :IND_MSG_AREA);

1144 Application Programming and SQL Guide



DSNACICS output
DSNACICS places the return code from DSNACICS execution in the return-code
parameter. If the value of the return code is non-zero, DSNACICS puts its own
error messages and any error messages that are generated by CICS and the
DSNACICX user exit routine in the msg-area parameter.

The COMMAREA parameter contains the COMMAREA for the CICS server
program that DSNACICS calls. The COMMAREA parameter has a VARCHAR
type. Therefore, if the server program puts data other than character data in the
COMMAREA, that data can become corrupted by code page translation as it is
passed to the caller. To avoid code page translation, you can change the
COMMAREA parameter in the CREATE PROCEDURE statement for DSNACICS to
VARCHAR(32704) FOR BIT DATA. However, if you do so, the client program
might need to do code page translation on any character data in the COMMAREA
to make it readable.

DSNACICS restrictions
Because DSNACICS uses the distributed program link (DPL) function to invoke
CICS server programs, server programs that you invoke through DSNACICS can
contain only the CICS API commands that the DPL function supports. The list of
supported commands is documented in CICS Transaction Server for z/OS
Application Programming Reference.

DSNACICS does not propagate the transaction identifier (XID) of the thread. The
stored procedure runs under a new private context rather than under the native
context of the task that called it.

DSNACICS debugging
If you receive errors when you call DSNACICS, ask your system administrator to
add a DSNDUMP DD statement in the startup procedure for the address space in
which DSNACICS runs. The DSNDUMP DD statement causes DB2 to generate an
SVC dump whenever DSNACICS issues an error message.

IMS transactions stored procedure (DSNAIMS)
DSNAIMS is a stored procedure that allows DB2 applications to invoke IMS
transactions and commands easily, without maintaining their own connections to
IMS. DSNAIMS uses the IMS Open Transaction Manager Access (OTMA) API to
connect to IMS and execute the transactions.

Environment for DSNAIMS
DSNAIMS runs in a WLM-established stored procedures address space. DSNAIMS
requires DB2 with RRSAF enabled and IMS version 7 or later with OTMA Callable
Interface enabled.

To use a two-phase commit process, you must have IMS Version 8 with UQ70789
or later.

Authorization required for DSNAIMS
To set up and run DSNAIMS, you must be authorized the perform the following
steps:

Appendix J. DB2-supplied stored procedures 1145

#
#
#

#

#
#
#
#

#

#
#
#

#
#

#

#
#



1. Use the job DSNTIJIM to issue the CREATE PROCEDURE statement for
DSNAIMS and to grant the execution of DSNAIMS to PUBLIC. DSNTIJIM is
provided in the SDSNSAMP data set. You need to customize DSNTIJIM to fit
the parameters of your system.

2. Ensure that OTMA C/I is initialized. Refer to IMS Open Transaction Manager
Access Guide and Reference for an explanation of the C/I initialization.

DSNAIMS syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DSNAIMS.

�� CALL SYSPROC.DSNAIMS ( dsnaims-function , dsnaims-2pc
NULL

, xcf-group-name , �

� xcf-ims-name , racf-userid , racf-groupid
NULL

, ims-lterm
NULL

, ims-modname
NULL

, �

� ims-tran-name
NULL

, ims-data-in
NULL

, ims-data-out
NULL

, otma-tpipe-name
NULL

, �

� otma-dru-name
NULL

, user-data-in
NULL

, user-data-out , status-message , return-code ) ��

DSNAIMS option descriptions
dsnaims-function

A string that indicates whether the transaction is send-only, receive-only, or
send-and-receive:

SENDRECV
Sends and receives IMS data. SENDRECV invokes an IMS transaction
or command and returns the result to the caller. The transaction can be
an IMS full function or a fast path. SENDRECV does not support
multiple iterations of a conversational transaction

SEND Sends IMS data. SEND invokes an IMS transaction or command, but
does not receive IMS data. If result data exists, it can be retrieved with
the RECEIVE function. A send-only transaction cannot be an IMS fast
path transaction or a conversations transaction.

RECEIVE
Receives IMS data. The data can be the result of a transaction or
command initiated by the SEND function or an unsolicited output
message from an IMS application. The RECEIVE function does not
initiate an IMS transaction or command.

dsnaims-2pc

Specifies whether to use a two-phase commit process to perform the
transaction syncpoint service. Possible values are Y or N. For N, commits and
rollbacks that are issued by the IMS transaction do not affect commit and
rollback processing in the DB2 application that invokes DSNAIMS.
Furthermore, IMS resources are not affected by commits and rollbacks that are

1146 Application Programming and SQL Guide

#
#
#
#

#
#

#

#
#
#

############################
#

#
############################################
#

#
###############################################
#

#
#######################################

#
##

#

#
#
#

#
#
#
#
#

##
#
#
#

#
#
#
#
#

#

#
#
#
#
#



issued by the calling DB2 application. If you specify Y, you must also specify
SENDRECV. To use a two-phase commit process, you must set the IMS control
region parameter (RRS) to Y.

This parameter is optional. The default is N.

xcf-group-name
Specifies the XCF group name that the IMS OTMA joins. You can obtain this
name by viewing the GRNAME parameter in IMS PROCLIB member
DFSPBxxx or by using the IMS command /DISPLAY OTMA.

xcf-ims-name
Specifies the XCF member name that IMS uses for the XCF group. If IMS is not
using the XRF or RSR feature, you can obtain the XCF member name from the
OTMANM parameter in IMS PROCLIB member DFSPBxxx. If IMS is using the
XRF or RSR feature, you can obtain the XCF member name from the USERVAR
parameter in IMS PROCLIB member DFSPBxxx.

racf-userid
Specifies the RACF user ID that is used for IMS to perform the transaction or
command authorization checking. This parameter is required if DSNAIMS is
running APF-authorized. If DSNAIMS is running unauthorized, this parameter
is ignored and the EXTERNAL SECURITY setting for the DSNAIMS stored
procedure definition determines the user ID that is used by IMS.

racf-groupid
Specifies the RACF group ID that is used for IMS to perform the transaction or
command authorization checking. racf_groupid is used for stored procedures
that are APF-authorized. It is ignored for other stored procedures.

ims-lterm
Specifies an IMS LTERM name that is used to override the LTERM name in the
I/O program communication block of the IMS application program. This field
is used as an input and an output field:
v For SENDRECV, the value is sent to IMS on input and can be updated by

IMS on output.
v For SEND, the parameter is IN only.
v For RECEIVE, the parameter is OUT only.

An empty or NULL value tells IMS to ignore the parameter.

ims-modname
Specifies the formatting map name that is used by the server to map output
data streams, such as 3270 streams. Although this invocation does not have
IMS MFS support, the input MODNAME can be used as the map name to
define the output data stream. This name is an 8-byte message output
descriptor name that is placed in the I/O program communication block.
When the message is inserted, IMS places this name in the message prefix with
the map name in the program communication block of the IMS application
program.

For SENDRECV, the value is sent to IMS on input, and can be updated on
output. For SEND, the parameter is IN only. For RECEIVE it is OUT only. IMS
ignores the parameter when it is an empty or NULL value.

ims-tran-name
Specifies the name of an IMS transaction or command that is sent to IMS. If
the IMS command is longer than eight characters, specify the first eight
characters (including the "/" of the command). Specify the remaining

Appendix J. DB2-supplied stored procedures 1147

#
#
#

#

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#

#
#
#
#

#
#

#

#

#

#
#
#
#
#
#
#
#
#

#
#
#

#
#
#
#



characters of the command in the ims-tran-name parameter. If you use an empty
or NULL value, you must specify the full transaction name or command in the
ims-data-in parameter.

ims-data-in
Specifies the data that is sent to IMS. This parameter is required in each of the
following cases:
v Input data is required for IMS
v No transaction name or command is passed in ims-tran-name

v The command is longer than eight characters

This parameter is ignored when for RECEIVE functions.

ims-data-out
Data returned after successful completion of the transaction. This parameter is
required for SENDRECV and RECEIVE functions. The parameter is ignored for
SEND functions.

otma-tpipe-name
Specifies an 8-byte user-defined communication session name that IMS uses for
the input and output data for the transaction or the command in a SEND or a
RECEIVE function. If the otma_tpipe_name parameter is used for a SEND
function to generate an IMS output message, the same otma_pipe_name must
be used to retrieve output data for the subsequent RECEIVE function.

otma-dru-name
Specifies the name of an IMS user-defined exit routine, OTMA destination
resolution user exit routine, if it is used. This IMS exit routine can format part
of the output prefix and can determine the output destination for an IMS
ALT_PCB output. If an empty or null value is passed, IMS ignores this
parameter.

user-data-in
This optional parameter contains any data that is to be included in the IMS
message prefix, so that the data can be accessed by IMS OTMA user exit
routines (DFSYIOE0 and DFSYDRU0) and can be tracked by IMS log records.
IMS applications that run in dependent regions do not access this data. The
specified user data is not included in the output message prefix. You can use
this parameter to store input and output correlator tokens or other information.
This parameter is ignored for RECEIEVE functions.

user-data-out
On output, this field contains the user-data-in in the IMS output prefix. IMS
user exit routines (DFSYIOE0 and DFSYDRU0) can also create user-data-out for
SENDRECV and RECEIVE functions. The parameter is not updated for SEND
functions.

status-message
Indicates any error message that is returned from the transaction or command,
OTMA, RRS, or DSNAIMS.

return-code
Indicates the return code that is returned for the transaction or command,
OTMA, RRS, or DSNAIMS.

Examples of DSNAIMS invocation
The following examples show how to call DSNAIMS.

Example 1: Sample parameters for executing an IMS command:

1148 Application Programming and SQL Guide

#
#
#

#
#
#

#

#

#

#

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#

#
#
#

#
#
#

#

#

#



CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM",
"IMSCLNM", "", "", "", "", "",
"/LOG Hello World.", ims_data_out, "", "", "",
user_out, error_message, rc)

Example 2: Sample parameters for executing an IMS IVTNO transaction:
CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out
"", "", "", user_out, error_message, rc)

Example 3: Sample parameters for send-only IMS transaction:
CALL SYSPROC.DSNAIMS("SEND", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out,
"DSNAPIPE", "", "", user_out, error_message, rc)

Example 4: Sample parameters for receive-only IMS transaction:
CALL SYSPROC.DSNAIMS("RECEIVE", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out,
"DSNAPIPE", "", "", user_out, error_message, rc)

Connecting to multiple IMS subsystems with DSNAIMS
By default DSNAIMS connects to only one IMS subsystem at a time. The first
request to DSNAIMS determines to which IMS subsystem the stored procedure
connects. DSNAIMS attempts to reconnect to IMS only in the following cases:
v IMS is restarted and the saved connection is no longer valid
v WLM loads another DSNAIMS task

To connect to multiple IMS subsystems simultaneously, perform the following
steps:
1. Make a copy of the DB2-supplied job DSNTIJIM and customize it to your

environment.
2. Change the procedure name from SYSPROCC.DSNAIMS to another name, such

as DSNAIMSB.
3. Do no change the EXTERNAL NAME option. Leave it as DSNAIMS.
4. Run the new job to create a second instance of the stored procedure.
5. To ensure that you connect to the intended IMS target, consistently use the XFC

group and member names that you associate with each stored procedure
instance.
Example:
CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM", ...)
CALL SYSPROC.DSNAIMSB("SENDRECV", "N", "IMS8GRP", "IMS8TMEM", ...)

IMS transactions stored procedure (DSNAIMS2)
DSNAIMS2 is a stored procedure that allows DB2 applications to invoke IMS
transactions and commands easily, without maintaining their own connections to
IMS. DSNAIMS2 includes multi-segment input support for IMS transactions.

DSNAIMS2 uses the IMS Open Transaction Manager Access (OTMA) API to
connect to IMS and execute the transactions.

Appendix J. DB2-supplied stored procedures 1149

#
#
#
#

#

#
#
#
#

#

#
#
#
#

#

#
#
#
#

#

#
#
#

#

#

#
#

#
#

#
#

#

#

#
#
#

#

#
#

#
#

#
#
#

#
#



When you define the DSNAIMS2 stored procedure to your DB2 subsystem, you
can use the name DSNAIMS in your application if you prefer. Customize DSNTIJI2
to define the stored procedure to your DB2 subsystem as DSNAIMS; however, the
EXTERNAL NAME option must still be DSNAIMS2.

Environment for DSNAIMS2
DSNAIMS2 runs in a WLM-established stored procedures address space.
DSNAIMS2 requires DB2 with RRSAF enabled and IMS version 7 or later with
OTMA Callable Interface enabled.

To use a two-phase commit process, you must have IMS Version 8 with UQ70789
or later.

Authorization required for DSNAIMS2
To set up and run DSNAIMS2, you must be authorized the perform the following
steps:
1. Use the job DSNTIJI2 to issue the CREATE PROCEDURE statement for

DSNAIMS2 and to grant the execution of DSNAIMS2 to PUBLIC. DSNTIJI2 is
provided in the SDSNSAMP data set. You need to customize DSNTIJI2 to fit
the parameters of your system.

2. Ensure that OTMA C/I is initialized. Refer to IMS Open Transaction Manager
Access Guide and Reference for an explanation of the C/I initialization.

DSNAIMS2 syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DSNAIMS2.

�� CALL SYSPROC.DSNAIMS2 ( dsnaims-function , dsnaims-2pc
NULL

, xcf-group-name , �

� xcf-ims-name , racf-userid , racf-groupid
NULL

, ims-lterm
NULL

, ims-modname
NULL

, �

� ims-tran-name
NULL

, ims-data-in
NULL

, ims-data-out
NULL

, otma-tpipe-name
NULL

, �

� otma-dru-name
NULL

, user-data-in
NULL

, user-data-out , status-message , �

� otma-data-inseg
NULL

, return-code ) ��

DSNAIMS2 option descriptions
dsnaims-function

A string that indicates whether the transaction is send-only, receive-only, or
send-and-receive:

SENDRECV
Sends and receives IMS data. SENDRECV invokes an IMS transaction
or command and returns the result to the caller. The transaction can be

1150 Application Programming and SQL Guide

#
#
#
#

#

#
#
#

#
#

#

#
#

#
#
#
#

#
#

#

#
#
#

############################
#

#
############################################
#

#
###############################################
#

#
#################################
#

#
####################

#
##

#

#
#
#

#
#
#



an IMS full function or a fast path. SENDRECV does not support
multiple iterations of a conversational transaction

SEND Sends IMS data. SEND invokes an IMS transaction or command, but
does not receive IMS data. If result data exists, it can be retrieved with
the RECEIVE function. A send-only transaction cannot be an IMS fast
path transaction or a conversations transaction.

RECEIVE
Receives IMS data. The data can be the result of a transaction or
command initiated by the SEND function or an unsolicited output
message from an IMS application. The RECEIVE function does not
initiate an IMS transaction or command.

dsnaims-2pc

Specifies whether to use a two-phase commit process to perform the
transaction syncpoint service. Possible values are Y or N. For N, commits and
rollbacks that are issued by the IMS transaction do not affect commit and
rollback processing in the DB2 application that invokes DSNAIMS2.
Furthermore, IMS resources are not affected by commits and rollbacks that are
issued by the calling DB2 application. If you specify Y, you must also specify
SENDRECV. To use a two-phase commit process, you must set the IMS control
region parameter (RRS) to Y.

This parameter is optional. The default is N.

xcf-group-name
Specifies the XCF group name that the IMS OTMA joins. You can obtain this
name by viewing the GRNAME parameter in IMS PROCLIB member
DFSPBxxx or by using the IMS command /DISPLAY OTMA.

xcf-ims-name
Specifies the XCF member name that IMS uses for the XCF group. If IMS is not
using the XRF or RSR feature, you can obtain the XCF member name from the
OTMANM parameter in IMS PROCLIB member DFSPBxxx. If IMS is using the
XRF or RSR feature, you can obtain the XCF member name from the USERVAR
parameter in IMS PROCLIB member DFSPBxxx.

racf-userid
Specifies the RACF user ID that is used for IMS to perform the transaction or
command authorization checking. This parameter is required if DSNAIMS2 is
running APF-authorized. If DSNAIMS2 is running unauthorized, this
parameter is ignored and the EXTERNAL SECURITY setting for the
DSNAIMS2 stored procedure definition determines the user ID that is used by
IMS.

racf-groupid
Specifies the RACF group ID that is used for IMS to perform the transaction or
command authorization checking. racf_groupid is used for stored procedures
that are APF-authorized. It is ignored for other stored procedures.

ims-lterm
Specifies an IMS LTERM name that is used to override the LTERM name in the
I/O program communication block of the IMS application program. This field
is used as an input and an output field:
v For SENDRECV, the value is sent to IMS on input and can be updated by

IMS on output.
v For SEND, the parameter is IN only.
v For RECEIVE, the parameter is OUT only.

Appendix J. DB2-supplied stored procedures 1151

#
#

##
#
#
#

#
#
#
#
#

#

#
#
#
#
#
#
#
#

#

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#

#
#
#
#

#
#

#

#



An empty or NULL value tells IMS to ignore the parameter.

ims-modname
Specifies the formatting map name that is used by the server to map output
data streams, such as 3270 streams. Although this invocation does not have
IMS MFS support, the input MODNAME can be used as the map name to
define the output data stream. This name is an 8-byte message output
descriptor name that is placed in the I/O program communication block.
When the message is inserted, IMS places this name in the message prefix with
the map name in the program communication block of the IMS application
program.

For SENDRECV, the value is sent to IMS on input, and can be updated on
output. For SEND, the parameter is IN only. For RECEIVE it is OUT only. IMS
ignores the parameter when it is an empty or NULL value.

ims-tran-name
Specifies the name of an IMS transaction or command that is sent to IMS. If
the IMS command is longer than eight characters, specify the first eight
characters (including the "/" of the command). Specify the remaining
characters of the command in the ims-tran-name parameter. If you use an empty
or NULL value, you must specify the full transaction name or command in the
ims-data-in parameter.

ims-data-in
Specifies the data that is sent to IMS. This parameter is required in each of the
following cases:
v Input data is required for IMS
v No transaction name or command is passed in ims-tran-name

v The command is longer than eight characters

This parameter is ignored when for RECEIVE functions.

ims-data-out
Data returned after successful completion of the transaction. This parameter is
required for SENDRECV and RECEIVE functions. The parameter is ignored for
SEND functions.

otma-tpipe-name
Specifies an 8-byte user-defined communication session name that IMS uses for
the input and output data for the transaction or the command in a SEND or a
RECEIVE function. If the otma_tpipe_name parameter is used for a SEND
function to generate an IMS output message, the same otma_pipe_name must
be used to retrieve output data for the subsequent RECEIVE function.

otma-dru-name
Specifies the name of an IMS user-defined exit routine, OTMA destination
resolution user exit routine, if it is used. This IMS exit routine can format part
of the output prefix and can determine the output destination for an IMS
ALT_PCB output. If an empty or null value is passed, IMS ignores this
parameter.

user-data-in
This optional parameter contains any data that is to be included in the IMS
message prefix, so that the data can be accessed by IMS OTMA user exit
routines (DFSYIOE0 and DFSYDRU0) and can be tracked by IMS log records.
IMS applications that run in dependent regions do not access this data. The
specified user data is not included in the output message prefix. You can use
this parameter to store input and output correlator tokens or other information.
This parameter is ignored for RECEIVE functions.

1152 Application Programming and SQL Guide

#

#
#
#
#
#
#
#
#
#

#
#
#

#
#
#
#
#
#
#

#
#
#

#

#

#

#

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#
#
#



user-data-out
On output, this field contains the user-data-in in the IMS output prefix. IMS
user exit routines (DFSYIOE0 and DFSYDRU0) can also create user-data-out for
SENDRECV and RECEIVE functions. The parameter is not updated for SEND
functions.

status-message
Indicates any error message that is returned from the transaction or command,
OTMA, RRS, or DSNAIMS2.

otma-data-inseg
Specifies the number of segments followed by the lengths of the segments to
be sent to IMS. All values should be separated by semicolons. This field is
required to send multi-segment input to IMS. For single-segment transactions
and commands, set the field to NULL, "0" or "0;".

return-code
Indicates the return code that is returned for the transaction or command,
OTMA, RRS, or DSNAIMS2.

Examples of DSNAIMS2 invocation
The following examples show how to call DSNAIMS2.

Example 1: Sample parameters for executing a multi-segment IMS transaction:
CALL SYSPROC.DSNAIMS2("SEND","N","IMS7GRP","IMS7TMEM",

"IMSCLNM","","","","","",
"PART 1ST SEGMENT FROM CI 2ND SEGMENT FROM CI ",
ims_data_out,"","","",user_out, error_message,
"2;25;20",rc)

Example 2: Sample parameters for executing a single-segment IMS IVTNO
transaction:
CALL SYSPROC.DSNAIMS2("SEND","N","IMS7GRP","IMS7TMEM",

"IMSCLNM","","","","","IVTNO",
"DISPLAY LAST1",ims_data_out,"","","",
user_out, error_message,NULL,rc)

Connecting to multiple IMS subsystems with DSNAIMS2
By default DSNAIMS2 connects to only one IMS subsystem at a time. The first
request to DSNAIMS2 determines to which IMS subsystem the stored procedure
connects. DSNAIMS2 attempts to reconnect to IMS only in the following cases:
v IMS is restarted and the saved connection is no longer valid
v WLM loads another DSNAIMS2 task

To connect to multiple IMS subsystems simultaneously, perform the following
steps:
1. Make a copy of the DB2-supplied job DSNTIJI2 and customize it to your

environment.
2. Change the procedure name from SYSPROCC.DSNAIMS2 to another name,

such as DSNAIMS2B.
3. Do not change the EXTERNAL NAME option. Leave it as DSNAIMS2.
4. Change the name of the stored procedure in the grant statement in job

DSNTIJI2.
5. Run the new job to create a second instance of the stored procedure.

Appendix J. DB2-supplied stored procedures 1153

#
#
#
#
#

#
#
#

#
#
#
#
#

#
#
#

#

#

#

#
#
#
#
#

#
#

#
#
#
#

#

#
#
#

#

#

#
#

#
#

#
#

#

#
#

#



6. To ensure that you connect to the intended IMS target, consistently use the XFC
group and member names that you associate with each stored procedure
instance.
Example:
CALL SYSPROC.DSNAIMS2("SENDRECV", "N", "IMS7GRP", "IMS7TMEM", ...)
CALL SYSPROC.DSNAIMS2B("SENDRECV", "N", "IMS8GRP", "IMS8TMEM", ...)

The DB2 EXPLAIN stored procedure
The information under this heading is Product-sensitive Programming Interface
and Associated Guidance Information, as defined in “Notices” on page 1195.

The DSNAEXP stored procedure is a sample stored procedure that enables you to
capture EXPLAIN information for simple SQL statements without having the
authorization to execute those SQL statements.

Note: The DSNAEXP stored procedure replaces the DSN8EXP stored procedure for
DB2 Version 8 new function mode. In DB2 Version 8 compatibility mode you
must use the DSN8EXP stored procedure. The DSNAEXP stored procedure
is also deprecated and might not be supported in future versions of DB2.

Note: Certain SQL statements might prevent the DSNAEXP stored procedure from
parsing the statement correctly, such as:
v Very large statements
v Statements that contain complex structures such as embedded joins,

sub-selects, numerous predicates, common table expressions, and
unqualified object references

v Statements other than the following basic types:
– SELECT
– INSERT
– DELETE
– UPDATE
– MERGE

In certain cases, you might need to provide explicit qualifiers for object
references in SQL statements to enable the DSNAEXP stored procedure to
explain the statements.

Environment
DSNAEXP must run in a WLM-established stored procedure address space.

Before you can invoke DSNAEXP, table sqlid.PLAN_TABLE must exist. sqlid is the
value that you specify for the sqlid input parameter when you call DSNAEXP.

Job DSNTESC in DSN8810.SDSNSAMP contains a sample CREATE TABLE
statement for the PLAN_TABLE.

Authorization required
To execute the CALL DSN8.DSNAEXP statement, the owner of the package or plan
that contains the CALL statement must have one or more of the following
privileges on each package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNAEXP
v Ownership of the package

1154 Application Programming and SQL Guide

#
#
#

#

#
#

#
#

#
#

#
#
#

#
#
#
#

#
#

#

#
#
#

#

#

#

#

#

#

#
#
#

#

#

#
#

#
#

#

#
#
#
#
#



v PACKADM authority for the package collection
v SYSADM authority

In addition:
v The SQL authorization ID of the process in which DSNAEXP is called must have

the authority to execute SET CURRENT SQLID=sqlid.
v The SQL authorization ID of the process must also have one of the following

characteristics:
– Be the owner of a plan table named PLAN_TABLE
– Have an alias on a plan table named owner.PLAN_TABLE and have SELECT

and INSERT privileges on the table

DSNAEXP syntax diagram
The following syntax diagram shows the CALL statement for invoking DSNAEXP.
Because the linkage convention for DSNAEXP is GENERAL, you cannot pass null
values to the stored procedure.

DSNAEXP option descriptions
sqlid

Specifies:
v The authorization ID under which the EXPLAIN statement is to be executed
v The qualifier for the table into which EXPLAIN output is written:

sqlid.PLAN_TABLE
v The implicit qualifier for unqualified objects in the SQL statement on which

EXPLAIN is executed, if the value of parse is 'N'

sqlid is an input parameter of type CHAR(8).

queryno
Specifies a number that is to be used to identify sql-statement in the EXPLAIN
output. This number appears in the QUERYNO column in the PLAN_TABLE.
queryno is an input parameter of type INTEGER.

sql-statement
Specifies the SQL statement on which EXPLAIN is to be executed. sql-statement
is an input parameter of type CLOB(2M).

parse
Specifies whether DSNAEXP adds a qualifier for unqualified table or view
names in the input SQL statement. Valid values are 'Y' and 'N'. If the value of
parse is 'Y', qualifier must contain a valid SQL qualifier name.

If sql-statement is insert-within-select and common table expressions, you need
to disable the parsing functionality, and add the qualifier manually.

parse is an input parameter of type CHAR(1).

�� CALL DSNAEXP ( sqlid, queryno, sql-statement, parse, qualifier, sqlcode, sqlstate, �

� error-message ) ��

Appendix J. DB2-supplied stored procedures 1155

#

#######################
#

#
#########
#
##

#
#

#

#
#

#
#

#

#
#

#

#
#
#
##

#

#
#

#

#
#

#
#

#

#
#
#
#

#
#
#

#
#
#
#

#
#

#



qualifier
Specifies the qualifier that DSNAEXP adds to unqualified table or view names
in the input SQL statement. If the value of parse is 'N', qualifier is ignored.

If the statement on which EXPLAIN is run contains an INSERT within a
SELECT or a common table expression, parse must be 'N', and table and view
qualifiers must be explicitly specified.

qualifier is an input parameter of type CHAR(8).

sqlcode
Contains the SQLCODE from execution of the EXPLAIN statement. sqlcode is
an output parameter of type INTEGER.

sqlstate
Contains the SQLSTATE from execution of the EXPLAIN statement. sqlstate is
an output parameter of type CHAR(5).

error-message
Contains information about DSNAEXP execution. If the SQLCODE from
execution of the EXPLAIN statement is not 0, error-message contains the error
message for the SQLCODE. error-message is an output parameter of type
VARCHAR(960).

Example of DSNAEXP invocation
The following C example shows how to call DSNAEXP to execute an EXPLAIN
statement.
EXEC SQL BEGIN DECLARE SECTION;
char hvsqlid[9]; /* Qualifier for PLAN_TABLE */
long int hvqueryno; /* QUERYNO to give the SQL */
struct {

short int hvsql_stmt_len; /* Input SQL statement length */
hvsql_stmt_txt SQL TYPE IS CLOB 2M;

/* SQL statement text */
} hvsql_stmt ; /* SQL statement to EXPLAIN */

char hvparse[1]; /* Qualify object names */
/* indicator */

char hvqualifier[9]; /* Qualifier for unqualified */
/* objects */

long int hvsqlcode; /* SQLCODE from CALL DSNAEXP */
char hvsqlstate[6]; /* SQLSTATE from CALL DSNAEXP */
struct {

short int hvmsg_len; /* Error message length */
char hvmsg_text[961]; /* Error message text */

} hvmsg; /* Error message from failed */
/* CALL DSNAEXP */

EXEC SQL END DECLARE SECTION;
short int i;...
/* Set the input parameters */
strcpy(hvsqlid,"ADMF001 ");
hvqueryno=320;
strcpy(hvsql_stmt.hvsql_stmt_text,"SELECT CURRENT DATE FROM SYSDUMMY1");
hvsql_stmt.hvsql_stmt_len=strlen(hvsql_stmt.hvsql_stmt_text);
hvparse[0]=’Y’;
strcpy(hvqualifier,"SYSIBM");
/* Initialize the output parameters */
hvsqlcode=0;
for (i = 0; i < 5; i++) hvsqlstate[i] = ’0’;
hvsqlstate[5]=’\0’;
hvmsg.hvmsg_len=0;
for (i = 0; i < 960; i++) hvmsg.hvmsg_text[i] = ’ ’;
hvmsg.hvmsg_text[960] = ’\0’;
/* Call DSNAEXP to do EXPLAIN and put output in ADMF001.PLAN_TABLE */

1156 Application Programming and SQL Guide

#
#
#

#
#
#

#

#
#
#

#
#
#

#
#
#
#
#

#

#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
####
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



EXEC SQL
CALL DSN8.DSNAEXP(:hvsqlid,

:hvqueryno,
:hvsql_stmt,
:hvparse,
:hvqualifier,
:hvsqlcode,
:hvsqlstate,
:hvmsg);

DSNAEXP output
If DSNAEXP executes successfully, sqlid.PLAN_TABLE contains the EXPLAIN
output. A user with SELECT authority on sqlid.PLAN_TABLE can obtain the results
of the EXPLAIN that was executed by DSNAEXP by executing this query:
SELECT * FROM sqlid.PLAN_TABLE WHERE QUERYNO=’queryno’;

If DSNAEXP does not execute successfully, sqlcode, sqlstate, and error-message
contain error information.

Deprecated: Store an XML document from an MQ message queue in
DB2 tables (DXXMQINSERT)

Restriction: DXXMQINSERT has been deprecated.

The DXXMQINSERT stored procedure returns a message that contains an XML
document from an MQ message queue, decomposes the document, and stores the
data in DB2 tables that are specified by an enabled XML collection.

Use DXXMQINSERT for an XML document with a length of up to 3KB.

There are two versions of DXXMQINSERT:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQINSERT
DXXMQINSERT runs in a WLM-established stored procedure address space and
uses the Resource Recovery Services attachment facility to connect to DB2.

DXXMQINSERT requires that WebSphere MQ and XML Extender are installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQINSERT
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQINSERT
v Ownership of the stored procedure
v SYSADM authority

DXXMQINSERT syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQINSERT. Because the linkage convention for DXXMQINSERT is GENERAL
WITH NULLS, if you pass parameters in host variables, you need to include a null

Appendix J. DB2-supplied stored procedures 1157

#
#
#
#
#
#
#
#
#

#

#
#
#

#

#
#

#

#

#



indicator with every host variable. Null indicators for input host variables must be
initialized before you execute the CALL statement.

�� CALL DMQXML1C .DXXMQINSERT
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

�

� XML-collection-name, status ) ��

DXXMQINSERT option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination from
which the message is to be retrieved. The service point is defined in the
DSNAMT repository file. If service-name is not listed in the DSNAMT
repository file, or service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
message. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

XML-collection-name
Specifies the name of the XML collection that specifies the DB2 tables into
which the decomposed XML document is to be inserted. XML-collection-name is
an input parameter of type VARCHAR(80).

status
Contains information that indicates whether DXXMQINSERT ran successfully.
The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQINSERT ran successfully, or the SQLCODE from the

most recent unsuccessful SQL statement if DXXMQINSERT ran
unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQINSERT invocation
The following example calls the single-phase commit version of DXXMQINSERT to
retrieve an XML document from an MQ message queue and decompose it into
DB2 tables that are specified by enabled collection sales_ord. For a complete
example of DXXMQINSERT invocation, see DSN8QXSI in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

1158 Application Programming and SQL Guide



char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char collectionName[30]; /* XML collection name */
char status[20]; /* Status of DXXMQINSERT call */
/* DXXMQINSERT is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short collectionName_ind; /* Indicator var for collectionName */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Initialize status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the XML collection name */
strcpy(collectionName,"sales_ord");
/* Initialize the output variable */
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
/* Initialize the indicator for the output parameter */
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQINSERT(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:overrideType:ovtype_ind,
:override:ov_ind,
:max_row:maxrow_ind,
:num_row:numrow_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQINSERT output
If DXXMQINSERT executes successfully, the mq-num-msgs field of the status
parameter is set to 1, to indicate that a message was retrieved from the MQ
message queue and inserted into DB2 tables. If DXXMQINSERT does not execute
successfully, the contents of the status parameter indicate the problem.

Deprecated: Store an XML document from an MQ message queue in
DB2 tables (DXXMQSHRED)

Restriction: DXXMQSHRED has been deprecated.

The DXXMQSHRED stored procedure returns a message that contains an XML
document from an MQ message queue, decomposes the document, and stores the
data in DB2 tables that are specified in a document access definition (DAD) file.
DXXMQSHRED does not require an enabled XML collection.

Use DXXMQSHRED for an XML document with a length of up to 3KB.

There are two versions of DXXMQSHRED:
v A single-phase commit version, with schema name DMQXML1C.

Appendix J. DB2-supplied stored procedures 1159

#

#

#

#
#
#
#

#

#
#



v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQSHRED
DXXMQSHRED runs in a WLM-established stored procedure address space and
uses the Resource Recovery Services attachment facility to connect to DB2.

DXXMQSHRED requires that WebSphere MQ and XML Extender are installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQSHRED
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQSHRED
v Ownership of the stored procedure
v SYSADM authority

DXXMQSHRED syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQSHRED. Because the linkage convention for DXXMQSHRED is GENERAL
WITH NULLS, if you pass parameters in host variables, you need to include a null
indicator with every host variable. Null indicators for input host variables must be
initialized before you execute the CALL statement.

�� CALL DMQXML1C .DXXMQSHRED
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

DAD-file-name, �

� status ) ��

DXXMQSHRED option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination from
which the message is to be retrieved. The service point is defined in the
DSNAMT repository file. If service-name is not listed in the DSNAMT
repository file, or service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
message. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

DAD-file-name
Specifies the name of the (DAD) file that maps the XML document to DB2
tables. DAD-file-name must be specified, and must be the name of a valid DAD

1160 Application Programming and SQL Guide

#

#

#
#

#

#

#

#
#
#
#
#

#

#
#
#
#
#
#

#######################################
#

#
#########
#
##

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#



file that exists on the system on which DXXMQSHRED runs. DAD-file-name is
an input parameter of type VARCHAR(80).

status
Contains information that indicates whether DXXMQSHRED ran successfully.
The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQSHRED ran successfully, or the SQLCODE from the

most recent unsuccessful SQL statement if DXXMQSHRED ran
unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQSHRED invocation
The following example calls the single-phase commit version of DXXMQSHRED to
retrieve an XML document from an MQ message queue and decompose it into
DB2 tables that are specified by DAD file /tmp/neworder2.dad. For a complete
example of DXXMQSHRED invocation, see DSN8QXSI in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char dadFileName[30]; /* DAD file name */
char status[20]; /* Status of DXXMQSHRED call */
/* DXXMQSHRED is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short dadFileName_ind; /* Indicator var for dadFileName */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Initialize status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the DAD file name */
strcpy(dadFileName,"/tmp/neworder2.dad");
/* Initialize the output variable */
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
/* Initialize the indicator for the output parameter */
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQSHRED(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

Appendix J. DB2-supplied stored procedures 1161

#
#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



DXXMQSHRED output
If DXXMQSHRED executes successfully, the mq-num-msgs field of the status
parameter is set to 1, to indicate that a message was retrieved from the MQ
message queue and inserted into DB2 tables. If DXXMQSHRED does not execute
successfully, the contents of the status parameter indicate the problem.

Deprecated: Store a large XML document from an MQ message queue
in DB2 tables (DXXMQINSERTCLOB)

Restriction: DXXMQINSERTCLOB has been deprecated.

The DXXMQINSERTCLOB stored procedure returns a message that contains an
XML document from an MQ message queue, decomposes the document, and
stores the data in DB2 tables that are specified by an enabled XML collection.

Use DXXMQINSERTCLOB for an XML document with a length of up to 1MB.

There are two versions of DXXMQINSERTCLOB:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQINSERTCLOB
DXXMQINSERTCLOB runs in a WLM-established stored procedure address space
and uses the Resource Recovery Services attachment facility to connect to DB2.

DXXMQINSERTCLOB requires that WebSphere MQ and XML Extender are
installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQINSERTCLOB
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQINSERTCLOB
v Ownership of the stored procedure
v SYSADM authority

DXXMQINSERTCLOB syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQINSERTCLOB. Because the linkage convention for DXXMQINSERTCLOB
is GENERAL WITH NULLS, if you pass parameters in host variables, you need to
include a null indicator with every host variable. Null indicators for input host
variables must be initialized before you execute the CALL statement.

�� CALL DMQXML1C .DXXMQINSERTCLOB
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

�

� XML-collection-name, status ) ��

1162 Application Programming and SQL Guide

#

#
#
#
#

#

#

#

#
#
#

#

#
#
#

#

#
#

#
#

#

#

#
#
#
#
#

#

#
#
#
#
#
#

#####################################
#

#
###########
#
##



DXXMQINSERTCLOB option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination from
which the message is to be retrieved. The service point is defined in the
DSNAMT repository file. If service-name is not listed in the DSNAMT
repository file, or service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
message. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

XML-collection-name
Specifies the name of the XML collection that specifies the DB2 tables into
which the decomposed XML document is to be inserted. XML-collection-name
must be specified, and must be the name of an enabled collection that exists on
the system on which DXXMQINSERTCLOB runs. XML-collection-name is an
input parameter of type VARCHAR(80).

status
Contains information that indicates whether DXXMQINSERTCLOB ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQINSERTCLOB ran successfully, or the SQLCODE from

the most recent unsuccessful SQL statement if DXXMQINSERTCLOB ran
unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQINSERTCLOB invocation
The following example calls the single-phase commit version of
DXXMQINSERTCLOB to retrieve all XML documents from an MQ message queue
and decompose them into DB2 tables that are specified by enabled collection
sales_ord. For a complete example of DXXMQINSERTCLOB invocation, see
DSN8QXSI in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char collectionName[30]; /* XML collection name */
char status[20]; /* Status of DXXMQINSERTCLOB call */
/* DXXMQINSERTCLOB is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short collectionName_ind; /* Indicator var for collectionName */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;

Appendix J. DB2-supplied stored procedures 1163

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#
#
#
#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#



/* Initialize status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the XML collection name */
strcpy(collectionName,"sales_ord");
/* Initialize the output variable */
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
/* Initialize the indicator for the output parameter */
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQINSERTCLOB(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:collectionName:collectionName_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQINSERTCLOB output
If DXXMQINSERTCLOB executes successfully, the mq-num-msgs field of the status
parameter is set to 1, to indicate that a message was retrieved from the MQ
message queue and inserted into DB2 tables. If DXXMQINSERTCLOB does not
execute successfully, the contents of the status parameter indicate the problem.

Deprecated: Store a large XML document from an MQ message queue
in DB2 tables (DXXMQSHREDCLOB)

Restriction: DXXMQSHREDCLOB has been deprecated.

The DXXMQSHREDCLOB stored procedure returns a message that contains an
XML document from an MQ message queue, decomposes the document, and
stores the data in DB2 tables that are specified in a document access definition
(DAD) file. DXXMQSHREDCLOB does not require an enabled XML collection.

Use DXXMQSHREDCLOB for an XML document with a length of up to 1MB.

There are two versions of DXXMQSHREDCLOB:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQSHREDCLOB
DXXMQSHREDCLOB runs in a WLM-established stored procedure address space
and uses the Resource Recovery Services attachment facility to connect to DB2.

DXXMQSHREDCLOB requires that WebSphere MQ and XML Extender are
installed.

See DB2 Installation Guide for installation instructions.

1164 Application Programming and SQL Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#

#

#

#
#
#
#

#

#
#
#

#

#
#

#
#

#



Authorization required for DXXMQSHREDCLOB
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQSHREDCLOB
v Ownership of the stored procedure
v SYSADM authority

DXXMQSHREDCLOB syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQSHREDCLOB. Because the linkage convention for DXXMQSHREDCLOB is
GENERAL WITH NULLS, if you pass parameters in host variables, you need to
include a null indicator with every host variable. Null indicators for input host
variables must be initialized before you execute the CALL statement.

�� CALL DMQXML1C .DXXMQSHREDCLOB
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

DAD-file-name, �

� status ) ��

DXXMQSHREDCLOB option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination from
which the message is to be retrieved. The service point is defined in the
DSNAMT repository file. If service-name is not listed in the DSNAMT
repository file, or service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
message. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

DAD-file-name
Specifies the name of the (DAD) file that maps the XML document to DB2
tables. DAD-file-name is an input parameter of type VARCHAR(80).

status
Contains information that indicates whether DXXMQSHREDCLOB ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQSHREDCLOB ran successfully, or the SQLCODE from

the most recent unsuccessful SQL statement if DXXMQSHREDCLOB ran
unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

Appendix J. DB2-supplied stored procedures 1165

#

#
#
#
#
#

#

#
#
#
#
#
#

#######################################
#

#
#########
#
##

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#

#
#
#

#
#

#
#
#

#
#



status is an output parameter of type CHAR(20).

Example of DXXMQSHREDCLOB invocation
The following example calls the single-phase commit version of
DXXMQSHREDCLOB to retrieve an XML document from an MQ message queue
and decompose it into DB2 tables that are specified by DAD file
/tmp/neworder2.dad. For a complete example of DXXMQSHREDCLOB
invocation, see DSN8QXSI in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char dadFileName[30]; /* DAD file name */
char status[20]; /* Status of DXXMQSHREDCLOB call */
/* DXXMQSHREDCLOB is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short dadFileName_ind; /* Indicator var for dadFileName */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Initialize status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the DAD file name */
strcpy(dadFileName,"/tmp/neworder2.dad");
/* Initialize the output variable */
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
/* Initialize the indicator for the output parameter */
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQSHREDCLOB(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQSHREDCLOB output
If DXXMQSHREDCLOB executes successfully, the mq-num-msgs field of the status
parameter is set to 1, to indicate that a message was retrieved from the MQ
message queue and inserted into DB2 tables. If DXXMQSHREDCLOB does not
execute successfully, the contents of the status parameter indicate the problem.

Deprecated: Store XML documents from an MQ message queue in DB2
tables (DXXMQINSERTALL)

Restriction: DXXMQINSERTALL has been deprecated.

1166 Application Programming and SQL Guide

#

#

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#

#

#



The DXXMQINSERTALL stored procedure returns messages that contains XML
documents from an MQ message queue, decomposes the documents, and stores
the data in DB2 tables that are specified by an enabled XML collection.

Use DXXMQINSERTALL for XML documents with a length of up to 3KB.

There are two versions of DXXMQINSERTALL:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQINSERTALL
DXXMQINSERTALL runs in a WLM-established stored procedure address space
and uses the Resource Recovery Services attachment facility to connect to DB2.

DXXMQINSERTALL requires that WebSphere MQ and XML Extender are installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQINSERTALL
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQINSERTALL
v Ownership of the stored procedure
v SYSADM authority

DXXMQINSERTALL syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQINSERTALL. Because the linkage convention for DXXMQINSERTALL is
GENERAL WITH NULLS, if you pass parameters in host variables, you need to
include a null indicator with every host variable. Null indicators for input host
variables must be initialized before you execute the CALL statement.

�� CALL DMQXML1C .DXXMQINSERTALL
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

�

� XML-collection-name, status ) ��

DXXMQINSERTALL option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination from
which the messages are to be retrieved. The service point is defined in the
DSNAMT repository file. If service-name is not listed in the DSNAMT
repository file, or service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
messages. The service policy is defined in the DSNAMT repository file. If

Appendix J. DB2-supplied stored procedures 1167

#
#
#

#

#
#
#

#

#
#

#

#

#

#
#
#
#
#

#

#
#
#
#
#
#

#####################################
#

#
###########
#
##

#

#
#
#
#
#

#
#

#
#
#



policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

XML-collection-name
Specifies the name of the XML collection that specifies the DB2 tables into
which the decomposed XML documents are to be inserted. XML-collection-name
must be specified, and must be the name of a valid XML collection that exists
on the system on which DXXMQINSERTALL runs.XML-collection-name is an
input parameter of type VARCHAR(80).

status
Contains information that indicates whether DXXMQINSERTALL ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQINSERTALL ran successfully, or the SQLCODE from

the most recent unsuccessful SQL statement if DXXMQINSERTALL ran
unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQINSERTALL invocation
The following example calls the single-phase commit version of
DXXMQINSERTALL to retrieve all XML documents from an MQ message queue
and decompose them into DB2 tables that are specified by enabled collection
sales_ord. For a complete example of DXXMQINSERTALL invocation, see
DSN8QXSI in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char collectionName[30]; /* XML collection name */
char status[20]; /* Status of DXXMQINSERTALL call */
/* DXXMQINSERTALL is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short collectionName_ind; /* Indicator var for collectionName */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Initialize status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the XML collection name */
strcpy(collectionName,"sales_ord");
/* Initialize the output variable */
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;

1168 Application Programming and SQL Guide

#
#

#
#

#
#
#
#
#
#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



policyName_ind = 0;
/* Initialize the indicators for the output parameter */
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQINSERTALL(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:collectionName:collectionName_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQINSERTALL output
If DXXMQINSERTALL executes successfully, the mq-num-msgs field of the status
parameter is set to the number of messages that were retrieved from the MQ
message queue and decomposed. If DXXMQINSERTALL does not execute
successfully, the contents of the status parameter indicate the problem.

Deprecated: Store XML documents from an MQ message queue in DB2
tables (DXXMQSHREDALL)

Restriction: DXXMQSHREDALL has been deprecated.

The DXXMQSHREDALL stored procedure returns messages that contain XML
documents from an MQ message queue, decomposes the documents, and stores
the data in DB2 tables that are specified in a document access definition (DAD)
file. DXXMQSHREDALL does not require an enabled XML collection.

Use DXXMQSHREDALL for XML documents with a length of up to 3KB.

There are two versions of DXXMQSHREDALL:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQSHREDALL
DXXMQSHREDALL runs in a WLM-established stored procedure address space
and uses the Resource Recovery Services attachment facility to connect to DB2.

DXXMQSHREDALL requires that WebSphere MQ and XML Extender are installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQSHREDALL
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQSHREDALL
v Ownership of the stored procedure
v SYSADM authority

DXXMQSHREDALL syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQSHREDALL. Because the linkage convention for DXXMQSHREDALL is
GENERAL WITH NULLS, if you pass parameters in host variables, you need to

Appendix J. DB2-supplied stored procedures 1169

#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#

#

#

#
#
#
#

#

#
#
#

#

#
#

#

#

#

#
#
#
#
#

#

#
#
#



include a null indicator with every host variable. Null indicators for input host
variables must be initialized before you execute the CALL statement.

�� CALL DMQXML1C .DXXMQSHREDALL
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

DAD-file-name, �

� status ) ��

DXXMQSHREDALL option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination from
which messages are to be retrieved. The service point is defined in the
DSNAMT repository file. If service-name is not listed in the DSNAMT
repository file, or service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
messages. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

DAD-file-name
Specifies the name of the (DAD) file that maps the XML document to DB2
tables. DAD-file-name must be specified, and must be the name of a valid DAD
file that exists on the system on which DXXMQSHREDALL runs.DAD-file-name
is an input parameter of type VARCHAR(80).

status
Contains information that indicates whether DXXMQSHREDALL ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQSHREDALL ran successfully, or the SQLCODE from

the most recent unsuccessful SQL statement if DXXMQSHREDALL ran
unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQSHREDALL invocation
The following example calls the single-phase commit version of
DXXMQSHREDALL to retrieve XML documents from an MQ message queue and
decompose them into DB2 tables that are specified by DAD file
/tmp/neworder2.dad. For a complete example of DXXMQSHREDALL invocation,
see DSN8QXSI in DSN810.SDSNSAMP.

1170 Application Programming and SQL Guide

#
#
#

#######################################
#

#
#########
#
##

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#
#
#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#
#



#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char dadFileName[30]; /* DAD file name */
char status[20]; /* Status of DXXMQSHREDALL call */
/* DXXMQSHREDALL is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short dadFileName_ind; /* Indicator var for dadFileName */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Initialize status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the DAD file name */
strcpy(dadFileName,"/tmp/neworder2.dad");
/* Initialize the output variable */
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
/* Initialize the indicator for the output parameter */
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQSHREDALL(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQSHREDALL output
If DXXMQSHREDALL executes successfully, the mq-num-msgs field of the status
parameter is set to the number of messages that were retrieved from the MQ
message queue and inserted into DB2 tables. If DXXMQSHREDALL does not
execute successfully, the contents of the status parameter indicate the problem.

Deprecated: Store large XML documents from an MQ message queue
in DB2 tables (DXXMQSHREDALLCLOB)

Restriction: DXXMQSHREDALLCLOB has been deprecated.

The DXXMQSHREDALLCLOB stored procedure returns messages that contain
XML documents from an MQ message queue, decomposes the documents, and
stores the data in DB2 tables that are specified in a document access definition
(DAD) file. DXXMQSHREDALLCLOB does not require an enabled XML collection.

Use DXXMQSHREDALLCLOB for XML documents with a length of up to 1MB.

There are two versions of DXXMQSHREDALLCLOB:
v A single-phase commit version, with schema name DMQXML1C.

Appendix J. DB2-supplied stored procedures 1171

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#

#

#

#
#
#
#

#

#
#



v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQSHREDALLCLOB
DXXMQSHREDALLCLOB runs in a WLM-established stored procedure address
space and uses the Resource Recovery Services attachment facility to connect to
DB2.

DXXMQSHREDALLCLOB requires that WebSphere MQ and XML Extender are
installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQSHREDALLCLOB
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQSHREDALLCLOB
v Ownership of the stored procedure
v SYSADM authority

DXXMQSHREDALLCLOB syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQSHREDALLCLOB. Because the linkage convention for
DXXMQSHREDALLCLOB is GENERAL WITH NULLS, if you pass parameters in
host variables, you need to include a null indicator with every host variable. Null
indicators for input host variables must be initialized before you execute the CALL
statement.

�� CALL DMQXML1C .DXXMQSHREDALLCLOB
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

�

� DAD-file-name, status ) ��

DXXMQSHREDALLCLOB option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination from
which messages are to be retrieved. The service point is defined in the
DSNAMT repository file. If service-name is not listed in the DSNAMT
repository file, or service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
messages. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

1172 Application Programming and SQL Guide

#

#

#
#
#

#
#

#

#

#
#
#
#
#

#

#
#
#
#
#
#
#

#####################################
#

#
###########
#
##

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#



DAD-file-name
Specifies the name of the (DAD) file that maps the XML document to DB2
tables. DAD-file-name must be specified, and must be the name of a valid DAD
file that exists on the system on which DXXMQSHREDALLCLOB runs.
DAD-file-name is an input parameter of type VARCHAR(80).

status
Contains information that indicates whether DXXMQSHREDALLCLOB ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQSHREDALLCLOB ran successfully, or the SQLCODE

from the most recent unsuccessful SQL statement if
DXXMQSHREDALLCLOB ran unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQSHREDALLCLOB invocation
The following example calls the single-phase commit version of
DXXMQSHREDALLCLOB to retrieve XML documents from an MQ message queue
and decompose them into DB2 tables that are specified by DAD file
/tmp/neworder2.dad. For a complete example of DXXMQSHREDALLCLOB
invocation, see DSN8QXSI in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char dadFileName[30]; /* DAD file name */
char status[20]; /* Status of DXXMQSHREDALLCLOB call */
/* DXXMQSHREDALLCLOB is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short dadFileName_ind; /* Indicator var for dadFileName */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Initialize status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the DAD file name */
strcpy(dadFileName,"/tmp/neworder2.dad");
/* Initialize the output variable */
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
/* Initialize the indicator for the output parameter */
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQSHREDALLCLOB(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:status:status_ind);

Appendix J. DB2-supplied stored procedures 1173

#
#
#
#
#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQSHREDALLCLOB output
If DXXMQSHREDALLCLOB executes successfully, the mq-num-msgs field of the
status parameter is set to the number of messages that were retrieved from the MQ
message queue and inserted into DB2 tables. If DXXMQSHREDALLCLOB does not
execute successfully, the contents of the status parameter indicate the problem.

Deprecated: Store large XML documents from an MQ message queue
in DB2 tables (DXXMQINSERTALLCLOB)

Restriction: DXXMQINSERTALLCLOB has been deprecated.

The DXXMQINSERTALLCLOB stored procedure returns messages that contains
XML documents from an MQ message queue, decomposes the documents, and
stores the data in DB2 tables that are specified by an enabled XML collection.

Use DXXMQINSERTALLCLOB for XML documents with a length of up to 1MB.

There are two versions of DXXMQINSERTALLCLOB:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQINSERTALLCLOB
DXXMQINSERTALLCLOB runs in a WLM-established stored procedure address
space and uses the Resource Recovery Services attachment facility to connect to
DB2.

DXXMQINSERTALLCLOB requires that WebSphere MQ and XML Extender are
installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQINSERTALLCLOB
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQINSERTALLCLOB
v Ownership of the stored procedure
v SYSADM authority

DXXMQINSERTALLCLOB syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQINSERTALLCLOB. Because the linkage convention for
DXXMQINSERTALLCLOB is GENERAL WITH NULLS, if you pass parameters in
host variables, you need to include a null indicator with every host variable. Null
indicators for input host variables must be initialized before you execute the CALL
statement.

1174 Application Programming and SQL Guide

#
#
#
#

#

#
#
#
#

#

#

#

#
#
#

#

#
#
#

#

#
#
#

#
#

#

#

#
#
#
#
#

#

#
#
#
#
#
#
#



�� CALL DMQXML1C .DXXMQINSERTALLCLOB
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

�

� XML-collection-name, status ) ��

DXXMQINSERTALLCLOB option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination from
which the messages are to be retrieved. The service point is defined in the
DSNAMT repository file. If service-name is not listed in the DSNAMT
repository file, or service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
messages. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

XML-collection-name
Specifies the name of the XML collection that specifies the DB2 tables into
which the decomposed XML documents are to be inserted. XML-collection-name
must be specified, and must be the name of a valid XML collection that exists
on the system on which DXXMQINSERTALLCLOB runs. XML-collection-name is
an input parameter of type VARCHAR(80).

status
Contains information that indicates whether DXXMQINSERTALLCLOB ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQINSERTALLCLOB ran successfully, or the SQLCODE

from the most recent unsuccessful SQL statement if
DXXMQINSERTALLCLOB ran unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQINSERTALLCLOB invocation
The following example calls the single-phase commit version of
DXXMQINSERTALLCLOB to retrieve all XML documents from an MQ message
queue and decompose them into DB2 tables that are specified by enabled collection
sales_ord. For a complete example of DXXMQINSERTALLCLOB invocation, see
DSN8QXSI in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */

Appendix J. DB2-supplied stored procedures 1175

#####################################
#

#
###########
#
##

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#
#
#
#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#
#

#
#
#
#
#



char policyName[48]; /* WebSphere MQ policy name */
char collectionName[30]; /* XML collection name */
char status[20]; /* Status of DXXMQINSERTALLCLOB call */
/* DXXMQINSERTALLCLOB is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short collectionName_ind; /* Indicator var for collectionName */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Initialize status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the XML collection name */
strcpy(collectionName,"sales_ord");
/* Initialize the output variable */
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
/* Initialize the indicators for the output parameter */
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQINSERTALLCLOB(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:collectionName:collectionName_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQINSERTALLCLOB output
If DXXMQINSERTALLCLOB executes successfully, the mq-num-msgs field of the
status parameter is set to the number of messages that were retrieved from the MQ
message queue and decomposed. If DXXMQINSERTALLCLOB does not execute
successfully, the contents of the status parameter indicate the problem.

Deprecated: Send XML documents to an MQ message queue
(DXXMQGEN)

Restriction: DXXMQGEN has been deprecated.

The DXXMQGEN stored procedure constructs XML documents from data that is
stored in DB2 tables that are specified in a document access definition (DAD) file,
and sends the XML documents to an MQ message queue.

Use DXXMQGEN for XML documents with a length of up to 3KB.

There are two versions of DXXMQGEN:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

1176 Application Programming and SQL Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#

#

#

#
#
#

#

#
#
#



Environment for DXXMQGEN
DXXMQGEN runs in a WLM-established stored procedure address space and uses
the Resource Recovery Services attachment facility to connect to DB2.

DXXMQGEN requires that WebSphere MQ and XML Extender are installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQGEN
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQGEN
v Ownership of the stored procedure
v SYSADM authority

DXXMQGEN syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQGEN. Because the linkage convention for DXXMQGEN is GENERAL
WITH NULLS, if you pass parameters in host variables, you need to include a null
indicator with every host variable. Null indicators for input host variables must be
initialized before you execute the CALL statement.

�� CALL DMQXML1C .DXXMQGEN
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

DAD-file-name, �

� override-type ,
NULL

override ,
NULL

max-rows ,
NULL

num-msgs, status ) ��

DXXMQGEN option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination to
which the message is to be sent. The service point is defined in the DSNAMT
repository file. If service-name is not listed in the DSNAMT repository file, or
service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
message. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

DAD-file-name
Specifies the name of the (DAD) file that maps the XML documents to DB2
tables. DAD-file-name must be specified, and must be the name of a valid DAD
file that exists on the system on which DXXMQGEN runs. DAD-file-name is an
input parameter of type VARCHAR(80).

Appendix J. DB2-supplied stored procedures 1177

#

#
#

#

#

#

#
#
#
#
#

#

#
#
#
#
#
#

#######################################
#

#
#########################################

#
##

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#
#
#



override-type
Specifies what the override parameter does. Possible values are:

NO_OVERRIDE
The override parameter does not override the condition in the DAD file.
This is the default.

SQL_OVERRIDE
The DAD file uses SQL mapping, and the override parameter contains
an SQL statement that overrides the SQL statement in the DAD file.

XML_OVERRIDE
The DAD file uses RDB_node mapping, and the override parameter
contains conditions that override the RDB_node mapping in the DAD
file.

override-type is an input parameter of type INTEGER. The integer equivalents
of the override-type values are defined in the dxx.h file.

override
Specifies a string that overrides the condition in the DAD file. The contents of
the string depend on the value of the override-type parameter:
v If override-type is NO_OVERRIDE, override contains a null string. This is the

default.
v If override-type is SQL_OVERRIDE, override contains a valid SQL statement

that overrides the SQL statement in the DAD file.
v If override-type is XML_OVERRIDE, override contains one or more expressions

that are separated by AND. Each expression must be enclosed in double
quotation marks. This override value overrides the RDB_node mapping in the
DAD file.

override is an input parameter of type VARCHAR(1024).

max-rows
Specifies the maximum number of XML documents that DXXMQGEN can send
to the MQ message queue. The default is 1.

max-rows is an input parameter of type INTEGER.

num-rows
The actual number of XML documents that DXXMQGEN sends to the MQ
message queue.

num-rows is an output parameter of type INTEGER.

status
Contains information that indicates whether DXXMQGEN ran successfully. The
format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQGEN ran successfully, or the SQLCODE from the most

recent unsuccessful SQL statement if DXXMQGEN ran unsuccessfully.
v mq-num-msgs is the number of messages that were successfully sent to the

MQ message queue.

status is an output parameter of type CHAR(20).

1178 Application Programming and SQL Guide

#
#

#
#
#

#
#
#

#
#
#
#

#
#

#
#
#

#
#

#
#

#
#
#
#

#

#
#
#

#

#
#
#

#

#
#
#

#
#

#
#

#
#

#



Example of DXXMQGEN invocation
The following example calls the single-phase commit version of DXXMQGEN to
generate XML documents and send them to an MQ message queue. The calling
program does not override the definitions in the DAD file. For a complete example
of DXXMQGEN invocation, see DSN8QXGR in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char dadFileName[80]; /* DAD file name */
short overrideType; /* defined in dxx.h */
char override[2]; /* Override string for DAD */
short max_row; /* Maximum number of documents*/
short num_row; /* Actual number of documents */
char status[20]; /* Status of DXXMQGEN call */
/* DXXMQGEN is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short dadFileName_ind; /* Indicator var for dadFileName */
short ovtype_ind; /* Indicator var for overrideType */
short ov_ind; /* Indicator var for override */
short maxrow_ind; /* Indicator var for maxrow */
short numrow_ind; /* Indicator var for numrow */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the name of the DAD file for the DB2 tables */
strcpy(dadFileName,"/tmp/getstart_xcollection.dad");
/* Put null in the override parameter because we are not going */
/* to override the values in the DAD file */
override[0] = ’\0’;
overrideType = NO_OVERRIDE;
/* Indicate that we do not want to transfer more than 500 */
/* documents */
max_row = 500;
/* Initialize the output variables */
num_row = 0;
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
dadFileName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
maxrow_ind = 0;
/* Initialize the indicators for the output parameters */
numrow_ind = -1;
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQGEN(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:overrideType:ovtype_ind,
:override:ov_ind,
:max_row:maxrow_ind,
:num_row:numrow_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);

Appendix J. DB2-supplied stored procedures 1179

#

#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQGEN output
If DXXMQGEN executes successfully, the number of documents indicated by the
mq-num-msgs field of the status parameter are extracted from DB2 tables and
inserted into the MQ message queue. If DXXMQGEN does not execute
successfully, the contents of the status parameter indicate the problem.

Deprecated: Send XML documents to an MQ message queue
(DXXMQRETRIEVE)

Restriction: DXXMQRETRIEVE has been deprecated.

The DXXMQRETRIEVE stored procedure constructs XML documents from data
that is stored in DB2 tables that are specified in an enabled XML collection, and
sends the XML documents to an MQ message queue.

Use DXXMQRETRIEVE for XML documents with a length of up to 3KB.

There are two versions of DXXMQRETRIEVE:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQRETRIEVE
DXXMQRETRIEVE runs in a WLM-established stored procedure address space and
uses the Resource Recovery Services attachment facility to connect to DB2.

DXXMQRETRIEVE requires that WebSphere MQ and XML Extender are installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQRETRIEVE
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQRETRIEVE
v Ownership of the stored procedure
v SYSADM authority

DXXMQRETRIEVE syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQRETRIEVE. Because the linkage convention for DXXMQRETRIEVE is
GENERAL WITH NULLS, if you pass parameters in host variables, you need to
include a null indicator with every host variable. Null indicators for input host
variables must be initialized before you execute the CALL statement.

1180 Application Programming and SQL Guide

#
#
#

#

#
#
#
#

#

#

#

#
#
#

#

#
#
#

#

#
#

#

#

#

#
#
#
#
#

#

#
#
#
#
#
#



�� CALL DMQXML1C .DXXMQRETRIEVE
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

�

� XML-collection-name, override-type ,
NULL

override ,
NULL

max-rows ,
NULL

num-msgs, status ) ��

DXXMQRETRIEVE option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination to
which the message is to be sent. The service point is defined in the DSNAMT
repository file. If service-name is not listed in the DSNAMT repository file, or
service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
message. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

XML-collection-name
Specifies the name of the XML collection that specifies the DB2 tables from
which the XML documents are to be retrieved. XML-collection-name must be
specified, and must be the name of a valid XML collection that exists on the
system on which DXXMQRETRIEVE runs. XML-collection-name is an input
parameter of type VARCHAR(80).

override-type
Specifies what the override parameter does. Possible values are:

NO_OVERRIDE
The override parameter does not override the XML collection. This is
the default.

SQL_OVERRIDE
The DAD file uses SQL mapping, and the override parameter contains
an SQL statement that overrides the SQL statement in the XML
collection.

XML_OVERRIDE
The DAD file uses RDB_node mapping, and the override parameter
contains conditions that override the conditions in the XML collection.

override-type is an input parameter of type INTEGER. The integer equivalents
of the override-type values are defined in the dxx.h file.

override-type
Specifies what the override parameter does. Possible values are:

NO_OVERRIDE
The override parameter does not override the condition in the DAD file.
This is the default.

Appendix J. DB2-supplied stored procedures 1181

#####################################
#

#
###########################################

#
##

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#
#
#
#

#
#

#
#
#

#
#
#
#

#
#
#

#
#

#
#

#
#
#



SQL_OVERRIDE
The DAD file uses SQL mapping, and the override parameter contains
an SQL statement that overrides the SQL statement in the DAD file.

XML_OVERRIDE
The DAD file uses RDB_node mapping, and the override parameter
contains conditions that override the RDB_node mapping in the DAD
file.

override-type is an input parameter of type INTEGER. The integer equivalents
of the override-type values are defined in the dxx.h file.

override
Specifies a string that overrides the condition in the DAD file. The contents of
the string depend on the value of the override-type parameter:
v If override-type is NO_OVERRIDE, override contains a null string. This is the

default.
v If override-type is SQL_OVERRIDE, override contains a valid SQL statement

that overrides the SQL statement in the DAD file.
v If override-type is XML_OVERRIDE, override contains one or more expressions

that are separated by AND. Each expression must be enclosed in double
quotation marks. This override value overrides the RDB_node mapping in the
DAD file.

override is an input parameter of type VARCHAR(1024).

max-rows
Specifies the maximum number of XML documents that DXXMQRETRIEVE
can send to the MQ message queue. The default is 1.

max-rows is an input parameter of type INTEGER.

num-rows
The actual number of XML documents that DXXMQRETRIEVE sends to the
MQ message queue.

num-rows is an output parameter of type INTEGER.

status
Contains information that indicates whether DXXMQRETRIEVE ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQRETRIEVE ran successfully, or the SQLCODE from the

most recent unsuccessful SQL statement if DXXMQRETRIEVE ran
unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQRETRIEVE invocation
The following example calls the single-phase commit version of DXXMQRETRIEVE
to generate XML documents and send them to an MQ message queue. The calling
program does not override the definitions in the DAD file. For a complete example
of DXXMQRETRIEVE invocation, see DSN8QXGR in DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;

1182 Application Programming and SQL Guide

#
#
#

#
#
#
#

#
#

#
#
#

#
#

#
#

#
#
#
#

#

#
#
#

#

#
#
#

#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#

#
#
#



EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char collectionName[80]; /* XML collection name */
short overrideType; /* defined in dxx.h */
char override[2]; /* Override string for DAD */
short max_row; /* Maximum number of documents*/
short num_row; /* Actual number of documents */
char status[20]; /* Status of DXXMQRETRIEVE call */
/* DXXMQRETRIEVE is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short collectionName_ind; /* Indicator var for dadFileName */
short ovtype_ind; /* Indicator var for overrideType */
short ov_ind; /* Indicator var for override */
short maxrow_ind; /* Indicator var for maxrow */
short numrow_ind; /* Indicator var for numrow */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the XML collection name */
strcpy(collectionName,"sales_ord");
/* Put null in the override parameter because we are not going */
/* to override the values in the DAD file */
override[0] = ’\0’;
overrideType = NO_OVERRIDE;
/* Indicate that we do not want to transfer more than 500 */
/* documents */
max_row = 500;
/* Initialize the output variables */
num_row = 0;
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
maxrow_ind = 0;
/* Initialize the indicators for the output parameters */
numrow_ind = -1;
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQRETRIEVE(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:collectionName:collectionName_ind,
:overrideType:ovtype_ind,
:override:ov_ind,
:max_row:maxrow_ind,
:num_row:numrow_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQRETRIEVE output
If DXXMQRETRIEVE executes successfully, the number of documents indicated by
the mq-num-msgs field of the status parameter are extracted from DB2 tables and

Appendix J. DB2-supplied stored procedures 1183

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#



inserted into the MQ message queue. If DXXMQRETRIEVE does not execute
successfully, the contents of the status parameter indicate the problem.

Deprecated: Send large XML documents to an MQ message queue
(DXXMQGENCLOB)

Restriction: DXXMQGENCLOB has been deprecated.

The DXXMQGENCLOB stored procedure constructs XML documents from data
that is stored in DB2 tables that are specified in a document access definition
(DAD) file, and sends the XML documents to an MQ message queue.

Use DXXMQGENCLOB for XML documents with a record length of up to 32KB.

There are two versions of DXXMQGENCLOB:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQGENCLOB
DXXMQGENCLOB runs in a WLM-established stored procedure address space
and uses the Resource Recovery Services attachment facility to connect to DB2.

DXXMQGENCLOB requires that WebSphere MQ and XML Extender are installed.

See DB2 Installation Guide for installation instructions.

Authorization required for DXXMQGENCLOB
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQGENCLOB
v Ownership of the stored procedure
v SYSADM authority

DXXMQGENCLOB syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQGENCLOB. Because the linkage convention for DXXMQGENCLOB is
GENERAL WITH NULLS, if you pass parameters in host variables, you need to
include a null indicator with every host variable. Null indicators for input host
variables must be initialized before you execute the CALL statement.

�� CALL DMQXML1C .DXXMQGENCLOB
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

DAD-file-name, �

� override-type ,
NULL

override ,
NULL

max-rows ,
NULL

num-msgs, status ) ��

DXXMQGENCLOB option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination to
which the message is to be sent. The service point is defined in the DSNAMT

1184 Application Programming and SQL Guide

#
#

#

#

#

#
#
#

#

#
#
#

#

#
#

#

#

#

#
#
#
#
#

#

#
#
#
#
#
#

#######################################
#

#
#########################################

#
##

#

#
#
#



repository file. If service-name is not listed in the DSNAMT repository file, or
service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
message. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

DAD-file-name
Specifies the name of the (DAD) file that maps the XML documents to DB2
tables. DAD-file-name must be specified, and must be the name of a valid DAD
file that exists on the system on which DXXMQGENCLOB runs. DAD-file-name
is an input parameter of type VARCHAR(80).

override-type
Specifies what the override parameter does. Possible values are:

NO_OVERRIDE
The override parameter does not override the condition in the DAD file.
This is the default.

SQL_OVERRIDE
The DAD file uses SQL mapping, and the override parameter contains
an SQL statement that overrides the SQL statement in the DAD file.

XML_OVERRIDE
The DAD file uses RDB_node mapping, and the override parameter
contains conditions that override the RDB_node mapping in the DAD
file.

override-type is an input parameter of type INTEGER. The integer equivalents
of the override-type values are defined in the dxx.h file.

override
Specifies a string that overrides the condition in the DAD file. The contents of
the string depend on the value of the override-type parameter:
v If override-type is NO_OVERRIDE, override contains a null string. This is the

default.
v If override-type is SQL_OVERRIDE, override contains a valid SQL statement

that overrides the SQL statement in the DAD file.
v If override-type is XML_OVERRIDE, override contains one or more expressions

that are separated by AND. Each expression must be enclosed in double
quotation marks. This override value overrides the RDB_node mapping in the
DAD file.

override is an input parameter of type VARCHAR(1024).

max-rows
Specifies the maximum number of XML documents that DXXMQGENCLOB
can send to the MQ message queue. The default is 1.

max-rows is an input parameter of type INTEGER.

Appendix J. DB2-supplied stored procedures 1185

#
#

#
#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#

#
#
#

#
#
#
#

#
#

#
#
#

#
#

#
#

#
#
#
#

#

#
#
#

#



num-rows
The actual number of XML documents that DXXMQGENCLOB sends to the
MQ message queue.

num-rows is an output parameter of type INTEGER.

status
Contains information that indicates whether DXXMQGENCLOB ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQGENCLOB ran successfully, or the SQLCODE from the

most recent unsuccessful SQL statement if DXXMQGENCLOB ran
unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQGENCLOB invocation
The following example calls the two-phase commit version of DXXMQGENCLOB
to generate CLOB XML documents and send them to an MQ message queue. The
calling program does not override the definitions in the DAD file. For a complete
example of DXXMQGENCLOB invocation, see DSN8QXGR in
DSN810.SDSNSAMP.
#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char dadFileName[80]; /* DAD file name */
short overrideType; /* defined in dxx.h */
char override[2]; /* Override string for DAD */
short max_row; /* Maximum number of documents*/
short num_row; /* Actual number of documents */
char status[20]; /* Status of DXXMQGENCLOB call */
/* DXXMQGENCLOB is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short dadFileName_ind; /* Indicator var for dadFileName */
short ovtype_ind; /* Indicator var for overrideType */
short ov_ind; /* Indicator var for override */
short maxrow_ind; /* Indicator var for maxrow */
short numrow_ind; /* Indicator var for numrow */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the name of the DAD file for the DB2 tables */
strcpy(dadFileName,"/tmp/getstart_xcollection.dad");
/* Put null in the override parameter because we are not going */
/* to override the values in the DAD file */
override[0] = ’\0’;
overrideType = NO_OVERRIDE;
/* Indicate that we do not want to transfer more than 500 */
/* documents */

1186 Application Programming and SQL Guide

#
#
#

#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



max_row = 500;
/* Initialize the output variables */
num_row = 0;
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
dadFileName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
maxrow_ind = 0;
/* Initialize the indicators for the output parameters */
numrow_ind = -1;
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML2C.DXXMQGENCLOB(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:dadFileName:dadFileName_ind,
:overrideType:ovtype_ind,
:override:ov_ind,
:max_row:maxrow_ind,
:num_row:numrow_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

DXXMQGENCLOB output
If DXXMQGENCLOB executes successfully, the number of documents indicated by
the mq-num-msgs field of the status parameter are extracted from DB2 tables and
inserted into the MQ message queue. If DXXMQGENCLOB does not execute
successfully, the contents of the status parameter indicate the problem.

Deprecated: Send XML documents to an MQ message queue
(DXXMQRETRIEVECLOB)

Restriction: DXXMQRETRIEVECLOB has been deprecated.

The DXXMQRETRIEVECLOB stored procedure constructs XML documents from
data that is stored in DB2 tables that are specified in an enabled XML collection,
and sends the XML documents to an MQ message queue.

Use DXXMQRETRIEVECLOB for XML documents with a length of up to 32KB.

There are two versions of DXXMQRETRIEVECLOB:
v A single-phase commit version, with schema name DMQXML1C.
v A two-phase commit version, with schema name DMQXML2C.

Environment for DXXMQRETRIEVECLOB
DXXMQRETRIEVECLOB runs in a WLM-established stored procedure address
space and uses the Resource Recovery Services attachment facility to connect to
DB2.

DXXMQRETRIEVECLOB requires that WebSphere MQ and XML Extender are
installed.

See DB2 Installation Guide for installation instructions.

Appendix J. DB2-supplied stored procedures 1187

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#

#

#

#
#
#

#

#
#
#

#

#
#
#

#
#

#



Authorization required for DXXMQRETRIEVECLOB
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DXXMQRETRIEVECLOB
v Ownership of the stored procedure
v SYSADM authority

DXXMQRETRIEVECLOB syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DXXMQRETRIEVECLOB. Because the linkage convention for
DXXMQRETRIEVECLOB is GENERAL WITH NULLS, if you pass parameters in
host variables, you need to include a null indicator with every host variable. Null
indicators for input host variables must be initialized before you execute the CALL
statement.

�� CALL DMQXML1C .DXXMQRETRIEVECLOB
DMQXML2C

( service-name ,
NULL

policy-name ,
NULL

�

� XML-collection-name, override-type ,
NULL

override ,
NULL

max-rows ,
NULL

num-msgs, status ) ��

DXXMQRETRIEVECLOB option descriptions
service-name

Specifies the service point that is the logical WebSphere MQ destination to
which the message is to be sent. The service point is defined in the DSNAMT
repository file. If service-name is not listed in the DSNAMT repository file, or
service-name is not specified, DB2.DEFAULT.SERVICE is used.

service-name is an input parameter of type VARCHAR(48). service-name cannot
be blank, a null string, or have trailing blanks.

policy-name
Specifies the WebSphere MQ AMI service policy that is used to handle the
message. The service policy is defined in the DSNAMT repository file. If
policy-name is not listed in the DSNAMT repository file, or policy-name is not
specified, DB2.DEFAULT.POLICY is used.

policy-name is an input parameter of type VARCHAR(48). policy-name cannot be
blank, a null string, or have trailing blanks.

XML-collection-name
Specifies the name of the XML collection that specifies the DB2 tables from
which the XML documents are to be retrieved. XML-collection-name must be
specified, and must be the name of a valid XML collection that exists on the
system on which DXXMQRETRIEVECLOB runs. XML-collection-name is an
input parameter of type VARCHAR(80).

override-type
Specifies what the override parameter does. Possible values are:

NO_OVERRIDE
The override parameter does not override the condition in the DAD file.
This is the default.

1188 Application Programming and SQL Guide

#

#
#
#
#
#

#

#
#
#
#
#
#
#

#####################################
#

#
###########################################

#
##

#

#
#
#
#
#

#
#

#
#
#
#
#

#
#

#
#
#
#
#
#

#
#

#
#
#



SQL_OVERRIDE
The DAD file uses SQL mapping, and the override parameter contains
an SQL statement that overrides the SQL statement in the DAD file.

XML_OVERRIDE
The DAD file uses RDB_node mapping, and the override parameter
contains conditions that override the RDB_node mapping in the DAD
file.

override-type is an input parameter of type INTEGER. The integer equivalents
of the override-type values are defined in the dxx.h file.

override
Specifies a string that overrides the condition in the DAD file. The contents of
the string depend on the value of the override-type parameter:
v If override-type is NO_OVERRIDE, override contains a null string. This is the

default.
v If override-type is SQL_OVERRIDE, override contains a valid SQL statement

that overrides the SQL statement in the DAD file.
v If override-type is XML_OVERRIDE, override contains one or more expressions

that are separated by AND. Each expression must be enclosed in double
quotation marks. This override value overrides the RDB_node mapping in the
DAD file.

override is an input parameter of type VARCHAR(1024).

max-rows
Specifies the maximum number of XML documents that
DXXMQRETRIEVECLOB can send to the MQ message queue. The default is 1.

max-rows is an input parameter of type INTEGER.

num-rows
The actual number of XML documents that DXXMQRETRIEVECLOB sends to
the MQ message queue.

num-rows is an output parameter of type INTEGER.

status
Contains information that indicates whether DXXMQRETRIEVECLOB ran
successfully. The format of status is dxx-rc:sqlcode:mq-num-msgs, where:
v dxx-rc is the return code from accessing XML Extender. dxx-rc values are

defined in dxxrc.h.
v sqlcode is 0 if DXXMQRETRIEVECLOB ran successfully, or the SQLCODE

from the most recent unsuccessful SQL statement if
DXXMQRETRIEVECLOB ran unsuccessfully.

v mq-num-msgs is the number of messages that were successfully sent to the
MQ message queue.

status is an output parameter of type CHAR(20).

Example of DXXMQRETRIEVECLOB invocation
The following example calls the single-phase commit version of
DXXMQRETRIEVECLOB to generate XML documents and send them to an MQ
message queue. The calling program does not override the definitions in the DAD
file. For a complete example of DXXMQRETRIEVECLOB invocation, see
DSN8QXGR in DSN810.SDSNSAMP.

Appendix J. DB2-supplied stored procedures 1189

#
#
#

#
#
#
#

#
#

#
#
#

#
#

#
#

#
#
#
#

#

#
#
#

#

#
#
#

#

#
#
#

#
#

#
#
#

#
#

#

#

#
#
#
#
#



#include "dxx.h"
#include "dxxrc.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;
char serviceName[48]; /* WebSphere MQ service name */
char policyName[48]; /* WebSphere MQ policy name */
char collectionName[80]; /* XML collection name */
short overrideType; /* defined in dxx.h */
char override[2]; /* Override string for DAD */
short max_row; /* Maximum number of documents*/
short num_row; /* Actual number of documents */
char status[20]; /* Status of DXXMQRETRIEVECLOB call */
/* DXXMQRETRIEVECLOB is GENERAL WITH NULLS, so parameters need indicators */
short serviceName_ind; /* Indicator var for serviceName */
short policyName_ind; /* Indicator var for policyName */
short collectionName_ind; /* Indicator var for dadFileName */
short ovtype_ind; /* Indicator var for overrideType */
short ov_ind; /* Indicator var for override */
short maxrow_ind; /* Indicator var for maxrow */
short numrow_ind; /* Indicator var for numrow */
short status_ind; /* Indicator var for status */
EXEC SQL END DECLARE SECTION;
/* Status fields */
int dxx_rc=0;
int dxx_sql=0;
int dxx_mq=0;
/* Get the service name and policy name for the MQ message queue */
strcpy(serviceName,"DB2.DEFAULT.SERVICE");
strcpy(policyName,"DB2.DEFAULT.POLICY");
/* Get the XML collection name */
strcpy(collectionName,"sales_ord");
/* Put null in the override parameter because we are not going */
/* to override the values in the DAD file */
override[0] = ’\0’;
overrideType = NO_OVERRIDE;
/* Indicate that we do not want to transfer more than 500 */
/* documents */
max_row = 500;
/* Initialize the output variables */
num_row = 0;
status[0] = ’\0’;
/* Set the indicators to 0 for the parameters that have non-null */
/* values */
collectionName_ind = 0;
serviceName_ind = 0;
policyName_ind = 0;
maxrow_ind = 0;
/* Initialize the indicators for the output parameters */
numrow_ind = -1;
status_ind = -1;
/* Call the store procedure */
EXEC SQL CALL DMQXML1C.DXXMQRETRIEVECLOB(:serviceName:serviceName_ind,

:policyName:policyName_ind,
:collectionName:collectionName_ind,
:overrideType:ovtype_ind,
:override:ov_ind,
:max_row:maxrow_ind,
:num_row:numrow_ind,
:status:status_ind);

printf("SQLCODE from CALL: %d\n",sqlca.sqlcode);
/* Get the status fields from the status parameter and print them */
sscanf(status,"%d:%d:%d",&dxx_rc,&dxx_sql,&dxx_mq);
printf("Status fields: dxx_rc=%d dxx_sql=%d dxx_mq=%d\n",dxx_rc,dxx_sql,dxx_mq);

1190 Application Programming and SQL Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#



DXXMQRETRIEVECLOB output
If DXXMQRETRIEVECLOB executes successfully, the number of documents
indicated by the mq-num-msgs field of the status parameter are extracted from DB2
tables and inserted into the MQ message queue. If DXXMQRETRIEVECLOB does
not execute successfully, the contents of the status parameter indicate the problem.

Appendix J. DB2-supplied stored procedures 1191

#

#
#
#
#



1192 Application Programming and SQL Guide



Appendix K. How to use the DB2 library

Titles of books in the library begin with DB2 Universal Database for z/OS Version
8. However, references from one book in the library to another are shortened and
do not include the product name, version, and release. Instead, they point directly
to the section that holds the information. For a complete list of books in the library,
and the sections in each book, see the bibliography at the back of this book.

The most rewarding task associated with a database management system is asking
questions of it and getting answers, the task called end use. Other tasks are also
necessary—defining the parameters of the system, putting the data in place, and so
on. The tasks that are associated with DB2 are grouped into the following major
categories (but supplemental information relating to all of the following tasks for
new releases of DB2 can be found in DB2 Release Planning Guide.

Installation: If you are involved with DB2 only to install the system, DB2
Installation Guide might be all you need.

If you will be using data sharing capabilities you also need DB2 Data Sharing:
Planning and Administration, which describes installation considerations for data
sharing.

If you want to set up a DB2 subsystem to meet the requirements of the Common
Criteria, you need DB2 Common Criteria Guide, which contains information that
supersedes other information in the DB2 UDB for z/OS library regarding Common
Criteria.

End use: End users issue SQL statements to retrieve data. They can also insert,
update, or delete data, with SQL statements. They might need an introduction to
SQL, detailed instructions for using SPUFI, and an alphabetized reference to the
types of SQL statements. This information is found in this book, and DB2 SQL
Reference.

End users can also issue SQL statements through the DB2 Query Management
Facility (QMF) or some other program, and the library for that licensed program
might provide all the instruction or reference material they need. For a list of the
titles in the DB2 QMF library, see the bibliography at the end of this book.

Application programming: Some users access DB2 without knowing it, using
programs that contain SQL statements. DB2 application programmers write those
programs. Because they write SQL statements, they need the same resources that
end users do.

Application programmers also need instructions on many other topics:
v How to transfer data between DB2 and a host program—written in Java, C, or

COBOL, for example
v How to prepare to compile a program that embeds SQL statements
v How to process data from two systems simultaneously, say DB2 and IMS or DB2

and CICS
v How to write distributed applications across operating systemss
v How to write applications that use Open Database Connectivity (ODBC) to

access DB2 servers

© Copyright IBM Corp. 1983, 2012 1193



v How to write applications in the Java programming language to access DB2
servers

The material needed for writing a host program containing SQL is in DB2
Application Programming and SQL Guide and in DB2 Application Programming Guide
and Reference for Java. The material needed for writing applications that use DB2
ODBC or ODBC to access DB2 servers is in DB2 ODBC Guide and Reference. For
handling errors, see DB2 Codes.

If you will be working in a distributed environment, you will need DB2 Reference
for Remote DRDA Requesters and Servers.

Information about writing applications across operating systems can be found in
IBM DB2 Universal Database SQL Reference for Cross-Platform Development.

System and database administration: Administration covers almost everything else.
DB2 Administration Guide divides those tasks among the following sections:
v Part 2 (Volume 1) of DB2 Administration Guide discusses the decisions that must

be made when designing a database and tells how to implement the design by
creating and altering DB2 objects, loading data, and adjusting to changes.

v Part 3 (Volume 1) of DB2 Administration Guide describes ways of controlling
access to the DB2 system and to data within DB2, to audit aspects of DB2 usage,
and to answer other security and auditing concerns.

v Part 4 (Volume 1) of DB2 Administration Guide describes the steps in normal
day-to-day operation and discusses the steps one should take to prepare for
recovery in the event of some failure.

v Part 5 (Volume 2) of DB2 Administration Guide explains how to monitor the
performance of the DB2 system and its parts. It also lists things that can be done
to make some parts run faster.

If you will be using the RACF access control module for DB2 authorization
checking, you will need DB2 RACF Access Control Module Guide.

If you are involved with DB2 only to design the database, or plan operational
procedures, you need DB2 Administration Guide. If you also want to carry out your
own plans by creating DB2 objects, granting privileges, running utility jobs, and so
on, you also need:
v DB2 SQL Reference, which describes the SQL statements you use to create, alter,

and drop objects and grant and revoke privileges
v DB2 Utility Guide and Reference, which explains how to run utilities
v DB2 Command Reference, which explains how to run commands

If you will be using data sharing, you need DB2 Data Sharing: Planning and
Administration, which describes how to plan for and implement data sharing.

Additional information about system and database administration can be found in
DB2 Messages and DB2 Codes, which list messages and codes issued by DB2, with
explanations and suggested responses.

Diagnosis: Diagnosticians detect and describe errors in the DB2 program. They
might also recommend or apply a remedy. The documentation for this task is in
DB2 Diagnosis Guide and Reference, DB2 Messages, and DB2 Codes.

1194 Application Programming and SQL Guide



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1983, 2012 1195



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information
This book is intended to help you to write programs that contain SQL statements.
This book primarily documents General-use Programming Interface and Associated
Guidance Information provided by IBM DB2 Universal Database Server for z/OS
(DB2 UDB for z/OS).

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 UDB for z/OS.

However, this book also documents Product-sensitive Programming Interface and
Associated Guidance Information.

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies

1196 Application Programming and SQL Guide



on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information ...

End of Product-sensitive Programming Interface

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at http://www.ibm.com/
legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices 1197



1198 Application Programming and SQL Guide



Glossary

The following terms and abbreviations are
defined as they are used in the DB2 library.

A
abend. Abnormal end of task.

abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with DB2.

abnormal end of task (abend). Termination of a task,
job, or subsystem because of an error condition that
recovery facilities cannot resolve during execution.

access method services. The facility that is used to
define and reproduce VSAM key-sequenced data sets.

access path. The path that is used to locate data that is
specified in SQL statements. An access path can be
indexed or sequential.

active log. The portion of the DB2 log to which log
records are written as they are generated. The active
log always contains the most recent log records,
whereas the archive log holds those records that are
older and no longer fit on the active log.

active member state. A state of a member of a data
sharing group. The cross-system coupling facility
identifies each active member with a group and
associates the member with a particular task, address
space, and z/OS system. A member that is not active
has either a failed member state or a quiesced member
state.

address space. A range of virtual storage pages that is
identified by a number (ASID) and a collection of
segment and page tables that map the virtual pages to
real pages of the computer's memory.

address space connection. The result of connecting an
allied address space to DB2. Each address space that
contains a task that is connected to DB2 has exactly one
address space connection, even though more than one
task control block (TCB) can be present. See also allied
address space and task control block.

address space identifier (ASID). A unique
system-assigned identifier for and address space.

administrative authority. A set of related privileges
that DB2 defines. When you grant one of the
administrative authorities to a person's ID, the person
has all of the privileges that are associated with that
administrative authority.

after trigger. A trigger that is defined with the trigger
activation time AFTER.

agent. As used in DB2, the structure that associates all
processes that are involved in a DB2 unit of work. An
allied agent is generally synonymous with an allied
thread. System agents are units of work that process
tasks that are independent of the allied agent, such as
prefetch processing, deferred writes, and service tasks.

aggregate function. An operation that derives its
result by using values from one or more rows. Contrast
with scalar function.

alias. An alternative name that can be used in SQL
statements to refer to a table or view in the same or a
remote DB2 subsystem.

allied address space. An area of storage that is
external to DB2 and that is connected to DB2. An allied
address space is capable of requesting DB2 services.

allied thread. A thread that originates at the local DB2
subsystem and that can access data at a remote DB2
subsystem.

allocated cursor. A cursor that is defined for stored
procedure result sets by using the SQL ALLOCATE
CURSOR statement.

already verified. An LU 6.2 security option that
allows DB2 to provide the user's verified authorization
ID when allocating a conversation. With this option, the
user is not validated by the partner DB2 subsystem.

ambiguous cursor. A database cursor that is in a plan
or package that contains either PREPARE or EXECUTE
IMMEDIATE SQL statements, and for which the
following statements are true: the cursor is not defined
with the FOR READ ONLY clause or the FOR UPDATE
OF clause; the cursor is not defined on a read-only
result table; the cursor is not the target of a WHERE
CURRENT clause on an SQL UPDATE or DELETE
statement.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

ANSI. American National Standards Institute.

APAR. Authorized program analysis report.

APAR fix corrective service. A temporary correction
of an IBM software defect. The correction is temporary,

© Copyright IBM Corp. 1983, 2012 1199

|
|

#
#
#

|
|
|
|
|
|
|
|
|



because it is usually replaced at a later date by a more
permanent correction, such as a program temporary fix
(PTF).

APF. Authorized program facility.

API. Application programming interface.

APPL. A VTAM® network definition statement that is
used to define DB2 to VTAM as an application program
that uses SNA LU 6.2 protocols.

application. A program or set of programs that
performs a task; for example, a payroll application.

application-directed connection. A connection that an
application manages using the SQL CONNECT
statement.

application plan. The control structure that is
produced during the bind process. DB2 uses the
application plan to process SQL statements that it
encounters during statement execution.

application process. The unit to which resources and
locks are allocated. An application process involves the
execution of one or more programs.

application programming interface (API). A
functional interface that is supplied by the operating
system or by a separately orderable licensed program
that allows an application program that is written in a
high-level language to use specific data or functions of
the operating system or licensed program.

application requester. The component on a remote
system that generates DRDA requests for data on
behalf of an application. An application requester
accesses a DB2 database server using the DRDA
application-directed protocol.

application server. The target of a request from a
remote application. In the DB2 environment, the
application server function is provided by the
distributed data facility and is used to access DB2 data
from remote applications.

archive log. The portion of the DB2 log that contains
log records that have been copied from the active log.

ASCII. An encoding scheme that is used to represent
strings in many environments, typically on PCs and
workstations. Contrast with EBCDIC and Unicode.

ASID. Address space identifier.

attachment facility. An interface between DB2 and
TSO, IMS, CICS, or batch address spaces. An
attachment facility allows application programs to
access DB2.

attribute. A characteristic of an entity. For example, in
database design, the phone number of an employee is
one of that employee's attributes.

authorization ID. A string that can be verified for
connection to DB2 and to which a set of privileges is
allowed. It can represent an individual, an
organizational group, or a function, but DB2 does not
determine this representation.

authorized program analysis report (APAR). A report
of a problem that is caused by a suspected defect in a
current release of an IBM supplied program.

authorized program facility (APF). A facility that
permits the identification of programs that are
authorized to use restricted functions.

automatic query rewrite. A process that examines an
SQL statement that refers to one or more base tables,
and, if appropriate, rewrites the query so that it
performs better. This process can also determine
whether to rewrite a query so that it refers to one or
more materialized query tables that are derived from
the source tables.

auxiliary index. An index on an auxiliary table in
which each index entry refers to a LOB.

auxiliary table. A table that stores columns outside
the table in which they are defined. Contrast with base
table.

B
backout. The process of undoing uncommitted
changes that an application process made. This might
be necessary in the event of a failure on the part of an
application process, or as a result of a deadlock
situation.

backward log recovery. The fourth and final phase of
restart processing during which DB2 scans the log in a
backward direction to apply UNDO log records for all
aborted changes.

base table. (1) A table that is created by the SQL
CREATE TABLE statement and that holds persistent
data. Contrast with result table and temporary table.

(2) A table containing a LOB column definition. The
actual LOB column data is not stored with the base
table. The base table contains a row identifier for each
row and an indicator column for each of its LOB
columns. Contrast with auxiliary table.

base table space. A table space that contains base
tables.

basic predicate. A predicate that compares two values.

basic sequential access method (BSAM). An access
method for storing or retrieving data blocks in a
continuous sequence, using either a sequential-access or
a direct-access device.

1200 Application Programming and SQL Guide

|

|
|
|
|
|
|
|



batch message processing program. In IMS, an
application program that can perform batch-type
processing online and can access the IMS input and
output message queues.

before trigger. A trigger that is defined with the
trigger activation time BEFORE.

binary integer. A basic data type that can be further
classified as small integer or large integer.

binary large object (BLOB). A sequence of bytes in
which the size of the value ranges from 0 bytes to
2 GB−1. Such a string has a CCSID value of 65535.

binary string. A sequence of bytes that is not
associated with a CCSID. For example, the BLOB data
type is a binary string.

bind. The process by which the output from the SQL
precompiler is converted to a usable control structure,
often called an access plan, application plan, or
package. During this process, access paths to the data
are selected and some authorization checking is
performed. The types of bind are:

automatic bind. (More correctly, automatic rebind) A
process by which SQL statements are bound
automatically (without a user issuing a BIND
command) when an application process begins
execution and the bound application plan or
package it requires is not valid.
dynamic bind. A process by which SQL statements
are bound as they are entered.
incremental bind. A process by which SQL
statements are bound during the execution of an
application process.
static bind. A process by which SQL statements are
bound after they have been precompiled. All static
SQL statements are prepared for execution at the
same time.

bit data. Data that is character type CHAR or
VARCHAR and has a CCSID value of 65535.

BLOB. Binary large object.

block fetch. A capability in which DB2 can retrieve, or
fetch, a large set of rows together. Using block fetch can
significantly reduce the number of messages that are
being sent across the network. Block fetch applies only
to cursors that do not update data.

BMP. Batch Message Processing (IMS). See batch
message processing program.

bootstrap data set (BSDS). A VSAM data set that
contains name and status information for DB2, as well
as RBA range specifications, for all active and archive
log data sets. It also contains passwords for the DB2
directory and catalog, and lists of conditional restart
and checkpoint records.

BSAM. Basic sequential access method.

BSDS. Bootstrap data set.

buffer pool. Main storage that is reserved to satisfy
the buffering requirements for one or more table spaces
or indexes.

built-in data type. A data type that IBM supplies.
Among the built-in data types for DB2 UDB for z/OS
are string, numeric, ROWID, and datetime. Contrast
with distinct type.

built-in function. A function that DB2 supplies.
Contrast with user-defined function.

business dimension. A category of data, such as
products or time periods, that an organization might
want to analyze.

C
cache structure. A coupling facility structure that
stores data that can be available to all members of a
Sysplex. A DB2 data sharing group uses cache
structures as group buffer pools.

CAF. Call attachment facility.

call attachment facility (CAF). A DB2 attachment
facility for application programs that run in TSO or
z/OS batch. The CAF is an alternative to the DSN
command processor and provides greater control over
the execution environment.

call-level interface (CLI). A callable application
programming interface (API) for database access, which
is an alternative to using embedded SQL. In contrast to
embedded SQL, DB2 ODBC (which is based on the CLI
architecture) does not require the user to precompile or
bind applications, but instead provides a standard set
of functions to process SQL statements and related
services at run time.

cascade delete. The way in which DB2 enforces
referential constraints when it deletes all descendent
rows of a deleted parent row.

CASE expression. An expression that is selected based
on the evaluation of one or more conditions.

cast function. A function that is used to convert
instances of a (source) data type into instances of a
different (target) data type. In general, a cast function
has the name of the target data type. It has one single
argument whose type is the source data type; its return
type is the target data type.

castout. The DB2 process of writing changed pages
from a group buffer pool to disk.

castout owner. The DB2 member that is responsible
for casting out a particular page set or partition.

Glossary 1201

|
|
|
|

#
#
#

#
#



catalog. In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and
indexes.

catalog table. Any table in the DB2 catalog.

CCSID. Coded character set identifier.

CDB. Communications database.

CDRA. Character Data Representation Architecture.

CEC. Central electronic complex. See central processor
complex.

central electronic complex (CEC). See central processor
complex.

central processor (CP). The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load, and other
machine operations.

central processor complex (CPC). A physical
collection of hardware (such as an ES/3090) that
consists of main storage, one or more central
processors, timers, and channels.

CFRM. Coupling facility resource management.

CFRM policy. A declaration by a z/OS administrator
regarding the allocation rules for a coupling facility
structure.

character conversion. The process of changing
characters from one encoding scheme to another.

Character Data Representation Architecture (CDRA).
An architecture that is used to achieve consistent
representation, processing, and interchange of string
data.

character large object (CLOB). A sequence of bytes
representing single-byte characters or a mixture of
single- and double-byte characters where the size of the
value can be up to 2 GB−1. In general, character large
object values are used whenever a character string
might exceed the limits of the VARCHAR type.

character set. A defined set of characters.

character string. A sequence of bytes that represent bit
data, single-byte characters, or a mixture of single-byte
and multibyte characters.

check constraint. A user-defined constraint that
specifies the values that specific columns of a base table
can contain.

check integrity. The condition that exists when each
row in a table conforms to the check constraints that
are defined on that table. Maintaining check integrity
requires DB2 to enforce check constraints on operations
that add or change data.

check pending. A state of a table space or partition
that prevents its use by some utilities and by some SQL
statements because of rows that violate referential
constraints, check constraints, or both.

checkpoint. A point at which DB2 records internal
status information on the DB2 log; the recovery process
uses this information if DB2 abnormally terminates.

child lock. For explicit hierarchical locking, a lock that
is held on either a table, page, row, or a large object
(LOB). Each child lock has a parent lock. See also parent
lock.

CI. Control interval.

CICS. Represents (in this publication): CICS
Transaction Server for z/OS: Customer Information
Control System Transaction Server for z/OS.

CICS attachment facility. A DB2 subcomponent that
uses the z/OS subsystem interface (SSI) and
cross-storage linkage to process requests from CICS to
DB2 and to coordinate resource commitment.

CIDF. Control interval definition field.

claim. A notification to DB2 that an object is being
accessed. Claims prevent drains from occurring until
the claim is released, which usually occurs at a commit
point. Contrast with drain.

claim class. A specific type of object access that can be
one of the following isolation levels:

Cursor stability (CS)
Repeatable read (RR)
Write

claim count. A count of the number of agents that are
accessing an object.

class of service. A VTAM term for a list of routes
through a network, arranged in an order of preference
for their use.

class word. A single word that indicates the nature of
a data attribute. For example, the class word PROJ
indicates that the attribute identifies a project.

clause. In SQL, a distinct part of a statement, such as
a SELECT clause or a WHERE clause.

CLI. Call- level interface.

client. See requester.

CLIST. Command list. A language for performing TSO
tasks.

CLOB. Character large object.

closed application. An application that requires
exclusive use of certain statements on certain DB2

1202 Application Programming and SQL Guide

|

|
|
|
|

|
|
|
|

|
|
|



objects, so that the objects are managed solely through
the application's external interface.

CLPA. Create link pack area.

clustering index. An index that determines how rows
are physically ordered (clustered) in a table space. If a
clustering index on a partitioned table is not a
partitioning index, the rows are ordered in cluster
sequence within each data partition instead of spanning
partitions. Prior to Version 8 of DB2 UDB for z/OS, the
partitioning index was required to be the clustering
index.

coded character set. A set of unambiguous rules that
establish a character set and the one-to-one
relationships between the characters of the set and their
coded representations.

coded character set identifier (CCSID). A 16-bit
number that uniquely identifies a coded representation
of graphic characters. It designates an encoding scheme
identifier and one or more pairs consisting of a
character set identifier and an associated code page
identifier.

code page. (1) A set of assignments of characters to
code points. In EBCDIC, for example, the character 'A'
is assigned code point X'C1' (2) , and character 'B' is
assigned code point X'C2'. Within a code page, each
code point has only one specific meaning.

code point. In CDRA, a unique bit pattern that
represents a character in a code page.

code unit. The fundamental binary width in a
computer architecture that is used for representing
character data, such as 7 bits, 8 bits, 16 bits, or 32 bits.
Depending on the character encoding form that is used,
each code point in a coded character set can be
represented internally by one or more code units.

coexistence. During migration, the period of time in
which two releases exist in the same data sharing
group.

cold start. A process by which DB2 restarts without
processing any log records. Contrast with warm start.

collection. A group of packages that have the same
qualifier.

column. The vertical component of a table. A column
has a name and a particular data type (for example,
character, decimal, or integer).

column function. See aggregate function.

"come from" checking. An LU 6.2 security option that
defines a list of authorization IDs that are allowed to
connect to DB2 from a partner LU.

command. A DB2 operator command or a DSN
subcommand. A command is distinct from an SQL
statement.

command prefix. A one- to eight-character command
identifier. The command prefix distinguishes the
command as belonging to an application or subsystem
rather than to MVS.

command recognition character (CRC). A character
that permits a z/OS console operator or an IMS
subsystem user to route DB2 commands to specific DB2
subsystems.

command scope. The scope of command operation in
a data sharing group. If a command has member scope,
the command displays information only from the one
member or affects only non-shared resources that are
owned locally by that member. If a command has group
scope, the command displays information from all
members, affects non-shared resources that are owned
locally by all members, displays information on
sharable resources, or affects sharable resources.

commit. The operation that ends a unit of work by
releasing locks so that the database changes that are
made by that unit of work can be perceived by other
processes.

commit point. A point in time when data is
considered consistent.

committed phase. The second phase of the multisite
update process that requests all participants to commit
the effects of the logical unit of work.

common service area (CSA). In z/OS, a part of the
common area that contains data areas that are
addressable by all address spaces.

communications database (CDB). A set of tables in
the DB2 catalog that are used to establish conversations
with remote database management systems.

comparison operator. A token (such as =, >, or <) that
is used to specify a relationship between two values.

composite key. An ordered set of key columns of the
same table.

compression dictionary. The dictionary that controls
the process of compression and decompression. This
dictionary is created from the data in the table space or
table space partition.

concurrency. The shared use of resources by more
than one application process at the same time.

conditional restart. A DB2 restart that is directed by a
user-defined conditional restart control record (CRCR).

connection. In SNA, the existence of a communication
path between two partner LUs that allows information

Glossary 1203

|
|
|
|
|
|
|
|

#
#
#
#
#
#

#



to be exchanged (for example, two DB2 subsystems
that are connected and communicating by way of a
conversation).

connection context. In SQLJ, a Java object that
represents a connection to a data source.

connection declaration clause. In SQLJ, a statement
that declares a connection to a data source.

connection handle. The data object containing
information that is associated with a connection that
DB2 ODBC manages. This includes general status
information, transaction status, and diagnostic
information.

connection ID. An identifier that is supplied by the
attachment facility and that is associated with a specific
address space connection.

consistency token. A timestamp that is used to
generate the version identifier for an application. See
also version.

constant. A language element that specifies an
unchanging value. Constants are classified as string
constants or numeric constants. Contrast with variable.

constraint. A rule that limits the values that can be
inserted, deleted, or updated in a table. See referential
constraint, check constraint, and unique constraint.

context. The application's logical connection to the
data source and associated internal DB2 ODBC
connection information that allows the application to
direct its operations to a data source. A DB2 ODBC
context represents a DB2 thread.

contracting conversion. A process that occurs when
the length of a converted string is smaller than that of
the source string. For example, this process occurs
when an EBCDIC mixed-data string that contains DBCS
characters is converted to ASCII mixed data; the
converted string is shorter because of the removal of
the shift codes.

control interval (CI). A fixed-length area or disk in
which VSAM stores records and creates distributed free
space. Also, in a key-sequenced data set or file, the set
of records that an entry in the sequence-set index
record points to. The control interval is the unit of
information that VSAM transmits to or from disk. A
control interval always includes an integral number of
physical records.

control interval definition field (CIDF). In VSAM, a
field that is located in the 4 bytes at the end of each
control interval; it describes the free space, if any, in the
control interval.

conversation. Communication, which is based on LU
6.2 or Advanced Program-to-Program Communication
(APPC), between an application and a remote

transaction program over an SNA logical unit-to-logical
unit (LU-LU) session that allows communication while
processing a transaction.

coordinator. The system component that coordinates
the commit or rollback of a unit of work that includes
work that is done on one or more other systems.

copy pool. A named set of SMS storage groups that
contains data that is to be copied collectively. A copy
pool is an SMS construct that lets you define which
storage groups are to be copied by using FlashCopy®

functions. HSM determines which volumes belong to a
copy pool.

copy target. A named set of SMS storage groups that
are to be used as containers for copy pool volume
copies. A copy target is an SMS construct that lets you
define which storage groups are to be used as
containers for volumes that are copied by using
FlashCopy functions.

copy version. A point-in-time FlashCopy copy that is
managed by HSM. Each copy pool has a version
parameter that specifies how many copy versions are
maintained on disk.

correlated columns. A relationship between the value
of one column and the value of another column.

correlated subquery. A subquery (part of a WHERE or
HAVING clause) that is applied to a row or group of
rows of a table or view that is named in an outer
subselect statement.

correlation ID. An identifier that is associated with a
specific thread. In TSO, it is either an authorization ID
or the job name.

correlation name. An identifier that designates a table,
a view, or individual rows of a table or view within a
single SQL statement. It can be defined in any FROM
clause or in the first clause of an UPDATE or DELETE
statement.

cost category. A category into which DB2 places cost
estimates for SQL statements at the time the statement
is bound. A cost estimate can be placed in either of the
following cost categories:
v A: Indicates that DB2 had enough information to

make a cost estimate without using default values.
v B: Indicates that some condition exists for which DB2

was forced to use default values for its estimate.

The cost category is externalized in the
COST_CATEGORY column of the
DSN_STATEMNT_TABLE when a statement is
explained.

coupling facility. A special PR/SM™ LPAR logical
partition that runs the coupling facility control program
and provides high-speed caching, list processing, and
locking functions in a Parallel Sysplex®.

1204 Application Programming and SQL Guide

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|



coupling facility resource management. A component
of z/OS that provides the services to manage coupling
facility resources in a Parallel Sysplex. This
management includes the enforcement of CFRM
policies to ensure that the coupling facility and
structure requirements are satisfied.

CP. Central processor.

CPC. Central processor complex.

C++ member. A data object or function in a structure,
union, or class.

C++ member function. An operator or function that is
declared as a member of a class. A member function
has access to the private and protected data members
and to the member functions of objects in its class.
Member functions are also called methods.

C++ object. (1) A region of storage. An object is
created when a variable is defined or a new function is
invoked. (2) An instance of a class.

CRC. Command recognition character.

CRCR. Conditional restart control record. See also
conditional restart.

create link pack area (CLPA). An option that is used
during IPL to initialize the link pack pageable area.

created temporary table. A table that holds temporary
data and is defined with the SQL statement CREATE
GLOBAL TEMPORARY TABLE. Information about
created temporary tables is stored in the DB2 catalog,
so this kind of table is persistent and can be shared
across application processes. Contrast with declared
temporary table. See also temporary table.

cross-memory linkage. A method for invoking a
program in a different address space. The invocation is
synchronous with respect to the caller.

cross-system coupling facility (XCF). A component of
z/OS that provides functions to support cooperation
between authorized programs that run within a
Sysplex.

cross-system extended services (XES). A set of z/OS
services that allow multiple instances of an application
or subsystem, running on different systems in a Sysplex
environment, to implement high-performance,
high-availability data sharing by using a coupling
facility.

CS. Cursor stability.

CSA. Common service area.

CT. Cursor table.

current data. Data within a host structure that is
current with (identical to) the data within the base
table.

current SQL ID. An ID that, at a single point in time,
holds the privileges that are exercised when certain
dynamic SQL statements run. The current SQL ID can
be a primary authorization ID or a secondary
authorization ID.

current status rebuild. The second phase of restart
processing during which the status of the subsystem is
reconstructed from information on the log.

cursor. A named control structure that an application
program uses to point to a single row or multiple rows
within some ordered set of rows of a result table. A
cursor can be used to retrieve, update, or delete rows
from a result table.

cursor sensitivity. The degree to which database
updates are visible to the subsequent FETCH
statements in a cursor. A cursor can be sensitive to
changes that are made with positioned update and
delete statements specifying the name of that cursor. A
cursor can also be sensitive to changes that are made
with searched update or delete statements, or with
cursors other than this cursor. These changes can be
made by this application process or by another
application process.

cursor stability (CS). The isolation level that provides
maximum concurrency without the ability to read
uncommitted data. With cursor stability, a unit of work
holds locks only on its uncommitted changes and on
the current row of each of its cursors.

cursor table (CT). The copy of the skeleton cursor
table that is used by an executing application process.

cycle. A set of tables that can be ordered so that each
table is a descendent of the one before it, and the first
table is a descendent of the last table. A self-referencing
table is a cycle with a single member.

D
DAD. See Document access definition.

disk. A direct-access storage device that records data
magnetically.

database. A collection of tables, or a collection of table
spaces and index spaces.

database access thread. A thread that accesses data at
the local subsystem on behalf of a remote subsystem.

database administrator (DBA). An individual who is
responsible for designing, developing, operating,
safeguarding, maintaining, and using a database.

Glossary 1205

|
|
|
|
|
|

|

|
|



database alias. The name of the target server if
different from the location name. The database alias
name is used to provide the name of the database
server as it is known to the network. When a database
alias name is defined, the location name is used by the
application to reference the server, but the database
alias name is used to identify the database server to be
accessed. Any fully qualified object names within any
SQL statements are not modified and are sent
unchanged to the database server.

database descriptor (DBD). An internal representation
of a DB2 database definition, which reflects the data
definition that is in the DB2 catalog. The objects that
are defined in a database descriptor are table spaces,
tables, indexes, index spaces, relationships, check
constraints, and triggers. A DBD also contains
information about accessing tables in the database.

database exception status. An indication that
something is wrong with a database. All members of a
data sharing group must know and share the exception
status of databases.

database identifier (DBID). An internal identifier of
the database.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and the access to the data
that is stored within it.

database request module (DBRM). A data set
member that is created by the DB2 precompiler and
that contains information about SQL statements.
DBRMs are used in the bind process.

database server. The target of a request from a local
application or an intermediate database server. In the
DB2 environment, the database server function is
provided by the distributed data facility to access DB2
data from local applications, or from a remote database
server that acts as an intermediate database server.

data currency. The state in which data that is retrieved
into a host variable in your program is a copy of data
in the base table.

data definition name (ddname). The name of a data
definition (DD) statement that corresponds to a data
control block containing the same name.

data dictionary. A repository of information about an
organization's application programs, databases, logical
data models, users, and authorizations. A data
dictionary can be manual or automated.

data-driven business rules. Constraints on particular
data values that exist as a result of requirements of the
business.

Data Language/I (DL/I). The IMS data manipulation
language; a common high-level interface between a
user application and IMS.

data mart. A small data warehouse that applies to a
single department or team. See also data warehouse.

data mining. The process of collecting critical business
information from a data warehouse, correlating it, and
uncovering associations, patterns, and trends.

data partition. A VSAM data set that is contained
within a partitioned table space.

data-partitioned secondary index (DPSI). A secondary
index that is partitioned. The index is partitioned
according to the underlying data.

data sharing. The ability of two or more DB2
subsystems to directly access and change a single set of
data.

data sharing group. A collection of one or more DB2
subsystems that directly access and change the same
data while maintaining data integrity.

data sharing member. A DB2 subsystem that is
assigned by XCF services to a data sharing group.

data source. A local or remote relational or
non-relational data manager that is capable of
supporting data access via an ODBC driver that
supports the ODBC APIs. In the case of DB2 UDB for
z/OS, the data sources are always relational database
managers.

data space. In releases prior to DB2 UDB for z/OS,
Version 8, a range of up to 2 GB of contiguous virtual
storage addresses that a program can directly
manipulate. Unlike an address space, a data space can
hold only data; it does not contain common areas,
system data, or programs.

data type. An attribute of columns, literals, host
variables, special registers, and the results of functions
and expressions.

data warehouse. A system that provides critical
business information to an organization. The data
warehouse system cleanses the data for accuracy and
currency, and then presents the data to decision makers
so that they can interpret and use it effectively and
efficiently.

date. A three-part value that designates a day, month,
and year.

date duration. A decimal integer that represents a
number of years, months, and days.

datetime value. A value of the data type DATE, TIME,
or TIMESTAMP.

DBA. Database administrator.

1206 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|



DBCLOB. Double-byte character large object.

DBCS. Double-byte character set.

DBD. Database descriptor.

DBID. Database identifier.

DBMS. Database management system.

DBRM. Database request module.

DB2 catalog. Tables that are maintained by DB2 and
contain descriptions of DB2 objects, such as tables,
views, and indexes.

DB2 command. An instruction to the DB2 subsystem
that a user enters to start or stop DB2, to display
information on current users, to start or stop databases,
to display information on the status of databases, and
so on.

DB2 for VSE & VM. The IBM DB2 relational database
management system for the VSE and VM operating
systems.

DB2I. DB2 Interactive.

DB2 Interactive (DB2I). The DB2 facility that provides
for the execution of SQL statements, DB2 (operator)
commands, programmer commands, and utility
invocation.

DB2I Kanji Feature. The tape that contains the panels
and jobs that allow a site to display DB2I panels in
Kanji.

DB2 PM. DB2 Performance Monitor.

DB2 thread. The DB2 structure that describes an
application's connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources and services.

DCLGEN. Declarations generator.

DDF. Distributed data facility.

ddname. Data definition name.

deadlock. Unresolvable contention for the use of a
resource, such as a table or an index.

declarations generator (DCLGEN). A subcomponent
of DB2 that generates SQL table declarations and
COBOL, C, or PL/I data structure declarations that
conform to the table. The declarations are generated
from DB2 system catalog information. DCLGEN is also
a DSN subcommand.

declared temporary table. A table that holds
temporary data and is defined with the SQL statement
DECLARE GLOBAL TEMPORARY TABLE. Information
about declared temporary tables is not stored in the
DB2 catalog, so this kind of table is not persistent and

can be used only by the application process that issued
the DECLARE statement. Contrast with created
temporary table. See also temporary table.

default value. A predetermined value, attribute, or
option that is assumed when no other is explicitly
specified.

deferred embedded SQL. SQL statements that are
neither fully static nor fully dynamic. Like static
statements, they are embedded within an application,
but like dynamic statements, they are prepared during
the execution of the application.

deferred write. The process of asynchronously writing
changed data pages to disk.

degree of parallelism. The number of concurrently
executed operations that are initiated to process a
query.

delete-connected. A table that is a dependent of table
P or a dependent of a table to which delete operations
from table P cascade.

delete hole. The location on which a cursor is
positioned when a row in a result table is refetched and
the row no longer exists on the base table, because
another cursor deleted the row between the time the
cursor first included the row in the result table and the
time the cursor tried to refetch it.

delete rule. The rule that tells DB2 what to do to a
dependent row when a parent row is deleted. For each
relationship, the rule might be CASCADE, RESTRICT,
SET NULL, or NO ACTION.

delete trigger. A trigger that is defined with the
triggering SQL operation DELETE.

delimited identifier. A sequence of characters that are
enclosed within double quotation marks ("). The
sequence must consist of a letter followed by zero or
more characters, each of which is a letter, digit, or the
underscore character (_).

delimiter token. A string constant, a delimited
identifier, an operator symbol, or any of the special
characters that are shown in DB2 syntax diagrams.

denormalization. A key step in the task of building a
physical relational database design. Denormalization is
the intentional duplication of columns in multiple
tables, and the consequence is increased data
redundancy. Denormalization is sometimes necessary to
minimize performance problems. Contrast with
normalization.

dependent. An object (row, table, or table space) that
has at least one parent. The object is also said to be a
dependent (row, table, or table space) of its parent. See
also parent row, parent table, parent table space.

Glossary 1207



dependent row. A row that contains a foreign key that
matches the value of a primary key in the parent row.

dependent table. A table that is a dependent in at
least one referential constraint.

DES-based authenticator. An authenticator that is
generated using the DES algorithm.

descendent. An object that is a dependent of an object
or is the dependent of a descendent of an object.

descendent row. A row that is dependent on another
row, or a row that is a descendent of a dependent row.

descendent table. A table that is a dependent of
another table, or a table that is a descendent of a
dependent table.

deterministic function. A user-defined function whose
result is dependent on the values of the input
arguments. That is, successive invocations with the
same input values produce the same answer.
Sometimes referred to as a not-variant function.
Contrast this with an nondeterministic function
(sometimes called a variant function), which might not
always produce the same result for the same inputs.

DFP. Data Facility Product (in z/OS).

DFSMS. Data Facility Storage Management Subsystem
(in z/OS). Also called Storage Management Subsystem
(SMS).

DFSMSdss. The data set services (dss) component of
DFSMS (in z/OS).

DFSMShsm. The hierarchical storage manager (hsm)
component of DFSMS (in z/OS).

dimension. A data category such as time, products, or
markets. The elements of a dimension are referred to as
members. Dimensions offer a very concise, intuitive
way of organizing and selecting data for retrieval,
exploration, and analysis. See also dimension table.

dimension table. The representation of a dimension in
a star schema. Each row in a dimension table
represents all of the attributes for a particular member
of the dimension. See also dimension, star schema, and
star join.

directory. The DB2 system database that contains
internal objects such as database descriptors and
skeleton cursor tables.

distinct predicate. In SQL, a predicate that ensures
that two row values are not equal, and that both row
values are not null.

distinct type. A user-defined data type that is
internally represented as an existing type (its source
type), but is considered to be a separate and
incompatible type for semantic purposes.

distributed data. Data that resides on a DBMS other
than the local system.

distributed data facility (DDF). A set of DB2
components through which DB2 communicates with
another relational database management system.

Distributed Relational Database Architecture (DRDA
). A connection protocol for distributed relational
database processing that is used by IBM's relational
database products. DRDA includes protocols for
communication between an application and a remote
relational database management system, and for
communication between relational database
management systems. See also DRDA access.

DL/I. Data Language/I.

DNS. Domain name server.

document access definition (DAD). Used to define
the indexing scheme for an XML column or the
mapping scheme of an XML collection. It can be used
to enable an XML Extender column of an XML
collection, which is XML formatted.

domain. The set of valid values for an attribute.

domain name. The name by which TCP/IP
applications refer to a TCP/IP host within a TCP/IP
network.

domain name server (DNS). A special TCP/IP
network server that manages a distributed directory
that is used to map TCP/IP host names to IP addresses.

double-byte character large object (DBCLOB). A
sequence of bytes representing double-byte characters
where the size of the values can be up to 2 GB. In
general, DBCLOB values are used whenever a
double-byte character string might exceed the limits of
the VARGRAPHIC type.

double-byte character set (DBCS). A set of characters,
which are used by national languages such as Japanese
and Chinese, that have more symbols than can be
represented by a single byte. Each character is 2 bytes
in length. Contrast with single-byte character set and
multibyte character set.

double-precision floating point number. A 64-bit
approximate representation of a real number.

downstream. The set of nodes in the syncpoint tree
that is connected to the local DBMS as a participant in
the execution of a two-phase commit.

DPSI. Data-partitioned secondary index.

drain. The act of acquiring a locked resource by
quiescing access to that object.

drain lock. A lock on a claim class that prevents a
claim from occurring.

1208 Application Programming and SQL Guide

|
|

|
|

#
#
#

|
|
|
|
|

|



DRDA. Distributed Relational Database Architecture.

DRDA access. An open method of accessing
distributed data that you can use to can connect to
another database server to execute packages that were
previously bound at the server location. You use the
SQL CONNECT statement or an SQL statement with a
three-part name to identify the server. Contrast with
private protocol access.

DSN. (1) The default DB2 subsystem name. (2) The
name of the TSO command processor of DB2. (3) The
first three characters of DB2 module and macro names.

duration. A number that represents an interval of
time. See also date duration, labeled duration, and time
duration.

dynamic cursor. A named control structure that an
application program uses to change the size of the
result table and the order of its rows after the cursor is
opened. Contrast with static cursor.

dynamic dump. A dump that is issued during the
execution of a program, usually under the control of
that program.

dynamic SQL. SQL statements that are prepared and
executed within an application program while the
program is executing. In dynamic SQL, the SQL source
is contained in host language variables rather than
being coded into the application program. The SQL
statement can change several times during the
application program's execution.

dynamic statement cache pool. A cache, located above
the 2-GB storage line, that holds dynamic statements.

E
EA-enabled table space. A table space or index space
that is enabled for extended addressability and that
contains individual partitions (or pieces, for LOB table
spaces) that are greater than 4 GB.

EB. See exabyte.

EBCDIC. Extended binary coded decimal interchange
code. An encoding scheme that is used to represent
character data in the z/OS, VM, VSE, and iSeries®

environments. Contrast with ASCII and Unicode.

e-business. The transformation of key business
processes through the use of Internet technologies.

EDM pool. A pool of main storage that is used for
database descriptors, application plans, authorization
cache, application packages.

EID. Event identifier.

embedded SQL. SQL statements that are coded within
an application program. See static SQL.

enclave. In Language Environment , an independent
collection of routines, one of which is designated as the
main routine. An enclave is similar to a program or run
unit.

encoding scheme. A set of rules to represent character
data (ASCII, EBCDIC, or Unicode).

entity. A significant object of interest to an
organization.

enumerated list. A set of DB2 objects that are defined
with a LISTDEF utility control statement in which
pattern-matching characters (*, %, _ or ?) are not used.

environment. A collection of names of logical and
physical resources that are used to support the
performance of a function.

environment handle. In DB2 ODBC, the data object
that contains global information regarding the state of
the application. An environment handle must be
allocated before a connection handle can be allocated.
Only one environment handle can be allocated per
application.

EOM. End of memory.

EOT. End of task.

equijoin. A join operation in which the join-condition
has the form expression = expression.

error page range. A range of pages that are considered
to be physically damaged. DB2 does not allow users to
access any pages that fall within this range.

escape character. The symbol that is used to enclose
an SQL delimited identifier. The escape character is the
double quotation mark ("), except in COBOL
applications, where the user assigns the symbol, which
is either a double quotation mark or an apostrophe (').

ESDS. Entry sequenced data set.

ESMT. External subsystem module table (in IMS).

EUR. IBM European Standards.

exabyte. For processor, real and virtual storage
capacities and channel volume:
1 152 921 504 606 846 976 bytes or 260.

exception table. A table that holds rows that violate
referential constraints or check constraints that the
CHECK DATA utility finds.

exclusive lock. A lock that prevents concurrently
executing application processes from reading or
changing data. Contrast with share lock.

executable statement. An SQL statement that can be
embedded in an application program, dynamically
prepared and executed, or issued interactively.

Glossary 1209

|
|
|
|

|
|

|

|
|
|

|
|
|



execution context. In SQLJ, a Java object that can be
used to control the execution of SQL statements.

exit routine. A user-written (or IBM-provided default)
program that receives control from DB2 to perform
specific functions. Exit routines run as extensions of
DB2.

expanding conversion. A process that occurs when
the length of a converted string is greater than that of
the source string. For example, this process occurs
when an ASCII mixed-data string that contains DBCS
characters is converted to an EBCDIC mixed-data
string; the converted string is longer because of the
addition of shift codes.

explicit hierarchical locking. Locking that is used to
make the parent-child relationship between resources
known to IRLM. This kind of locking avoids global
locking overhead when no inter-DB2 interest exists on a
resource.

exposed name. A correlation name or a table or view
name for which a correlation name is not specified.
Names that are specified in a FROM clause are exposed
or non-exposed.

expression. An operand or a collection of operators
and operands that yields a single value.

extended recovery facility (XRF). A facility that
minimizes the effect of failures in z/OS, VTAM , the
host processor, or high-availability applications during
sessions between high-availability applications and
designated terminals. This facility provides an
alternative subsystem to take over sessions from the
failing subsystem.

Extensible Markup Language (XML). A standard
metalanguage for defining markup languages that is a
subset of Standardized General Markup Language
(SGML). The less complex nature of XML makes it
easier to write applications that handle document
types, to author and manage structured information,
and to transmit and share structured information across
diverse computing environments.

external function. A function for which the body is
written in a programming language that takes scalar
argument values and produces a scalar result for each
invocation. Contrast with sourced function, built-in
function, and SQL function.

external procedure. A user-written application
program that can be invoked with the SQL CALL
statement, which is written in a programming
language. Contrast with SQL procedure.

external routine. A user-defined function or stored
procedure that is based on code that is written in an
external programming language.

external subsystem module table (ESMT). In IMS, the
table that specifies which attachment modules must be
loaded.

F
failed member state. A state of a member of a data
sharing group. When a member fails, the XCF
permanently records the failed member state. This state
usually means that the member's task, address space,
or z/OS system terminated before the state changed
from active to quiesced.

fallback. The process of returning to a previous
release of DB2 after attempting or completing migration
to a current release.

false global lock contention. A contention indication
from the coupling facility when multiple lock names
are hashed to the same indicator and when no real
contention exists.

fan set. A direct physical access path to data, which is
provided by an index, hash, or link; a fan set is the
means by which the data manager supports the
ordering of data.

federated database. The combination of a DB2
Universal Database server (in Linux, UNIX, and
Windows environments) and multiple data sources to
which the server sends queries. In a federated database
system, a client application can use a single SQL
statement to join data that is distributed across multiple
database management systems and can view the data
as if it were local.

fetch orientation. The specification of the desired
placement of the cursor as part of a FETCH statement
(for example, BEFORE, AFTER, NEXT, PRIOR,
CURRENT, FIRST, LAST, ABSOLUTE, and RELATIVE).

field procedure. A user-written exit routine that is
designed to receive a single value and transform
(encode or decode) it in any way the user can specify.

filter factor. A number between zero and one that
estimates the proportion of rows in a table for which a
predicate is true.

fixed-length string. A character or graphic string
whose length is specified and cannot be changed.
Contrast with varying-length string.

FlashCopy. A function on the IBM Enterprise Storage
Server® that can create a point-in-time copy of data
while an application is running.

foreign key. A column or set of columns in a
dependent table of a constraint relationship. The key
must have the same number of columns, with the same
descriptions, as the primary key of the parent table.

1210 Application Programming and SQL Guide



Each foreign key value must either match a parent key
value in the related parent table or be null.

forest. An ordered set of subtrees of XML nodes.

forget. In a two-phase commit operation, (1) the vote
that is sent to the prepare phase when the participant
has not modified any data. The forget vote allows a
participant to release locks and forget about the logical
unit of work. This is also referred to as the read-only
vote. (2) The response to the committed request in the
second phase of the operation.

forward log recovery. The third phase of restart
processing during which DB2 processes the log in a
forward direction to apply all REDO log records.

free space. The total amount of unused space in a
page; that is, the space that is not used to store records
or control information is free space.

full outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined and preserves the unmatched rows of both
tables. See also join.

fullselect. A subselect, a values-clause, or a number of
both that are combined by set operators. Fullselect
specifies a result table. If UNION is not used, the result
of the fullselect is the result of the specified subselect.

fully escaped mapping. A mapping from an SQL
identifier to an XML name when the SQL identifier is a
column name.

function. A mapping, which is embodied as a
program (the function body) that is invocable by means
of zero or more input values (arguments) to a single
value (the result). See also aggregate function and scalar
function.

Functions can be user-defined, built-in, or generated by
DB2. (See also built-in function, cast function, external
function, sourced function, SQL function, and user-defined
function.)

function definer. The authorization ID of the owner of
the schema of the function that is specified in the
CREATE FUNCTION statement.

function implementer. The authorization ID of the
owner of the function program and function package.

function package. A package that results from binding
the DBRM for a function program.

function package owner. The authorization ID of the
user who binds the function program's DBRM into a
function package.

function resolution. The process, internal to the
DBMS, by which a function invocation is bound to a
particular function instance. This process uses the
function name, the data types of the arguments, and a

list of the applicable schema names (called the SQL
path) to make the selection. This process is sometimes
called function selection.

function selection. See function resolution.

function signature. The logical concatenation of a
fully qualified function name with the data types of all
of its parameters.

G
GB. Gigabyte (1 073 741 824 bytes).

GBP. Group buffer pool.

GBP-dependent. The status of a page set or page set
partition that is dependent on the group buffer pool.
Either read/write interest is active among DB2
subsystems for this page set, or the page set has
changed pages in the group buffer pool that have not
yet been cast out to disk.

generalized trace facility (GTF). A z/OS service
program that records significant system events such as
I/O interrupts, SVC interrupts, program interrupts, or
external interrupts.

generic resource name. A name that VTAM uses to
represent several application programs that provide the
same function in order to handle session distribution
and balancing in a Sysplex environment.

getpage. An operation in which DB2 accesses a data
page.

global lock. A lock that provides concurrency control
within and among DB2 subsystems. The scope of the
lock is across all DB2 subsystems of a data sharing
group.

global lock contention. Conflicts on locking requests
between different DB2 members of a data sharing
group when those members are trying to serialize
shared resources.

governor. See resource limit facility.

graphic string. A sequence of DBCS characters.

gross lock. The shared, update, or exclusive mode locks
on a table, partition, or table space.

group buffer pool (GBP). A coupling facility cache
structure that is used by a data sharing group to cache
data and to ensure that the data is consistent for all
members.

group buffer pool duplexing. The ability to write
data to two instances of a group buffer pool structure: a
primary group buffer pool and a secondary group buffer

Glossary 1211

|

|
|
|

#
#
#
#
#

#
#
#
#



pool. z/OS publications refer to these instances as the
"old" (for primary) and "new" (for secondary)
structures.

group level. The release level of a data sharing group,
which is established when the first member migrates to
a new release.

group name. The z/OS XCF identifier for a data
sharing group.

group restart. A restart of at least one member of a
data sharing group after the loss of either locks or the
shared communications area.

GTF. Generalized trace facility.

H
handle. In DB2 ODBC, a variable that refers to a data
structure and associated resources. See also statement
handle, connection handle, and environment handle.

help panel. A screen of information that presents
tutorial text to assist a user at the workstation or
terminal.

heuristic damage. The inconsistency in data between
one or more participants that results when a heuristic
decision to resolve an indoubt LUW at one or more
participants differs from the decision that is recorded at
the coordinator.

heuristic decision. A decision that forces indoubt
resolution at a participant by means other than
automatic resynchronization between coordinator and
participant.

hole. A row of the result table that cannot be accessed
because of a delete or an update that has been
performed on the row. See also delete hole and update
hole.

home address space. The area of storage that z/OS
currently recognizes as dispatched.

host. The set of programs and resources that are
available on a given TCP/IP instance.

host expression. A Java variable or expression that is
referenced by SQL clauses in an SQLJ application
program.

host identifier. A name that is declared in the host
program.

host language. A programming language in which
you can embed SQL statements.

host program. An application program that is written
in a host language and that contains embedded SQL
statements.

host structure. In an application program, a structure
that is referenced by embedded SQL statements.

host variable. In an application program, an
application variable that is referenced by embedded
SQL statements.

host variable array. An array of elements, each of
which corresponds to a value for a column. The
dimension of the array determines the maximum
number of rows for which the array can be used.

HSM. Hierarchical storage manager.

HTML. Hypertext Markup Language, a standard
method for presenting Web data to users.

HTTP. Hypertext Transfer Protocol, a communication
protocol that the Web uses.

I
ICF. Integrated catalog facility.

IDCAMS. An IBM program that is used to process
access method services commands. It can be invoked as
a job or jobstep, from a TSO terminal, or from within a
user's application program.

IDCAMS LISTCAT. A facility for obtaining
information that is contained in the access method
services catalog.

identify. A request that an attachment service program
in an address space that is separate from DB2 issues
thorough the z/OS subsystem interface to inform DB2
of its existence and to initiate the process of becoming
connected to DB2.

identity column. A column that provides a way for
DB2 to automatically generate a numeric value for each
row. The generated values are unique if cycling is not
used. Identity columns are defined with the AS
IDENTITY clause. Uniqueness of values can be ensured
by defining a unique index that contains only the
identity column. A table can have no more than one
identity column.

IFCID. Instrumentation facility component identifier.

IFI. Instrumentation facility interface.

IFI call. An invocation of the instrumentation facility
interface (IFI) by means of one of its defined functions.

IFP. IMS Fast Path.

image copy. An exact reproduction of all or part of a
table space. DB2 provides utility programs to make full
image copies (to copy the entire table space) or
incremental image copies (to copy only those pages
that have been modified since the last image copy).

1212 Application Programming and SQL Guide

|
|
|
|

|
|
|
|



implied forget. In the presumed-abort protocol, an
implied response of forget to the second-phase
committed request from the coordinator. The response is
implied when the participant responds to any
subsequent request from the coordinator.

IMS. Information Management System.

IMS attachment facility. A DB2 subcomponent that
uses z/OS subsystem interface (SSI) protocols and
cross-memory linkage to process requests from IMS to
DB2 and to coordinate resource commitment.

IMS DB. Information Management System Database.

IMS TM. Information Management System
Transaction Manager.

in-abort. A status of a unit of recovery. If DB2 fails
after a unit of recovery begins to be rolled back, but
before the process is completed, DB2 continues to back
out the changes during restart.

in-commit. A status of a unit of recovery. If DB2 fails
after beginning its phase 2 commit processing, it
"knows," when restarted, that changes made to data are
consistent. Such units of recovery are termed in-commit.

independent. An object (row, table, or table space)
that is neither a parent nor a dependent of another
object.

index. A set of pointers that are logically ordered by
the values of a key. Indexes can provide faster access to
data and can enforce uniqueness on the rows in a table.

index-controlled partitioning. A type of partitioning
in which partition boundaries for a partitioned table are
controlled by values that are specified on the CREATE
INDEX statement. Partition limits are saved in the
LIMITKEY column of the SYSIBM.SYSINDEXPART
catalog table.

index key. The set of columns in a table that is used
to determine the order of index entries.

index partition. A VSAM data set that is contained
within a partitioning index space.

index space. A page set that is used to store the
entries of one index.

indicator column. A 4-byte value that is stored in a
base table in place of a LOB column.

indicator variable. A variable that is used to represent
the null value in an application program. If the value
for the selected column is null, a negative value is
placed in the indicator variable.

indoubt. A status of a unit of recovery. If DB2 fails
after it has finished its phase 1 commit processing and
before it has started phase 2, only the commit
coordinator knows if an individual unit of recovery is

to be committed or rolled back. At emergency restart, if
DB2 lacks the information it needs to make this
decision, the status of the unit of recovery is indoubt
until DB2 obtains this information from the coordinator.
More than one unit of recovery can be indoubt at
restart.

indoubt resolution. The process of resolving the
status of an indoubt logical unit of work to either the
committed or the rollback state.

inflight. A status of a unit of recovery. If DB2 fails
before its unit of recovery completes phase 1 of the
commit process, it merely backs out the updates of its
unit of recovery at restart. These units of recovery are
termed inflight.

inheritance. The passing downstream of class
resources or attributes from a parent class in the class
hierarchy to a child class.

initialization file. For DB2 ODBC applications, a file
containing values that can be set to adjust the
performance of the database manager.

inline copy. A copy that is produced by the LOAD or
REORG utility. The data set that the inline copy
produces is logically equivalent to a full image copy
that is produced by running the COPY utility with
read-only access (SHRLEVEL REFERENCE).

inner join. The result of a join operation that includes
only the matched rows of both tables that are being
joined. See also join.

inoperative package. A package that cannot be used
because one or more user-defined functions or
procedures that the package depends on were dropped.
Such a package must be explicitly rebound. Contrast
with invalid package.

insensitive cursor. A cursor that is not sensitive to
inserts, updates, or deletes that are made to the
underlying rows of a result table after the result table
has been materialized.

insert trigger. A trigger that is defined with the
triggering SQL operation INSERT.

install. The process of preparing a DB2 subsystem to
operate as a z/OS subsystem.

installation verification scenario. A sequence of
operations that exercises the main DB2 functions and
tests whether DB2 was correctly installed.

instrumentation facility component identifier
(IFCID). A value that names and identifies a trace
record of an event that can be traced. As a parameter
on the START TRACE and MODIFY TRACE
commands, it specifies that the corresponding event is
to be traced.

Glossary 1213

|
|
|
|
|
| |

|
|
|



instrumentation facility interface (IFI). A
programming interface that enables programs to obtain
online trace data about DB2, to submit DB2 commands,
and to pass data to DB2.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that provides interactive dialog
services in a z/OS environment.

inter-DB2 R/W interest. A property of data in a table
space, index, or partition that has been opened by more
than one member of a data sharing group and that has
been opened for writing by at least one of those
members.

intermediate database server. The target of a request
from a local application or a remote application
requester that is forwarded to another database server.
In the DB2 environment, the remote request is
forwarded transparently to another database server if
the object that is referenced by a three-part name does
not reference the local location.

internationalization. The support for an encoding
scheme that is able to represent the code points of
characters from many different geographies and
languages. To support all geographies, the Unicode
standard requires more than 1 byte to represent a single
character. See also Unicode.

internal resource lock manager (IRLM). A z/OS
subsystem that DB2 uses to control communication and
database locking.

International Organization for Standardization. An
international body charged with creating standards to
facilitate the exchange of goods and services as well as
cooperation in intellectual, scientific, technological, and
economic activity.

invalid package. A package that depends on an object
(other than a user-defined function) that is dropped.
Such a package is implicitly rebound on invocation.
Contrast with inoperative package.

invariant character set. (1) A character set, such as the
syntactic character set, whose code point assignments
do not change from code page to code page. (2) A
minimum set of characters that is available as part of
all character sets.

IP address. A 4-byte value that uniquely identifies a
TCP/IP host.

IRLM. Internal resource lock manager.

ISO. International Organization for Standardization.

isolation level. The degree to which a unit of work is
isolated from the updating operations of other units of
work. See also cursor stability, read stability, repeatable
read, and uncommitted read.

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity
Facility/Program Development Facility.

iterator. In SQLJ, an object that contains the result set
of a query. An iterator is equivalent to a cursor in other
host languages.

iterator declaration clause. In SQLJ, a statement that
generates an iterator declaration class. An iterator is an
object of an iterator declaration class.

J
Japanese Industrial Standard. An encoding scheme
that is used to process Japanese characters.

JAR. Java Archive.

Java Archive (JAR). A file format that is used for
aggregating many files into a single file.

JCL. Job control language.

JDBC. A Sun Microsystems database application
programming interface (API) for Java that allows
programs to access database management systems by
using callable SQL. JDBC does not require the use of an
SQL preprocessor. In addition, JDBC provides an
architecture that lets users add modules called database
drivers, which link the application to their choice of
database management systems at run time.

JES. Job Entry Subsystem.

JIS. Japanese Industrial Standard.

job control language (JCL). A control language that is
used to identify a job to an operating system and to
describe the job's requirements.

Job Entry Subsystem (JES). An IBM licensed program
that receives jobs into the system and processes all
output data that is produced by the jobs.

join. A relational operation that allows retrieval of
data from two or more tables based on matching
column values. See also equijoin, full outer join, inner
join, left outer join, outer join, and right outer join.

K
KB. Kilobyte (1024 bytes).

Kerberos. A network authentication protocol that is
designed to provide strong authentication for
client/server applications by using secret-key
cryptography.

Kerberos ticket. A transparent application mechanism
that transmits the identity of an initiating principal to
its target. A simple ticket contains the principal's

1214 Application Programming and SQL Guide

|
|
|
|
|

|
|

|



identity, a session key, a timestamp, and other
information, which is sealed using the target's secret
key.

key. A column or an ordered collection of columns
that is identified in the description of a table, index, or
referential constraint. The same column can be part of
more than one key.

key-sequenced data set (KSDS). A VSAM file or data
set whose records are loaded in key sequence and
controlled by an index.

keyword. In SQL, a name that identifies an option
that is used in an SQL statement.

KSDS. Key-sequenced data set.

L
labeled duration. A number that represents a duration
of years, months, days, hours, minutes, seconds, or
microseconds.

large object (LOB). A sequence of bytes representing
bit data, single-byte characters, double-byte characters,
or a mixture of single- and double-byte characters. A
LOB can be up to 2 GB−1 byte in length. See also
BLOB, CLOB, and DBCLOB.

last agent optimization. An optimized commit flow
for either presumed-nothing or presumed-abort
protocols in which the last agent, or final participant,
becomes the commit coordinator. This flow saves at
least one message.

latch. A DB2 internal mechanism for controlling
concurrent events or the use of system resources.

LCID. Log control interval definition.

LDS. Linear data set.

leaf page. A page that contains pairs of keys and RIDs
and that points to actual data. Contrast with nonleaf
page.

left outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined, and that preserves the unmatched rows of the
first table. See also join.

limit key. The highest value of the index key for a
partition.

linear data set (LDS). A VSAM data set that contains
data but no control information. A linear data set can
be accessed as a byte-addressable string in virtual
storage.

linkage editor. A computer program for creating load
modules from one or more object modules or load

modules by resolving cross references among the
modules and, if necessary, adjusting addresses.

link-edit. The action of creating a loadable computer
program using a linkage editor.

list. A type of object, which DB2 utilities can process,
that identifies multiple table spaces, multiple index
spaces, or both. A list is defined with the LISTDEF
utility control statement.

list structure. A coupling facility structure that lets
data be shared and manipulated as elements of a
queue.

LLE. Load list element.

L-lock. Logical lock.

load list element. A z/OS control block that controls
the loading and deleting of a particular load module
based on entry point names.

load module. A program unit that is suitable for
loading into main storage for execution. The output of
a linkage editor.

LOB. Large object.

LOB locator. A mechanism that allows an application
program to manipulate a large object value in the
database system. A LOB locator is a fullword integer
value that represents a single LOB value. An
application program retrieves a LOB locator into a host
variable and can then apply SQL operations to the
associated LOB value using the locator.

LOB lock. A lock on a LOB value.

LOB table space. A table space in an auxiliary table
that contains all the data for a particular LOB column
in the related base table.

local. A way of referring to any object that the local
DB2 subsystem maintains. A local table, for example, is
a table that is maintained by the local DB2 subsystem.
Contrast with remote.

locale. The definition of a subset of a user's
environment that combines a CCSID and characters
that are defined for a specific language and country.

local lock. A lock that provides intra-DB2 concurrency
control, but not inter-DB2 concurrency control; that is,
its scope is a single DB2.

local subsystem. The unique relational DBMS to
which the user or application program is directly
connected (in the case of DB2, by one of the DB2
attachment facilities).

location. The unique name of a database server. An
application uses the location name to access a DB2

Glossary 1215

|
|
|

|
|



database server. A database alias can be used to
override the location name when accessing a remote
server.

location alias. Another name by which a database
server identifies itself in the network. Applications can
use this name to access a DB2 database server.

lock. A means of controlling concurrent events or
access to data. DB2 locking is performed by the IRLM.

lock duration. The interval over which a DB2 lock is
held.

lock escalation. The promotion of a lock from a row,
page, or LOB lock to a table space lock because the
number of page locks that are concurrently held on a
given resource exceeds a preset limit.

locking. The process by which the integrity of data is
ensured. Locking prevents concurrent users from
accessing inconsistent data.

lock mode. A representation for the type of access that
concurrently running programs can have to a resource
that a DB2 lock is holding.

lock object. The resource that is controlled by a DB2
lock.

lock promotion. The process of changing the size or
mode of a DB2 lock to a higher, more restrictive level.

lock size. The amount of data that is controlled by a
DB2 lock on table data; the value can be a row, a page,
a LOB, a partition, a table, or a table space.

lock structure. A coupling facility data structure that
is composed of a series of lock entries to support
shared and exclusive locking for logical resources.

log. A collection of records that describe the events
that occur during DB2 execution and that indicate their
sequence. The information thus recorded is used for
recovery in the event of a failure during DB2 execution.

log control interval definition. A suffix of the
physical log record that tells how record segments are
placed in the physical control interval.

logical claim. A claim on a logical partition of a
nonpartitioning index.

logical data modeling. The process of documenting
the comprehensive business information requirements
in an accurate and consistent format. Data modeling is
the first task of designing a database.

logical drain. A drain on a logical partition of a
nonpartitioning index.

logical index partition. The set of all keys that
reference the same data partition.

logical lock (L-lock). The lock type that transactions
use to control intra- and inter-DB2 data concurrency
between transactions. Contrast with physical lock
(P-lock).

logically complete. A state in which the concurrent
copy process is finished with the initialization of the
target objects that are being copied. The target objects
are available for update.

logical page list (LPL). A list of pages that are in error
and that cannot be referenced by applications until the
pages are recovered. The page is in logical error because
the actual media (coupling facility or disk) might not
contain any errors. Usually a connection to the media
has been lost.

logical partition. A set of key or RID pairs in a
nonpartitioning index that are associated with a
particular partition.

logical recovery pending (LRECP). The state in which
the data and the index keys that reference the data are
inconsistent.

logical unit (LU). An access point through which an
application program accesses the SNA network in order
to communicate with another application program.

logical unit of work (LUW). The processing that a
program performs between synchronization points.

logical unit of work identifier (LUWID). A name that
uniquely identifies a thread within a network. This
name consists of a fully-qualified LU network name, an
LUW instance number, and an LUW sequence number.

log initialization. The first phase of restart processing
during which DB2 attempts to locate the current end of
the log.

log record header (LRH). A prefix, in every logical
record, that contains control information.

log record sequence number (LRSN). A unique
identifier for a log record that is associated with a data
sharing member. DB2 uses the LRSN for recovery in
the data sharing environment.

log truncation. A process by which an explicit starting
RBA is established. This RBA is the point at which the
next byte of log data is to be written.

LPL. Logical page list.

LRECP. Logical recovery pending.

LRH. Log record header.

LRSN. Log record sequence number.

LU. Logical unit.

1216 Application Programming and SQL Guide

|
|
|

|
|
|

|
|
|



LU name. Logical unit name, which is the name by
which VTAM refers to a node in a network. Contrast
with location name.

LUW. Logical unit of work.

LUWID. Logical unit of work identifier.

M
mapping table. A table that the REORG utility uses to
map the associations of the RIDs of data records in the
original copy and in the shadow copy. This table is
created by the user.

mass delete. The deletion of all rows of a table.

master terminal. The IMS logical terminal that has
complete control of IMS resources during online
operations.

master terminal operator (MTO). See master terminal.

materialize. (1) The process of putting rows from a
view or nested table expression into a work file for
additional processing by a query.

(2) The placement of a LOB value into contiguous
storage. Because LOB values can be very large, DB2
avoids materializing LOB data until doing so becomes
absolutely necessary.

materialized query table. A table that is used to
contain information that is derived and can be
summarized from one or more source tables.

MB. Megabyte (1 048 576 bytes).

MBCS. Multibyte character set. UTF-8 is an example
of an MBCS. Characters in UTF-8 can range from 1 to 4
bytes in DB2.

member name. The z/OS XCF identifier for a
particular DB2 subsystem in a data sharing group.

menu. A displayed list of available functions for
selection by the operator. A menu is sometimes called a
menu panel.

metalanguage. A language that is used to create other
specialized languages.

migration. The process of converting a subsystem
with a previous release of DB2 to an updated or
current release. In this process, you can acquire the
functions of the updated or current release without
losing the data that you created on the previous
release.

mixed data string. A character string that can contain
both single-byte and double-byte characters.

MLPA. Modified link pack area.

MODEENT. A VTAM macro instruction that
associates a logon mode name with a set of parameters
representing session protocols. A set of MODEENT
macro instructions defines a logon mode table.

modeling database. A DB2 database that you create
on your workstation that you use to model a DB2 UDB
for z/OS subsystem, which can then be evaluated by
the Index Advisor.

mode name. A VTAM name for the collection of
physical and logical characteristics and attributes of a
session.

modify locks. An L-lock or P-lock with a MODIFY
attribute. A list of these active locks is kept at all times
in the coupling facility lock structure. If the requesting
DB2 subsystem fails, that DB2 subsystem's modify
locks are converted to retained locks.

MPP. Message processing program (in IMS).

MTO. Master terminal operator.

multibyte character set (MBCS). A character set that
represents single characters with more than a single
byte. Contrast with single-byte character set and
double-byte character set. See also Unicode.

multidimensional analysis. The process of assessing
and evaluating an enterprise on more than one level.

Multiple Virtual Storage. An element of the z/OS
operating system. This element is also called the Base
Control Program (BCP).

multisite update. Distributed relational database
processing in which data is updated in more than one
location within a single unit of work.

multithreading. Multiple TCBs that are executing one
copy of DB2 ODBC code concurrently (sharing a
processor) or in parallel (on separate central
processors).

must-complete. A state during DB2 processing in
which the entire operation must be completed to
maintain data integrity.

mutex. Pthread mutual exclusion; a lock. A Pthread
mutex variable is used as a locking mechanism to allow
serialization of critical sections of code by temporarily
blocking the execution of all but one thread.

MVS. See Multiple Virtual Storage.

N
negotiable lock. A lock whose mode can be
downgraded, by agreement among contending users, to
be compatible to all. A physical lock is an example of a
negotiable lock.

Glossary 1217

|
|
|

|
|

|



nested table expression. A fullselect in a FROM clause
(surrounded by parentheses).

network identifier (NID). The network ID that is
assigned by IMS or CICS, or if the connection type is
RRSAF, the RRS unit of recovery ID (URID).

NID. Network identifier.

nonleaf page. A page that contains keys and page
numbers of other pages in the index (either leaf or
nonleaf pages). Nonleaf pages never point to actual
data.

nonpartitioned index. An index that is not physically
partitioned. Both partitioning indexes and secondary
indexes can be nonpartitioned.

nonscrollable cursor. A cursor that can be moved only
in a forward direction. Nonscrollable cursors are
sometimes called forward-only cursors or serial cursors.

normalization. A key step in the task of building a
logical relational database design. Normalization helps
you avoid redundancies and inconsistencies in your
data. An entity is normalized if it meets a set of
constraints for a particular normal form (first normal
form, second normal form, and so on). Contrast with
denormalization.

nondeterministic function. A user-defined function
whose result is not solely dependent on the values of
the input arguments. That is, successive invocations
with the same argument values can produce a different
answer. this type of function is sometimes called a
variant function. Contrast this with a deterministic
function (sometimes called a not-variant function), which
always produces the same result for the same inputs.

not-variant function. See deterministic function.

NPSI. See nonpartitioned secondary index.

NRE. Network recovery element.

NUL. The null character ('\0'), which is represented
by the value X'00'. In C, this character denotes the end
of a string.

null. A special value that indicates the absence of
information.

NULLIF. A scalar function that evaluates two passed
expressions, returning either NULL if the arguments
are equal or the value of the first argument if they are
not.

null-terminated host variable. A varying-length host
variable in which the end of the data is indicated by a
null terminator.

null terminator. In C, the value that indicates the end
of a string. For EBCDIC, ASCII, and Unicode UTF-8
strings, the null terminator is a single-byte value (X'00').

For Unicode UCS-2 (wide) strings, the null terminator
is a double-byte value (X'0000').

O
OASN (origin application schedule number). In IMS,
a 4-byte number that is assigned sequentially to each
IMS schedule since the last cold start of IMS. The
OASN is used as an identifier for a unit of work. In an
8-byte format, the first 4 bytes contain the schedule
number and the last 4 bytes contain the number of IMS
sync points (commit points) during the current schedule.
The OASN is part of the NID for an IMS connection.

ODBC. Open Database Connectivity.

ODBC driver. A dynamically-linked library (DLL) that
implements ODBC function calls and interacts with a
data source.

OBID. Data object identifier.

Open Database Connectivity (ODBC). A Microsoft
database application programming interface (API) for C
that allows access to database management systems by
using callable SQL. ODBC does not require the use of
an SQL preprocessor. In addition, ODBC provides an
architecture that lets users add modules called database
drivers, which link the application to their choice of
database management systems at run time. This means
that applications no longer need to be directly linked to
the modules of all the database management systems
that are supported.

ordinary identifier. An uppercase letter followed by
zero or more characters, each of which is an uppercase
letter, a digit, or the underscore character. An ordinary
identifier must not be a reserved word.

ordinary token. A numeric constant, an ordinary
identifier, a host identifier, or a keyword.

originating task. In a parallel group, the primary
agent that receives data from other execution units
(referred to as parallel tasks) that are executing portions
of the query in parallel.

OS/390. Operating System/390.

outer join. The result of a join operation that includes
the matched rows of both tables that are being joined
and preserves some or all of the unmatched rows of the
tables that are being joined. See also join.

overloaded function. A function name for which
multiple function instances exist.

1218 Application Programming and SQL Guide

|
|
|

|



P
package. An object containing a set of SQL statements
that have been statically bound and that is available for
processing. A package is sometimes also called an
application package.

package list. An ordered list of package names that
may be used to extend an application plan.

package name. The name of an object that is created
by a BIND PACKAGE or REBIND PACKAGE
command. The object is a bound version of a database
request module (DBRM). The name consists of a
location name, a collection ID, a package ID, and a
version ID.

page. A unit of storage within a table space (4 KB, 8
KB, 16 KB, or 32 KB) or index space (4 KB). In a table
space, a page contains one or more rows of a table. In a
LOB table space, a LOB value can span more than one
page, but no more than one LOB value is stored on a
page.

page set. Another way to refer to a table space or
index space. Each page set consists of a collection of
VSAM data sets.

page set recovery pending (PSRCP). A restrictive
state of an index space. In this case, the entire page set
must be recovered. Recovery of a logical part is
prohibited.

panel. A predefined display image that defines the
locations and characteristics of display fields on a
display surface (for example, a menu panel).

parallel complex. A cluster of machines that work
together to handle multiple transactions and
applications.

parallel group. A set of consecutive operations that
execute in parallel and that have the same number of
parallel tasks.

parallel I/O processing. A form of I/O processing in
which DB2 initiates multiple concurrent requests for a
single user query and performs I/O processing
concurrently (in parallel) on multiple data partitions.

parallelism assistant. In Sysplex query parallelism, a
DB2 subsystem that helps to process parts of a parallel
query that originates on another DB2 subsystem in the
data sharing group.

parallelism coordinator. In Sysplex query parallelism,
the DB2 subsystem from which the parallel query
originates.

Parallel Sysplex. A set of z/OS systems that
communicate and cooperate with each other through
certain multisystem hardware components and
software services to process customer workloads.

parallel task. The execution unit that is dynamically
created to process a query in parallel. A parallel task is
implemented by a z/OS service request block.

parameter marker. A question mark (?) that appears in
a statement string of a dynamic SQL statement. The
question mark can appear where a host variable could
appear if the statement string were a static SQL
statement.

parameter-name. An SQL identifier that designates a
parameter in an SQL procedure or an SQL function.

parent key. A primary key or unique key in the parent
table of a referential constraint. The values of a parent
key determine the valid values of the foreign key in the
referential constraint.

parent lock. For explicit hierarchical locking, a lock
that is held on a resource that might have child locks
that are lower in the hierarchy. A parent lock is usually
the table space lock or the partition intent lock. See also
child lock.

parent row. A row whose primary key value is the
foreign key value of a dependent row.

parent table. A table whose primary key is referenced
by the foreign key of a dependent table.

parent table space. A table space that contains a
parent table. A table space containing a dependent of
that table is a dependent table space.

participant. An entity other than the commit
coordinator that takes part in the commit process. The
term participant is synonymous with agent in SNA.

partition. A portion of a page set. Each partition
corresponds to a single, independently extendable data
set. Partitions can be extended to a maximum size of 1,
2, or 4 GB, depending on the number of partitions in
the partitioned page set. All partitions of a given page
set have the same maximum size.

partitioned data set (PDS). A data set in disk storage
that is divided into partitions, which are called
members. Each partition can contain a program, part of
a program, or data. The term partitioned data set is
synonymous with program library.

partitioned index. An index that is physically
partitioned. Both partitioning indexes and secondary
indexes can be partitioned.

partitioned page set. A partitioned table space or an
index space. Header pages, space map pages, data
pages, and index pages reference data only within the
scope of the partition.

partitioned table space. A table space that is
subdivided into parts (based on index key range), each
of which can be processed independently by utilities.

Glossary 1219

|
|

|
|
|
|
|

|
|
|



partitioning index. An index in which the leftmost
columns are the partitioning columns of the table. The
index can be partitioned or nonpartitioned.

partition pruning. The removal from consideration of
inapplicable partitions through setting up predicates in
a query on a partitioned table to access only certain
partitions to satisfy the query.

partner logical unit. An access point in the SNA
network that is connected to the local DB2 subsystem
by way of a VTAM conversation.

path. See SQL path.

PCT. Program control table (in CICS).

PDS. Partitioned data set.

piece. A data set of a nonpartitioned page set.

physical claim. A claim on an entire nonpartitioning
index.

physical consistency. The state of a page that is not in
a partially changed state.

physical drain. A drain on an entire nonpartitioning
index.

physical lock (P-lock). A type of lock that DB2
acquires to provide consistency of data that is cached in
different DB2 subsystems. Physical locks are used only
in data sharing environments. Contrast with logical lock
(L-lock).

physical lock contention. Conflicting states of the
requesters for a physical lock. See also negotiable lock.

physically complete. The state in which the
concurrent copy process is completed and the output
data set has been created.

plan. See application plan.

plan allocation. The process of allocating DB2
resources to a plan in preparation for execution.

plan member. The bound copy of a DBRM that is
identified in the member clause.

plan name. The name of an application plan.

plan segmentation. The dividing of each plan into
sections. When a section is needed, it is independently
brought into the EDM pool.

P-lock. Physical lock.

PLT. Program list table (in CICS).

point of consistency. A time when all recoverable data
that an application accesses is consistent with other
data. The term point of consistency is synonymous
with sync point or commit point.

policy. See CFRM policy.

Portable Operating System Interface (POSIX). The
IEEE operating system interface standard, which
defines the Pthread standard of threading. See also
Pthread.

POSIX. Portable Operating System Interface.

postponed abort UR. A unit of recovery that was
inflight or in-abort, was interrupted by system failure
or cancellation, and did not complete backout during
restart.

PPT. (1) Processing program table (in CICS). (2)
Program properties table (in z/OS).

precision. In SQL, the total number of digits in a
decimal number (called the size in the C language). In
the C language, the number of digits to the right of the
decimal point (called the scale in SQL). The DB2 library
uses the SQL terms.

precompilation. A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with
statements that are recognized by the host language
compiler. Output from this precompilation includes
source code that can be submitted to the compiler and
the database request module (DBRM) that is input to
the bind process.

predicate. An element of a search condition that
expresses or implies a comparison operation.

prefix. A code at the beginning of a message or
record.

preformat. The process of preparing a VSAM ESDS
for DB2 use, by writing specific data patterns.

prepare. The first phase of a two-phase commit
process in which all participants are requested to
prepare for commit.

prepared SQL statement. A named object that is the
executable form of an SQL statement that has been
processed by the PREPARE statement.

presumed-abort. An optimization of the
presumed-nothing two-phase commit protocol that
reduces the number of recovery log records, the
duration of state maintenance, and the number of
messages between coordinator and participant. The
optimization also modifies the indoubt resolution
responsibility.

presumed-nothing. The standard two-phase commit
protocol that defines coordinator and participant
responsibilities, relative to logical unit of work states,
recovery logging, and indoubt resolution.

primary authorization ID. The authorization ID that
is used to identify the application process to DB2.

1220 Application Programming and SQL Guide

|
|
|

|
|
|
|



primary group buffer pool. For a duplexed group
buffer pool, the structure that is used to maintain the
coherency of cached data. This structure is used for
page registration and cross-invalidation. The z/OS
equivalent is old structure. Compare with secondary
group buffer pool.

primary index. An index that enforces the uniqueness
of a primary key.

primary key. In a relational database, a unique,
nonnull key that is part of the definition of a table. A
table cannot be defined as a parent unless it has a
unique key or primary key.

principal. An entity that can communicate securely
with another entity. In Kerberos, principals are
represented as entries in the Kerberos registry database
and include users, servers, computers, and others.

principal name. The name by which a principal is
known to the DCE security services.

private connection. A communications connection that
is specific to DB2.

private protocol access. A method of accessing
distributed data by which you can direct a query to
another DB2 system. Contrast with DRDA access.

private protocol connection. A DB2 private connection
of the application process. See also private connection.

privilege. The capability of performing a specific
function, sometimes on a specific object. The types of
privileges are:

explicit privileges, which have names and are held
as the result of SQL GRANT and REVOKE
statements. For example, the SELECT privilege.
implicit privileges, which accompany the
ownership of an object, such as the privilege to drop
a synonym that one owns, or the holding of an
authority, such as the privilege of SYSADM
authority to terminate any utility job.

privilege set. For the installation SYSADM ID, the set
of all possible privileges. For any other authorization
ID, the set of all privileges that are recorded for that ID
in the DB2 catalog.

process. In DB2, the unit to which DB2 allocates
resources and locks. Sometimes called an application
process, a process involves the execution of one or more
programs. The execution of an SQL statement is always
associated with some process. The means of initiating
and terminating a process are dependent on the
environment.

program. A single, compilable collection of executable
statements in a programming language.

program temporary fix (PTF). A solution or bypass of
a problem that is diagnosed as a result of a defect in a

current unaltered release of a licensed program. An
authorized program analysis report (APAR) fix is
corrective service for an existing problem. A PTF is
preventive service for problems that might be
encountered by other users of the product. A PTF is
temporary, because a permanent fix is usually not
incorporated into the product until its next release.

protected conversation. A VTAM conversation that
supports two-phase commit flows.

PSRCP. Page set recovery pending.

PTF. Program temporary fix.

Pthread. The POSIX threading standard model for
splitting an application into subtasks. The Pthread
standard includes functions for creating threads,
terminating threads, synchronizing threads through
locking, and other thread control facilities.

Q
QMF™. Query Management Facility.

QSAM. Queued sequential access method.

query. A component of certain SQL statements that
specifies a result table.

query block. The part of a query that is represented
by one of the FROM clauses. Each FROM clause can
have multiple query blocks, depending on DB2's
internal processing of the query.

query CP parallelism. Parallel execution of a single
query, which is accomplished by using multiple tasks.
See also Sysplex query parallelism.

query I/O parallelism. Parallel access of data, which
is accomplished by triggering multiple I/O requests
within a single query.

queued sequential access method (QSAM). An
extended version of the basic sequential access method
(BSAM). When this method is used, a queue of data
blocks is formed. Input data blocks await processing,
and output data blocks await transfer to auxiliary
storage or to an output device.

quiesce point. A point at which data is consistent as a
result of running the DB2 QUIESCE utility.

quiesced member state. A state of a member of a data
sharing group. An active member becomes quiesced
when a STOP DB2 command takes effect without a
failure. If the member's task, address space, or z/OS
system fails before the command takes effect, the
member state is failed.

Glossary 1221



R
RACF. Resource Access Control Facility, which is a
component of the z/OS Security Server.

RAMAC. IBM family of enterprise disk storage
system products.

RBA. Relative byte address.

RCT. Resource control table (in CICS attachment
facility).

RDB. Relational database.

RDBMS. Relational database management system.

RDBNAM. Relational database name.

RDF. Record definition field.

read stability (RS). An isolation level that is similar to
repeatable read but does not completely isolate an
application process from all other concurrently
executing application processes. Under level RS, an
application that issues the same query more than once
might read additional rows that were inserted and
committed by a concurrently executing application
process.

rebind. The creation of a new application plan for an
application program that has been bound previously. If,
for example, you have added an index for a table that
your application accesses, you must rebind the
application in order to take advantage of that index.

rebuild. The process of reallocating a coupling facility
structure. For the shared communications area (SCA)
and lock structure, the structure is repopulated; for the
group buffer pool, changed pages are usually cast out
to disk, and the new structure is populated only with
changed pages that were not successfully cast out.

RECFM. Record format.

record. The storage representation of a row or other
data.

record identifier (RID). A unique identifier that DB2
uses internally to identify a row of data in a table.
Compare with row ID.

record identifier (RID) pool. An area of main storage
that is used for sorting record identifiers during
list-prefetch processing.

record length. The sum of the length of all the
columns in a table, which is the length of the data as it
is physically stored in the database. Records can be
fixed length or varying length, depending on how the
columns are defined. If all columns are fixed-length

columns, the record is a fixed-length record. If one or
more columns are varying-length columns, the record is
a varying-length column.

Recoverable Resource Manager Services attachment
facility (RRSAF). A DB2 subcomponent that uses
Resource Recovery Services to coordinate resource
commitment between DB2 and all other resource
managers that also use RRS in a z/OS system.

recovery. The process of rebuilding databases after a
system failure.

recovery log. A collection of records that describes the
events that occur during DB2 execution and indicates
their sequence. The recorded information is used for
recovery in the event of a failure during DB2 execution.

recovery manager. (1) A subcomponent that supplies
coordination services that control the interaction of DB2
resource managers during commit, abort, checkpoint,
and restart processes. The recovery manager also
supports the recovery mechanisms of other subsystems
(for example, IMS) by acting as a participant in the
other subsystem's process for protecting data that has
reached a point of consistency. (2) A coordinator or a
participant (or both), in the execution of a two-phase
commit, that can access a recovery log that maintains
the state of the logical unit of work and names the
immediate upstream coordinator and downstream
participants.

recovery pending (RECP). A condition that prevents
SQL access to a table space that needs to be recovered.

recovery token. An identifier for an element that is
used in recovery (for example, NID or URID).

RECP. Recovery pending.

redo. A state of a unit of recovery that indicates that
changes are to be reapplied to the disk media to ensure
data integrity.

reentrant. Executable code that can reside in storage
as one shared copy for all threads. Reentrant code is
not self-modifying and provides separate storage areas
for each thread. Reentrancy is a compiler and operating
system concept, and reentrancy alone is not enough to
guarantee logically consistent results when
multithreading. See also threadsafe.

referential constraint. The requirement that nonnull
values of a designated foreign key are valid only if they
equal values of the primary key of a designated table.

referential integrity. The state of a database in which
all values of all foreign keys are valid. Maintaining
referential integrity requires the enforcement of
referential constraints on all operations that change the
data in a table on which the referential constraints are
defined.

1222 Application Programming and SQL Guide

|
|

|
|
|



referential structure. A set of tables and relationships
that includes at least one table and, for every table in
the set, all the relationships in which that table
participates and all the tables to which it is related.

refresh age. The time duration between the current
time and the time during which a materialized query
table was last refreshed.

registry. See registry database.

registry database. A database of security information
about principals, groups, organizations, accounts, and
security policies.

relational database (RDB). A database that can be
perceived as a set of tables and manipulated in
accordance with the relational model of data.

relational database management system (RDBMS). A
collection of hardware and software that organizes and
provides access to a relational database.

relational database name (RDBNAM). A unique
identifier for an RDBMS within a network. In DB2, this
must be the value in the LOCATION column of table
SYSIBM.LOCATIONS in the CDB. DB2 publications
refer to the name of another RDBMS as a LOCATION
value or a location name.

relationship. A defined connection between the rows
of a table or the rows of two tables. A relationship is
the internal representation of a referential constraint.

relative byte address (RBA). The offset of a data
record or control interval from the beginning of the
storage space that is allocated to the data set or file to
which it belongs.

remigration. The process of returning to a current
release of DB2 following a fallback to a previous
release. This procedure constitutes another migration
process.

remote. Any object that is maintained by a remote
DB2 subsystem (that is, by a DB2 subsystem other than
the local one). A remote view, for example, is a view that
is maintained by a remote DB2 subsystem. Contrast
with local.

remote attach request. A request by a remote location
to attach to the local DB2 subsystem. Specifically, the
request that is sent is an SNA Function Management
Header 5.

remote subsystem. Any relational DBMS, except the
local subsystem, with which the user or application can
communicate. The subsystem need not be remote in
any physical sense, and might even operate on the
same processor under the same z/OS system.

reoptimization. The DB2 process of reconsidering the
access path of an SQL statement at run time; during

reoptimization, DB2 uses the values of host variables,
parameter markers, or special registers.

REORG pending (REORP). A condition that restricts
SQL access and most utility access to an object that
must be reorganized.

REORP. REORG pending.

repeatable read (RR). The isolation level that provides
maximum protection from other executing application
programs. When an application program executes with
repeatable read protection, rows that the program
references cannot be changed by other programs until
the program reaches a commit point.

repeating group. A situation in which an entity
includes multiple attributes that are inherently the
same. The presence of a repeating group violates the
requirement of first normal form. In an entity that
satisfies the requirement of first normal form, each
attribute is independent and unique in its meaning and
its name. See also normalization.

replay detection mechanism. A method that allows a
principal to detect whether a request is a valid request
from a source that can be trusted or whether an
untrustworthy entity has captured information from a
previous exchange and is replaying the information
exchange to gain access to the principal.

request commit. The vote that is submitted to the
prepare phase if the participant has modified data and
is prepared to commit or roll back.

requester. The source of a request to access data at a
remote server. In the DB2 environment, the requester
function is provided by the distributed data facility.

resource. The object of a lock or claim, which could be
a table space, an index space, a data partition, an index
partition, or a logical partition.

resource allocation. The part of plan allocation that
deals specifically with the database resources.

resource control table (RCT). A construct of the CICS
attachment facility, created by site-provided macro
parameters, that defines authorization and access
attributes for transactions or transaction groups.

resource definition online. A CICS feature that you
use to define CICS resources online without assembling
tables.

resource limit facility (RLF). A portion of DB2 code
that prevents dynamic manipulative SQL statements
from exceeding specified time limits. The resource limit
facility is sometimes called the governor.

resource limit specification table (RLST). A
site-defined table that specifies the limits to be enforced
by the resource limit facility.

Glossary 1223

|
|
|



resource manager. (1) A function that is responsible
for managing a particular resource and that guarantees
the consistency of all updates made to recoverable
resources within a logical unit of work. The resource
that is being managed can be physical (for example,
disk or main storage) or logical (for example, a
particular type of system service). (2) A participant, in
the execution of a two-phase commit, that has
recoverable resources that could have been modified.
The resource manager has access to a recovery log so
that it can commit or roll back the effects of the logical
unit of work to the recoverable resources.

restart pending (RESTP). A restrictive state of a page
set or partition that indicates that restart (backout)
work needs to be performed on the object. All access to
the page set or partition is denied except for access by
the:
v RECOVER POSTPONED command
v Automatic online backout (which DB2 invokes after

restart if the system parameter LBACKOUT=AUTO)

RESTP. Restart pending.

result set. The set of rows that a stored procedure
returns to a client application.

result set locator. A 4-byte value that DB2 uses to
uniquely identify a query result set that a stored
procedure returns.

result table. The set of rows that are specified by a
SELECT statement.

retained lock. A MODIFY lock that a DB2 subsystem
was holding at the time of a subsystem failure. The
lock is retained in the coupling facility lock structure
across a DB2 failure.

RID. Record identifier.

RID pool. Record identifier pool.

right outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined and preserves the unmatched rows of the second
join operand. See also join.

RLF. Resource limit facility.

RLST. Resource limit specification table.

RMID. Resource manager identifier.

RO. Read-only access.

rollback. The process of restoring data that was
changed by SQL statements to the state at its last
commit point. All locks are freed. Contrast with commit.

root page. The index page that is at the highest level
(or the beginning point) in an index.

routine. A term that refers to either a user-defined
function or a stored procedure.

row. The horizontal component of a table. A row
consists of a sequence of values, one for each column of
the table.

ROWID. Row identifier.

row identifier (ROWID). A value that uniquely
identifies a row. This value is stored with the row and
never changes.

row lock. A lock on a single row of data.

rowset. A set of rows for which a cursor position is
established.

rowset cursor. A cursor that is defined so that one or
more rows can be returned as a rowset for a single
FETCH statement, and the cursor is positioned on the
set of rows that is fetched.

rowset-positioned access. The ability to retrieve
multiple rows from a single FETCH statement.

row-positioned access. The ability to retrieve a single
row from a single FETCH statement.

row trigger. A trigger that is defined with the trigger
granularity FOR EACH ROW.

RRE. Residual recovery entry (in IMS).

RRSAF. Recoverable Resource Manager Services
attachment facility.

RS. Read stability.

RTT. Resource translation table.

RURE. Restart URE.

S
savepoint. A named entity that represents the state of
data and schemas at a particular point in time within a
unit of work. SQL statements exist to set a savepoint,
release a savepoint, and restore data and schemas to
the state that the savepoint represents. The restoration
of data and schemas to a savepoint is usually referred
to as rolling back to a savepoint.

SBCS. Single-byte character set.

SCA. Shared communications area.

scalar function. An SQL operation that produces a
single value from another value and is expressed as a
function name, followed by a list of arguments that are
enclosed in parentheses. Contrast with aggregate
function.

1224 Application Programming and SQL Guide

|
|

|
|
|
|

|
|

|
|

#
#
#
#
#



scale. In SQL, the number of digits to the right of the
decimal point (called the precision in the C language).
The DB2 library uses the SQL definition.

schema. (1) The organization or structure of a
database. (2) A logical grouping for user-defined
functions, distinct types, triggers, and stored
procedures. When an object of one of these types is
created, it is assigned to one schema, which is
determined by the name of the object. For example, the
following statement creates a distinct type T in schema
C:

CREATE DISTINCT TYPE C.T ...

scrollability. The ability to use a cursor to fetch in
either a forward or backward direction. The FETCH
statement supports multiple fetch orientations to
indicate the new position of the cursor. See also fetch
orientation.

scrollable cursor. A cursor that can be moved in both
a forward and a backward direction.

SDWA. System diagnostic work area.

search condition. A criterion for selecting rows from a
table. A search condition consists of one or more
predicates.

secondary authorization ID. An authorization ID that
has been associated with a primary authorization ID by
an authorization exit routine.

secondary group buffer pool. For a duplexed group
buffer pool, the structure that is used to back up
changed pages that are written to the primary group
buffer pool. No page registration or cross-invalidation
occurs using the secondary group buffer pool. The
z/OS equivalent is new structure.

secondary index. A nonpartitioning index on a
partitioned table.

section. The segment of a plan or package that
contains the executable structures for a single SQL
statement. For most SQL statements, one section in the
plan exists for each SQL statement in the source
program. However, for cursor-related statements, the
DECLARE, OPEN, FETCH, and CLOSE statements
reference the same section because they each refer to
the SELECT statement that is named in the DECLARE
CURSOR statement. SQL statements such as COMMIT,
ROLLBACK, and some SET statements do not use a
section.

segment. A group of pages that holds rows of a single
table. See also segmented table space.

segmented table space. A table space that is divided
into equal-sized groups of pages called segments.
Segments are assigned to tables so that rows of
different tables are never stored in the same segment.

self-referencing constraint. A referential constraint
that defines a relationship in which a table is a
dependent of itself.

self-referencing table. A table with a self-referencing
constraint.

sensitive cursor. A cursor that is sensitive to changes
that are made to the database after the result table has
been materialized.

sequence. A user-defined object that generates a
sequence of numeric values according to user
specifications.

sequential data set. A non-DB2 data set whose
records are organized on the basis of their successive
physical positions, such as on magnetic tape. Several of
the DB2 database utilities require sequential data sets.

sequential prefetch. A mechanism that triggers
consecutive asynchronous I/O operations. Pages are
fetched before they are required, and several pages are
read with a single I/O operation.

serial cursor. A cursor that can be moved only in a
forward direction.

serialized profile. A Java object that contains SQL
statements and descriptions of host variables. The SQLJ
translator produces a serialized profile for each
connection context.

server. The target of a request from a remote
requester. In the DB2 environment, the server function
is provided by the distributed data facility, which is
used to access DB2 data from remote applications.

server-side programming. A method for adding DB2
data into dynamic Web pages.

service class. An eight-character identifier that is used
by the z/OS Workload Manager to associate user
performance goals with a particular DDF thread or
stored procedure. A service class is also used to classify
work on parallelism assistants.

service request block. A unit of work that is
scheduled to execute in another address space.

session. A link between two nodes in a VTAM
network.

session protocols. The available set of SNA
communication requests and responses.

shared communications area (SCA). A coupling
facility list structure that a DB2 data sharing group uses
for inter-DB2 communication.

share lock. A lock that prevents concurrently
executing application processes from changing data,
but not from reading data. Contrast with exclusive lock.

Glossary 1225

|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|



shift-in character. A special control character (X'0F')
that is used in EBCDIC systems to denote that the
subsequent bytes represent SBCS characters. See also
shift-out character.

shift-out character. A special control character (X'0E')
that is used in EBCDIC systems to denote that the
subsequent bytes, up to the next shift-in control
character, represent DBCS characters. See also shift-in
character.

sign-on. A request that is made on behalf of an
individual CICS or IMS application process by an
attachment facility to enable DB2 to verify that it is
authorized to use DB2 resources.

simple page set. A nonpartitioned page set. A simple
page set initially consists of a single data set (page set
piece). If and when that data set is extended to 2 GB,
another data set is created, and so on, up to a total of
32 data sets. DB2 considers the data sets to be a single
contiguous linear address space containing a maximum
of 64 GB. Data is stored in the next available location
within this address space without regard to any
partitioning scheme.

simple table space. A table space that is neither
partitioned nor segmented.

single-byte character set (SBCS). A set of characters
in which each character is represented by a single byte.
Contrast with double-byte character set or multibyte
character set.

single-precision floating point number. A 32-bit
approximate representation of a real number.

size. In the C language, the total number of digits in a
decimal number (called the precision in SQL). The DB2
library uses the SQL term.

SMF. System Management Facilities.

SMP/E. System Modification Program/Extended.

SMS. Storage Management Subsystem.

SNA. Systems Network Architecture.

SNA network. The part of a network that conforms to
the formats and protocols of Systems Network
Architecture (SNA).

socket. A callable TCP/IP programming interface that
TCP/IP network applications use to communicate with
remote TCP/IP partners.

sourced function. A function that is implemented by
another built-in or user-defined function that is already
known to the database manager. This function can be a
scalar function or a column (aggregating) function; it
returns a single value from a set of values (for example,
MAX or AVG). Contrast with built-in function, external
function, and SQL function.

source program. A set of host language statements
and SQL statements that is processed by an SQL
precompiler.

source table. A table that can be a base table, a view, a
table expression, or a user-defined table function.

source type. An existing type that DB2 uses to
internally represent a distinct type.

space. A sequence of one or more blank characters.

special register. A storage area that DB2 defines for an
application process to use for storing information that
can be referenced in SQL statements. Examples of
special registers are USER and CURRENT DATE.

specific function name. A particular user-defined
function that is known to the database manager by its
specific name. Many specific user-defined functions can
have the same function name. When a user-defined
function is defined to the database, every function is
assigned a specific name that is unique within its
schema. Either the user can provide this name, or a
default name is used.

SPUFI. SQL Processor Using File Input.

SQL. Structured Query Language.

SQL authorization ID (SQL ID). The authorization ID
that is used for checking dynamic SQL statements in
some situations.

SQLCA. SQL communication area.

SQL communication area (SQLCA). A structure that
is used to provide an application program with
information about the execution of its SQL statements.

SQL connection. An association between an
application process and a local or remote application
server or database server.

SQLDA. SQL descriptor area.

SQL descriptor area (SQLDA). A structure that
describes input variables, output variables, or the
columns of a result table.

SQL escape character. The symbol that is used to
enclose an SQL delimited identifier. This symbol is the
double quotation mark ("). See also escape character.

SQL function. A user-defined function in which the
CREATE FUNCTION statement contains the source
code. The source code is a single SQL expression that
evaluates to a single value. The SQL user-defined
function can return only one parameter.

SQL ID. SQL authorization ID.

SQLJ. Structured Query Language (SQL) that is
embedded in the Java programming language.

1226 Application Programming and SQL Guide

|
|



SQL path. An ordered list of schema names that are
used in the resolution of unqualified references to
user-defined functions, distinct types, and stored
procedures. In dynamic SQL, the current path is found
in the CURRENT PATH special register. In static SQL,
it is defined in the PATH bind option.

SQL procedure. A user-written program that can be
invoked with the SQL CALL statement. Contrast with
external procedure.

SQL processing conversation. Any conversation that
requires access of DB2 data, either through an
application or by dynamic query requests.

SQL Processor Using File Input (SPUFI). A facility of
the TSO attachment subcomponent that enables the
DB2I user to execute SQL statements without
embedding them in an application program.

SQL return code. Either SQLCODE or SQLSTATE.

SQL routine. A user-defined function or stored
procedure that is based on code that is written in SQL.

SQL statement coprocessor. An alternative to the DB2
precompiler that lets the user process SQL statements
at compile time. The user invokes an SQL statement
coprocessor by specifying a compiler option.

SQL string delimiter. A symbol that is used to enclose
an SQL string constant. The SQL string delimiter is the
apostrophe ('), except in COBOL applications, where
the user assigns the symbol, which is either an
apostrophe or a double quotation mark (").

SRB. Service request block.

SSI. Subsystem interface (in z/OS).

SSM. Subsystem member (in IMS).

stand-alone. An attribute of a program that means
that it is capable of executing separately from DB2,
without using DB2 services.

star join. A method of joining a dimension column of
a fact table to the key column of the corresponding
dimension table. See also join, dimension, and star
schema.

star schema. The combination of a fact table (which
contains most of the data) and a number of dimension
tables. See also star join, dimension, and dimension table.

statement handle. In DB2 ODBC, the data object that
contains information about an SQL statement that is
managed by DB2 ODBC. This includes information
such as dynamic arguments, bindings for dynamic
arguments and columns, cursor information, result
values, and status information. Each statement handle
is associated with the connection handle.

statement string. For a dynamic SQL statement, the
character string form of the statement.

statement trigger. A trigger that is defined with the
trigger granularity FOR EACH STATEMENT.

static cursor. A named control structure that does not
change the size of the result table or the order of its
rows after an application opens the cursor. Contrast
with dynamic cursor.

static SQL. SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not
change (although values of host variables that are
specified by the statement might change).

storage group. A named set of disks on which DB2
data can be stored.

stored procedure. A user-written application program
that can be invoked through the use of the SQL CALL
statement.

string. See character string or graphic string.

strong typing. A process that guarantees that only
user-defined functions and operations that are defined
on a distinct type can be applied to that type. For
example, you cannot directly compare two currency
types, such as Canadian dollars and U.S. dollars. But
you can provide a user-defined function to convert one
currency to the other and then do the comparison.

structure. (1) A name that refers collectively to
different types of DB2 objects, such as tables, databases,
views, indexes, and table spaces. (2) A construct that
uses z/OS to map and manage storage on a coupling
facility. See also cache structure, list structure, or lock
structure.

Structured Query Language (SQL). A standardized
language for defining and manipulating data in a
relational database.

structure owner. In relation to group buffer pools, the
DB2 member that is responsible for the following
activities:

v Coordinating rebuild, checkpoint, and damage
assessment processing

v Monitoring the group buffer pool threshold and
notifying castout owners when the threshold has
been reached

subcomponent. A group of closely related DB2
modules that work together to provide a general
function.

subject table. The table for which a trigger is created.
When the defined triggering event occurs on this table,
the trigger is activated.

Glossary 1227

|
|
|
|



subpage. The unit into which a physical index page
can be divided.

subquery. A SELECT statement within the WHERE or
HAVING clause of another SQL statement; a nested
SQL statement.

subselect. That form of a query that does not include
an ORDER BY clause, an UPDATE clause, or UNION
operators.

substitution character. A unique character that is
substituted during character conversion for any
characters in the source program that do not have a
match in the target coding representation.

subsystem. A distinct instance of a relational database
management system (RDBMS).

surrogate pair. A coded representation for a single
character that consists of a sequence of two 16-bit code
units, in which the first value of the pair is a
high-surrogate code unit in the range U+D800 through
U+DBFF, and the second value is a low-surrogate code
unit in the range U+DC00 through U+DFFF. Surrogate
pairs provide an extension mechanism for encoding
917 476 characters without requiring the use of 32-bit
characters.

SVC dump. A dump that is issued when a z/OS or a
DB2 functional recovery routine detects an error.

sync point. See commit point.

syncpoint tree. The tree of recovery managers and
resource managers that are involved in a logical unit of
work, starting with the recovery manager, that make
the final commit decision.

synonym. In SQL, an alternative name for a table or
view. Synonyms can be used to refer only to objects at
the subsystem in which the synonym is defined.

syntactic character set. A set of 81 graphic characters
that are registered in the IBM registry as character set
00640. This set was originally recommended to the
programming language community to be used for
syntactic purposes toward maximizing portability and
interchangeability across systems and country
boundaries. It is contained in most of the primary
registered character sets, with a few exceptions. See
also invariant character set.

Sysplex. See Parallel Sysplex.

Sysplex query parallelism. Parallel execution of a
single query that is accomplished by using multiple
tasks on more than one DB2 subsystem. See also query
CP parallelism.

system administrator. The person at a computer
installation who designs, controls, and manages the use
of the computer system.

system agent. A work request that DB2 creates
internally such as prefetch processing, deferred writes,
and service tasks.

system conversation. The conversation that two DB2
subsystems must establish to process system messages
before any distributed processing can begin.

system diagnostic work area (SDWA). The data that
is recorded in a SYS1.LOGREC entry that describes a
program or hardware error.

system-directed connection. A connection that a
relational DBMS manages by processing SQL
statements with three-part names.

System Modification Program/Extended (SMP/E). A
z/OS tool for making software changes in
programming systems (such as DB2) and for
controlling those changes.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
through and controlling the configuration and
operation of networks.

SYS1.DUMPxx data set. A data set that contains a
system dump (in z/OS).

SYS1.LOGREC. A service aid that contains important
information about program and hardware errors (in
z/OS).

T
table. A named data object consisting of a specific
number of columns and some number of unordered
rows. See also base table or temporary table.

table-controlled partitioning. A type of partitioning in
which partition boundaries for a partitioned table are
controlled by values that are defined in the CREATE
TABLE statement. Partition limits are saved in the
LIMITKEY_INTERNAL column of the
SYSIBM.SYSTABLEPART catalog table.

table function. A function that receives a set of
arguments and returns a table to the SQL statement
that references the function. A table function can be
referenced only in the FROM clause of a subselect.

table locator. A mechanism that allows access to
trigger transition tables in the FROM clause of SELECT
statements, in the subselect of INSERT statements, or
from within user-defined functions. A table locator is a
fullword integer value that represents a transition table.

table space. A page set that is used to store the
records in one or more tables.

1228 Application Programming and SQL Guide

|
|
|
|
|
|



table space set. A set of table spaces and partitions
that should be recovered together for one of these
reasons:
v Each of them contains a table that is a parent or

descendent of a table in one of the others.
v The set contains a base table and associated auxiliary

tables.

A table space set can contain both types of
relationships.

task control block (TCB). A z/OS control block that is
used to communicate information about tasks within an
address space that are connected to DB2. See also
address space connection.

TB. Terabyte (1 099 511 627 776 bytes).

TCB. Task control block (in z/OS).

TCP/IP. A network communication protocol that
computer systems use to exchange information across
telecommunication links.

TCP/IP port. A 2-byte value that identifies an end user
or a TCP/IP network application within a TCP/IP host.

template. A DB2 utilities output data set descriptor
that is used for dynamic allocation. A template is
defined by the TEMPLATE utility control statement.

temporary table. A table that holds temporary data.
Temporary tables are useful for holding or sorting
intermediate results from queries that contain a large
number of rows. The two types of temporary table,
which are created by different SQL statements, are the
created temporary table and the declared temporary
table. Contrast with result table. See also created
temporary table and declared temporary table.

Terminal Monitor Program (TMP). A program that
provides an interface between terminal users and
command processors and has access to many system
services (in z/OS).

thread. The DB2 structure that describes an
application's connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources and services. Most DB2 functions execute
under a thread structure. See also allied thread and
database access thread.

threadsafe. A characteristic of code that allows
multithreading both by providing private storage areas
for each thread, and by properly serializing shared
(global) storage areas.

three-part name. The full name of a table, view, or
alias. It consists of a location name, authorization ID,
and an object name, separated by a period.

time. A three-part value that designates a time of day
in hours, minutes, and seconds.

time duration. A decimal integer that represents a
number of hours, minutes, and seconds.

timeout. Abnormal termination of either the DB2
subsystem or of an application because of the
unavailability of resources. Installation specifications
are set to determine both the amount of time DB2 is to
wait for IRLM services after starting, and the amount
of time IRLM is to wait if a resource that an application
requests is unavailable. If either of these time
specifications is exceeded, a timeout is declared.

Time-Sharing Option (TSO). An option in MVS that
provides interactive time sharing from remote
terminals.

timestamp. A seven-part value that consists of a date
and time. The timestamp is expressed in years, months,
days, hours, minutes, seconds, and microseconds.

TMP. Terminal Monitor Program.

to-do. A state of a unit of recovery that indicates that
the unit of recovery's changes to recoverable DB2
resources are indoubt and must either be applied to the
disk media or backed out, as determined by the
commit coordinator.

trace. A DB2 facility that provides the ability to
monitor and collect DB2 monitoring, auditing,
performance, accounting, statistics, and serviceability
(global) data.

transaction lock. A lock that is used to control
concurrent execution of SQL statements.

transaction program name. In SNA LU 6.2
conversations, the name of the program at the remote
logical unit that is to be the other half of the
conversation.

transient XML data type. A data type for XML values
that exists only during query processing.

transition table. A temporary table that contains all
the affected rows of the subject table in their state
before or after the triggering event occurs. Triggered
SQL statements in the trigger definition can reference
the table of changed rows in the old state or the new
state.

transition variable. A variable that contains a column
value of the affected row of the subject table in its state
before or after the triggering event occurs. Triggered
SQL statements in the trigger definition can reference
the set of old values or the set of new values.

tree structure. A data structure that represents entities
in nodes, with a most one parent node for each node,
and with only one root node.

Glossary 1229

|
|

|
|
|



trigger. A set of SQL statements that are stored in a
DB2 database and executed when a certain event
occurs in a DB2 table.

trigger activation. The process that occurs when the
trigger event that is defined in a trigger definition is
executed. Trigger activation consists of the evaluation
of the triggered action condition and conditional
execution of the triggered SQL statements.

trigger activation time. An indication in the trigger
definition of whether the trigger should be activated
before or after the triggered event.

trigger body. The set of SQL statements that is
executed when a trigger is activated and its triggered
action condition evaluates to true. A trigger body is
also called triggered SQL statements.

trigger cascading. The process that occurs when the
triggered action of a trigger causes the activation of
another trigger.

triggered action. The SQL logic that is performed
when a trigger is activated. The triggered action
consists of an optional triggered action condition and a
set of triggered SQL statements that are executed only
if the condition evaluates to true.

triggered action condition. An optional part of the
triggered action. This Boolean condition appears as a
WHEN clause and specifies a condition that DB2
evaluates to determine if the triggered SQL statements
should be executed.

triggered SQL statements. The set of SQL statements
that is executed when a trigger is activated and its
triggered action condition evaluates to true. Triggered
SQL statements are also called the trigger body.

trigger granularity. A characteristic of a trigger, which
determines whether the trigger is activated:
v Only once for the triggering SQL statement
v Once for each row that the SQL statement modifies

triggering event. The specified operation in a trigger
definition that causes the activation of that trigger. The
triggering event is comprised of a triggering operation
(INSERT, UPDATE, or DELETE) and a subject table on
which the operation is performed.

triggering SQL operation. The SQL operation that
causes a trigger to be activated when performed on the
subject table.

trigger package. A package that is created when a
CREATE TRIGGER statement is executed. The package
is executed when the trigger is activated.

TSO. Time-Sharing Option.

TSO attachment facility. A DB2 facility consisting of
the DSN command processor and DB2I. Applications

that are not written for the CICS or IMS environments
can run under the TSO attachment facility.

typed parameter marker. A parameter marker that is
specified along with its target data type. It has the
general form:

CAST(? AS data-type)

type 1 indexes. Indexes that were created by a release
of DB2 before DB2 Version 4 or that are specified as
type 1 indexes in Version 4. Contrast with type 2
indexes. As of Version 8, type 1 indexes are no longer
supported.

type 2 indexes. Indexes that are created on a release
of DB2 after Version 7 or that are specified as type 2
indexes in Version 4 or later.

U
UCS-2. Universal Character Set, coded in 2 octets,
which means that characters are represented in 16-bits
per character.

UDF. User-defined function.

UDT. User-defined data type. In DB2 UDB for z/OS,
the term distinct type is used instead of user-defined
data type. See distinct type.

uncommitted read (UR). The isolation level that
allows an application to read uncommitted data.

underlying view. The view on which another view is
directly or indirectly defined.

undo. A state of a unit of recovery that indicates that
the changes that the unit of recovery made to
recoverable DB2 resources must be backed out.

Unicode. A standard that parallels the ISO-10646
standard. Several implementations of the Unicode
standard exist, all of which have the ability to represent
a large percentage of the characters that are contained
in the many scripts that are used throughout the world.

uniform resource locator (URL). A Web address,
which offers a way of naming and locating specific
items on the Web.

union. An SQL operation that combines the results of
two SELECT statements. Unions are often used to
merge lists of values that are obtained from several
tables.

unique constraint. An SQL rule that no two values in
a primary key, or in the key of a unique index, can be
the same.

unique index. An index that ensures that no identical
key values are stored in a column or a set of columns
in a table.

1230 Application Programming and SQL Guide



unit of recovery. A recoverable sequence of operations
within a single resource manager, such as an instance
of DB2. Contrast with unit of work.

unit of recovery identifier (URID). The LOGRBA of
the first log record for a unit of recovery. The URID
also appears in all subsequent log records for that unit
of recovery.

unit of work. A recoverable sequence of operations
within an application process. At any time, an
application process is a single unit of work, but the life
of an application process can involve many units of
work as a result of commit or rollback operations. In a
multisite update operation, a single unit of work can
include several units of recovery. Contrast with unit of
recovery.

Universal Unique Identifier (UUID). An identifier
that is immutable and unique across time and space (in
z/OS).

unlock. The act of releasing an object or system
resource that was previously locked and returning it to
general availability within DB2.

untyped parameter marker. A parameter marker that
is specified without its target data type. It has the form
of a single question mark (?).

updatability. The ability of a cursor to perform
positioned updates and deletes. The updatability of a
cursor can be influenced by the SELECT statement and
the cursor sensitivity option that is specified on the
DECLARE CURSOR statement.

update hole. The location on which a cursor is
positioned when a row in a result table is fetched again
and the new values no longer satisfy the search
condition. DB2 marks a row in the result table as an
update hole when an update to the corresponding row
in the database causes that row to no longer qualify for
the result table.

update trigger. A trigger that is defined with the
triggering SQL operation UPDATE.

upstream. The node in the syncpoint tree that is
responsible, in addition to other recovery or resource
managers, for coordinating the execution of a
two-phase commit.

UR. Uncommitted read.

URE. Unit of recovery element.

URID . Unit of recovery identifier.

URL. Uniform resource locator.

user-defined data type (UDT). See distinct type.

user-defined function (UDF). A function that is
defined to DB2 by using the CREATE FUNCTION

statement and that can be referenced thereafter in SQL
statements. A user-defined function can be an external
function, a sourced function, or an SQL function. Contrast
with built-in function.

user view. In logical data modeling, a model or
representation of critical information that the business
requires.

UTF-8. Unicode Transformation Format, 8-bit
encoding form, which is designed for ease of use with
existing ASCII-based systems. The CCSID value for
data in UTF-8 format is 1208. DB2 UDB for z/OS
supports UTF-8 in mixed data fields.

UTF-16. Unicode Transformation Format, 16-bit
encoding form, which is designed to provide code
values for over a million characters and a superset of
UCS-2. The CCSID value for data in UTF-16 format is
1200. DB2 UDB for z/OS supports UTF-16 in graphic
data fields.

UUID. Universal Unique Identifier.

V
value. The smallest unit of data that is manipulated in
SQL.

variable. A data element that specifies a value that
can be changed. A COBOL elementary data item is an
example of a variable. Contrast with constant.

variant function. See nondeterministic function.

varying-length string. A character or graphic string
whose length varies within set limits. Contrast with
fixed-length string.

version. A member of a set of similar programs,
DBRMs, packages, or LOBs.

A version of a program is the source code that is
produced by precompiling the program. The
program version is identified by the program name
and a timestamp (consistency token).
A version of a DBRM is the DBRM that is
produced by precompiling a program. The DBRM
version is identified by the same program name and
timestamp as a corresponding program version.
A version of a package is the result of binding a
DBRM within a particular database system. The
package version is identified by the same program
name and consistency token as the DBRM.
A version of a LOB is a copy of a LOB value at a
point in time. The version number for a LOB is
stored in the auxiliary index entry for the LOB.

view. An alternative representation of data from one
or more tables. A view can include all or some of the
columns that are contained in tables on which it is
defined.

Glossary 1231



view check option. An option that specifies whether
every row that is inserted or updated through a view
must conform to the definition of that view. A view
check option can be specified with the WITH
CASCADED CHECK OPTION, WITH CHECK
OPTION, or WITH LOCAL CHECK OPTION clauses of
the CREATE VIEW statement.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed- and
varying-length records on disk devices. The records in
a VSAM data set or file can be organized in logical
sequence by a key field (key sequence), in the physical
sequence in which they are written on the data set or
file (entry-sequence), or by relative-record number (in
z/OS).

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network (in z/OS).

volatile table. A table for which SQL operations
choose index access whenever possible.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunication Access Method (in
z/OS).

W
warm start. The normal DB2 restart process, which
involves reading and processing log records so that
data that is under the control of DB2 is consistent.
Contrast with cold start.

WLM application environment. A z/OS Workload
Manager attribute that is associated with one or more
stored procedures. The WLM application environment
determines the address space in which a given DB2
stored procedure runs.

write to operator (WTO). An optional user-coded
service that allows a message to be written to the
system console operator informing the operator of
errors and unusual system conditions that might need
to be corrected (in z/OS).

WTO. Write to operator.

WTOR. Write to operator (WTO) with reply.

X
XCF. See cross-system coupling facility.

XES. See cross-system extended services.

XML. See Extensible Markup Language.

XML attribute. A name-value pair within a tagged
XML element that modifies certain features of the
element.

XML element. A logical structure in an XML
document that is delimited by a start and an end tag.
Anything between the start tag and the end tag is the
content of the element.

XML node. The smallest unit of valid, complete
structure in a document. For example, a node can
represent an element, an attribute, or a text string.

XML publishing functions. Functions that return
XML values from SQL values.

X/Open. An independent, worldwide open systems
organization that is supported by most of the world's
largest information systems suppliers, user
organizations, and software companies. X/Open's goal
is to increase the portability of applications by
combining existing and emerging standards.

XRF. Extended recovery facility.

Z
z/OS. An operating system for the eServer™ product
line that supports 64-bit real and virtual storage.

z/OS Distributed Computing Environment (z/OS
DCE). A set of technologies that are provided by the
Open Software Foundation to implement distributed
computing.

1232 Application Programming and SQL Guide

|
|

|

|
|
|

#
#
#
#

|
|
|

|
|

|
|



Bibliography

DB2 Universal Database for z/OS Version 8
product information:

v DB2 Administration Guide, SC18-7413
v DB2 Application Programming and SQL Guide,

SC18-7415
v DB2 Application Programming Guide and Reference

for Java, SC18-7414
v DB2 Codes, GC18-9603
v DB2 Command Reference, SC18-7416
v DB2 Common Criteria Guide, SC18-9672
v DB2 Data Sharing: Planning and Administration,

SC18-7417
v DB2 Diagnosis Guide and Reference, LY37-3201
v DB2 Diagnostic Quick Reference Card, LY37-3202
v DB2 Image, Audio, and Video Extenders

Administration and Programming, SC26-9947
v DB2 Installation Guide, GC18-7418
v DB2 Licensed Program Specifications, GC18-7420
v DB2 Management Clients Package Program

Directory, GI10-8567
v DB2 Messages, GC18-9602
v DB2 ODBC Guide and Reference, SC18-7423
v The Official Introduction to DB2 UDB for z/OS

v DB2 Program Directory, GI10-8566
v DB2 RACF Access Control Module Guide,

SC18-7433
v DB2 Reference for Remote DRDA Requesters and

Servers, SC18-7424
v DB2 Reference Summary, SX26-3853
v DB2 Release Planning Guide, SC18-7425
v DB2 SQL Reference, SC18-7426
v DB2 Text Extender Administration and

Programming, SC26-9948
v DB2 Utility Guide and Reference, SC18-7427
v DB2 What's New?, GC18-7428
v DB2 XML Extender for z/OS Administration and

Programming, SC18-7431

Books and resources about related products:

APL2®

v APL2 Programming Guide, SH21-1072
v APL2 Programming: Language Reference,

SH21-1061

v APL2 Programming: Using Structured Query
Language (SQL), SH21-1057

BookManager READ/MVS
v BookManager READ/MVS V1R3: Installation

Planning & Customization, SC38-2035

C language: IBM C/C++ for z/OS
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS C/C++ Run-Time Library Reference,

SA22-7821

Character Data Representation Architecture
v Character Data Representation Architecture

Overview, GC09-2207
v Character Data Representation Architecture

Reference and Registry, SC09-2190

CICS Transaction Server for z/OS

The publication order numbers below are for
Version 2 Release 2 and Version 2 Release 3 (with
the release 2 number listed first).
v CICS Transaction Server for z/OS Information

Center, SK3T-6903 or SK3T-6957.
v CICS Transaction Server for z/OS Application

Programming Guide, SC34-5993 or SC34-6231
v CICS Transaction Server for z/OS Application

Programming Reference, SC34-5994 or SC34-6232
v CICS Transaction Server for z/OS CICS-RACF

Security Guide, SC34-6011 or SC34-6249
v CICS Transaction Server for z/OS CICS Supplied

Transactions, SC34-5992 or SC34-6230
v CICS Transaction Server for z/OS Customization

Guide, SC34-5989 or SC34-6227
v CICS Transaction Server for z/OS Data Areas,

LY33-6100 or LY33-6103
v CICS Transaction Server for z/OS DB2 Guide,

SC34-6014 or SC34-6252
v CICS Transaction Server for z/OS External

Interfaces Guide, SC34-6006 or SC34-6244
v CICS Transaction Server for z/OS Installation

Guide, GC34-5985 or GC34-6224
v CICS Transaction Server for z/OS

Intercommunication Guide, SC34-6005 or
SC34-6243

v CICS Transaction Server for z/OS Messages and
Codes, GC34-6003 or GC34-6241

v CICS Transaction Server for z/OS Operations and
Utilities Guide, SC34-5991 or SC34-6229

© Copyright IBM Corp. 1983, 2012 1233

#

#



v CICS Transaction Server for z/OS Performance
Guide, SC34-6009 or SC34-6247

v CICS Transaction Server for z/OS Problem
Determination Guide, SC34-6002 or SC34-6239

v CICS Transaction Server for z/OS Release Guide,
GC34-5983 or GC34-6218

v CICS Transaction Server for z/OS Resource
Definition Guide, SC34-5990 or SC34-6228

v CICS Transaction Server for z/OS System
Definition Guide, SC34-5988 or SC34–6226

v CICS Transaction Server for z/OS System
Programming Reference, SC34-5595 or SC34–6233

CICS Transaction Server for OS/390
v CICS Transaction Server for OS/390 Application

Programming Guide, SC33-1687
v CICS Transaction Server for OS/390 DB2 Guide,

SC33-1939
v CICS Transaction Server for OS/390 External

Interfaces Guide, SC33-1944
v CICS Transaction Server for OS/390 Resource

Definition Guide, SC33-1684

COBOL:
v IBM COBOL Language Reference, SC27-1408
v Enterprise COBOL for z/OS Programming Guide,

SC27-1412

Database Design
v DB2 for z/OS and OS/390 Development for

Performance Volume I by Gabrielle Wiorkowski,
Gabrielle & Associates, ISBN 0-96684-605-2

v DB2 for z/OS and OS/390 Development for
Performance Volume II by Gabrielle Wiorkowski,
Gabrielle & Associates, ISBN 0-96684-606-0

v Handbook of Relational Database Design by C.
Fleming and B. Von Halle, Addison Wesley,
ISBN 0-20111-434-8

DB2 Administration Tool

v DB2 Administration Tool for z/OS User's Guide
and Reference, available on the Web at
www.ibm.com/software/data/db2imstools/
library.html

DB2 Buffer Pool Analyzer for z/OS

v DB2 Buffer Pool Tool for z/OS User's Guide and
Reference, available on the Web at
www.ibm.com/software/data/db2imstools/
library.html

DB2 Connect™

v IBM DB2 Connect Quick Beginnings for DB2
Connect Enterprise Edition, GC09-4833

v IBM DB2 Connect Quick Beginnings for DB2
Connect Personal Edition, GC09-4834

v IBM DB2 Connect User's Guide, SC09-4835

DB2 DataPropagator
v DB2 Universal Database Replication Guide and

Reference, SC27-1121

DB2 Performance Expert for z/OS, Version 1

The following books are part of the DB2
Performance Expert library. Some of these books
include information about the following tools:
IBM DB2 Performance Expert for z/OS; IBM DB2
Performance Monitor for z/OS; and DB2 Buffer
Pool Analyzer for z/OS.
v OMEGAMON Buffer Pool Analyzer User's Guide,

SC18-7972
v OMEGAMON Configuration and Customization,

SC18-7973
v OMEGAMON Messages, SC18-7974
v OMEGAMON Monitoring Performance from ISPF,

SC18-7975
v OMEGAMON Monitoring Performance from

Performance Expert Client, SC18-7976
v OMEGAMON Program Directory, GI10-8549
v OMEGAMON Report Command Reference,

SC18-7977
v OMEGAMON Report Reference, SC18-7978
v Using IBM Tivoli OMEGAMON XE on z/OS,

SC18-7979

DB2 Query Management Facility (QMF) Version
8.1
v DB2 Query Management Facility: DB2 QMF High

Performance Option User's Guide for TSO/CICS,
SC18-7450

v DB2 Query Management Facility: DB2 QMF
Messages and Codes, GC18-7447

v DB2 Query Management Facility: DB2 QMF
Reference, SC18-7446

v DB2 Query Management Facility: Developing DB2
QMF Applications, SC18-7651

v DB2 Query Management Facility: Getting Started
with DB2 QMF for Windows and DB2 QMF for
WebSphere, SC18-7449

v DB2 Query Management Facility: Getting Started
with DB2 QMF Query Miner, GC18-7451

v DB2 Query Management Facility: Installing and
Managing DB2 QMF for TSO/CICS, GC18-7444

v DB2 Query Management Facility: Installing and
Managing DB2 QMF for Windows and DB2 QMF
for WebSphere, GC18-7448

1234 Application Programming and SQL Guide



v DB2 Query Management Facility: Introducing DB2
QMF, GC18-7443

v DB2 Query Management Facility: Using DB2
QMF, SC18-7445

v DB2 Query Management Facility: DB2 QMF
Visionary Developer's Guide, SC18-9093

v DB2 Query Management Facility: DB2 QMF
Visionary Getting Started Guide, GC18-9092

DB2 Redbooks®

For access to all IBM Redbooks about DB2, see
the IBM Redbooks Web page at
www.ibm.com/redbooks

DB2 Server for VSE & VM
v DB2 Server for VM: DBS Utility, SC09-2983

DB2 Universal Database Cross-Platform
information
v IBM DB2 Universal Database SQL Reference for

Cross-Platform Development, available at
www.ibm.com/software/data/
developer/cpsqlref/

DB2 Universal Database for iSeries

The following books are available at
www.ibm.com/iseries/infocenter
v DB2 Universal Database for iSeries Performance

and Query Optimization
v DB2 Universal Database for iSeries Database

Programming
v DB2 Universal Database for iSeries SQL

Programming Concepts
v DB2 Universal Database for iSeries SQL

Programming with Host Languages
v DB2 Universal Database for iSeries SQL Reference
v DB2 Universal Database for iSeries Distributed

Data Management
v DB2 Universal Database for iSeries Distributed

Database Programming

DB2 Universal Database for Linux, UNIX, and
Windows:
v DB2 Universal Database Administration Guide:

Planning, SC09-4822
v DB2 Universal Database Administration Guide:

Implementation, SC09-4820
v DB2 Universal Database Administration Guide:

Performance, SC09-4821
v DB2 Universal Database Administrative API

Reference, SC09-4824
v DB2 Universal Database Application Development

Guide: Building and Running Applications,
SC09-4825

v DB2 Universal Database Call Level Interface Guide
and Reference, Volumes 1 and 2, SC09-4849 and
SC09-4850

v DB2 Universal Database Command Reference,
SC09-4828

v DB2 Universal Database SQL Reference Volume 1,
SC09-4844

v DB2 Universal Database SQL Reference Volume 2,
SC09-4845

Device Support Facilities
v Device Support Facilities User's Guide and

Reference, GC35-0033

DFSMS

These books provide information about a variety
of components of DFSMS, including z/OS
DFSMS, z/OS DFSMSdfp, z/OS DFSMSdss, z/OS
DFSMShsm, and z/OS DFP.
v z/OS DFSMS Access Method Services for Catalogs,

SC26-7394
v z/OS DFSMSdss Storage Administration Guide,

SC35-0423
v z/OS DFSMSdss Storage Administration Reference,

SC35-0424
v z/OS DFSMShsm Managing Your Own Data,

SC35-0420
v z/OS DFSMSdfp: Using DFSMSdfp in the z/OS

Environment, SC26-7473
v z/OS DFSMSdfp Diagnosis Reference, GY27-7618
v z/OS DFSMS: Implementing System-Managed

Storage, SC27-7407
v z/OS DFSMS: Macro Instructions for Data Sets,

SC26-7408
v z/OS DFSMS: Managing Catalogs, SC26-7409
v z/OS MVS: Program Management User's Guide

and Reference, SA22-7643
v z/OS MVS Program Management: Advanced

Facilities, SA22-7644
v z/OS DFSMSdfp Storage Administration Reference,

SC26-7402
v z/OS DFSMS: Using Data Sets, SC26-7410
v DFSMSdfp Advanced Services , SC26-7400
v DFSMS/MVS: Utilities, SC26-7414

DFSORT
v DFSORT Application Programming: Guide,

SC33-4035
v DFSORT Installation and Customization,

SC33-4034

Distributed Relational Database Architecture

Bibliography 1235



v Open Group Technical Standard; the Open Group
presently makes the following DRDA books
available through its Web site at
www.opengroup.org
– Open Group Technical Standard, DRDA Version

3 Vol. 1: Distributed Relational Database
Architecture

– Open Group Technical Standard, DRDA Version
3 Vol. 2: Formatted Data Object Content
Architecture

– Open Group Technical Standard, DRDA Version
3 Vol. 3: Distributed Data Management
Architecture

Domain Name System
v DNS and BIND, Third Edition, Paul Albitz and

Cricket Liu, O'Reilly, ISBN 0-59600-158-4

Education
v Information about IBM educational offerings is

available on the Web at http://www.ibm.com/
software/sw-training/

v A collection of glossaries of IBM terms is
available on the IBM Terminology Web site at
www.ibm.com/ibm/terminology/index.html

eServer zSeries®

v IBM eServer zSeries Processor Resource/System
Manager Planning Guide, SB10-7033

Fortran: VS Fortran
v VS Fortran Version 2: Language and Library

Reference, SC26-4221
v VS Fortran Version 2: Programming Guide for

CMS and MVS, SC26-4222

High Level Assembler
v High Level Assembler for MVS and VM and VSE

Language Reference, SC26-4940
v High Level Assembler for MVS and VM and VSE

Programmer's Guide, SC26-4941

ICSF
v z/OS ICSF Overview, SA22-7519
v Integrated Cryptographic Service Facility

Administrator's Guide, SA22-7521

IMS Version 8

IMS product information is available on the IMS
Library Web page, which you can find at
www.ibm.com/ims
v IMS Administration Guide: System, SC27-1284
v IMS Administration Guide: Transaction Manager,

SC27-1285

v IMS Application Programming: Database Manager,
SC27-1286

v IMS Application Programming: Design Guide,
SC27-1287

v IMS Application Programming: Transaction
Manager, SC27-1289

v IMS Command Reference, SC27-1291
v IMS Customization Guide, SC27-1294
v IMS Install Volume 1: Installation Verification,

GC27-1297
v IMS Install Volume 2: System Definition and

Tailoring, GC27-1298
v IMS Messages and Codes Volumes 1 and 2,

GC27-1301 and GC27-1302
v IMS Open Transaction Manager Access Guide and

Reference, SC18-7829
v IMS Utilities Reference: System, SC27-1309

General information about IMS Batch Terminal
Simulator for z/OS is available on the Web at
www.ibm.com/software/data/db2imstools/
library.html

IMS DataPropagator
v IMS DataPropagator for z/OS Administrator's

Guide for Log, SC27-1216
v IMS DataPropagator: An Introduction, GC27-1211
v IMS DataPropagator for z/OS Reference,

SC27-1210

ISPF
v z/OS ISPF Dialog Developer's Guide, SC23-4821
v z/OS ISPF Messages and Codes, SC34-4815
v z/OS ISPF Planning and Customizing, GC34-4814
v z/OS ISPF User's Guide Volumes 1 and 2,

SC34-4822 and SC34-4823

Language Environment
v Debug Tool User's Guide and Reference, SC18-7171
v Debug Tool for z/OS and OS/390 Reference and

Messages, SC18-7172
v z/OS Language Environment Concepts Guide,

SA22-7567
v z/OS Language Environment Customization,

SA22-7564
v z/OS Language Environment Debugging Guide,

GA22-7560
v z/OS Language Environment Programming Guide,

SA22-7561
v z/OS Language Environment Programming

Reference, SA22-7562

MQSeries
v MQSeries Application Messaging Interface,

SC34-5604

1236 Application Programming and SQL Guide



v MQSeries for OS/390 Concepts and Planning
Guide, GC34-5650

v MQSeries for OS/390 System Setup Guide,
SC34-5651

National Language Support
v National Language Design Guide Volume 1,

SE09-8001
v IBM National Language Support Reference Manual

Volume 2, SE09-8002

NetView®

v Tivoli NetView for z/OS Installation: Getting
Started, SC31-8872

v Tivoli NetView for z/OS User's Guide, GC31-8849

Microsoft ODBC

Information about Microsoft ODBC is available at
http://msdn.microsoft.com/library/

Parallel Sysplex Library
v System/390 9672 Parallel Transaction Server, 9672

Parallel Enterprise Server, 9674 Coupling Facility
System Overview For R1/R2/R3 Based Models,
SB10-7033

v z/OS Parallel Sysplex Application Migration,
SA22-7662

v z/OS Parallel Sysplex Overview: An Introduction to
Data Sharing and Parallelism, SA22-7661

v z/OS Parallel Sysplex Test Report, SA22-7663

The Parallel Sysplex Configuration Assistant is
available at www.ibm.com/s390/pso/psotool

PL/I: Enterprise PL/I for z/OS
v IBM Enterprise PL/I for z/OS Language Reference,

SC27-1460
v IBM Enterprise PL/I for z/OS Programming Guide,

SC27-1457

PL/I: PL/I for MVS & VM
v PL/I for MVS & VM Programming Guide,

SC26-3113

SMP/E
v SMP/E for z/OS and OS/390 Reference, SA22-7772
v SMP/E for z/OS and OS/390 User's Guide,

SA22-7773

Storage Management
v z/OS DFSMS: Implementing System-Managed

Storage, SC26-7407
v MVS/ESA Storage Management Library: Managing

Data, SC26-7397

v MVS/ESA Storage Management Library: Managing
Storage Groups, SC35-0421

v MVS Storage Management Library: Storage
Management Subsystem Migration Planning Guide,
GC26-7398

System Network Architecture (SNA)
v SNA Formats, GA27-3136
v SNA LU 6.2 Peer Protocols Reference, SC31-6808
v SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084
v SNA/Management Services Alert Implementation

Guide, GC31-6809

TCP/IP
v IBM TCP/IP for MVS: Customization &

Administration Guide, SC31-7134
v IBM TCP/IP for MVS: Diagnosis Guide,

LY43-0105
v IBM TCP/IP for MVS: Messages and Codes,

SC31-7132
v IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

TotalStorage Enterprise Storage Server
v RAMAC Virtual Array: Implementing Peer-to-Peer

Remote Copy, SG24-5680
v Enterprise Storage Server Introduction and

Planning, GC26-7444
v IBM RAMAC Virtual Array, SG24-6424

Unicode

v z/OS Support for Unicode: Using Conversion
Services, SA22-7649

Information about Unicode, the Unicode
consortium, the Unicode standard, and standards
conformance requirements is available at
www.unicode.org

VTAM
v Planning for NetView, NCP, and VTAM,

SC31-8063
v VTAM for MVS/ESA Diagnosis, LY43-0078
v VTAM for MVS/ESA Messages and Codes,

GC31-8369
v VTAM for MVS/ESA Network Implementation

Guide, SC31-8370
v VTAM for MVS/ESA Operation, SC31-8372
v z/OS Communications Server SNA Programming,

SC31-8829
v z/OS Communicatons Server SNA Programmer's

LU 6.2 Reference, SC31-8810
v VTAM for MVS/ESA Resource Definition

Reference, SC31-8377

Bibliography 1237



WebSphere family
v WebSphere MQ Integrator Broker: Administration

Guide, SC34-6171
v WebSphere MQ Integrator Broker for z/OS:

Customization and Administration Guide,
SC34-6175

v WebSphere MQ Integrator Broker: Introduction and
Planning, GC34-5599

v WebSphere MQ Integrator Broker: Using the
Control Center, SC34-6168

z/Architecture®

v z/Architecture Principles of Operation, SA22-7832

z/OS
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS C/C++ Run-Time Library Reference,

SA22-7821
v z/OS C/C++ User's Guide, SC09-4767
v z/OS Communications Server: IP Configuration

Guide, SC31-8875
v z/OS Communications Server: IP and SNA Codes,

SC31-8791
v z/OS DCE Administration Guide, SC24-5904
v z/OS DCE Introduction, GC24-5911
v z/OS DCE Messages and Codes, SC24-5912
v z/OS Information Roadmap, SA22-7500
v z/OS Introduction and Release Guide, GA22-7502
v z/OS JES2 Initialization and Tuning Guide,

SA22-7532
v z/OS JES3 Initialization and Tuning Guide,

SA22-7549
v z/OS Language Environment Concepts Guide,

SA22-7567
v z/OS Language Environment Customization,

SA22-7564
v z/OS Language Environment Debugging Guide,

GA22-7560
v z/OS Language Environment Programming Guide,

SA22-7561
v z/OS Language Environment Programming

Reference, SA22-7562
v z/OS Managed System Infrastructure for Setup

User's Guide, SC33-7985
v z/OS MVS Diagnosis: Procedures, GA22-7587
v z/OS MVS Diagnosis: Reference, GA22-7588
v z/OS MVS Diagnosis: Tools and Service Aids,

GA22-7589
v z/OS MVS Initialization and Tuning Guide,

SA22-7591
v z/OS MVS Initialization and Tuning Reference,

SA22-7592
v z/OS MVS Installation Exits, SA22-7593
v z/OS MVS JCL Reference, SA22-7597
v z/OS MVS JCL User's Guide, SA22-7598

v z/OS MVS Planning: Global Resource Serialization,
SA22-7600

v z/OS MVS Planning: Operations, SA22-7601
v z/OS MVS Planning: Workload Management,

SA22-7602
v z/OS MVS Programming: Assembler Services

Guide, SA22-7605
v z/OS MVS Programming: Assembler Services

Reference, Volumes 1 and 2, SA22-7606 and
SA22-7607

v z/OS MVS Programming: Authorized Assembler
Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler
Services Reference Volumes 1-4, SA22-7609,
SA22-7610, SA22-7611, and SA22-7612

v z/OS MVS Programming: Callable Services for
High-Level Languages, SA22-7613

v z/OS MVS Programming: Extended Addressability
Guide, SA22-7614

v z/OS MVS Programming: Sysplex Services Guide,
SA22-7617

v z/OS MVS Programming: Sysplex Services
Reference, SA22-7618

v z/OS MVS Programming: Workload Management
Services, SA22-7619

v z/OS MVS Recovery and Reconfiguration Guide,
SA22-7623

v z/OS MVS Routing and Descriptor Codes,
SA22-7624

v z/OS MVS Setting Up a Sysplex, SA22-7625
v z/OS MVS System Codes SA22-7626
v z/OS MVS System Commands, SA22-7627
v z/OS MVS System Messages Volumes 1-10,

SA22-7631, SA22-7632, SA22-7633, SA22-7634,
SA22-7635, SA22-7636, SA22-7637, SA22-7638,
SA22-7639, and SA22-7640

v z/OS MVS Using the Subsystem Interface,
SA22-7642

v z/OS Planning for Multilevel Security and the
Common Criteria, SA22-7509

v z/OS RMF User's Guide, SC33-7990
v z/OS Security Server Network Authentication

Server Administration, SC24-5926
v z/OS Security Server RACF Auditor's Guide,

SA22-7684
v z/OS Security Server RACF Command Language

Reference, SA22-7687
v z/OS Security Server RACF Macros and Interfaces,

SA22-7682
v z/OS Security Server RACF Security

Administrator's Guide, SA22-7683
v z/OS Security Server RACF System Programmer's

Guide, SA22-7681
v z/OS Security Server RACROUTE Macro

Reference, SA22-7692

1238 Application Programming and SQL Guide



v z/OS Support for Unicode: Using Conversion
Services, SA22-7649

v z/OS TSO/E CLISTs, SA22-7781
v z/OS TSO/E Command Reference, SA22-7782
v z/OS TSO/E Customization, SA22-7783
v z/OS TSO/E Messages, SA22-7786
v z/OS TSO/E Programming Guide, SA22-7788
v z/OS TSO/E Programming Services, SA22-7789
v z/OS TSO/E REXX Reference, SA22-7790
v z/OS TSO/E User's Guide, SA22-7794
v z/OS UNIX System Services Command Reference,

SA22-7802
v z/OS UNIX System Services Messages and Codes,

SA22-7807
v z/OS UNIX System Services Planning, GA22-7800
v z/OS UNIX System Services Programming:

Assembler Callable Services Reference, SA22-7803
v z/OS UNIX System Services User's Guide,

SA22-7801

Bibliography 1239



1240 Application Programming and SQL Guide



Index

Special characters
_ (underscore)

assembler host variable 145
: (colon)

assembler host variable 148
C host variable 161
COBOL 192
Fortran host variable 223
PL/I host variable 234

' (apostrophe)
string delimiter precompiler option 485

A
abend

before commit point 435
DB2 869, 903
effect on cursor position 123
exit routines 885
for synchronization calls 578
IMS

U0102 583
U0775 437
U0778 438, 439

multiple-mode program 434
program 432
reason codes 886
return code posted to CAF CONNECT 872
return code posted to RRSAF CONNECT 906
single-mode program 434
system

X"04E" 575
ABRT parameter of CAF (call attachment facility) 878, 887
access path

affects lock attributes 424
direct row access 272, 803
index-only access 802
low cluster ratio

suggests table space scan 809
with list prefetch 832

multiple index access
description 812
PLAN_TABLE 801

selection
influencing with SQL 776
problems 733
queries containing host variables 762
Visual Explain 777, 789

table space scan 809
unique index with matching value 814

ACQUIRE
option of BIND PLAN subcommand

locking tables and table spaces 408
activity sample table 995
address space

examples 934
initialization

CAF CONNECT command 874
CAF OPEN command 876

sample scenarios 883

address space (continued)
separate tasks 862, 896
termination

CAF CLOSE command 879
CAF DISCONNECT command 880

ALL quantified predicate 52
ALLOCATE CURSOR statement 712
ambiguous cursor 419
AMODE link-edit option 496, 555
ANY quantified predicate 52
APOST precompiler option 485
application plan

binding 499
creating 496
dynamic plan selection for CICS applications 508
invalidated 391
listing packages 499
rebinding 390
using packages 384

application program
bill of materials 1099
coding SQL statements

assembler 143
coding conventions 78
data declarations 131
data entry 30
description 77
dynamic SQL 595, 629
host variables 80
selecting rows using a cursor 103

design considerations
bind 381
CAF 862
checkpoint 577
IMS calls 577
planning for changes 387
precompile 381
programming for DL/I batch 576
RRSAF 896
SQL statements 577
stored procedures 631
structure 857
synchronization call abends 578
using ISPF (interactive system productivity

facility) 519
XRST call 577

external stored procedures 643
object extensions 297
preparation

assembling 495
binding 384, 496
compiling 495
DB2 precompiler option defaults 493
defining to CICS 495
DRDA access 445
example 523
link-editing 495
precompiler option defaults 473
precompiler options 383
preparing for running 471
program preparation panel 519

© Copyright IBM Corp. 1983, 2012 X-1



application program (continued)
preparation (continued)

using DB2 coprocessor 382
using DB2 precompiler 381
using DB2I (DB2 Interactive) 519

running
CAF (call attachment facility) 863
CICS 513
IMS 512
program synchronization in DL/I batch 577
TSO 509
TSO CLIST 512

suspension
description 394

test environment 559
testing 559

arithmetic expressions in UPDATE statement 37
AS clause

naming columns for view 7
naming columns in union 8
naming derived columns 8
naming result columns 7
ORDER BY name 7
with ORDER BY clause 10

ASCII data, retrieving 621
assembler application program

assembling 495
character host variable 149
coding SQL statements 143
data type compatibility 155
data types 151
declaring tables 145
declaring views 145
fixed-length character string 149
graphic host variable 150
host variable

declaring 148
naming convention 145

INCLUDE statement 145
including SQLCA 144
including SQLDA 144
indicator variable 156
LOB variable 151
numeric host variable 149
reentrant 146
result set locator 150
ROWID variable 151
SQLCODE 143
SQLSTATE 143
table locator 150
variable declaration 154
varying-length character string 149

assignment, compatibility rules 4
ASSOCIATE LOCATORS statement 711
ATTACH option

CAF 867
precompiler 867, 902
RRSAF 902

ATTACH precompiler option 485
attention processing 862, 884, 896
AUTH SIGNON, RRSAF

syntax 916
usage 916

authority
authorization ID 511
creating test tables 561
SYSIBM.SYSTABAUTH table 18

AUTOCOMMIT field of SPUFI panel 61
automatic

rebind
EXPLAIN processing 799

automatic query rewrite 269
automatic rebind

conditions for 391
invalid plan or package 391
SQLCA not available 392

auxiliary table
LOCK TABLE statement 428

B
batch processing

access to DB2 and DL/I together
binding a plan 580
checkpoint calls 577
commits 577
precompiling 580

batch DB2 application
running 511
starting with a CLIST 512

bill of materials applications 1099
binary large object (BLOB) 299
BIND PACKAGE subcommand of DSN

options
CURRENTDATA 447
DBPROTOCOL 447
ENCODING 447
ISOLATION 412
KEEPDYNAMIC 602
location-name 446
OPTIONS 447
RELEASE 408
REOPT(ALWAYS) 762
REOPT(NONE) 762
REOPT(ONCE) 762
SQLERROR 446

options associated with DRDA access 446, 447
remote 498

BIND PLAN subcommand of DSN
options

ACQUIRE 408
CACHESIZE 505
CURRENTDATA 446
DBPROTOCOL 446
DISCONNECT 445
ENCODING 446
ISOLATION 412
KEEPDYNAMIC 602
RELEASE 408
REOPT(ALWAYS) 762
REOPT(NONE) 762
REOPT(ONCE) 762
SQLRULES 446, 506

options associated with DRDA access 445
remote 498

binding
advantages of packages 385
application plans 496
changes that require 387
checking BIND PACKAGE options 447
DBRMs precompiled elsewhere 478
method

DBRMs and package list 385
DBRMs into single plan 385

X-2 Application Programming and SQL Guide



binding (continued)
method (continued)

package list only 384
options associated with DRDA access 446
options for 384
packages

deciding how to use 384
in use 384
remote 497

planning for 384
plans

in use 384
including DBRMs 499
including packages 499
options 499

remote package requirements 497
specify SQL rules 506

block fetch
conditions for use by non-scrollable cursor 459
conditions for use by scrollable cursor 459
preventing 467
using 458
with cursor stability 467

BMP (batch message processing) program
checkpoints 436, 437
transaction-oriented 436

BTS (batch terminal simulator) 564

C
C application program

declaring tables 160
LOB variable 167
LOB variable array 172
numeric host variable 162
numeric host variable array 168
result set locator 166
sample application 1015

C/C++ application program
character host variable 162
character host variable array 169
coding considerations 186
coding SQL statements 158
constants 180
data type compatibility 181
data types 175
DB2 coprocessor 478
DCLGEN support 136
declaring views 160
examples 1045
fixed-length string 182
graphic host variable 164
graphic host variable array 171
host variable array, declaring 161
host variable, declaring 161
INCLUDE statement 160
including SQLCA 159
including SQLDA 159
indicator variable 182
indicator variable array 182
naming convention 160
precompiler option defaults 493
ROWID variable 168
ROWID variable array 173
SQLCODE 158
SQLSTATE 158
table locator 167

C/C++ application program (continued)
variable declaration 179
varying-length string 182
with classes, preparing 518

C++ application program
DB2 coprocessor 479

cache
dynamic SQL

effect of RELEASE(DEALLOCATE) 409
cache (dynamic SQL)

statements 598
CACHESIZE

option of BIND PLAN subcommand 505
REBIND subcommand 505

CAF (call attachment facility)
application program

examples 886
preparation 862

connecting to DB2 887
description 861
function descriptions 869
load module structure 864
parameters 869
programming language 862
register conventions 869
restrictions 861
return codes

checking 889
CLOSE 878
CONNECT 872
DISCONNECT 879
OPEN 876
TRANSLATE 881

run environment 863
running an application program 863

calculated values
groups with conditions 11
summarizing group values 11

call attachment facility (CAF) 861
CALL DSNALI statement 869, 882
CALL DSNRLI statement 905
CALL statement

example 684
SQL procedure 662

cardinality of user-defined table function
improving query performance 781

Cartesian join 819
CASE statement (SQL procedure) 662
catalog statistics

influencing access paths 786
catalog table

accessing 17
SYSIBM.LOCATIONS 451
SYSIBM.SYSCOLUMNS 18
SYSIBM.SYSTABAUTH 18

CCSID (coded character set identifier)
controlling in COBOL programs 212
effect of DECLARE VARIABLE 85
host variable 85
precompiler option 486
SQLDA 620

character host variable
assembler 149
C 162
COBOL 194
Fortran 224
PL/I 235

Index X-3



character host variable array
C 169
COBOL 200
PL/I 238

character large object (CLOB) 299
character string

literals 78
mixed data 4
width of column in results 64, 70

check constraint
check integrity 262
considerations 261
CURRENT RULES special register effect 262
defining 261
description 261
determining violations 991
enforcement 262
programming considerations 991

CHECK-pending status 262
checkpoint

calls 434, 436
frequency 438

CHKP call, IMS 433, 435
CICS

attachment facility
controlling from applications 941
programming considerations 941

DSNTIAC subroutine
assembler 158
C 186
COBOL 219
PL/I 249

environment planning 513
facilities

command language translator 494
control areas 559
EDF (execution diagnostic facility) 565

language interface module (DSNCLI)
use in link-editing an application 496

logical unit of work 432
operating

indoubt data 433
running a program 559
system failure 433

preparing with JCL procedures 517
programming

DFHEIENT macro 148
sample applications 1017, 1020
SYNCPOINT command 433

storage handling
assembler 158
C 186
COBOL 219
PL/I 249

sync point 433
thread reuse 941
unit of work 432

claim
effect of cursor WITH HOLD 421

CLOSE
statement

description 108
recommendation 113
WHENEVER NOT FOUND clause 614, 625

CLOSE (connection function of CAF)
description 866
language examples 879

CLOSE (connection function of CAF) (continued)
program example 887
syntax 878
syntax usage 878

cluster ratio
effects

table space scan 809
with list prefetch 832

COALESCE function 42
COBOL application program

assignment rules 213
character host variable 194

fixed-length string 194
varying-length string 194

character host variable array 200
fixed-length string array 200
varying-length string array 201

CODEPAGE compiler option 213
coding SQL statements 186
compiling 495
controlling CCSID 212
data type compatibility 214
data types 210
DB2 coprocessor 480
DB2 precompiler option defaults 493
DCLGEN support 136
declaring tables 188
declaring views 188
defining the SQLDA 187
dynamic SQL 629
FILLER entry name 214
graphic host variable 195
graphic host variable array 203
host variable

declaring 191
use of hyphens 191

host variable array
declaring 191

INCLUDE statement 189
including SQLCA 186
indicator variable 216
indicator variable array 216
LOB variable 198
LOB variable array 204
naming convention 189
numeric host variable 192
numeric host variable array 199
object-oriented extensions 219
options 189, 190
preparation 495
record description from DCLGEN 136
resetting SQL-INIT-FLAG 191
result set locator 197
ROWID variable 198
ROWID variable array 205
sample program 1033
SQLCODE 186
SQLSTATE 186
table locator 198
variable declaration 212
WHENEVER statement 189
with classes, preparing 518

CODEPAGE compiler option 213
coding SQL statements

assembler 143
C 158
C++ 158

X-4 Application Programming and SQL Guide



coding SQL statements (continued)
COBOL 186
dynamic 595
Fortran 220
PL/I 230
REXX 249

collection, package
identifying 500
SET CURRENT PACKAGESET statement 500

colon
assembler host variable 148
C host variable 161
C host variable array 161
COBOL host variable 192
Fortran host variable 223
PL/I host variable 234
PL/I host variable array 234
preceding a host variable 80
preceding a host variable array 86

column
data types 4
default value

system-defined 20
user-defined 20

displaying, list of 18
heading created by SPUFI 70
labels

DCLGEN 133
labels, usage 623
name

as a host variable 134
name, with UPDATE statement 36
retrieving, with SELECT 5
specified in CREATE TABLE 19
width of results 64, 70

COMMA precompiler option 486
commit point

description 432
IMS unit of work 434
lock release 434

COMMIT statement
description 61
ending unit of work 432
in a stored procedure 648
when to issue 432

commit, using RRSAF 897
common table expressions

description 13
examples 1099
in a CREATE VIEW statement 14
in a SELECT statement 14
in an INSERT statement 15
infinite loops 16
recursion 1099

comparison
compatibility rules 4
operator, subquery 51

compatibility
data types 4
locks 406
rules 4

composite key 264
compound statement

example
dynamic SQL 670
nested IF and WHILE statements 669

EXIT handler 665

compound statement (continued)
labels 664
SQL procedure 662
valid SQL statements 662

concurrency
control by locks 394
description 393
effect of

ISOLATION options 415, 416
lock size 404
uncommitted read 414

recommendations 397
CONNECT

statement
SPUFI 61

CONNECT (connection function of CAF)
description 866
language examples 875
program example 887
syntax 872

CONNECT (Type 1) statement 453
CONNECT LOCATION field of SPUFI panel 61
CONNECT precompiler option 486
CONNECT statement, with DRDA access 450
connection

DB2
connecting from tasks 857

function of CAF
CLOSE 878, 887
CONNECT 872, 875, 887
description 864
DISCONNECT 879, 887
OPEN 876, 887
sample scenarios 883, 884
summary of behavior 882
TRANSLATE 881, 889

function of RRSAF
AUTH SIGNON 916
CREATE THREAD 938
description 898
examples 934
IDENTIFY 906, 938
SIGNON 912, 938
summary of behavior 904
TERMINATE IDENTIFY 931, 938
TERMINATE THREAD 930, 938
TRANSLATE 933

constants, syntax
C 180
Fortran 227

CONTINUE clause of WHENEVER statement 93
CONTINUE handler (SQL procedure)

description 665
example 665

correlated reference
correlation name 55
SQL rules 47
usage 47
using in subquery 54

correlated subqueries 769
correlation name 55
CREATE GLOBAL TEMPORARY TABLE statement 22
CREATE TABLE statement

DEFAULT clause 20
NOT NULL clause 20
PRIMARY KEY clause 264
relationship names 266

Index X-5



CREATE TABLE statement (continued)
UNIQUE clause 20, 264
usage 19

CREATE THREAD, RRSAF
description 899
effect of call order 904
implicit connection 899
language examples 930
program example 938
syntax usage 928

CREATE TRIGGER
activation order 289
description 279
example 279
timestamp 289
trigger naming 281

CREATE VIEW statement 26
created temporary table

instances 22
table space scan 809
use of NOT NULL 22
working with 21

CS (cursor stability)
optimistic concurrency control 412
page and row locking 412

CURRENDATA option of BIND
plan and package options differ 420

CURRENT PACKAGESET special register
dynamic plan switching 508
identify package collection 500

CURRENT RULES special register
effect on check constraints 262
usage 506

CURRENT SERVER special register
description 500
saving value in application program 468

CURRENT SQLID special register
use in test 559
value in INSERT statement 20

cursor
ambiguous 419
attributes

using GET DIAGNOSTICS 116
using SQLCA 116

closing 108
CLOSE statement 113

deleting a current row 112
description 103
dynamic scrollable 115
effect of abend on position 123
example

retrieving backward with scrollable cursor 125
updating specific row with rowset-positioned

cursor 127
updating with non-scrollable cursor 124
updating with rowset-positioned cursor 126

insensitive scrollable 114
maintaining position 122
non-scrollable 113
open state 122
OPEN statement 105
result table 103
row-positioned

declaring 103
deleting a current row 107
description 103
end-of-data condition 105

cursor (continued)
row-positioned (continued)

retrieving a row of data 106
steps in using 103
updating a current row 107

rowset-positioned
declaring 108
description 103
end-of-data condition 109
number of rows 109
number of rows in rowset 113
opening 108
retrieving a rowset of data 109
steps in using 108
updating a current rowset 111

scrollable
description 114
dynamic 115
fetch orientation 117
INSENSITIVE 114
retrieving rows 116
SENSITIVE DYNAMIC 115
SENSITIVE STATIC 114
sensitivity 114
static 115
updatable 114

static scrollable 115
types 113
WITH HOLD

claims 421
description 122
locks 420

D
data

adding to the end of a table 990
associated with WHERE clause 8
currency 467
effect of locks on integrity 394
improving access 789
indoubt state 435
not in a table 16
retrieval using SELECT * 989
retrieving a rowset 109
retrieving a set of rows 106
retrieving large volumes 989
scrolling backward through 985
security and integrity 431
understanding access 789
updating during retrieval 988
updating previously retrieved data 988

data encryption 268
data type

built-in 4
comparisons 85
compatibility

assembler and SQL 151
assembler application program 155
C and SQL 175
C application program 181
COBOL and SQL 210, 214
Fortran and SQL 225, 227
PL/I and SQL 241
PL/I application program 245
REXX and SQL 255

result set locator 712

X-6 Application Programming and SQL Guide



DATE precompiler option 487
datetime data type 4
DB2 abend

CAF 869
DL/I batch 578
RRSAF 903

DB2 coprocessor
for C 478
for C++ 479
for COBOL 480
for PL/I 482
processing SQL statements 473

DB2 private protocol access
coding an application 448
compared to DRDA access 442
mixed environment 1117
planning 442
sample program 1071

DB2I (DB2 Interactive)
background processing

run-time libraries 528
EDITJCL processing

run-time libraries 528
help system 519
interrupting 68
menu 59
panels

BIND PACKAGE 534
BIND PLAN 537
Compile, Link, and Run 554
Current SPUFI Defaults 62
DB2I Primary Option Menu 59, 520
DCLGEN 132, 139
Defaults for BIND PLAN 547
Precompile 529
Program Preparation 523
System Connection Types 551

preparing programs 519
program preparation example 523
selecting

DCLGEN (declarations generator) 136
SPUFI 59

SPUFI 59
DBCS (double-byte character set)

table names 131
translation in CICS 494

DBINFO
stored procedure 638
user-defined function 330

DBPROTOCOL(DRDA) 456
DBRM (database request module)

binding to a package 497
binding to a plan 499
deciding how to bind 384
description 477

DCLGEN subcommand of DSN
building data declarations 131
COBOL example 138
column labels 133
DBCS table names 131
forming host variable names 134
identifying tables 131
INCLUDE statement 136
including declarations in a program 136
indicator variable array declaration 134
right margin 135
starting 131

DCLGEN subcommand of DSN (continued)
using 131
using PDS (partitioned data set) 131

DDITV02 input data set 578
DDOTV02 output data set 580
deadlock

description 395
example 395
indications

in CICS 397
in IMS 397
in TSO 396

recommendation for avoiding 399
with RELEASE(DEALLOCATE) 400
X'00C90088' reason code in SQLCA 396

debugging application programs 562
DEC15

precompiler option 487
rules 16

DEC31
avoiding overflow 17
precompiler option 487
rules 16

decimal
15 digit precision 16
31 digit precision 17
arithmetic 16

DECIMAL
constants 180
data type, in C 179
function, in C 179

declaration
generator (DCLGEN) 131
in an application program 136
variables in CAF program examples 892

DECLARE (SQL procedure) 663
DECLARE CURSOR statement

description, row-positioned 103
description, rowset-positioned 108
FOR UPDATE clause 104
multilevel security 104
prepared statement 613, 617
scrollable cursor 114
WITH HOLD clause 122
WITH RETURN option 652
WITH ROWSET POSITIONING clause 108

DECLARE GLOBAL TEMPORARY TABLE statement 23
DECLARE TABLE statement

advantages of using 79
assembler 145
C 160
COBOL 188
description 79
Fortran 222
PL/I 231
table description 131

DECLARE VARIABLE statement
changing CCSID 86
coding 86
description 85

declared temporary table
including column defaults 24
including identity columns 24
instances 23
ON COMMIT clause 25
qualifier for 23
remote access using a three-part name 449

Index X-7



declared temporary table (continued)
requirements 23
working with 21

dedicated virtual memory pool 828
DEFER(PREPARE) 456
DELETE statement

correlated subquery 56
description 37
positioned

FOR ROW n OF ROWSET clause 112
restrictions 107
WHERE CURRENT clause 107, 112

subquery 51
deleting

current rows 107
data 37
every row from a table 38
rows from a table 37

delimiter, SQL 78
department sample table

creating 20
description 996

DESCRIBE CURSOR statement 712
DESCRIBE INPUT statement 612
DESCRIBE PROCEDURE statement 711
DESCRIBE statement

column labels 623
INTO clauses 617, 619

DFHEIENT macro 148
DFSLI000 (IMS language interface module) 496
direct row access 272, 803
DISCONNECT (connection function of CAF)

description 866
language examples 880
program example 887
syntax 879
syntax usage 879

displaying
table columns 18
table privileges 18

DISTINCT
clause of SELECT statement 7
unique values 7

distinct type
assigning values 369
comparing types 368
description 367
example

argument of user-defined function (UDF) 372
arguments of infix operator 372
casting constants 372
casting function arguments 372
casting host variables 372
LOB data type 372

function arguments 371
strong typing 368
UNION of 371

distributed data
choosing an access method 442
coordinating updates 452
copying a remote table 467
DBPROTOCOL bind option 444, 449
encoding scheme of retrieved data 466
example

accessing remote temporary table 449
calling stored procedure at remote location 444
connecting to remote server 444, 450

distributed data (continued)
example (continued)

limiting number of retrieved rows 464
specifying location in table name 444
using alias for multiple sites 451
using RELEASE statement 451
using three-part table names 448

executing long SQL statements 466
identifying server at run time 468
LOB performance

setting CURRENT RULES special register 455
using LOB locators 455
using stored procedure result sets 455

maintaining data currency 467
moving from DB2 private protocol access to DRDA

access 442
performance

choosing bind options 456
coding efficient queries 454
forcing block fetch 458
limiting number of retrieved rows 461, 464
optimizing access path 457
specifying package list 456
using block fetch 458
using DRDA 458

performance considerations 456
planning

access by a program 441
DB2 private protocol access 444
DRDA access 444

program preparation 447
programming

coding with DB2 private protocol access 448
coding with DRDA access 448

resource limit facility 441
restricted systems 453
retrieving from ASCII or Unicode tables 466
savepoints 442
scrollable cursors 442
terminology 441
three-part table names 448
transmitting mixed data 467
two-phase commit 452
using alias for location 451

DL/I batch
application programming 576
checkpoint call 433
checkpoint ID 584
commit and rollback coordination 438
DB2 requirements 576
DDITV02 input data set 578
DSNMTV01 module 581
features 575
SSM= parameter 581
submitting an application 581
TERM call 433

double-byte character large object (DBCLOB) 299
DPSI

performance considerations 774
DRDA access

accessing remote temporary table 449
bind options 445, 446
coding an application 448
compared to DB2 private protocol access 442
connecting to remote server 450
mixed environment 1117
planning 442, 444

X-8 Application Programming and SQL Guide



DRDA access (continued)
precompiler options 445
preparing programs 445
programming hints 465
releasing connections 451
sample program 1063
SQL limitations at different servers 465

DROP TABLE statement 25
DSN applications, running with CAF 863
DSN command of TSO

return code processing 510
RUN subcommands 509
services lost under CAF 863

DSN_FUNCTION_TABLE table 361
DSN_STATEMENT_CACHE_TABLE 601
DSN_STATEMNT_TABLE table

column descriptions 843
DSN8BC3 sample program 218
DSN8BD3 sample program 185
DSN8BE3 sample program 185
DSN8BF3 sample program 230
DSN8BP3 sample program 248
DSNACICS stored procedure

debugging 1145
description 1138
invocation example 1143
invocation syntax 1139
output 1145
parameter descriptions 1139
restrictions 1145

DSNACICX user exit routine
description 1141
parameter list 1142
rules for writing 1141

DSNAEXP stored procedure
description 1154
example call 1156
option descriptions 1155
output 1157
syntax diagram 1155

DSNAIMS
option descriptions 1146
syntax diagram 1146

DSNAIMS stored procedure
description 1145
examples 1148

DSNAIMS2
option descriptions 1150
syntax diagram 1150

DSNAIMS2 stored procedure
description 1149
examples 1153

DSNALI (CAF language interface module)
deleting 886
loading 886

DSNCLI (CICS language interface module) 496
DSNELI (TSO language interface module) 863
DSNH command of TSO 569
DSNHASM procedure 514
DSNHC procedure 514
DSNHCOB procedure 514
DSNHCOB2 procedure 514
DSNHCPP procedure 514
DSNHCPP2 procedure 514
DSNHDECP

implicit CAF connection 866
implicit RRSAF connection 899

DSNHFOR procedure 514
DSNHICB2 procedure 514
DSNHICOB procedure 514
DSNHLI entry point to DSNALI

implicit calls 866
program example 891

DSNHLI entry point to DSNRLI
implicit calls 899
program example 937

DSNHLI2 entry point to DSNALI 889
DSNHPLI procedure 514
DSNMTV01 module 581
DSNRLI (RRSAF language interface module)

deleting 937
loading 937

DSNTEDIT CLIST 1105
DSNTEP2 and DSNTEP4 sample program

specifying SQL terminator 1029
DSNTEP2 sample program

how to run 1021
parameters 1022
program preparation 1021

DSNTEP4 sample program
how to run 1021
parameters 1022
program preparation 1021

DSNTIAC subroutine
assembler 158
C 186
COBOL 219
PL/I 249

DSNTIAD sample program
how to run 1021
parameters 1022
program preparation 1021
specifying SQL terminator 1026

DSNTIAR subroutine
assembler 157
C 184
COBOL 217
description 98
Fortran 229
PL/I 247
return codes 100
using 100

DSNTIAUL sample program
how to run 1021
parameters 1022
program preparation 1021

DSNTIR subroutine 229
DSNTPSMP stored procedure 674
DSNTRACE data set 885
DSNXDBRM 478
DSNXNBRM 478
duration of locks

controlling 408
description 404

DXXMQGEN stored procedure
description 1176
invocation example 1179
invocation syntax 1177
output 1180
parameter descriptions 1177

DXXMQGENCLOB stored procedure
description 1184
invocation example 1186
invocation syntax 1184

Index X-9



DXXMQGENCLOB stored procedure (continued)
output 1187
parameter descriptions 1184

DXXMQINSERT stored procedure
description 1157
invocation example 1158
invocation syntax 1157
output 1159
parameter descriptions 1158

DXXMQINSERTALL stored procedure
description 1166
invocation example 1168
invocation syntax 1167
output 1169
parameter descriptions 1167

DXXMQINSERTALLCLOB stored procedure
description 1174
invocation example 1175
invocation syntax 1174
output 1176
parameter descriptions 1175

DXXMQINSERTCLOB stored procedure
description 1162
invocation example 1163
invocation syntax 1162
output 1164
parameter descriptions 1163

DXXMQRETRIEVE stored procedure
description 1180
invocation example 1182
invocation syntax 1180
output 1183
parameter descriptions 1181

DXXMQRETRIEVECLOB stored procedure
description 1187
invocation example 1189
invocation syntax 1188
output 1191
parameter descriptions 1188

DXXMQSHRED stored procedure
description 1159
invocation example 1161
invocation syntax 1160
output 1162
parameter descriptions 1160

DXXMQSHREDALL stored procedure
description 1169
invocation example 1170
invocation syntax 1169
output 1171
parameter descriptions 1170

DXXMQSHREDALLCLOB stored procedure
description 1171
invocation example 1173
invocation syntax 1172
output 1174
parameter descriptions 1172

DXXMQSHREDCLOB stored procedure
description 1164
invocation example 1166
invocation syntax 1165
output 1166
parameter descriptions 1165

DYNAM option of COBOL 189
dynamic plan selection

restrictions with CURRENT PACKAGESET special
register 508

dynamic plan selection (continued)
using packages with 508

dynamic prefetch
description 831

dynamic SQL
advantages and disadvantages 595
assembler program 616
C program 616
caching

effect of RELEASE bind option 409
caching prepared statements 598
COBOL application program 189
COBOL program 629
description 595
effect of bind option REOPT(ALWAYS) 627
effect of WITH HOLD cursor 609
EXECUTE IMMEDIATE statement 606
fixed-list SELECT statements 612, 615
Fortran program 222
host languages 605
non-SELECT statements 605, 609
PL/I 616
PREPARE and EXECUTE 607, 609
programming 595
requirements 596
restrictions 596
sample C program 1045
statement caching 598
statements allowed 1117
using DESCRIBE INPUT 612
varying-list SELECT statements 615, 627

DYNAMICRULES bind option 504

E
ECB (event control block)

address in CALL DSNALI parameter list 869
CONNECT connection function of CAF 872, 875
CONNECT, RRSAF 906
program example 887, 889
programming with CAF (call attachment facility) 887

EDIT panel, SPUFI
empty 66
SQL statements 66

embedded semicolon
embedded 1027

employee photo and resume sample table 1001
employee sample table 998
employee-to-project-activity sample table 1004
ENCRYPT_TDES function 268
END-EXEC delimiter 78
end-of-data condition 105, 109
error

arithmetic expression 93
division by zero 93
handling 93
messages generated by precompiler 569
overflow 93
return codes 91
run 568

ESTAE routine in CAF (call attachment facility) 885
exception condition handling 93
EXCLUSIVE

lock mode
effect on resources 405
LOB 427
page 405

X-10 Application Programming and SQL Guide



EXCLUSIVE (continued)
lock mode (continued)

row 405
table, partition, and table space 405

EXEC SQL delimiter 78
EXECUTE IMMEDIATE statement 606
EXECUTE statement

dynamic execution 609
parameter types 626
USING DESCRIPTOR clause 627

EXISTS predicate, subquery 53
EXIT handler (SQL procedure) 665
exit routine

abend recovery with CAF 885
attention processing with CAF 884
DSNACICX 1141

EXPLAIN
automatic rebind 392
report of outer join 817
statement

description 789
index scans 802
interpreting output 800
investigating SQL processing 789

EXPLAIN PROCESSING field of panel DSNTIPO
overhead 799

EXPLAIN STATEMENT CACHE ALL 601

F
FETCH FIRST n ROWS ONLY clause

effect on OPTIMIZE clause 777
FETCH FIRST n ROWS ONLY clause

effect on distributed performance 464
FETCH statement

description, multiple rows 109
description, single row 106
fetch orientation 117
host variables 614
INTO DESCRIPTOR clause 625
multiple-row

assembler 145
description 109
FOR n ROWS clause 113
number of rows in rowset 113
using with descriptor 109, 111
using with host variable arrays 109

row and rowset positioning 117
scrolling through data 985
using row-positioned cursor 106

filter factor
predicate 748

fixed-length character string
assembler 149
COBOL 200

FLAG precompiler option 487
FLOAT precompiler option 487
FOLD

value for C and CPP 488
value of precompiler option HOST 488

FOR FETCH ONLY clause 458
FOR READ ONLY clause 458
FOR UPDATE clause 104
FOREIGN KEY clause

description 266
usage 267

format
SELECT statement results 70
SQL in input data set 66

Fortran application program
@PROCESS statement 222
assignment rules 226
byte data type 223
character host variable 223, 224
coding SQL statements 220
constant syntax 227
data type compatibility 227
data types 225
declaring tables 222
declaring views 222
defining the SQLDA 221
host variable, declaring 223
INCLUDE statement 222
including SQLCA 220
indicator variable 228
LOB variable 224
naming convention 222
numeric host variable 223
parallel option 223
precompiler option defaults 493
result set locator 224
ROWID variable 224
SQLCODE 220
SQLSTATE 220
statement labels 222
variable declaration 226
WHENEVER statement 222

FROM clause
joining tables 39
SELECT statement 5

FRR (functional recovery routine) 885
FULL OUTER JOIN clause 41
function

column
when evaluated 808

function resolution 356
functional recovery routine (FRR) 885

G
GET DIAGNOSTICS

output host variable processing 89
GET DIAGNOSTICS statement

condition items 94
connection items 94
data types for items 94, 95
description 94
multiple-row INSERT 94
RETURN_STATUS item 667
ROW_COUNT item 109
SQL procedure 662
statement items 94
using in handler 666

global transaction
RRSAF support 913, 918, 922

glossary 1199
GO TO clause of WHENEVER statement 93
GOTO statement (SQL procedure) 662
governor (resource limit facility) 603
GRANT statement 561
graphic host variable

assembler 150
C 164

Index X-11



graphic host variable (continued)
COBOL 195
PL/I 235

graphic host variable array
C 171
COBOL 203
PL/I 238

GRAPHIC precompiler option 487
GROUP BY clause

effect on OPTIMIZE clause 779
use with aggregate functions 11

H
handler, using in SQL procedure 665
HAVING clause

selecting groups subject to conditions 11
subquery 51

HOST
FOLD value for C and CPP 488
precompiler option 488

host language
declarations in DB2I (DB2 Interactive) 132
dynamic SQL 605

host structure
C 173
COBOL 205
description 80, 90
PL/I 240
retrieving row of data 90
using SELECT INTO 90

host variable
assembler 148
C 161, 162
changing CCSID 85
character

assembler 149
C 162
COBOL 194
Fortran 224
PL/I 235

COBOL 191, 192
description 79
example query 762
FETCH statement 614
floating-point

assembler 149
C/C++ 179
COBOL 192
PL/I 244

Fortran 223
graphic

assembler 150
C 164
COBOL 195
PL/I 235

impact on access path selection 762
in equal predicate 765
inserting into tables 83
LOB

assembler 303
C 303
COBOL 304
Fortran 305
PL/I 305

naming a structure
C 173

host variable (continued)
naming a structure (continued)

COBOL 205
PL/I program 240

numeric
assembler 149
C 162
COBOL 192
Fortran 223
PL/I 234

PL/I 233, 234
PREPARE statement 613
REXX 255
selecting single row 81
static SQL flexibility 596
tuning queries 762
updating values in tables 82
using 80
using INSERT with VALUES clause 83
using SELECT INTO 81
using SELECT INTO with aggregate function 82
using SELECT INTO with expressions 82

host variable array
C 161, 168
character

C 169
COBOL 200
PL/I 238

COBOL 191, 199
description 80, 86
graphic

C 171
COBOL 203
PL/I 238

indicator variable array 87
inserting multiple rows 87
numeric

C 168
COBOL 199
PL/I 237

PL/I 233, 237
retrieving multiple rows 87

hybrid join
description 821

I
I/O processing

parallel
queries 849

IDENTIFY, RRSAF
program example 938
syntax 906
usage 906

identity column
defining 31, 273
IDENTITY_VAL_LOCAL function 274
inserting in table 985
inserting values into 30
trigger 283
using as parent key 274

IF statement (SQL procedure) 662
IKJEFT01 terminal monitor program in TSO 511
IMS

checkpoint calls 434
CHKP call 433
commit point 434

X-12 Application Programming and SQL Guide



IMS (continued)
environment planning 512
language interface module (DFSLI000) 496
link-editing 496
recovery 433, 435
restrictions on commit 435
ROLB call 433, 438
ROLL call 433, 438
SYNC call 433
unit of work 433, 434
XRST call 435

IMS transactions stored procedure
multiple connections 1149, 1153
option descriptions 1146, 1150
syntax diagram 1146, 1150

IN predicate, subquery 52
INCLUDE statement, DCLGEN output 136
index

access methods
access path selection 810
by nonmatching index 812
IN-list index scan 812
matching index columns 802
matching index description 811
multiple 812
one-fetch index scan 814

locking 407
types

foreign key 266
primary 265
unique 265
unique on primary key 263

indicator structure 90
indicator variable

array declaration in DCLGEN 134
assembler application program 156
C 182
COBOL 216
description 83
Fortran 228
incorrect test for null column value 84
inserting null value 84
null value 84
PL/I 246
REXX 258
specifying 84
testing 83

indicator variable array
C 182
COBOL 216
description 87
inserting null values 88
PL/I 246
specifying 88
testing for null value 87

infinite loop 16
informational referential constraint

automatic query rewrite 269
description 269

INLISTP 788
INNER JOIN clause 40
input data set DDITV02 578
INSERT processing, effect of MEMBER CLUSTER option of

CREATE TABLESPACE 398
INSERT statement

description 27
multiple rows 29

INSERT statement (continued)
single row 28
subquery 51
VALUES clause 27
with identity column 30
with ROWID column 30

inserting
values from host variable arrays 87
values from host variables 83

INTENT EXCLUSIVE lock mode 405, 427
INTENT SHARE lock mode 405, 427
Interactive System Productivity Facility (ISPF) 59
internal resource lock manager (IRLM) 581
INTO DESCRIPTOR clause

FETCH statement 625
invalid SQL terminator characters 1026
IS DISTINCT FROM predicate 85
ISOLATION

option of BIND PLAN subcommand
effects on locks 412

isolation level
control by SQL statement

example 421
recommendations 400
REXX 259

ISPF (Interactive System Productivity Facility)
browse 61, 69
DB2 uses dialog management 59
DB2I Primary Option Menu 520
precompiling under 519
Program Preparation panel 523
programming 857, 860
scroll command 70

ISPLINK SELECT services 859
ITERATE statement (SQL procedure) 662

J
JCL (job control language)

batch backout example 583
DDNAME list format 515
page number format 516
precompilation procedures 513
precompiler option list format 515
preparing a CICS program 517
preparing a object-oriented program 518
starting a TSO batch application 511

join operation
Cartesian 819
description 815
FULL OUTER JOIN 41
hybrid

description 821
INNER JOIN 40
join sequence 823
joining a table to itself 41
joining tables 39
LEFT OUTER JOIN 42
merge scan 820
more than one join 45
more than one join type 45
nested loop 818
operand

nested table expression 46
user-defined table function 46

RIGHT OUTER JOIN 43
SQL rules 44

Index X-13



join operation (continued)
star join 823
star schema 823

join sequence
definition 740

K
KEEPDYNAMIC option

BIND PACKAGE subcommand 602
BIND PLAN subcommand 602

key
composite 264
foreign 266
parent 263
primary

choosing 263
defining 265
recommendations for defining 265
using timestamp 263

unique 985
keywords, reserved 1113

L
label, column 623
language interface modules

DSNALI 654
DSNCLI 496
DSNRLI 654
program preparation 381

large object (LOB)
character conversion 310
declaring host variables 302

for precompiler 302
declaring LOB locators 302
defining and moving data into DB2 299
description 299
expression 307
indicator variable 309
locator 307
materialization 306
sample applications 302

LEAVE statement (SQL procedure) 662
LEFT OUTER JOIN clause 42
level of a lock 402
LEVEL precompiler option 488
limited partition scan 806
LINECOUNT precompiler option 488
link-editing 495

AMODE option 555
RMODE option 555

list prefetch
description 831
thresholds 832

load module structure of CAF (call attachment facility) 864
load module structure of RRSAF 900
LOAD MVS macro used by CAF 863
LOAD MVS macro used by RRSAF 897
LOB

lock
concurrency with UR readers 417
description 425

LOB (large object)
lock duration 427
LOCK TABLE statement 428

LOB (large object) (continued)
locking 425
modes of LOB locks 427
modes of table space locks 427

LOB column, definition 299
LOB variable

assembler 151
C 167
COBOL 198
Fortran 224
PL/I 236

LOB variable array
C 172
COBOL 204
PL/I 239

lock
avoidance 418
benefits 394
class

transaction 393
compatibility 406
description 393
duration

controlling 408
description 404
LOBs 427

effect of cursor WITH HOLD 420
effects

deadlock 395
suspension 394
timeout 394

escalation
when retrieving large numbers of rows 989

hierarchy
description 402

LOB locks 425
mode 404
object

description 407
indexes 407

options affecting
access path 424
bind 408
cursor stability 412
program 408
read stability 415
repeatable read 416
uncommitted read 414

page locks
CS, RS, and RR compared 416
description 402

recommendations for concurrency 397
size

page 402
partition 402
table 402
table space 402

unit of work 431, 432
LOCK TABLE statement

effect on auxiliary tables 428
effect on locks 422

LOCKPART clause of CREATE and ALTER TABLESPACE
effect on locking 403

LOCKSIZE clause
recommendations 398

LOOP statement (SQL procedure) 662

X-14 Application Programming and SQL Guide



M
mapping macro

assembler applications 158
DSNXDBRM 478
DSNXNBRM 478

MARGINS precompiler option 488
mass delete

contends with UR process 417
materialization

LOBs 306
outer join 817
views and nested table expressions 836

MEMBER CLUSTER option of CREATE TABLESPACE 398
merge processing

views or nested table expressions 836
message

analyzing 569
CAF errors 882
obtaining text

assembler 157
C 184
COBOL 217
Fortran 229
PL/I 247

RRSAF errors 904
mixed data

converting 467
description 4
transmitting to remote location 467

MLS (multilevel security)
referential constraints 268
triggers 291

mode of a lock 404
modified source statements 477
MQSeries

DB2 functions
commit environment 950
connecting applications 964
MQPUBLISH 947
MQPUBLISHXML 949
MQREAD 947
MQREADALL 948
MQREADALLCLOB 948
MQREADALLXML 949
MQREADCLOB 947
MQREADXML 949
MQRECEIVE 947
MQRECEIVEALL 948
MQRECEIVEALLCLOB 948
MQRECEIVEALLXML 949
MQRECEIVECLOB 947
MQRECEIVEXML 949
MQSEND 947
MQSENDXML 949
MQSENDXMLFILE 949
MQSENDXMLFILECLOB 949
MQSUBSCRIBE 947
MQUNSUBSCRIBE 947
programming considerations 946
retrieving messages 963
sending messages 962

DB2 scalar functions 946
DB2 stored procedures

DXXMQINSERT 949, 950
DXXMQINSERTALL 949, 950
DXXMQINSERTALLCLOB 949
DXXMQINSERTCLOB 949

MQSeries (continued)
DB2 stored procedures (continued)

DXXMQRETRIEVE 950
DXXMQRETRIEVECLOB 950
DXXMQSHRED 949
DXXMQSHREDALL 949
DXXMQSHREDALLCLOB 949
DXXMQSHREDCLOB 949

DB2 table functions 948
DB2 XML-specific functions 949
description 943

multilevel security (MLS) check
referential constraints 268
triggers 291

multiple-mode IMS programs 436
multiple-row FETCH statement

checking DB2_LAST_ROW 96
specifying indicator arrays 88
SQLCODE +100 92
testing for null 88

multiple-row INSERT statement
dynamic execution 610
NOT ATOMIC CONTINUE ON SQLEXCEPTION 94
using GET DIAGNOSTICS 94

MVS
31-bit addressing 555

N
naming convention

assembler 145
C 160
COBOL 189
Fortran 222
PL/I 232
REXX 253
tables you create 20

NATIONAL data type 213
nested table expression

correlated reference 46
correlation name 46
join operation 46
processing 836

NEWFUN
enabling V8 new object 472
precompiler option 489

NODYNAM option of COBOL 190
NOFOR precompiler option 489
NOGRAPHIC precompiler option 489
noncorrelated subqueries 769
nonsegmented table space

scan 810
nontabular data storage 991
NOOPTIONS precompiler option 489
NOPADNTSTR precompiler option 489
NOSOURCE precompiler option 489
NOT FOUND clause of WHENEVER statement 93
notices, legal 1195
NOXREF precompiler option 489
NUL character in C 161
NUL-terminated string in C 180
NULL

pointer in C 161
null value

column value of UPDATE statement 37
host structure 90
indicator variable 84

Index X-15



null value (continued)
indicator variable array 87
inserting into columns 84
IS DISTINCT FROM predicate 84
IS NULL predicate 84

Null, in REXX 254
numeric

data
width of column in results 70

numeric data
description 4
width of column in results 64

numeric host variable
assembler 149
C 162
COBOL 192
Fortran 223
PL/I 234

numeric host variable array
C 168
COBOL 199
PL/I 237

O
object of a lock 407
object-oriented program, preparation 518
ON clause, joining tables 39
ONEPASS precompiler option 490
OPEN

statement
opening a cursor 105
opening a rowset cursor 108
performance 835
prepared SELECT 614
USING DESCRIPTOR clause 627
without parameter markers 625

OPEN (connection function of CAF)
description 866
language examples 877
program example 887
syntax 876
syntax usage 876

optimistic concurrency control 412
OPTIMIZE FOR n ROWS clause 778

interaction with FETCH FIRST clause 777
OPTIMIZE FOR n ROWS clause

effect on distributed performance 461
OPTIONS precompiler option 490
ORDER BY clause

derived columns 10
effect on OPTIMIZE clause 779
SELECT statement 10
with AS clause 10

organization application
examples 1015

originating task 850
outer join

EXPLAIN report 817
FULL OUTER JOIN 41
LEFT OUTER JOIN 42
materialization 817
RIGHT OUTER JOIN 43

output host variable processing 89
errors 89

P
package

advantages 385
binding

DBRM to a package 496
EXPLAIN option for remote 799
PLAN_TABLE 791
remote 497
to plans 499

deciding how to use 384
identifying at run time 500
invalidated 391

dropping objects 388
listing 499
location 500
rebinding examples 389
rebinding with pattern-matching characters 388
selecting 500
trigger 390
version, identifying 503

PADNTSTR precompiler option 490
page

locks
description 402

PAGE_RANGE column of PLAN_TABLE 806
panel

Current SPUFI Defaults 62, 65
DB2I Primary Option Menu 59
DCLGEN 132, 139
DSNEDP01 132, 139
DSNEPRI 59
DSNESP01 59
DSNESP02 62
DSNESP07 65
EDIT (for SPUFI input data set) 66
SPUFI 59

parallel processing
description 847
enabling 850
related PLAN_TABLE columns 807
tuning 854

parameter marker
casting in function invocation 363
dynamic SQL 608
more than one 609
values provided by OPEN 614
with arbitrary statements 626, 627

parent key 263
PARMS option 511
partition scan, limited 806
partitioned table space

locking 403
performance

affected by
application structure 859
DEFER(PREPARE) 456
lock size 404
NODEFER(PREPARE) 456
remote queries 454, 456, 464
REOPT(ALWAYS) 457
REOPT(NONE) 457
REOPT(ONCE) 457

monitoring
with EXPLAIN 789

performance considerations
DPSI 774
scrollable cursor 773

X-16 Application Programming and SQL Guide



PERIOD precompiler option 490
phone application, description 1015
PL/I application program

character host variable 235
character host variable array 238
coding considerations 233
coding SQL statements 230
data type compatibility 245
data types 241
DB2 coprocessor 482
DBCS constants 232
DCLGEN support 136
declaring tables 231
declaring views 231
graphic host variable 235
graphic host variable array 238
host variable 233
host variable array 233
INCLUDE statement 232
including SQLCA 230
including SQLDA 231
indicator variable array 246
indicator variables 246
LOB variable 236
LOB variable array 239
naming convention 232
numeric host variable 234
numeric host variable array 237
result set locator 235
ROWID variable 236
ROWID variable array 239
SQLCODE 230
SQLSTATE 230
statement labels 232
table locator 236
variable declaration 244
WHENEVER statement 232

PLAN_TABLE table
column descriptions 791
report of outer join 817

planning
accessing distributed data 441
binding 384
precompiling 383
recovery 431

precompiler
binding on another system 478
description 473
diagnostics 477
functions 474
input 476
maximum size of input 476
modified source statements 477
option descriptions 484
options

CONNECT 445
defaults 492
DRDA access 445
SQL 445

output 477
planning for 383
precompiling programs 473
starting

dynamically 515
JCL for procedures 513

submitting jobs
DB2I panels 529

precompiler (continued)
submitting jobs (continued)

ISPF panels 523
submitting jobs with ISPF panels 521
using 474

predicate
description 737
evaluation rules 741
filter factor 748
general rules 8
generation 757
impact on access paths 737
indexable 739
join 738
local 738
modification 757
properties 737
stage 1 (sargable) 739
stage 2

evaluated 739
influencing creation 783

subquery 738
predictive governing

in a distributed environment 604
with DEFER(PREPARE) 604
writing an application for 604

PRELINK utility 526
PREPARE statement

dynamic execution 608
host variable 613
INTO clause 617

prepared SQL statement
caching 602
statements allowed 1117

PRIMARY KEY clause
ALTER TABLE statement 265
CREATE TABLE statement 264

PRIMARY_ACCESSTYPE column of PLAN_TABLE 803
problem determination, guidelines 568
program preparation 471
program problems checklist

documenting error situations 562
error messages 563

project activity sample table 1003
project application, description 1015
project sample table 1002

Q
query parallelism 847
QUOTE precompiler option 490
QUOTESQL precompiler option 490

R
reason code

CAF
translation 886, 889
X"00C10824" 879, 880
X"00F30050" 885
X"00F30083" 885

X'00C90088' 396
X'00C9008E' 395
X"00D44057" 575

REBIND PACKAGE subcommand of DSN
generating list of 1105

Index X-17



REBIND PACKAGE subcommand of DSN (continued)
options

ISOLATION 412
RELEASE 408

rebinding with wildcard characters 388
remote 498

REBIND PLAN subcommand of DSN
generating list of 1105
options

ACQUIRE 408
ISOLATION 412
NOPKLIST 390
PKLIST 390
RELEASE 408

remote 498
REBIND TRIGGER PACKAGE subcommand of DSN 390
rebinding

automatically
conditions for 391
EXPLAIN processing 799

changes that require 387
list of plans and packages 390
lists of plans or packages 1105
options for 384
packages with pattern-matching characters 388
planning for 392
plans 390
plans or packages in use 384

recovery
identifying application requirements 437
IMS application program 433
IMS batch 439
planning for 431

recursive SQL
controlling depth 1102
description 15
examples 1099
infinite loops 16
rules 15
single level explosion 1099
summarized explosion 1101

referential constraint
defining 263
description 263
determining violations 991
informational 269
name 266
on tables with data encryption 268
on tables with multilevel security 268

referential integrity
effect on subqueries 56
programming considerations 991

register conventions
CAF (call attachment facility) 869
RRSAF 905

RELEASE
option of BIND PLAN subcommand

combining with other options 408
release information block (RIB) 869
RELEASE LOCKS field of panel DSNTIP8

effect on page and row locks 420
RELEASE SAVEPOINT statement 440
RELEASE statement, with DRDA access 451
reoptimizing access path 762
REPEAT statement (SQL procedure) 662
REPLACE statement (COBOL) 191
reserved keywords 1113

resetting control blocks
CAF 879
RRSAF 931

RESIGNAL statement
raising a condition 667
setting SQLSTATE value 669

RESIGNAL statement (SQL procedure) 663
resource limit facility (governor)

description 603
writing an application for predictive governing 604

Resource Recovery Services attachment facility (RRSAF)
See RRSAF

resource unavailable condition
CAF 881
RRSAF 933

restart, DL/I batch programs using JCL 583
result column

join operation 39
naming with AS clause 7

result set locator
assembler 150
C 166
COBOL 197
example 712
Fortran 224
how to use 712
PL/I 235

result table
description 3
example 3
of SELECT statement 3
read-only 105

retrieving
data in ASCII from DB2 UDB for z/OS 621
data in Unicode from DB2 UDB for z/OS 621
data using SELECT * 989
data, changing the CCSID 621
large volumes of data 989
multiple rows into host variable arrays 87

return code
DSN command 510
SQL 879

RETURN statement
returning SQL procedure status 667

RETURN statement (SQL procedure) 663
REXX procedure

application programming interface
CONNECT 250
DISCONNECT 251
EXECSQL 251

coding SQL statements 249
data type conversion 255
DSNREXX 251
error handling 254
indicator variable 258
input data type 255, 256
isolation level 259
naming convention 253
naming cursors 254
naming prepared statements 254
running 513
SQLCA 249
SQLDA 250
statement label 254

RIB (release information block)
address in CALL DSNALI parameter list 869
CONNECT connection function of CAF 872

X-18 Application Programming and SQL Guide



RIB (release information block) (continued)
CONNECT, RRSAF 906
program example 887

RID (record identifier) pool
use in list prefetch 831

RIGHT OUTER JOIN clause 43
RMODE link-edit option 555
ROLB call, IMS

advantages over ROLL 439
DL/I batch programs 438
ends unit of work 433

ROLL call, IMS
DL/I batch programs 438
ends unit of work 433

ROLLBACK option
CICS SYNCPOINT command 433

ROLLBACK statement
description 61
error in IMS 575
in a stored procedure 648
TO SAVEPOINT clause 440
unit of work in TSO 432
with RRSAF 897

row
selecting with WHERE clause 8
updating 36
updating current 107
updating large volumes 988

row-level security 268
ROWID

coding example 805
data type 4
index-only access 803
inserting in table 985

ROWID column
defining 30, 271
defining LOBs 299
inserting values into 30
using for direct row access 272

ROWID variable
assembler 151
C 168
COBOL 198
Fortran 224
PL/I 236

ROWID variable array
C 173
COBOL 205
PL/I 239

rowset
deleting current 112
updating current 111

rowset cursor
closing 113
DB2 for z/OS down-level requester 467
declaring 108
end-of-data condition 109
example 126
multiple-row FETCH 109
opening 108
using 108

rowset parameter, DB2 for z/OS support for 465
RR (repeatable read)

how locks are held (figure) 416
page and row locking 416

RRS global transaction
RRSAF support 913, 918, 922

RRSAF
application program

examples 937
preparation 896

connecting to DB2 938
description 895
function descriptions 905
load module structure 900
programming language 896
register conventions 905
restrictions 895
return codes

AUTH SIGNON 916
CONNECT 906
SIGNON 912
TERMINATE IDENTIFY 931
TERMINATE THREAD 930
TRANSLATE 933

run environment 897
RRSAF (Recoverable Resource Manager Services attachment

facility)
transactions

using global transactions 401
RS (read stability)

page and row locking (figure) 415
RUN subcommand of DSN

return code processing 510
running a program in TSO foreground 509

run-time libraries, DB2I
background processing 528
EDITJCL processing 528

running application program
CICS 513
errors 568
IMS 512

S
sample application

call attachment facility 862
databases, for 1012
DB2 private protocol access 1071
DRDA access 1063
dynamic SQL 1045
environments 1017
languages 1017
LOB 1016
organization 1015
phone 1015
programs 1017
project 1015
RRSAF 896
static SQL 1045
stored procedure 1015
structure of 1011
use 1017
user-defined function 1016

sample program
DSN8BC3 218
DSN8BD3 185
DSN8BE3 185
DSN8BF3 230
DSN8BP3 248

sample table
DSN8810.ACT (activity) 995
DSN8810.DEMO_UNICODE (Unicode sample ) 1005
DSN8810.DEPT (department) 996

Index X-19



sample table (continued)
DSN8810.EMP (employee) 998
DSN8810.EMP_PHOTO_RESUME (employee photo and

resume) 1001
DSN8810.EMPPROJACT (employee-to-project

activity) 1004
DSN8810.PROJ (project) 1002
PROJACT (project activity) 1003
views on 1006

savepoint
description 439
distributed environment 442
RELEASE SAVEPOINT statement 440
restrictions on use 440
ROLLBACK TO SAVEPOINT 440
SAVEPOINT statement 440
setting multiple times 440
use with DRDA access 440

SAVEPOINT statement 440
scope of a lock 402
scrollable cursor

comparison of types 118
DB2 UDB for z/OS down-level requester 467
distributed environment 442
dynamic

dynamic model 115
fetching current row 119

fetch orientation 117
optimistic concurrency control 412
performance considerations 773
retrieving rows 116
sensitive dynamic 115
sensitive static 114
sensitivity 119
static

creating delete hole 119
creating update hole 120
holes in result table 119
number of rows 117
removing holes 121
static model 115

updatable 114
scrolling

backward through data 985
backward using identity columns 986
backward using ROWIDs 986
in any direction 987
ISPF (Interactive System Productivity Facility) 70

search condition
comparison operators 9
NOT keyword 9
SELECT statement 49
WHERE clause 9

segmented table space
locking 403
scan 810

SEGSIZE clause of CREATE TABLESPACE
recommendations 810

SELECT FROM INSERT statement
BEFORE trigger values 32
default values 31
description 31
inserting into view 33
multiple rows

cursor sensitivity 34
effect of changes 34
effect of SAVEPOINT and ROLLBACK 35

SELECT FROM INSERT statement (continued)
multiple rows (continued)

effect of WITH HOLD 35
processing errors 35
result table of cursor 34
using cursor 33
using FETCH FIRST 33
using INPUT SEQUENCE 33

result table 32
retrieving

BEFORE trigger values 31
default values 31
generated values 31
multiple rows 31
special registers 31

using SELECT INTO 33
SELECT statement

changing result format 70
clauses

DISTINCT 7
FROM 5
GROUP BY 11
HAVING 11
ORDER BY 10
UNION 12
WHERE 8

derived column with AS clause 7
fixed-list 612, 615
named columns 6
parameter markers 626
search condition 49
selecting a set of rows 103
subqueries 49
unnamed columns 7
using with

* (to select all columns) 5
column-name list 6
DECLARE CURSOR statement 103, 108

varying-list 615, 627
selecting

all columns 5
more than one row 81
named columns 6
rows 8
some columns 6
unnamed columns 7

semicolon
default SPUFI statement terminator 62
embedded 1027

sequence numbers
COBOL application program 189
Fortran 222
PL/I 232

sequence object
creating 275
referencing 276
using across multiple tables 276

sequences
improving concurrency 401

sequential detection 832, 834
sequential prefetch

bind time 831
description 830

SET clause of UPDATE statement 36
SET CURRENT DEGREE statement 850
SET CURRENT PACKAGESET statement 500
SET ENCRYPTION PASSWORD statement 268

X-20 Application Programming and SQL Guide



setting SQL terminator
DSNTIAD 1026
SPUFI 67

SHARE
INTENT EXCLUSIVE lock mode 405, 427
lock mode

LOB 427
page 405
row 405
table, partition, and table space 405

SIGNAL statement
raising a condition 667
setting condition message text 668

SIGNAL statement (SQL procedure) 663
SIGNON, RRSAF

program example 938
syntax 912
usage 912

simple table space
locking 403

single-mode IMS programs 436
SOME quantified predicate 52
sort

program
RIDs (record identifiers) 835
when performed 835

removing duplicates 834
shown in PLAN_TABLE 834

sort key
ORDER BY clause 10
ordering 10

SOURCE precompiler option 490
special register

behavior in stored procedures 649
CURRENT PACKAGE PATH 501
CURRENT PACKAGESET 501
CURRENT RULES 506
user-defined functions 342

SPUFI
browsing output 69
changed column widths 70
CONNECT LOCATION field 61
created column heading 70
DB2 governor 68
default values 62
entering comments 67
panels

allocates RESULT data set 60
filling in 60
format and display output 69
previous values displayed on panel 59
selecting on DB2I menu 59

processing SQL statements 59, 68
retrieving Unicode data 67
setting SQL terminator 67
specifying SQL statement terminator 62
SQLCODE returned 69

SQL (Structured Query Language)
checking execution 91
coding

assembler 143
basics 77
C 158
C++ 158
COBOL 186
dynamic 629
Fortran 220

SQL (Structured Query Language) (continued)
coding (continued)

Fortran program 221
object extensions 297
PL/I 230
REXX 249

cursors 103
dynamic

coding 595
sample C program 1045
statements allowed 1117

host variable arrays 79
host variables 79
keywords, reserved 1113
return codes

checking 91
handling 98

statement terminator 1026
string delimiter 528
structures 79
syntax checking 465
varying-list 615, 627

SQL communication area (SQLCA)
description 91
using DSNTIAR to format 98

SQL precompiler option 491
SQL procedure

conditions, handling 665
forcing SQL error 669
preparation using DSNTPSMP procedure 672
program preparation 671
referencing SQLCODE and SQLSTATE 666
SQL variable 663
statements allowed 1122

SQL procedure statement
CALL statement 662
CASE statement 662
compound statement 662
CONTINUE handler 665
EXIT handler 665
GET DIAGNOSTICS statement 662
GOTO statement 662
handler 665
handling errors 665
IF statement 662
ITERATE statement 662
LEAVE statement 662
LOOP statement 662
REPEAT statement 662
RESIGNAL statement 663
RETURN statement 663
SIGNAL statement 663
SQL statement 662
WHILE statement 662

SQL statement (SQL procedure) 662
SQL statement nesting

restrictions 363
stored procedures 363
user-defined functions 363

SQL statement terminator
modifying in DSNTEP2 and DSNTEP4 1029
modifying in DSNTIAD 1026
modifying in SPUFI 62
specifying in SPUFI 62

SQL statements
ALLOCATE CURSOR 712
ALTER FUNCTION 314

Index X-21



SQL statements (continued)
ASSOCIATE LOCATORS 711
CLOSE 108, 113, 614
COBOL program sections 187
coding REXX 252
comments

assembler 145
C 160
COBOL 188
Fortran 221
PL/I 231
REXX 253

CONNECT (Type 1) 453
CONNECT (Type 2) 453
CONNECT, with DRDA access 450
continuation

assembler 145
C 160
COBOL 188
Fortran 221
PL/I 231
REXX 253

CREATE FUNCTION 314
DECLARE CURSOR

description 103, 108
example 613, 617

DECLARE TABLE 79, 131
DELETE

description 107
example 37

DESCRIBE 617
DESCRIBE CURSOR 712
DESCRIBE PROCEDURE 711
embedded 476
error return codes 98
EXECUTE 609
EXECUTE IMMEDIATE 606
EXPLAIN

monitor access paths 789
FETCH

description 106, 109
example 614

INSERT 27
labels

assembler 146
C 161
COBOL 189
Fortran 222
PL/I 232
REXX 254

margins
assembler 145
C 160
COBOL 189
Fortran 222
PL/I 232
REXX 253

OPEN
description 105, 108
example 614

PREPARE 608
RELEASE, with DRDA access 451
SELECT

description 8
joining a table to itself 41
joining tables 39

SELECT FROM INSERT 31

SQL statements (continued)
SET CURRENT DEGREE 850
set symbols 147
UPDATE

description 107, 111, 112
example 36

WHENEVER 93
SQL terminator, specifying in DSNTEP2 and DSNTEP4 1029
SQL terminator, specifying in DSNTIAD 1026
SQL variable 663
SQL-INIT-FLAG, resetting 191
SQLCA (SQL communication area)

assembler 143
C 158
checking SQLCODE 92
checking SQLERRD(3) 92
checking SQLSTATE 92
checking SQLWARN0 92
COBOL 186
description 91
DSNTIAC subroutine

assembler 158
C 186
COBOL 219
PL/I 249

DSNTIAR subroutine
assembler 157
C 184
COBOL 217
Fortran 229
PL/I 247

Fortran 220
PL/I 230
reason code for deadlock 396
reason code for timeout 395
REXX 249
sample C program 1045

SQLCODE
-510 419
-923 579
-925 438, 575
-926 438, 575
+004 879, 880
+100 93
+256 885
+802 94
referencing in SQL procedure 666
values 92

SQLDA (SQL descriptor area)
allocating storage 110, 618
assembler 144
assembler program 616
C 159, 616
COBOL 187
declaring 110
dynamic SELECT example 620
for LOBs and distinct types 623
Fortran 220
multiple-row FETCH statement 110
no occurrences of SQLVAR 617
OPEN statement 614
parameter in CAF TRANSLATE 881
parameter in RRSAF TRANSLATE 933
parameter markers 626
PL/I 230, 616
requires storage addresses 621
REXX 250

X-22 Application Programming and SQL Guide



SQLDA (SQL descriptor area) (continued)
setting output fields 110
varying-list SELECT statement 616

SQLERROR clause of WHENEVER statement 93
SQLFLAG precompiler option 491
SQLN field of SQLDA 617
SQLRULES, option of BIND PLAN subcommand 506
SQLSTATE

"01519" 94
"2D521" 438, 575
"57015" 579
referencing in SQL procedure 666
values 92

SQLVAR field of SQLDA 619
SQLWARNING clause of WHENEVER statement 93
SSID (subsystem identifier), specifying 527
SSN (subsystem name)

CALL DSNALI parameter list 869
parameter in CAF CONNECT function 872
parameter in CAF OPEN function 876
parameter in RRSAF CONNECT function 906
SQL calls to CAF (call attachment facility) 866
SQL calls to RRSAF (recoverable resources services

attachment facility) 899
star join 823

dedicated virtual memory pool 828
star schema

defining indexes for 783
state

of a lock 404
statement cache table 601
statement table

column descriptions 843
static SQL

description 595
host variables 596
sample C program 1045

STDDEV function
when evaluation occurs 808

STDSQL precompiler option 491
STOP DATABASE command

timeout 395
storage

acquiring
retrieved row 619
SQLDA 618

addresses in SQLDA 621
storage group, for sample application data 1012
stored procedure

accessing transition tables 345, 716
binding 655
CALL statement 683
calling from a REXX procedure 716
defining parameter lists 689, 690, 691
defining to DB2 637
DSNACICS 1138
DSNAEXP 1154
DXXMQGEN 1176
DXXMQGENCLOB 1184
DXXMQINSERT 1157
DXXMQINSERTALL 1166
DXXMQINSERTALLCLOB 1174
DXXMQINSERTCLOB 1162
DXXMQRETRIEVE 1180
DXXMQRETRIEVECLOB 1187
DXXMQSHRED 1159
DXXMQSHREDALL 1169

stored procedure (continued)
DXXMQSHREDALLCLOB 1171
DXXMQSHREDCLOB 1164
example 632
IMS transactions 1149
IMS transsactions 1145
invoking from a trigger 287
languages supported 643
linkage conventions 686
returning non-relational data 653
returning result set 652
running as authorized program 654
statements allowed 1120
testing 727
usage 631
use of special registers 649
using COMMIT in 648
using host variables with 635
using ROLLBACK in 648
using temporary tables in 653
WLM_REFRESH 1133
WLM_SET_CLIENT_INFO 1136
writing 643
writing in REXX 656

stormdrain effect 942
string

data type 4
fixed-length

assembler 149
COBOL 194
PL/I 246

host variables in C 180
varying-length

assembler 149
COBOL 194
PL/I 246

subquery
basic predicate 51
conceptual overview 49
correlated

DELETE statement 56
description 53
example 53
tuning 769
UPDATE statement 55

DELETE statement 56
description 49
EXISTS predicate 53
IN predicate 52
join transformation 771
noncorrelated 769
quantified predicate 51
referential constraints 56
restrictions with DELETE 56
tuning 768
tuning examples 772
UPDATE statement 55
use with UPDATE, DELETE, and INSERT 51

subsystem
identifier (SSID), specifying 527

subsystem name (SSN) 866, 899
subsystem parameters

PREDPRUNE 757, 760
summarizing group values 11
SYNC call, IMS 433, 434
SYNC parameter of CAF (call attachment facility) 878, 887
synchronization call abends 578

Index X-23



SYNCPOINT command of CICS 433
syntax diagram

how to read xxii
SYSLIB data sets 514
Sysplex query parallelism

splitting large queries across DB2 members 847
SYSPRINT precompiler output

options section 570
source statements section, example 571
summary section, example 572
symbol cross-reference section 572
used to analyze errors 570

SYSTERM output to analyze errors 569

T
table

altering
changing definitions 21
using CREATE and ALTER 990

copying from remote locations 467
declaring 79, 131
deleting rows 37
dependent, cycle restrictions 267
displaying, list of 18
DROP statement 25
expression, nested

processing 836
filling with test data 561
incomplete definition of 265
inserting multiple rows 29
inserting single row 28
loading, in referential structure 263
locks 402
populating 561
referential structure 263
retrieving 103
selecting values as you insert rows 31
temporary 21
updating rows 36
using three-part table names 448

table expressions, nested
materialization 836

table locator
assembler 150
C 167
COBOL 198
PL/I 236

table space
for sample application 1012
locks

description 402
scans

access path 809
determined by EXPLAIN 790

task control block (TCB)
See TCB (task control block)

TCB (task control block)
capabilities with CAF 862
capabilities with RRSAF 896
issuing CAF CLOSE 879
issuing CAF OPEN 877

temporary table
advantages of 22
working with 21

TERM call in DL/I 433

terminal monitor program (TMP)
See TMP (terminal monitor program)

TERMINATE IDENTIFY, RRSAF
program example 938
syntax 931
usage 931

TERMINATE THREAD, RRSAF
program example 938
syntax 930
usage 930

terminating, CAF CLOSE function 878
TEST command of TSO 563
test environment, designing 559
test tables 559
test views of existing tables 559
thread

CLOSE function 866
OPEN function 866

TIME precompiler option 491
timeout

description 394
indications in IMS 395
X'00C9008E' reason code in SQLCA 395

TMP (terminal monitor program)
DSN command processor 510
running under TSO 511

transaction
IMS

using global transactions 401
transaction lock

description 393
transaction-oriented BMP, checkpoints in 436
transition table, trigger 284
transition variable, trigger 283
TRANSLATE (connection function of CAF)

description 866
language example 882
program example 889
syntax usage 881

TRANSLATE function of RRSAF
syntax 933
usage 933

translating requests into SQL 990
trigger

activation order 289
activation time 281
cascading 288
coding 281
data integrity 292
delete 282
description 279
FOR EACH ROW 282
FOR EACH STATEMENT 282
granularity 282
insert 282
interaction with constraints 290
interaction with security label columns 291
naming 281
parts example 279
parts of 281
subject table 281
transition table 284
transition variable 283
triggering event 281
update 282
using identity columns 283
with row-level security 291

X-24 Application Programming and SQL Guide



TSO
CLISTs

calling application programs 512
running in foreground 512

DSNALI language interface module 863
TEST command 563

tuning
DB2

queries containing host variables 762
two-phase commit, definition 452
TWOPASS precompiler option 491

U
Unicode

data, retrieving from DB2 UDB for z/OS 621
sample table 1005

UNION clause
columns of result table 13
combining SELECT statements 12
effect on OPTIMIZE clause 779
eliminating duplicates 13
keeping duplicates with ALL 13
removing duplicates with sort 834

UNIQUE clause 264
unit of recovery

indoubt
recovering CICS 433
restarting IMS 435

unit of work
CICS description 432
completion

commit 432
open cursors 122
releasing locks 431
roll back 432
TSO 432

description 431
DL/I batch 438
duration 431
IMS

batch 438
commit point 434
ending 433
starting point 433

prevention of data access by other users 431
TSO

COMMIT statement 432
completion 432
ROLLBACK statement 432

updatable cursor 104
UPDATE

lock mode
page 405
row 405
table, partition, and table space 405

UPDATE statement
correlated subqueries 55
description 36
positioned

FOR ROW n OF ROWSET 112
restrictions 107
WHERE CURRENT clause 107, 111

SET clause 36
subquery 51

updating
during retrieval 988

updating (continued)
large volumes 988
values from host variables 82

UR (uncommitted read)
concurrent access restrictions 417
effect on reading LOBs 426
page and row locking 414
recommendation 401

USE AND KEEP EXCLUSIVE LOCKS option of WITH
clause 421

USE AND KEEP SHARE LOCKS option of WITH clause 421
USE AND KEEP UPDATE LOCKS option of WITH

clause 421
USER special register

value in INSERT statement 20
value in UPDATE statement 37

user-defined function
statements allowed 1120

user-defined function (UDF)
abnormal termination 363
accessing transition tables 345
ALTER FUNCTION statement 314
authorization ID 351
call type 329
casting arguments 362
characteristics 314
coding guidelines 318
concurrent 352
CREATE FUNCTION statement 314
data type promotion 359
DBINFO structure 331
definer 312
defining 314
description 311
diagnostic message 328
DSN_FUNCTION_TABLE 361
example

external scalar 312, 316
external table 318
function resolution 359
overloading operator 317
sourced 317
SQL 317

function resolution 356
host data types

assembler 323
C 323
COBOL 323
PL/I 323

implementer 312
implementing 318
indicators

input 327
result 328

invoker 312
invoking 355
invoking from a trigger 287
invoking from predicate 365
main program 319
multiple programs 351
naming 328
nesting SQL statements 363
parallelism considerations 320
parameter conventions 321

assembler 334
C 334
COBOL 338

Index X-25



user-defined function (UDF) (continued)
parameter conventions (continued)

PL/I 341
preparing 350
reentrant 351
restrictions 319
samples 313
scratchpad 328, 344
scrollable cursor 366
setting result values 327
simplifying function resolution 360
special registers 342
specific name 328
steps in creating and using 312
subprogram 319
syntax for invocation 355
table locators

assembler 346
C 348
COBOL 348
PL/I 349

testing 352
types 311

user-defined table function
improving query performance 781

USING DESCRIPTOR clause
EXECUTE statement 627
OPEN statement 627

V
VALUES clause, INSERT statement 27
variable

declaration
assembler 154
C 179
COBOL 212
Fortran 226
PL/I 244

declaring in SQL procedure 663
host

assembler 148
COBOL 192
Fortran 223
PL/I 234

variable array
host

C 168
COBOL 199
PL/I 237

VARIANCE function
when evaluation occurs 808

varying-length character string
assembler 149
COBOL 201

version of a package 503
VERSION precompiler option 492, 503
view

contents 26
declaring 79
description 25
dropping 27
EXPLAIN 839, 840
identity columns 26
join of two or more tables 26
processing

view materialization description 837

view (continued)
processing (continued)

view materialization in PLAN_TABLE 806
view merge 836

referencing special registers 26
retrieving 103
summary data 26
union of two or more tables 26
using

deleting rows 37
inserting rows 27
updating rows 36

Visual Explain 777, 789
volatile table 780

W
WHENEVER statement

assembler 146
C 161
COBOL 189
CONTINUE clause 93
Fortran 222
GO TO clause 93
NOT FOUND clause 93, 106
PL/I 232
specifying 93
SQL error codes 93
SQLERROR clause 93
SQLWARNING clause 93

WHERE clause
SELECT statement

description 8
joining a table to itself 41
joining tables 39

subquery 51
WHILE statement (SQL procedure) 662
WITH clause

common table expressions 13
specifies isolation level 421

WITH HOLD clause
and CICS 123
and IMS 123
DECLARE CURSOR statement 122
restrictions 123

WITH HOLD cursor
effect on dynamic SQL 609
effect on locks and claims 420

WLM_REFRESH stored procedure
description 1133
option descriptions 1134
sample JCL 1135
syntax diagram 1134

WLM_SET_CLIENT_INFO stored procedure
description 1136
option descriptions 1137
sample JCL 1137
syntax diagram 1137

write-down privilege 291

X
XREF precompiler option 492
XRST call, IMS 435

X-26 Application Programming and SQL Guide





����

Product Number: 5625-DB2

Printed in USA

SC18-7415-08


	Contents
	About this book
	Who should read this book
	Terminology and citations
	How to read the syntax diagrams
	Accessibility
	How to send your comments

	Summary of changes to this book
	Part 1. Using SQL queries
	Chapter 1. Retrieving data
	Result tables
	Data types
	Selecting columns: SELECT
	Selecting all columns: SELECT *
	Selecting some columns: SELECT column-name
	Selecting derived columns: SELECT expression
	Eliminating duplicate rows: DISTINCT
	Naming result columns: AS

	Selecting rows using search conditions: WHERE
	Putting the rows in order: ORDER BY
	Specifying the sort key
	Referencing derived columns

	Summarizing group values: GROUP BY
	Subjecting groups to conditions: HAVING
	Merging lists of values: UNION
	Using UNION to eliminate duplicates
	Using UNION ALL to keep duplicates

	Creating common table expressions: WITH
	Using WITH instead of CREATE VIEW
	Using common table expressions with CREATE VIEW
	Using common table expressions when you use INSERT
	Using recursive SQL

	Accessing DB2 data that is not in a table
	Using 15-digit and 31-digit precision for decimal numbers
	Finding information in the DB2 catalog
	Displaying a list of tables you can use
	Displaying a list of columns in a table


	Chapter 2. Working with tables and modifying data
	Working with tables
	Creating your own tables: CREATE TABLE
	Identifying defaults
	Creating work tables
	Creating a new department table
	Creating a new employee table

	Working with temporary tables
	Working with created temporary tables
	Working with declared temporary tables

	Dropping tables: DROP TABLE

	Working with views
	Defining a view: CREATE VIEW
	Changing data through a view
	Dropping views: DROP VIEW

	Modifying DB2 data
	Inserting rows: INSERT
	Inserting a single row
	Inserting rows into a table from another table
	Other ways to insert data
	Inserting data into a ROWID column
	Inserting data into an identity column

	Selecting values as you insert: SELECT FROM INSERT
	Result table of the INSERT operation
	Selecting values when you insert a single row
	Selecting values when you insert data into a view
	Selecting values when you insert multiple rows
	Result table of the cursor when you insert multiple rows
	What happens if an error occurs

	Updating current values: UPDATE
	Deleting rows: DELETE
	Deleting every row in a table



	Chapter 3. Joining data from more than one table
	Inner join
	Full outer join
	Left outer join
	Right outer join
	SQL rules for statements containing join operations
	Using more than one join in an SQL statement
	Using nested table expressions and user-defined table functions in joins
	Using correlated references in table specifications in joins

	Chapter 4. Using subqueries
	Conceptual overview
	Correlated and uncorrelated subqueries
	Subqueries and predicates
	The subquery result table
	Tables in subqueries of UPDATE, DELETE, and INSERT statements

	How to code a subquery
	Basic predicate
	Quantified predicate : ALL, ANY, or SOME
	Using the ALL predicate
	Using the ANY or SOME predicate

	IN keyword
	EXISTS keyword

	Using correlated subqueries
	An example of a correlated subquery
	Using correlation names in references
	Using correlated subqueries in an UPDATE statement
	Using correlated subqueries in a DELETE statement
	Using tables with no referential constraints
	Using a single table
	Using tables with referential constraints



	Chapter 5. Using SPUFI to execute SQL from your workstation
	Allocating an input data set and using SPUFI
	Changing SPUFI defaults
	Changing SPUFI defaults - panel 2
	Entering SQL statements
	Using the ISPF editor
	Retrieving Unicode UTF-16 graphic data
	Entering comments
	Setting the SQL terminator character
	Controlling toleration of warnings

	Processing SQL statements
	When SQL statements exceed resource limit thresholds
	Browsing the output
	Format of SELECT statement results
	Content of the messages


	Part 2. Coding SQL in your host application program
	Chapter 6. Basics of coding SQL in an application program
	Conventions used in examples of coding SQL statements
	Delimiting an SQL statement
	Declaring table and view definitions
	Accessing data using host variables, variable arrays, and structures
	Using host variables
	Retrieving a single row of data into host variables
	Updating data using values in host variables
	Inserting data from column values that use host variables
	Using indicator variables with host variables
	Assignments and comparisons using different data types
	Changing the coded character set ID of host variables

	Using host variable arrays
	Retrieving multiple rows of data into host variable arrays
	Inserting multiple rows of data from host variable arrays
	Using indicator variable arrays with host variable arrays

	Using host structures
	Retrieving a single row of data into a host structure
	Using indicator variables with host structures


	Checking the execution of SQL statements
	Using the SQL communication area (SQLCA)
	SQLCODE and SQLSTATE
	The WHENEVER statement
	Handling arithmetic or conversion errors
	The GET DIAGNOSTICS statement
	Retrieving statement and condition items
	Data types for GET DIAGNOSTICS items

	Calling DSNTIAR to display SQLCA fields
	Defining a message output area
	Possible return codes from DSNTIAR
	Preparing to use DSNTIAR
	A scenario for using DSNTIAR



	Chapter 7. Using a cursor to retrieve a set of rows
	Accessing data by using a row-positioned cursor
	Step 1: Declare the cursor
	Step 2: Open the cursor
	Step 3: Specify what to do at end-of-data
	Step 4: Execute SQL statements
	Using FETCH statements
	Using positioned UPDATE statements
	Using positioned DELETE statements

	Step 5: Close the cursor

	Accessing data by using a rowset-positioned cursor
	Step 1: Declare the rowset cursor
	Step 2: Open the rowset cursor
	Step 3: Specify what to do at end-of-data for a rowset cursor
	Step 4: Execute SQL statements with a rowset cursor
	Using a multiple-row FETCH statement with host variable arrays
	Using a multiple-row FETCH statement with a descriptor
	Using rowset-positioned UPDATE statements
	Using rowset-positioned DELETE statements
	Number of rows in a rowset

	Step 5: Close the rowset cursor

	Types of cursors
	Scrollable and non-scrollable cursors
	Using a non-scrollable cursor
	Using a scrollable cursor
	Comparison of scrollable cursors
	Holes in the result table of a scrollable cursor

	Held and non-held cursors

	Examples of using cursors

	Chapter 8. Generating declarations for your tables using DCLGEN
	Invoking DCLGEN through DB2I
	Including the data declarations in your program
	DCLGEN support of C, COBOL, and PL/I languages
	Example: Adding a table declaration and host-variable structure to a library
	Step 1. Specify COBOL as the host language
	Step 2. Create the table declaration and host structure
	Step 3. Examine the results


	Chapter 9. Embedding SQL statements in host languages
	Coding SQL statements in an assembler application
	Defining the SQL communications area
	If you specify STDSQL(YES)
	If you specify STDSQL(NO)

	Defining SQL descriptor areas
	Embedding SQL statements
	Using host variables
	Declaring host variables
	Determining equivalent SQL and assembler data types
	Notes on assembler variable declaration and usage

	Determining compatibility of SQL and assembler data types
	Using indicator variables
	Handling SQL error return codes
	Macros for assembler applications

	Coding SQL statements in a C or C++ application
	Defining the SQL communication area
	If you specify STDSQL(YES)
	If you specify STDSQL(NO)

	Defining SQL descriptor areas
	Embedding SQL statements
	Using host variables and host variable arrays
	Declaring host variables
	Declaring host variable arrays
	Using host structures
	Determining equivalent SQL and C data types
	Notes on C variable declaration and usage
	Notes on syntax differences for constants

	Determining compatibility of SQL and C data types
	Using indicator variables and indicator variable arrays
	Handling SQL error return codes
	Coding considerations for C and C++

	Coding SQL statements in a COBOL application
	Defining the SQL communication area
	If you specify STDSQL(YES)
	If you specify STDSQL(NO)

	Defining SQL descriptor areas
	Embedding SQL statements
	Using host variables and host variable arrays
	Declaring host variables
	Declaring host variable arrays
	Using host structures
	Determining equivalent SQL and COBOL data types
	Notes on COBOL variable declaration and usage

	Determining compatibility of SQL and COBOL data types
	Using indicator variables and indicator variable arrays
	Handling SQL error return codes
	Coding considerations for object-oriented extensions in COBOL

	Coding SQL statements in a Fortran application
	Defining the SQL communication area
	If you specify STDSQL(YES)
	If you specify STDSQL(NO)

	Defining SQL descriptor areas
	Embedding SQL statements
	Using host variables
	Declaring host variables
	Determining equivalent SQL and Fortran data types
	Notes on Fortran variable declaration and usage
	Notes on syntax differences for constants

	Determining compatibility of SQL and Fortran data types
	Using indicator variables
	Handling SQL error return codes

	Coding SQL statements in a PL/I application
	Defining the SQL communication area
	If you specify STDSQL(YES)
	If you specify STDSQL(NO)

	Defining SQL descriptor areas
	Embedding SQL statements
	Using host variables and host variable arrays
	Declaring host variables
	Declaring host variable arrays
	Using host structures
	Determining equivalent SQL and PL/I data types
	Notes on PL/I variable declaration and usage

	Determining compatibility of SQL and PL/I data types
	Using indicator variables and indicator variable arrays
	Handling SQL error return codes

	Coding SQL statements in a REXX application
	Defining the SQL communication area
	Defining SQL descriptor areas
	Accessing the DB2 REXX Language Support application programming interfaces
	Embedding SQL statements in a REXX procedure
	Using cursors and statement names
	Using REXX host variables and data types
	Determining equivalent SQL and REXX data types
	Letting DB2 determine the input data type
	Ensuring that DB2 correctly interprets character input data
	Passing the data type of an input variable to DB2
	Retrieving data from DB2 tables

	Using indicator variables
	Setting the isolation level of SQL statements in a REXX procedure


	Chapter 10. Using constraints to maintain data integrity
	Using check constraints
	Check constraint considerations
	When check constraints are enforced
	How check constraints set CHECK-pending status

	Using referential constraints
	Parent key columns
	Defining a parent key and a unique index
	Incomplete definition
	Recommendations for defining primary keys

	Defining a foreign key
	The relationship name
	Indexes on foreign keys
	The FOREIGN KEY clause in ALTER TABLE
	Restrictions on cycles of dependent tables
	Maintaining referential integrity when using data encryption

	Referential constraints on tables with multilevel security with row-level granularity

	Using informational referential constraints

	Chapter 11. Using DB2-generated values as keys
	Using ROWID columns as keys
	Defining a ROWID column
	Direct row access

	Using identity columns as keys
	Defining an identity column
	Parent keys and foreign keys

	Using values obtained from sequence objects as keys
	Creating a sequence object
	Referencing a sequence object
	Keys across multiple tables


	Chapter 12. Using triggers for active data
	Example of creating and using a trigger
	Parts of a trigger
	Trigger name
	Subject table
	Trigger activation time
	Triggering event
	Granularity
	Transition variables
	Transition tables
	Triggered action
	Trigger condition
	Trigger body


	Invoking stored procedures and user-defined functions from triggers
	Passing transition tables to user-defined functions and stored procedures
	Trigger cascading
	Ordering of multiple triggers
	Interactions between triggers and referential constraints
	Interactions between triggers and tables that have multilevel security with row-level granularity
	Creating triggers to obtain consistent results

	Part 3. Using DB2 object-relational extensions
	Chapter 13. Introduction to DB2 object-relational extensions
	Chapter 14. Programming for large objects
	Introduction to LOBs
	Declaring LOB host variables and LOB locators
	LOB materialization
	Using LOB locators to save storage
	Deferring evaluation of a LOB expression to improve performance
	Indicator variables and LOB locators
	Valid assignments for LOB locators
	Avoiding character conversion for LOB locators


	Chapter 15. Creating and using user-defined functions
	Overview of user-defined function definition, implementation, and invocation
	Example of creating and using a user-defined scalar function
	User-defined function samples shipped with DB2

	Defining a user-defined function
	Components of a user-defined function definition
	Examples of user-defined function definitions

	Implementing an external user-defined function
	Writing a user-defined function
	Restrictions on user-defined function programs
	Coding your user-defined function as a main program or as a subprogram
	Parallelism considerations
	Passing parameter values to and from a user-defined function
	Examples of receiving parameters in a user-defined function
	Using special registers in a user-defined function
	Using a scratchpad in a user-defined function
	Accessing transition tables in a user-defined function or stored procedure

	Preparing a user-defined function for execution
	Making a user-defined function reentrant
	Determining the authorization ID for user-defined function invocation
	Preparing user-defined functions to run concurrently

	Testing a user-defined function

	Implementing an SQL scalar function
	Invoking a user-defined function
	Syntax for user-defined function invocation
	Ensuring that DB2 executes the intended user-defined function
	How DB2 chooses candidate functions
	How DB2 chooses the best fit among candidate functions
	How you can simplify function resolution
	Using DSN_FUNCTION_TABLE to see how DB2 resolves a function

	Casting of user-defined function arguments
	What happens when a user-defined function abnormally terminates
	Nesting SQL statements
	Recommendations for user-defined function invocation


	Chapter 16. Creating and using distinct types
	Introduction to distinct types
	Using distinct types in application programs
	Comparing distinct types
	Assigning distinct types
	Assigning column values to columns with different distinct types
	Assigning column values with distinct types to host variables
	Assigning host variable values to columns with distinct types

	Using distinct types in UNIONs
	Invoking functions with distinct types

	Combining distinct types with user-defined functions and LOBs

	Part 4. Designing a DB2 database application
	Chapter 17. Planning for DB2 program preparation
	Planning to process SQL statements
	Planning to bind
	Binding DBRMs with packages and plans
	Binding with a package list only
	Binding all DBRMs to a plan
	Binding with both DBRMs and a package list
	Advantages of packages

	Conversion of DBRMs that are bound to a plan to DBRMs that are bound to a package
	Planning for changes to your application
	Dropping objects
	Rebinding a package
	Rebinding a plan
	Rebinding lists of plans and packages
	Working with trigger packages
	Automatic rebinding



	Chapter 18. Planning for concurrency
	Definitions of concurrency and locks
	Effects of DB2 locks
	Suspension
	Timeout
	Deadlock

	Basic recommendations to promote concurrency
	Recommendations for database design
	Recommendations for application design

	Aspects of transaction locks
	The size of a lock
	Definition
	Hierarchy of lock sizes
	General effects of size
	Effects of table spaces of different types

	The duration of a lock
	Effects

	The mode of a lock
	Modes of page and row locks
	Modes of table, partition, and table space locks
	Lock mode compatibility

	The object of a lock
	Definition and examples
	Indexes and data-only locking


	Options for tuning locks
	Bind options
	The ACQUIRE and RELEASE options
	Advantages and disadvantages of the combinations
	The ISOLATION option
	Advantages and disadvantages of the isolation values
	The CURRENTDATA option
	When plan and package options differ
	The effect of WITH HOLD for a cursor

	Isolation overriding with SQL statements
	The LOCK TABLE statement
	The purpose of LOCK TABLE
	The effect of LOCK TABLE
	Recommendations for using LOCK TABLE

	Access paths

	LOB locks
	Relationship between transaction locks and LOB locks
	Hierarchy of LOB locks
	LOB and LOB table space lock modes
	Modes of LOB locks
	Modes of LOB table space locks

	LOB lock and LOB table space lock duration
	The duration of LOB locks
	The duration of LOB table space locks

	Instances when LOB table space locks are not taken
	The LOCK TABLE statement for LOBs


	Chapter 19. Planning for recovery
	Unit of work in TSO batch and online
	Unit of work in CICS
	Unit of work in IMS online programs
	Planning ahead for program recovery: Checkpoint and restart
	What symbolic checkpoint does
	What restart does

	When are checkpoints important?
	Checkpoints in MPPs and transaction-oriented BMPs
	Checkpoints in batch-oriented BMPs
	Specifying checkpoint frequency

	Unit of work in DL/I and IMS batch programs
	Commit and rollback coordination
	Using ROLL
	Using ROLB
	In batch programs

	Restart and recovery in IMS batch

	Using savepoints to undo selected changes within a unit of work

	Chapter 20. Planning to access distributed data
	Planning for DRDA and DB2 private protocol access
	Advantages of DRDA access
	Moving from DB2 private protocol access to DRDA access
	Bind processes for DRDA and DB2 private protocol access
	Precompiler and bind options for DRDA access
	Precompiler options for DRDA access
	BIND PLAN options for DRDA access
	BIND PACKAGE options for DRDA access
	Checking BIND PACKAGE options


	Coding methods for distributed data
	Using three-part table names to access distributed data
	Three-part names and multiple servers
	Accessing declared temporary tables by using three-part names

	Using explicit CONNECT statements to access distributed data
	Using a location alias name for multiple sites
	Releasing connections


	Coordinating updates to two or more data sources
	Working without two-phase commit
	Update restrictions on servers that do not support two-phase commit
	Forcing update restrictions by using CONNECT (Type 1)

	Maximizing performance for distributed data
	Coding efficient queries
	Maximizing LOB performance in a distributed environment
	Using bind options to improve performance for distributed applications
	DEFER(PREPARE)
	PKLIST
	REOPT(ALWAYS)
	CURRENTDATA(NO)
	KEEPDYNAMIC(YES)
	DBPROTOCOL(DRDA)

	Using block fetch in distributed applications
	When DB2 uses block fetch for non-scrollable cursors
	When DB2 uses block fetch for scrollable cursors

	Limiting the number of DRDA network transmissions
	Limiting the number of rows returned to DRDA clients
	Fast implicit close and FETCH FIRST n ROWS ONLY
	Example of FETCH FIRST n ROWS ONLY
	Limiting the number of rows with the rowset parameter


	Working with distributed data
	SQL limitations at dissimilar servers
	Executing long SQL statements in a distributed environment
	Retrieving data from ASCII or Unicode tables
	Accessing data with a scrollable cursor when the requester is down-level
	Accessing data with a rowset-positioned cursor when the requester is down-level
	Maintaining data currency by using cursors
	Copying a table from a remote location
	Transmitting mixed data
	Converting mixed data
	Identifying the server at run time



	Part 5. Developing your application
	Chapter 21. Preparing an application program to run
	Steps in program preparation
	Step 1: Process SQL statements
	Using the DB2 precompiler
	Using the DB2 coprocessor for C programs
	Using the DB2 coprocessor for C++ programs
	Using the DB2 coprocessor for COBOL programs
	DB2 coprocessor for PL/I programs
	Differences between the DB2 precompiler and DB2 coprocessor
	Options for SQL statement processing
	Translating command-level statements in a CICS program

	Step 2: Compile (or assemble) and link-edit the application
	Step 3: Bind the application
	Binding a DBRM to a package
	Binding an application plan
	Identifying packages at run time
	Using BIND and REBIND options for packages and plans
	Using packages with dynamic plan selection

	Step 4: Run the application
	DSN command processor
	Running a program in TSO foreground
	Running a batch DB2 application in TSO
	Calling applications in a command procedure (CLIST)
	Running a DB2 REXX application


	Using JCL procedures to prepare applications
	Available JCL procedures
	Including code from SYSLIB data sets
	Starting the precompiler dynamically
	Precompiler option list format
	DDNAME list format
	Page number format

	An alternative method for preparing a CICS program
	Using JCL to prepare a program with object-oriented extensions

	Using ISPF and DB2 Interactive
	DB2I help
	DB2I Primary Option Menu
	DB2 Program Preparation panel
	DB2I Defaults Panel 1
	DB2I Defaults Panel 2
	Precompile panel
	Bind/Rebind/Free selection panel
	Bind Package panel
	Bind Plan panel
	Rebind Package panel
	Rebind Trigger Package panel
	Rebind Plan panel
	Free Package panel
	Free Plan panel
	The Defaults for Bind or Rebind Package or Plan panels
	System Connection Types panel
	Panels for entering lists of values
	Program Preparation: Compile, Link, and Run panel
	The Run panel


	Chapter 22. Testing an application program
	Establishing a test environment
	Designing a test data structure
	Analyzing application data needs
	Obtaining authorization
	Creating a comprehensive test structure

	Filling the tables with test data

	Testing SQL statements using SPUFI
	Debugging your program
	Debugging programs in TSO
	Language test facilities
	The TSO TEST command

	Debugging programs in IMS
	Debugging programs in CICS
	Debugging aids for CICS
	CICS execution diagnostic facility


	Locating the problem
	Analyzing error and warning messages from the precompiler
	SYSTERM output from the precompiler
	SYSPRINT output from the precompiler


	Chapter 23. Processing DL/I batch applications
	Planning to use DL/I batch applications
	Features and functions of DB2 DL/I batch support
	Requirements for using DB2 in a DL/I batch job
	Authorization

	Program design considerations
	Address spaces
	Commits
	SQL statements and IMS calls
	Checkpoint calls
	Application program synchronization
	Checkpoint and XRST considerations
	Synchronization call abends

	Input and output data sets for DL/I batch jobs
	DB2 DL/I batch input
	DB2 DL/I batch output

	Preparation guidelines for DL/I batch programs
	Precompiling
	Binding
	Link-editing
	Loading and running
	Submitting a DL/I batch application using DSNMTV01
	Submitting a DL/I batch application without using DSNMTV01


	Restart and recovery
	JCL example of a batch backout
	JCL example of restarting a DL/I batch job
	Finding the DL/I batch checkpoint ID


	Part 6. Additional programming techniques
	Chapter 24. Coding dynamic SQL in application programs
	Choosing between static and dynamic SQL
	Flexibility of static SQL with host variables
	Flexibility of dynamic SQL
	Limitations of dynamic SQL
	Dynamic SQL processing
	Performance of static and dynamic SQL
	Static SQL statements with no input host variables
	Static SQL statements with input host variables
	Dynamic SQL statements


	Caching dynamic SQL statements
	Using the dynamic statement cache
	Conditions for statement sharing

	Using the statement cache table
	Keeping prepared statements after commit points

	Limiting dynamic SQL with the resource limit facility
	Writing an application to handle reactive governing
	Writing an application to handle predictive governing
	Handling the +495 SQLCODE

	Using predictive governing and down-level DRDA requesters
	Using predictive governing and enabled requesters

	Choosing a host language for dynamic SQL applications
	Dynamic SQL for non-SELECT statements
	Dynamic execution using EXECUTE IMMEDIATE
	Declaring the host variable

	Dynamic execution using PREPARE and EXECUTE
	Using parameter markers with PREPARE and EXECUTE
	Using the PREPARE statement
	Using the EXECUTE statement
	Preparing and executing the example DELETE statement
	Using more than one parameter marker

	Dynamic execution of a multiple-row INSERT statement
	Using EXECUTE with host variable arrays
	Using EXECUTE with a descriptor

	Using DESCRIBE INPUT to put parameter information in an SQLDA

	Dynamic SQL for fixed-list SELECT statements
	Declaring a cursor for the statement name
	Preparing the statement
	Opening the cursor
	Fetching rows from the result table
	Closing the cursor

	Dynamic SQL for varying-list SELECT statements
	What your application program must do
	Preparing a varying-list SELECT statement
	An SQL descriptor area
	Obtaining information about the SQL statement
	Declaring a cursor for the statement
	Preparing the statement using the minimum SQLDA
	SQLN determines what SQLVAR gets
	If the statement is not a SELECT
	Acquiring storage for a second SQLDA if needed
	Describing the SELECT statement again
	Acquiring storage to hold a row
	Putting storage addresses in the SQLDA
	Changing the CCSID for retrieved data
	Using column labels
	Describing tables with LOB and distinct type columns

	Executing a varying-list SELECT statement dynamically
	Open the cursor
	Fetch rows from the result table
	Close the cursor

	Executing arbitrary statements with parameter markers
	When the number and types of parameters are known
	When the number and types of parameters are not known
	Using the SQLDA with EXECUTE or OPEN

	How bind options REOPT(ALWAYS) and REOPT(ONCE) affect dynamic SQL

	Using dynamic SQL in COBOL

	Chapter 25. Using stored procedures for client/server processing
	Introduction to stored procedures
	An example of a simple stored procedure
	Setting up the stored procedures environment
	Defining your stored procedure to DB2
	Passing environment information to the stored procedure
	Example of a stored procedure definition

	Refreshing the stored procedures environment (for system administrators)
	Moving stored procedures to a WLM-established environment (for system administrators)

	Writing and preparing an external stored procedure
	Language requirements for the stored procedure and its caller
	Calling other programs
	Using reentrant code
	Writing a stored procedure as a main program or subprogram
	Restrictions on a stored procedure
	Using COMMIT and ROLLBACK statements in a stored procedure
	Using special registers in a stored procedure
	Accessing other sites in a stored procedure
	Writing a stored procedure to access IMS databases
	Writing a stored procedure to return result sets to a DRDA client
	Preparing a stored procedure
	Binding the stored procedure
	Writing a REXX stored procedure

	Writing and preparing an SQL procedure
	Comparison of an SQL procedure and an external procedure
	Statements that you can include in a procedure body
	Declaring and using variables, parameters, and conditions in an SQL procedure
	Parameter style for an SQL procedure
	Terminating statements in an SQL procedure
	Handling SQL conditions in an SQL procedure
	Using handlers in an SQL procedure
	Using the RETURN statement for the procedure status
	Using SIGNAL or RESIGNAL to raise a condition
	Forcing errors in an SQL procedure when called by a trigger

	Examples of SQL procedures
	Preparing an SQL procedure
	Using the DB2 UDB for z/OS SQL procedure processor to prepare an SQL procedure
	Using JCL to prepare an SQL procedure
	Sample programs to help you prepare and run SQL procedures


	Writing and preparing an application to use stored procedures
	Forms of the CALL statement
	Authorization for executing stored procedures
	Linkage conventions
	Example of stored procedure linkage convention GENERAL
	Example of stored procedure linkage convention GENERAL WITH NULLS
	Example of stored procedure linkage convention SQL
	Special considerations for C
	Special considerations for PL/I

	Using indicator variables to speed processing
	Declaring data types for passed parameters
	Writing a DB2 UDB for z/OS client program or SQL procedure to receive result sets
	Accessing transition tables in a stored procedure
	Calling a stored procedure from a REXX procedure
	Preparing a client program

	Running a stored procedure
	How DB2 determines which version of a stored procedure to run
	Using a single application program to call different versions of a stored procedure
	Running multiple stored procedures concurrently
	Multiple instances of a stored procedure
	Accessing non-DB2 resources

	Testing a stored procedure
	Debugging the stored procedure as a stand-alone program on a workstation
	Debugging with the Debug Tool and IBM VisualAge COBOL
	Debugging an SQL procedure or C language stored procedure with the Debug Tool and C/C++ Productivity Tools for z/OS
	Debugging with Debug Tool for z/OS interactively and in batch mode
	Using the MSGFILE run-time option
	Using driver applications
	Using SQL INSERT statements


	Chapter 26. Tuning your queries
	General tips and questions
	Is the query coded as simply as possible?
	Are all predicates coded correctly?
	Are there subqueries in your query?
	Does your query involve aggregate functions?
	Do you have an input variable in the predicate of an SQL query?
	Do you have a problem with column correlation?
	Can your query be written to use a noncolumn expression?
	Can materialized query tables help your query performance?
	Does the query contain encrypted data?

	Writing efficient predicates
	Properties of predicates
	Predicate types
	Indexable and nonindexable predicates
	Stage 1 and stage 2 predicates
	Boolean term (BT) predicates

	Predicates in the ON clause

	General rules about predicate evaluation
	Order of evaluating predicates
	Summary of predicate processing
	Examples of predicate properties
	Predicate filter factors
	Default filter factors for simple predicates
	Filter factors for uniform distributions
	Interpolation formulas
	Filter factors for all distributions
	Using multiple filter factors to determine the cost of a query

	Column correlation
	How to detect column correlation
	Impacts of column correlation
	What to do about column correlation

	DB2 predicate manipulation
	Predicate modifications for IN-list predicates
	Removal of pre-evaluated predicates
	When DB2 simplifies join operations
	Predicates generated through transitive closure

	Predicates with encrypted data

	Using host variables efficiently
	Changing the access path at run time
	The REOPT(ALWAYS) bind option
	The REOPT(ONCE) bind option
	The REOPT(NONE) bind option

	Rewriting queries to influence access path selection

	Writing efficient subqueries
	Correlated subqueries
	Noncorrelated subqueries
	Single-value subqueries
	Multiple-value subqueries

	When DB2 transforms a subquery into a join
	Subquery tuning

	Using scrollable cursors efficiently
	Writing efficient queries on tables with data-partitioned secondary indexes
	Special techniques to influence access path selection
	Obtaining information about access paths
	Fetching a limited number of rows: FETCH FIRST n ROWS ONLY
	Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS
	Favoring index access
	Using a subsystem parameter to control outer join processing
	Using the CARDINALITY clause to improve the performance of queries with user-defined table function references
	Reducing the number of matching columns
	Creating indexes for efficient star-join processing
	Recommendations for creating indexes for star-join queries
	Determining the order of columns in an index for a star schema design

	Rearranging the order of tables in a FROM clause
	Updating catalog statistics
	Using a subsystem parameter
	Using a subsystem parameter to favor matching index access
	Using a subsystem parameter to optimize queries with IN-list predicates
	Using a subsystem parameter to control the weighting I/O cost and CPU cost



	Chapter 27. Using EXPLAIN to improve SQL performance
	Obtaining PLAN_TABLE information from EXPLAIN
	EXPLAIN tables
	Creating PLAN_TABLE
	Populating and maintaining a plan table
	Executing the SQL statement EXPLAIN
	Binding with the option EXPLAIN(YES)
	Maintaining a plan table

	Reordering rows from a plan table
	Retrieving rows for a plan
	Retrieving rows for a package


	Asking questions about data access
	Is access through an index? (ACCESSTYPE is I, I1, N or MX)
	Is access through more than one index? (ACCESSTYPE=M)
	How many columns of the index are used in matching? (MATCHCOLS=n)
	Is the query satisfied using only the index? (INDEXONLY=Y)
	Is direct row access possible? (PRIMARY_ACCESSTYPE = D)
	Which predicates qualify for direct row access?
	Reverting to ACCESSTYPE
	Using direct row access and other access methods
	Example: Coding with row IDs for direct row access

	Is a view or nested table expression materialized?
	Was a scan limited to certain partitions? (PAGE_RANGE=Y)
	What kind of prefetching is expected? (PREFETCH = L, S, D, or blank)
	Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C, or X)
	Are sorts performed?
	Is a subquery transformed into a join?
	When are aggregate functions evaluated? (COLUMN_FN_EVAL)
	How many index screening columns are used?
	Is a complex trigger WHEN clause used? (QBLOCKTYPE=TRIGGR)

	Interpreting access to a single table
	Table space scans (ACCESSTYPE=R PREFETCH=S)
	Table space scans of nonsegmented table spaces
	Table space scans of segmented table spaces
	Table space scans of partitioned table spaces
	Table space scans and sequential prefetch

	Index access paths
	Matching index scan (MATCHCOLS>0)
	Index screening
	Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0)
	IN-list index scan (ACCESSTYPE=N)
	Multiple index access (ACCESSTYPE is M, MX, MI, or MU)
	One-fetch access (ACCESSTYPE=I1)
	Index-only access (INDEXONLY=Y)
	Equal unique index (MATCHCOLS=number of index columns)

	UPDATE using an index

	Interpreting access to two or more tables (join)
	Definitions and examples of join operations
	Nested loop join (METHOD=1)
	Method of joining
	Performance considerations
	When nested loop join is used

	Merge scan join (METHOD=2)
	Method of joining
	Performance considerations
	When merge scan join is used

	Hybrid join (METHOD=4)
	Method of joining
	Possible results from EXPLAIN for hybrid join
	Performance considerations
	When hybrid join is used

	Star join (JOIN_TYPE=’S’)
	Example of a star schema
	When star join is used
	Dedicated virtual memory pool for star join operations


	Interpreting data prefetch
	Sequential prefetch (PREFETCH=S)
	Dynamic prefetch (PREFETCH=D)
	List prefetch (PREFETCH=L)
	The access method
	When list prefetch is used
	Bind time and execution time thresholds

	Sequential detection at execution time
	When sequential detection is used
	How to tell whether sequential detection was used
	How to tell if sequential detection might be used


	Determining sort activity
	Sorts of data
	Sorts for group by and order by
	Sorts to remove duplicates
	Sorts used in join processing
	Sorts needed for subquery processing

	Sorts of RIDs
	The effect of sorts on OPEN CURSOR

	Processing for views and nested table expressions
	Merge
	Materialization
	Two steps of materialization
	When views or table expressions are materialized

	Using EXPLAIN to determine when materialization occurs
	Using EXPLAIN to determine UNION activity and query rewrite
	Performance of merge versus materialization

	Estimating a statement's cost
	Creating a statement table
	Populating and maintaining a statement table
	Retrieving rows from a statement table
	The implications of cost categories


	Chapter 28. Parallel operations and query performance
	Comparing the methods of parallelism
	Enabling parallel processing
	Restrictions for parallelism
	Interpreting EXPLAIN output
	A method for examining PLAN_TABLE columns for parallelism
	PLAN_TABLE examples showing parallelism

	Tuning parallel processing
	Disabling query parallelism

	Chapter 29. Programming for the Interactive System Productivity Facility
	Using ISPF and the DSN command processor
	Invoking a single SQL program through ISPF and DSN
	Invoking multiple SQL programs through ISPF and DSN
	Invoking multiple SQL programs through ISPF and CAF

	Chapter 30. Programming for the call attachment facility
	CAF capabilities and requirements
	CAF capabilities
	Task capabilities
	Programming language
	Tracing facility
	Program preparation

	CAF requirements
	Program size
	Use of LOAD
	Using CAF in IMS batch
	Run environment
	Running DSN applications under CAF


	How to use CAF
	Summary of connection functions
	Implicit connections

	Accessing the CAF language interface
	Explicit load of DSNALI
	Link-editing DSNALI

	General properties of CAF connections
	Task termination
	DB2 abend

	CAF function descriptions
	Register conventions
	Call DSNALI parameter list

	CONNECT: Syntax and usage
	OPEN: Syntax and usage
	CLOSE: Syntax and usage
	DISCONNECT: Syntax and usage
	TRANSLATE: Syntax and usage
	Summary of CAF behavior

	Sample scenarios
	A single task with implicit connections
	A single task with explicit connections
	Several tasks

	Exit routines from your application
	Attention exit routines
	Recovery routines

	Error messages and dsntrace
	CAF return codes and reason codes
	Program examples for CAF
	Sample JCL for using CAF
	Sample assembler code for using CAF
	Loading and deleting the CAF language interface
	Connecting to DB2 for CAF
	Checking return codes and reason codes for CAF
	Using dummy entry point DSNHLI for CAF
	Variable declarations for CAF


	Chapter 31. Programming for the Resource Recovery Services attachment facility
	RRSAF capabilities and requirements
	RRSAF capabilities
	Task capabilities
	Programming language
	Tracing facility
	Program preparation

	RRSAF requirements
	Program size
	Use of LOAD
	Commit and rollback operations
	Run environment


	How to use RRSAF
	Summary of connection functions
	Implicit connections
	Accessing the RRSAF language interface
	Explicit Load of DSNRLI
	Link-editing DSNRLI

	General properties of RRSAF connections
	Task termination
	DB2 abend

	Summary of RRSAF behavior

	RRSAF function descriptions
	Register conventions
	Parameter conventions for function calls
	IDENTIFY: Syntax and usage
	Usage

	SWITCH TO: Syntax and usage
	Usage

	SIGNON: Syntax and usage
	Usage

	AUTH SIGNON: Syntax and usage
	Usage

	CONTEXT SIGNON: Syntax and usage
	Usage

	SET_ID: Syntax and usage
	Usage

	SET_CLIENT_ID: Syntax and usage
	Usage

	CREATE THREAD: Syntax and usage
	Usage

	TERMINATE THREAD: Syntax and usage
	Usage

	TERMINATE IDENTIFY: Syntax and usage
	Usage

	TRANSLATE: Syntax and usage
	Usage


	RRSAF connection examples
	Example of a single task
	Example of multiple tasks
	Example of calling SIGNON to reuse a DB2 thread
	Example of switching DB2 threads between tasks

	RRSAF return codes and reason codes
	Program examples for RRSAF
	Sample JCL for using RRSAF
	Loading and deleting the RRSAF language interface
	Using dummy entry point DSNHLI for RRSAF
	Connecting to DB2 for RRSAF


	Chapter 32. CICS-specific programming techniques
	Controlling the CICS attachment facility from an application
	Improving thread reuse
	Detecting whether the CICS attachment facility is operational

	Chapter 33. WebSphere MQ with DB2
	WebSphere MQ messages
	WebSphere MQ message handling
	WebSphere MQ message handling with the MQI
	WebSphere MQ message handling with the AMI


	WebSphere MQ functions and stored procedures
	Commit environment for AMI-based DB2 MQ functions and stored procedures
	Single-phase commit in WebSphere MQ
	Two-phase commit in WebSphere MQ

	DB2 MQ tables
	Converting applications to use the MQI functions
	How to use WebSphere MQ functions
	Basic messaging
	Sending messages with WebSphere MQ
	Retrieving messages
	Application-to-application connectivity


	Asynchronous messaging in DB2 UDB for z/OS and OS/390
	MQListener in DB2 for OS/390 and z/OS
	Configuring and running MQListener in DB2 UDB for OS/390 and z/OS
	Configuring MQListener to run in the DB2 environment
	Configuring Websphere MQ for MQListener

	Configuring MQListener tasks
	MQListener error processing
	Creating a sample stored procedure to use with MQListener
	MQListener examples


	Chapter 34. Using DB2 as a web services consumer and provider
	DB2 as a web services consumer
	The SOAPHTTPV and SOAPHTTPC user-defined functions
	The SOAPHTTPNV and SOAPHTTPNC user-defined functions
	SQLSTATEs for DB2 as a web services consumer

	DB2 as a web services provider

	Chapter 35. Programming techniques: Questions and answers
	Providing a unique key for a table
	Scrolling through previously retrieved data
	Using a scrollable cursor
	Using a ROWID or identity column

	Scrolling through a table in any direction
	Updating data as it is retrieved from the database
	Updating previously retrieved data
	Updating thousands of rows
	Retrieving thousands of rows
	Using SELECT *
	Optimizing retrieval for a small set of rows
	Adding data to the end of a table
	Translating requests from end users into SQL statements
	Changing the table definition
	Storing data that does not have a tabular format
	Finding a violated referential or check constraint

	Part 7. Appendixes
	Appendix A. DB2 sample tables
	Activity table (DSN8810.ACT)
	Department table (DSN8810.DEPT)
	Employee table (DSN8810.EMP)
	Employee photo and resume table (DSN8810.EMP_PHOTO_RESUME)
	Project table (DSN8810.PROJ)
	Project activity table (DSN8810.PROJACT)
	Employee to project activity table (DSN8810.EMPPROJACT)
	Unicode sample table (DSN8810.DEMO_UNICODE)
	Relationships among the sample tables
	Views on the sample tables
	Storage of sample application tables
	Storage group
	Databases
	Table spaces


	Appendix B. Sample applications
	Types of sample applications
	Using the sample applications
	TSO
	IMS
	CICS


	Appendix C. Running the productivity-aid sample programs
	Running DSNTIAUL
	Running DSNTIAD
	Running DSNTEP2 and DSNTEP4

	Appendix D. Programming examples
	Sample COBOL dynamic SQL program
	Pointers and based variables
	Storage allocation
	Example

	Sample dynamic and static SQL in a C program
	Sample DB2 REXX application
	Sample COBOL program using DRDA access
	Sample COBOL program using DB2 private protocol access
	Examples of using stored procedures
	Calling a stored procedure from a C program
	Calling a stored procedure from a COBOL program
	Calling a stored procedure from a PL/I program
	C stored procedure: GENERAL
	C stored procedure: GENERAL WITH NULLS
	COBOL stored procedure: GENERAL
	COBOL stored procedure: GENERAL WITH NULLS
	PL/I stored procedure: GENERAL
	PL/I stored procedure: GENERAL WITH NULLS


	Appendix E. Recursive common table expression examples
	Appendix F. REBIND subcommands for lists of plans or packages
	Overview of the procedure for generating lists of REBIND commands
	Sample SELECT statements for generating REBIND commands
	Sample JCL for running lists of REBIND commands

	Appendix G. Reserved schema names and reserved words
	Reserved schema names
	Reserved words

	Appendix H. Characteristics of SQL statements in DB2 UDB for z/OS
	Actions allowed on SQL statements
	SQL statements allowed in external functions and stored procedures
	SQL statements allowed in SQL procedures

	Appendix I. Program preparation options for remote packages
	Appendix J. DB2-supplied stored procedures
	WLM environment refresh stored procedure (WLM_REFRESH)
	Environment for WLM_REFRESH
	Authorization required for WLM_REFRESH
	WLM_REFRESH syntax diagram
	WLM_REFRESH option descriptions
	Example of WLM_REFRESH invocation

	WLM_SET_CLIENT_INFO stored procedure
	Environment for WLM_SET_CLIENT_INFO
	Authorization for WLM_SET_CLIENT_INFO
	WLM_SET_CLIENT_INFO syntax diagram
	WLM_SET_CLIENT_INFO option descriptions
	Example of WLM_SET_CLIENT_INFO

	The CICS transaction invocation stored procedure (DSNACICS)
	Environment for DSNACICS
	Authorization required for DSNACICS
	DSNACICS syntax diagram
	DSNACICS option descriptions
	DSNACICX user exit routine
	General considerations for DSNACICX
	Specifying the DSNACICX exit routine
	When the DSNACICX exit routine is taken
	Loading a new version of the DSNACICX exit routine
	Parameter list for DSNACICX

	Example of DSNACICS invocation
	DSNACICS output
	DSNACICS restrictions
	DSNACICS debugging

	IMS transactions stored procedure (DSNAIMS)
	Environment for DSNAIMS
	Authorization required for DSNAIMS
	DSNAIMS syntax diagram
	DSNAIMS option descriptions
	Examples of DSNAIMS invocation
	Connecting to multiple IMS subsystems with DSNAIMS

	IMS transactions stored procedure (DSNAIMS2)
	Environment for DSNAIMS2
	Authorization required for DSNAIMS2
	DSNAIMS2 syntax diagram
	DSNAIMS2 option descriptions
	Examples of DSNAIMS2 invocation
	Connecting to multiple IMS subsystems with DSNAIMS2

	The DB2 EXPLAIN stored procedure
	Environment
	Authorization required
	DSNAEXP syntax diagram
	DSNAEXP option descriptions
	Example of DSNAEXP invocation
	DSNAEXP output

	Deprecated: Store an XML document from an MQ message queue in DB2 tables (DXXMQINSERT)
	Environment for DXXMQINSERT
	Authorization required for DXXMQINSERT
	DXXMQINSERT syntax diagram
	DXXMQINSERT option descriptions
	Example of DXXMQINSERT invocation
	DXXMQINSERT output

	Deprecated: Store an XML document from an MQ message queue in DB2 tables (DXXMQSHRED)
	Environment for DXXMQSHRED
	Authorization required for DXXMQSHRED
	DXXMQSHRED syntax diagram
	DXXMQSHRED option descriptions
	Example of DXXMQSHRED invocation
	DXXMQSHRED output

	Deprecated: Store a large XML document from an MQ message queue in DB2 tables (DXXMQINSERTCLOB)
	Environment for DXXMQINSERTCLOB
	Authorization required for DXXMQINSERTCLOB
	DXXMQINSERTCLOB syntax diagram
	DXXMQINSERTCLOB option descriptions
	Example of DXXMQINSERTCLOB invocation
	DXXMQINSERTCLOB output

	Deprecated: Store a large XML document from an MQ message queue in DB2 tables (DXXMQSHREDCLOB)
	Environment for DXXMQSHREDCLOB
	Authorization required for DXXMQSHREDCLOB
	DXXMQSHREDCLOB syntax diagram
	DXXMQSHREDCLOB option descriptions
	Example of DXXMQSHREDCLOB invocation
	DXXMQSHREDCLOB output

	Deprecated: Store XML documents from an MQ message queue in DB2 tables (DXXMQINSERTALL)
	Environment for DXXMQINSERTALL
	Authorization required for DXXMQINSERTALL
	DXXMQINSERTALL syntax diagram
	DXXMQINSERTALL option descriptions
	Example of DXXMQINSERTALL invocation
	DXXMQINSERTALL output

	Deprecated: Store XML documents from an MQ message queue in DB2 tables (DXXMQSHREDALL)
	Environment for DXXMQSHREDALL
	Authorization required for DXXMQSHREDALL
	DXXMQSHREDALL syntax diagram
	DXXMQSHREDALL option descriptions
	Example of DXXMQSHREDALL invocation
	DXXMQSHREDALL output

	Deprecated: Store large XML documents from an MQ message queue in DB2 tables (DXXMQSHREDALLCLOB)
	Environment for DXXMQSHREDALLCLOB
	Authorization required for DXXMQSHREDALLCLOB
	DXXMQSHREDALLCLOB syntax diagram
	DXXMQSHREDALLCLOB option descriptions
	Example of DXXMQSHREDALLCLOB invocation
	DXXMQSHREDALLCLOB output

	Deprecated: Store large XML documents from an MQ message queue in DB2 tables (DXXMQINSERTALLCLOB)
	Environment for DXXMQINSERTALLCLOB
	Authorization required for DXXMQINSERTALLCLOB
	DXXMQINSERTALLCLOB syntax diagram
	DXXMQINSERTALLCLOB option descriptions
	Example of DXXMQINSERTALLCLOB invocation
	DXXMQINSERTALLCLOB output

	Deprecated: Send XML documents to an MQ message queue (DXXMQGEN)
	Environment for DXXMQGEN
	Authorization required for DXXMQGEN
	DXXMQGEN syntax diagram
	DXXMQGEN option descriptions
	Example of DXXMQGEN invocation
	DXXMQGEN output

	Deprecated: Send XML documents to an MQ message queue (DXXMQRETRIEVE)
	Environment for DXXMQRETRIEVE
	Authorization required for DXXMQRETRIEVE
	DXXMQRETRIEVE syntax diagram
	DXXMQRETRIEVE option descriptions
	Example of DXXMQRETRIEVE invocation
	DXXMQRETRIEVE output

	Deprecated: Send large XML documents to an MQ message queue (DXXMQGENCLOB)
	Environment for DXXMQGENCLOB
	Authorization required for DXXMQGENCLOB
	DXXMQGENCLOB syntax diagram
	DXXMQGENCLOB option descriptions
	Example of DXXMQGENCLOB invocation
	DXXMQGENCLOB output

	Deprecated: Send XML documents to an MQ message queue (DXXMQRETRIEVECLOB)
	Environment for DXXMQRETRIEVECLOB
	Authorization required for DXXMQRETRIEVECLOB
	DXXMQRETRIEVECLOB syntax diagram
	DXXMQRETRIEVECLOB option descriptions
	Example of DXXMQRETRIEVECLOB invocation
	DXXMQRETRIEVECLOB output


	Appendix K. How to use the DB2 library
	Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


