DB2 Universal Database for z/0S
Version 8

Application Programming
and SQL Guide

<||I

DB2 Universal Database for z/0S
Version 8

Application Programming
and SQL Guide

..ll

Note
Before using this information and the product it supports, be sure to read the general information under
1195.)

Ninth Edition, Softcopy Only (June 2012)

This edition applies to Version 8 of IBM DB2 Universal Database for z/OS (DB2 UDB for z/OS), product number
5625-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed
version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was
published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical
significance are not noted.

This and other books in the DB2 UDB for z/OS library are periodically updated with technical changes. These
updates are made available to licensees of the product on CD-ROM and on the Web (currently at
www.ibm.com/software/data/db2/zos/library.html). Check these resources to ensure that you are using the most
current information.

© Copyright IBM Corporation 1983, 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book .- Xxi
Who should read this book . . xxi
Terminology and citations . xxi
How to read the syntax diagrams . xxil
Accessibility .o . xxiii
How to send your comments . . Xxiv
Summary of changes to this book . XXV
Part 1. Using SQL queries. .1
Chapter 1. Retrlevmg data . . 3
Result tables . . .3
Data types . . .4
Selecting columns: SELECT .5
Selecting all columns: SELECT * . .5
Selecting some columns: SELECT column-name .6
Selecting derived columns: SELECT expression . .7
Eliminating duplicate rows: DISTINCT .7
Naming result columns: AS .7
Selecting rows using search conditions: WHERE .8
Putting the rows in order: ORDER BY . .9
Specifying the sort key . 10
Referencing derived columns . 10
Summarizing group values: GROUP BY .1
Subjecting groups to conditions: HAVING . .11
Merging lists of values: UNION . .12
Using UNION to eliminate duplicates .13
Using UNION ALL to keep duplicates .13
Creating common table expressions: WITH . .13
Using WITH instead of CREATE VIEW . . 14
Using common table expressions with CREATE VIEW . 14
Using common table expressions when you use INSERT . 15
Using recursive SQL .15
Accessing DB2 data that is not in a table . 16
Using 15-digit and 31-digit precision for decimal numbers . 16
Finding information in the DB2 catalog . 17
Displaying a list of tables you can use .18
Displaying a list of columns in a table . 18
Chapter 2. Working with tables and modlfylng data . 19
Working with tables . . 19
Creating your own tables: CREATE TABLE . 19
Working with temporary tables. .21
Dropping tables: DROP TABLE. . 25
Working with views . 25
Defining a view: CREATE VIEW . 25
Changing data through a view . . 26
Dropping views: DROP VIEW . .27
Modifying DB2 data .27
Inserting rows: INSERT . .27
Selecting values as you insert: SELECT FROM INSERT. . 31
Updating current values: UPDATE . . 36
Deleting rows: DELETE .37

© Copyright IBM Corp. 1983, 2012 iii

Chapter 3. Joining data from more than one table . . 39
Inner join . . 40
Full outer join .41
Left outer join .42
Right outer join . o . . 43
SQL rules for statements conta1n1ng join operatrons . .44
Using more than one join in an SQL statement . . 45
Using nested table expressions and user-defined table funct1ons in]o1ns . . 46
Using correlated references in table specifications in joins . . 47
Chapter 4. Using subqueries . 49
Conceptual overview . . 49
Correlated and uncorrelated subquer1es . 50
Subqueries and predicates . 50
The subquery result table. . . 50
Tables in subqueries of UPDATE, DELETE and INSERT statements . 51
How to code a subquery . e . 51
Basic predicate . 51
Quantified predicate : ALL ANY or SOME . 51
IN keyword o . 52
EXISTS keyword . 53
Using correlated subqueries . . . 53
An example of a correlated subquery . 53
Usrng correlation names in references . . 54
Using correlated subqueries in an UPDATE statement . . 55
Using correlated subqueries in a DELETE statement . . 56
Chapter 5. Using SPUFI to execute SQL from your workstation . 59
Allocating an input data set and using SPUFI . . 59
Changing SPUFI defaults . S . 62
Changing SPUFI defaults - panel 2 . 65
Entering SQL statements . . . 66
Using the ISPF editor . . 66
Retrieving Unicode UTF-16 graphrc data . 67
Entering comments .o . 67
Setting the SQL terminator character . . 67
Controlling toleration of warnings . 67
Processing SQL statements . 68
When SQL statements exceed resource l1m1t thresholds . 68
Browsing the output . . 69
Format of SELECT statement results . .70
Content of the messages . .71
Part 2. Coding SQL in your host application program . 73
Chapter 6. Basics of coding SQL in an application program. .77
Conventions used in examples of coding SQL statements . .78
Delimiting an SQL statement . .78
Declaring table and view definitions . .79
Accessing data using host variables, variable arrays and structures .79
Using host variables . 80
Using host variable arrays . 86
Using host structures . . . 90
Checking the execution of SQL statements . . .91
Using the SQL communication area (SQLCA) . .91
SQLCODE and SQLSTATE . .92
The WHENEVER statement . . .93
Handling arithmetic or conversion errors .93
The GET DIAGNOSTICS statement .94

iv Application Programming and SQL Guide

Calling DSNTIAR to display SQLCA fields .

Chapter 7. Using a cursor to retrieve a set of rows .
Accessing data by using a row-positioned cursor
Step 1: Declare the cursor
Step 2: Open the cursor . . .
Step 3: Specify what to do at end- of data .
Step 4: Execute SQL statements
Step 5: Close the cursor . .
Accessing data by using a rowset- posmoned cursor
Step 1: Declare the rowset cursor .
Step 2: Open the rowset cursor .
Step 3: Specify what to do at end-of- data for a rowset cursor
Step 4: Execute SQL statements with a rowset cursor .
Step 5: Close the rowset cursor
Types of cursors .
Scrollable and non—scrollable cursors.
Held and non-held cursors .
Examples of using cursors .

Chapter 8. Generating declarations for your tables usmg DCLGEN
Invoking DCLGEN through DB2I .
Including the data declarations in your program
DCLGEN support of C, COBOL, and PL/I languages .
Example: Adding a table declaration and host-variable structure to a hbrary
Step 1. Specify COBOL as the host language . .
Step 2. Create the table declaration and host structure.
Step 3. Examine the results .

Chapter 9. Embedding SQL statements in host Ianguages
Coding SQL statements in an assembler application
Defining the SQL communications area.
Defining SQL descriptor areas .
Embedding SQL statements
Using host variables .
Declaring host variables .
Determining equivalent SQL and assembler data types
Determining compatibility of SQL and assembler data types
Using indicator variables . .o
Handling SQL error return codes.
Macros for assembler applications .
Coding SQL statements in a C or C++ apphcatlon .
Defining the SQL communication area .
Defining SQL descriptor areas .
Embedding SQL statements .
Using host variables and host variable arrays
Declaring host variables .
Declaring host variable arrays .
Using host structures .
Determining equivalent SQL and C data types
Determining compatibility of SQL and C data types
Using indicator variables and indicator variable arrays
Handling SQL error return codes.
Coding considerations for C and C++ .
Coding SQL statements in a COBOL application.
Defining the SQL communication area .
Defining SQL descriptor areas .
Embedding SQL statements
Using host variables and host variable arrays
Declaring host variables .

. 98

. 103
. 103
. 103
. 105
. 105
. 106
. 108
. 108
. 108
. 108
. 109
. 109
. 113
. 113
. 113
. 122
. 124

. 131
. 132
. 136
. 136
. 138
. 138
. 139
. 140

. 143
. 143
. 143
. 144
. 145
. 148
. 148
. 151
. 155
. 156
. 157
. 158
. 158
. 158
. 159
. 160
. 161
. 162
. 168
. 173
. 175
. 181
. 182
. 184
. 186
. 186
. 186
. 187
. 187
. 191
. 192

Contents

A\

Declaring host variable arrays .

Using host structures . .
Determining equivalent SQL and COBOL data types .
Determining compatibility of SQL and COBOL data types
Using indicator variables and indicator variable arrays
Handling SQL error return codes. .

Coding considerations for object-oriented extensmns in COBOL

Coding SQL statements in a Fortran application .

Defining the SQL communication area .

Defining SQL descriptor areas .

Embedding SQL statements

Using host variables .

Declaring host variables .

Determining equivalent SQL and Fortran data types
Determining compatibility of SQL and Fortran data types
Using indicator variables . e
Handling SQL error return codes.

Coding SQL statements in a PL/I applrcatron

Defining the SQL communication area .

Defining SQL descriptor areas .

Embedding SQL statements .

Using host variables and host variable arrays
Declaring host variables .

Declaring host variable arrays .

Using host structures . .
Determining equivalent SQL and PL / I data types .
Determining compatibility of SQL and PL/I data types
Using indicator variables and indicator variable arrays
Handling SQL error return codes.

Coding SQL statements in a REXX apphcat1on

Defining the SQL communication area .
Defining SQL descriptor areas .

Accessing the DB2 REXX Language Support apphcatlon programmmg mterfaces.

Embedding SQL statements in a REXX procedure .
Using cursors and statement names . e
Using REXX host variables and data types
Using indicator variables
Setting the isolation level of SQL statements in a REXX procedure

Chapter 10. Using constraints to maintain data integrity .
Using check constraints .

Check constraint Con51derat10ns .
When check constraints are enforced
How check constraints set CHECK-pending status

Using referential constraints

Parent key columns . .
Defining a parent key and a uruque 1ndex
Defining a foreign key

Referential constraints on tables w1th multllevel securlty w1th row- level granularlty

Using informational referential constraints.

Chapter 11. Using DB2- generated values as keys
Using ROWID columns as keys

Defining a ROWID column.
Direct row access .

Using identity columns as keys

Defining an identity column
Parent keys and foreign keys .

Using values obtained from sequence ob]ects as keys .

vi

Creating a sequence object .

Application Programming and SQL Guide

. 199
. 205
. 210
. 214
. 216
. 217
. 219
. 220
. 220
. 220
. 221
. 223
. 223
. 225
. 227
. 228
. 229
. 230
. 230
. 230
. 231
. 233
. 234
. 237
. 240
. 241
. 245
. 246
. 247
. 249
. 249
. 250
. 250
. 252
. 254
. 255
. 258
. 259

. 261
. 261
. 261
. 262
. 262
. 263
. 263
. 264
. 266
. 268
. 269

. 271
. 271
. 271
. 272
. 272
. 273
. 274
. 275
. 275

Referencing a sequence object . . 276
Keys across multiple tables . . 276
Chapter 12. Using triggers for active data . . 279
Example of creating and using a trigger . 279
Parts of a trigger . . 281
Trigger name . 281
Subject table. . 281
Trigger activation time . 281
Triggering event . 281
Granularity . . 282
Transition variables . 283
Transition tables . 284
Triggered action . . 285
Invoking stored procedures and user—defmed functlons from trlggers . 287
Passing transition tables to user-defined functions and stored procedures . 288
Trigger cascading . . . 288
Ordering of multiple trlggers . . . 289
Interactions between triggers and referentlal Constramts . . 290
Interactions between triggers and tables that have multilevel securlty w1th row—level granulanty . 291
Creating triggers to obtain consistent results . . 292
Part 3. Using DB2 object-relational extensions . . . 295
Chapter 13. Introduction to DB2 object-relational extensions . . 297
Chapter 14. Programming for large objects . 299
Introduction to LOBs . . . 299
Declaring LOB host variables and LOB locators . 302
LOB materialization . o . 306
Using LOB locators to save storage . . . o . 307
Deferring evaluation of a LOB expression to 1mprove performance . 307
Indicator variables and LOB locators . 309
Valid assignments for LOB locators . . 310
Avoiding character conversion for LOB locators . 310
Chapter 15. Creating and using user-defined functions . 311
Overview of user-defined function definition, implementation, and invocation . 311
Example of creating and using a user-defined scalar function . 312
User-defined function samples shipped with DB2 . 313
Defining a user-defined function . . . 314
Components of a user-defined functlon deflmtlon . . 314
Examples of user-defined function definitions . 316
Implementing an external user-defined function. . 318
Writing a user-defined function . . . 318
Preparing a user-defined function for executlon . 350
Testing a user-defined function . 352
Implementing an SQL scalar function . 355
Invoking a user-defined function . . . 355
Syntax for user-defined function mvocatlon . 355
Ensuring that DB2 executes the intended user-defined functlon . 356
Casting of user-defined function arguments . . . 362
What happens when a user-defined function abnormally termmates . . 363
Nesting SQL statements . . . 363
Recommendations for user-defined functlon 1nvocat10n . 365
Chapter 16. Creating and using distinct types . 367
Introduction to distinct types . . . 367
Using distinct types in application programs . . 368

Contents Vil

Comparing distinct types . 368
Assigning distinct types . . 369
Using distinct types in UNIONs . . 371
Invoking functions with distinct types . . 371
Combining distinct types with user-defined functlons and LOBS . 372
Part 4. Designing a DB2 database application . 377
Chapter 17. Planning for DB2 program preparatlon . . 381
Planning to process SQL statements . . . 383
Planning to bind . . 384
Binding DBRMs with packages and plans . 384
Conversion of DBRMs that are bound to a plan to DBRMs that are bound to a package . 386
Planning for changes to your application . e . 387
Chapter 18. Planning for concurrency . . 393
Definitions of concurrency and locks . 393
Effects of DB2 locks . . 394
Suspension . . 394
Timeout . . 394
Deadlock 395
Basic recommendations to promote concurrency . 397
Recommendations for database design . . 398
Recommendations for application design . . 399
Aspects of transaction locks . 402
The size of a lock . . 402
The duration of a lock . 404
The mode of a lock . 404
The object of a lock . 407
Options for tuning locks. . 408
Bind options. . . 408
Isolation overriding w1th SQL statements . . 421
The LOCK TABLE statement . . 422
Access paths . 424
LOB locks . . 425
Relationship between transactlon locks and LOB locks . 425
Hierarchy of LOB locks . . . 426
LOB and LOB table space lock modes . . . 427
LOB lock and LOB table space lock duration . . 427
Instances when LOB table space locks are not taken . 428
The LOCK TABLE statement for LOBs . . 428
Chapter 19. Planning for recovery . 431
Unit of work in TSO batch and online . . 432
Unit of work in CICS. . 432
Unit of work in IMS online programs . . . 433
Planning ahead for program recovery: Checkpomt and restart . . 435
When are checkpoints important? . . 436
Checkpoints in MPPs and transaction- or1ented BMPS . . 436
Checkpoints in batch-oriented BMPs . 437
Specifying checkpoint frequency 438
Unit of work in DL/T and IMS batch programs . . 438
Commit and rollback coordination . 438
Restart and recovery in IMS batch . . . 439
Using savepoints to undo selected changes w1th1n a unlt of work . . 439
Chapter 20. Planning to access distributed data . 441
Planning for DRDA and DB2 private protocol access . . 441
Advantages of DRDA access e . 442

viii Application Programming and SQL Guide

Moving from DB2 private protocol access to DRDA access . 442
Bind processes for DRDA and DB2 private protocol access . . 444
Precompiler and bind options for DRDA access . . . 445
Coding methods for distributed data . 448
Using three-part table names to access dlstrlbuted data . 448
Using explicit CONNECT statements to access distributed data . 450
Coordinating updates to two or more data sources . . 452
Working without two-phase commit. . . 452
Update restrictions on servers that do not support two-phase Cornrnlt . 453
Forcing update restrictions by using CONNECT (Type 1) . 453
Maximizing performance for distributed data . 454
Coding efficient queries . . . 454
Maximizing LOB performance in a dlstrlbuted enV1ronment . . 454
Using bind options to improve performance for distributed apphcatlons . 456
Using block fetch in distributed applications . . . 458
Limiting the number of DRDA network transmissions. . 461
Limiting the number of rows returned to DRDA clients . 464
Working with distributed data. . 465
SQL limitations at dissimilar servers. . 465
Executing long SQL statements in a dlstrlbuted enV1ronment . 466
Retrieving data from ASCII or Unicode tables . 466
Accessing data with a scrollable cursor when the requester is down—level . 467
Accessing data with a rowset-positioned cursor when the requester is down-level . 467
Maintaining data currency by using cursors . . 467
Copying a table from a remote location. . 467
Transmitting mixed data. . 467
Part 5. Developing your application 469
Chapter 21. Preparing an application program to run . 471
Steps in program preparation . . 472
Step 1: Process SQL statements . . . 473
Step 2: Compile (or assemble) and 11nk-ed1t the apphcatlon . . 495
Step 3: Bind the application . . .o . 496
Step 4: Run the application . . 509
Using JCL procedures to prepare apphcatlons . 513
Available JCL procedures . . . 513
Including code from SYSLIB data sets . . 514
Starting the precompiler dynamically . . 515
An alternative method for preparing a CICS program . 517
Using JCL to prepare a program with object-oriented extenswns . 518
Using ISPF and DB2 Interactive . . 519
DB2I help . . 519
DB2I Primary Option Menu . 519
DB2 Program Preparation panel . . 522
DB2I Defaults Panel 1 . 527
DB2I Defaults Panel 2 . 528
Precompile panel . . . 529
Bind /Rebind /Free selectlon panel . 532
Bind Package panel .o . 534
Bind Plan panel . 537
Rebind Package panel . 540
Rebind Trigger Package panel . 541
Rebind Plan panel. . . 543
Free Package panel . 545
Free Plan panel. . . 546
The Defaults for Bind or Reblnd Package or Plan panels . . 547
System Connection Types panel . e . 551
Panels for entering lists of values. . . . 553
Program Preparation: Compile, Link, and Run panel . . 554
Contents iX

The Run panel . . 556
Chapter 22. Testing an application program . 559
Establishing a test environment . 559

Designing a test data structure . 559

Filling the tables with test data . 561
Testing SQL statements using SPUFI. . 562
Debugging your program .o . 562

Debugging programs in TSO . . 562

Debugging programs in IMS . . 563

Debugging programs in CICS . . 564
Locating the problem. . . 568

Analyzing error and warning messages from the precompller . . 569

SYSTERM output from the precompiler . 569

SYSPRINT output from the precompiler . 570
Chapter 23. Processing DL/l batch appllcatlons . 575
Planning to use DL/I batch applications . 575

Features and functions of DB2 DL/I batch support . 575

Requirements for using DB2 in a DL/I batch]ob . 576

Authorization . . .o . . 576
Program design con51derat10ns . 576

Address spaces . 576

Commits . . . 577

SQL statements and IMS calls . 577

Checkpoint calls . 577

Application program synchromzatlon . 577

Checkpoint and XRST considerations . 577

Synchronization call abends . . 578
Input and output data sets for DL/I batch]obs . . 578

DB2 DL/I batch input . 578

DB2 DL/I batch output . . 580
Preparation guidelines for DL/I batch programs . 580

Precompiling e . 580

Binding . 580

Link-editing . 581

Loading and running . 581
Restart and recovery . . . 582

JCL example of a batch backout . . 583

JCL example of restarting a DL/I batch]ob . 583

Finding the DL/I batch checkpoint ID . . 584
Part 6. Additional programming techniques . 585
Chapter 24. Coding dynamic SQL in appllcatlon programs . 595
Choosing between static and dynamic SQL . 595

Flexibility of static SQL with host variables . 596

Flexibility of dynamic SQL . . 596

Limitations of dynamic SQL . 596

Dynamic SQL processing . 596

Performance of static and dynamlc SQL . 597
Caching dynamic SQL statements . 598

Using the dynamic statement cache . . 599

Using the statement cache table . . . 601

Keeping prepared statements after commit pomts . . 601
Limiting dynamic SQL with the resource limit facility . . 603

Writing an application to handle reactive governing . 604

Writing an application to handle predictive governing. . . 604

Using predictive governing and down-level DRDA requesters . . 605

Using predictive governing and enabled requesters. . 605

X Application Programming and SQL Guide

Choosing a host language for dynamic SQL applications .
Dynamic SQL for non-SELECT statements. .

Dynamic execution using EXECUTE IMMEDIATE

Dynamic execution using PREPARE and EXECUTE

Dynamic execution of a multiple-row INSERT statement . .

Using DESCRIBE INPUT to put parameter information in an SQLDA
Dynamic SQL for fixed-list SELECT statements . e

Declaring a cursor for the statement name.

Preparing the statement .

Opening the cursor . .

Fetching rows from the result table .

Closing the cursor . . .
Dynamic SQL for varying-list SELECT statements .

What your application program must do .

Preparing a varying-list SELECT statement

Executing a varying-list SELECT statement dynamlcally

Executing arbitrary statements with parameter markers

How bind options REOPT(ALWAYS) and REOPT(ONCE) affect dynamrc SQL

Using dynamic SQL in COBOL

Chapter 25. Using stored procedures for client/server processing.

Introduction to stored procedures

An example of a simple stored procedure .

Setting up the stored procedures environment
Defining your stored procedure to DB2.

Refreshing the stored procedures environment (for system admmlstrators)
Moving stored procedures to a WLM-established environment (for system admmlstrators)

Writing and preparing an external stored procedure .
Language requirements for the stored procedure and its caller .
Calling other programs .

Using reentrant code .
Writing a stored procedure as a main program or subprogram
Restrictions on a stored procedure .

Using COMMIT and ROLLBACK statements ina stored procedure
Using special registers in a stored procedure . . Lo
Accessing other sites in a stored procedure

Writing a stored procedure to access IMS databases

Writing a stored procedure to return result sets to a DRDA chent
Preparing a stored procedure .

Binding the stored procedure .

Writing a REXX stored procedure

Writing and preparing an SQL procedure .

Comparison of an SQL procedure and an external procedure
Statements that you can include in a procedure body .

Declaring and using variables, parameters, and conditions in an SQL procedure .

Parameter style for an SQL procedure .
Terminating statements in an SQL procedure .
Handling SQL conditions in an SQL procedure .
Examples of SQL procedures . .
Preparing an SQL procedure

Writing and preparing an application to use stored procedures
Forms of the CALL statement . .
Authorization for executing stored procedures
Linkage conventions .
Using indicator variables to speed processmg
Declaring data types for passed parameters

Writing a DB2 UDB for z/OS client program or SQL procedure to receive result sets

Accessing transition tables in a stored procedure
Calling a stored procedure from a REXX procedure
Preparing a client program

Running a stored procedure

. 605
. 605
. 606
. 607
. 610
. 612
. 612
. 613
. 613
. 614
. 614
. 614
. 615
. 615
. 615
. 625
. 626
. 627
. 629

. 631

Contents

. 631
. 632
. 636
. 637
. 641
. 642
. 643
. 643
. 644
. 644
. 645
. 648
. 648
. 649
. 651
. 652
. 652
. 654
. 655
. 656
. 659
. 660
. 661
. 663
. 664
. 664
. 665
. 669
. 671
. 683
. 684
. 685
. 686
. 705
. 705
. 710
. 716
. 716
. 720
. 721

xi

— — 4 —

How DB2 determines which version of a stored procedure to run . . . 722
Using a single application program to call different versions of a stored procedure . . 722
Running multiple stored procedures concurrently . . 724
Multiple instances of a stored procedure . 724
Accessing non-DB2 resources . . 725
Testing a stored procedure . . . 727
Debugging the stored procedure as a stand alone prograrn on a workstatron . . 727
Debugging with the Debug Tool and IBM VisualAge COBOL . . 727
Debugging an SQL procedure or C language stored procedure with the Debug Tool and C / C++ Producthlty
Tools for z/OS . e e T728
Debugging with Debug Tool for z / OS 1nteract1vely and in batch rnode . . 729
Using the MSGFILE run-time option e . 730
Using driver applications . . 731
Using SQL INSERT statements . 731
Chapter 26. Tuning your queries . . 733
General tips and questions . . . 733
Is the query coded as simply as p0551b1e7 . 733
Are all predicates coded correctly? . 733
Are there subqueries in your query?. . 734
Does your query involve aggregate functlons7 . . 735
Do you have an input variable in the predicate of an SQL query’ . 736
Do you have a problem with column correlation? . 736
Can your query be written to use a noncolumn express10n7 . 736
Can materialized query tables help your query performance? . 736
Does the query contain encrypted data? . 737
Writing efficient predicates . . 737
Properties of predicates . . 737
Predicates in the ON clause . . 740
General rules about predicate evaluatron . . 741
Order of evaluating predicates. . 741
Summary of predicate processing. . 742
Examples of predicate properties . . 747
Predicate filter factors . 748
Column correlation . 754
DB2 predicate manipulation . 757
Predicates with encrypted data . 762
Using host variables efficiently . 762
Changing the access path at run time . . 762
Rewriting queries to influence access path selectlon . 765
Writing efficient subqueries. . 768
Correlated subqueries . 769
Noncorrelated subqueries . . 769
When DB2 transforms a subquery 1nto a]o1n . 771
Subquery tuning . 772
Using scrollable cursors effrcrently . . . 773
Writing efficient queries on tables with data—partrtroned secondary 1ndexes. . 774
Special techniques to influence access path selection . 776
Obtaining information about access paths . . 777
Fetching a limited number of rows: FETCH FIRST n ROWS ONLY . 777
Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS . 778
Favoring index access o . 780
Using a subsystem parameter to control outer]om processmg . . 780
Using the CARDINALITY clause to improve the performance of querres wrth user—deflned table functron
references e . 781
Reducing the number of matchlng columns . 782
Creating indexes for efficient star-join processing . 783
Rearranging the order of tables in a FROM clause . . 786
Updating catalog statistics . . 786
Using a subsystem parameter . . 787

xii Application Programming and SQL Guide

Chapter 27. Using EXPLAIN to improve SQL performance 789

Obtaining PLAN_TABLE information from EXPLAIN. .79
EXPLAIN tables ...
Creating PLAN_TABLE s
Populating and maintaining a plan table C s 798
Reordering rows from a plan table .79
Asking questions about data access . . . s (0[0]
Is access through an index? (ACCESSTYPE is I Il N or MX) - 0§

Is access through more than one index? (ACCESSTYPE=M) . . . < (0) |
How many columns of the index are used in matching? (MATCHCOLS n) - (024

Is the query satisfied using only the index? (INDEXONLY=Y)802

Is direct row access possible? (PRIMARY_ACCESSTYPE=D)803

Is a view or nested table expression materialized? . . . - 00
Was a scan limited to certain partitions? (PAGE_RANGE= Y) L I - 0]
What kind of prefetching is expected? (PREFETCH =L, S, D, or blank) (14

Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C,or X)807
Are sorts performed?. 1

Is a subquery transformed into a]01n7 . < (0]
When are aggregate functions evaluated? (COLUMN FN EVAL) < 0

I How many index screening columns are used? . . e (¢
| Is a complex trigger WHEN clause used? (QBLOCKTYPE TRIGGR) s (0
Interpreting access to a single table 809
Table space scans (ACCESSTYPE=R PREFETCH S) . < 02
Index access paths. .. .810
UPDATE using an index . . . e < 1 02}
Interpreting access to two or more tables (]om) R < 2 o)
Definitions and examples of join operations .815
Nested loop join METHOD=1) .818
Merge scan join METHOD=2) .82
Hybrid join METHOD=4) .. .82
Star join JOIN_TYPE='S") .83
Interpretlng data prefetch . . . - (0]
Sequential prefetch (PREFETCH= S) s < [0

I Dynamic prefetch (PREFETCH=D) .83
List prefetch (PREFETCH=L) .81
Sequential detection at execution time .83
Determining sort activity .84
Sorts of data. L L o L L. L L8
Sorts of RIDs . . . e)
The effect of sorts on OPEN CURSOR 9]
Processing for views and nested table expressions .83
Merge...................................836
Materialization . . . S 836
Using EXPLAIN to determlne when materlahzatlon oCCUIS839
Using EXPLAIN to determine UNION activity and query rewrite.840
Performance of merge versus materialization. . . 2
Estimating a statement'scost L L 0L L 842
Creating a statement table
Populating and maintaining a statement table e - 2 2}
Retrieving rows from a statement table. .84
The implications of cost categories .846

Chapter 28. Parallel operations and query performance 847

Comparing the methods of parallelism. .848
Enabling parallel processing .80
Restrictions for parallelism .81
Interpreting EXPLAIN output. . . B 2

A method for examining PLAN TABLE columns for parallehsm B 1674

PLAN_TABLE examples showing parallelism. .83
Tuning parallel processing .84
Disabling query parallelism .85

Contents Xiii

Chapter 29. Programming for the Interactive System Productivity Facility 857

Using ISPF and the DSN command processor . . - 574
Invoking a single SQL program through ISPF and DSN P < o
Invoking multiple SQL programs through ISPFand DSN.85
Invoking multiple SQL programs through ISPF and CAF.89

Chapter 30. Programming for the call attachment facility. 861

CAF capabilities and requirements .86l
CAF capabilities ..o L8el
CAF requirements.863

How touse CAF O « (o
Summary of connection functlons O & <14
Accessing the CAF language interface .87
General properties of CAF connections. .868
CAF function descriptions ... 869
CONNECT: Syntax and usage.« « « « « « .«872
OPEN: Syntax and usage ... 876
CLOSE: Syntax and usage .878
DISCONNECT: Syntax and usage« .« .« .« « .« .« .«8M9
TRANSLATE: Syntax and usage .88
Summary of CAF behavior.88

Sample scenarios . . . S 883
A single task with 1mpl1c1t connect1ons e - 1o)
A single task with explicit connections .84
Several tasks . . . OO < 7

Exit routines from your appl1cat10n e 12
Attention exit routines84
Recovery routines .88

Error messages and dsntrace .88

CAF return codes and reason codes .88

Program examples for CAF. .88
Sample JCL for using CAF P < 1< 1o}
Sample assembler code for using CAF 174
Loading and deleting the CAF language interface .8
Connecting to DB2 for CAF e - 1 4
Checking return codes and reason codes for CAF O < 1o 1
Using dummy entry point DSNHLI for CAF. .89
Variable declarations for CAF s 892

Chapter 31. Programming for the Resource Recovery Services attachment facility . . 895

RRSAF capabilities and requirements .8%
RRSAF capabilities .. .8%
RRSAF requirements8%

How to use RRSAF O < L+
Summary of connection functlons O < 1<
Implicit connections . . P < 14
Accessing the RRSAF language mterface S a900
General properties of RRSAF connections .902
Summary of RRSAF behavior .94

RRSAF function descriptions .95
Register conventions . . .)
Parameter conventions for funct1on calls P [0}
IDENTIFY: Syntax and usage .9006
SWITCH TO: Syntax and usage« .« « « « « .« .«99
SIGNON: Syntax and usage oo 912
AUTH SIGNON: Syntax and usage .96
CONTEXT SIGNON: Syntax and usage. .90
SET_ID: Syntax and usage . . . O L
SET_CLIENT_ID: Syntax and usage Ce e s 0925
CREATE THREAD: Syntax and usage .928

xiv Application Programming and SQL Guide

HHFHFHHFHF T HHE T

TERMINATE THREAD: Syntax and usage.
TERMINATE IDENTIFY: Syntax and usage
TRANSLATE: Syntax and usage .
RRSAF connection examples
Example of a single task.
Example of multiple tasks . .
Example of calling SIGNON to reuse a DBZ thread
Example of switching DB2 threads between tasks
RRSAF return codes and reason codes .
Program examples for RRSAF .
Sample JCL for using RRSAF . .
Loading and deleting the RRSAF language 1nterface
Using dummy entry point DSNHLI for RRSAF .
Connecting to DB2 for RRSAF. .

Chapter 32. CICS-specific programming techniques.
Controlling the CICS attachment facility from an application
Improving thread reuse . .
Detecting whether the CICS attachment fac1hty is operatlonal .

Chapter 33. WebSphere MQ with DB2 .
WebSphere MQ messages

WebSphere MQ message handhng
WebSphere MQ functions and stored procedures

Commit environment for AMI-based DB2 MQ functions and stored procedures .

DB2 MQ tables . .
Converting applications to use the MQI functlons .
How to use WebSphere MQ functions .

Asynchronous messaging in DB2 UDB for z/ OS and OS/ 390
MQListener in DB2 for OS/390 and z/0OS. .
Configuring and running MQListener in DB2 UDB for OS / 390 and z / OS .
Configuring MQListener tasks. e
MQListener error processing
Creating a sample stored procedure to use w1th MQLlstener
MQListener examples

Chapter 34. Using DB2 as a web services consumer and provider

DB2 as a web services consumer .
The SOAPHTTPV and SOAPHTTPC user-deflned funct1ons
The SOAPHTTPNV and SOAPHTTPNC user-defined functions
SQLSTATESs for DB2 as a web services consumer

DB2 as a web services provider

Chapter 35. Programming techniques: Questions and answers .

Providing a unique key for a table
Scrolling through previously retrieved data
Using a scrollable cursor
Using a ROWID or identity column
Scrolling through a table in any direction . .
Updating data as it is retrieved from the database .
Updating previously retrieved data .
Updating thousands of rows
Retrieving thousands of rows .
Using SELECT *
Optimizing retrieval for a small set of rows
Adding data to the end of a table .
Translating requests from end users into SQL statements .
Changing the table definition .
Storing data that does not have a tabular format
Finding a violated referential or check constraint

. 930
. 931
. 933
. 934
. 934
. 934
. 935
. 935
. 936
. 936
. 937
. 937
. 937
. 938

. 941

. 941
. 941
. 941

. 943

. 943
. 943
. 946
. 950
. 951
. 960
. 961
. 968
. 969
. 970
. 973
. 974
. 975
. 976

. 979

. 979
. 979
. 980
. 981
. 982

. 985

Contents

. 985
. 985
. 985
. 986
. 987
. 988
. 988
. 988
. 989
. 989
. 989
. 990
. 990
. 990
. 991
. 991

XV

Part 7. Appendixes .

Appendix A. DB2 sample tables
Activity table (DSN8810.ACT) .
Department table (DSN8810.DEPT) .
Employee table (DSN8810.EMP) .
Employee photo and resume table (DSN8810. EMP PHOTO RESUME)
Project table (DSN8810.PROYJ) . Lo
Project activity table (DSN8810. PRO]ACT) .
Employee to project activity table (DSN8810. EMPPRO]ACT)
Unicode sample table (DSN8810.DEMO_UNICODE) .
Relationships among the sample tables .
Views on the sample tables
Storage of sample application tables
Storage group
Databases .
Table spaces

Appendix B. Sample appllcatlons
Types of sample applications .
Using the sample applications

TSO .

IMS .

CICS .

Appendix C. Running the productlwty-ald sample programs
Running DSNTIAUL

Running DSNTIAD . .

Running DSNTEP2 and DSNTEP4

Appendix D. Programming examples.
Sample COBOL dynamic SQL program
Pointers and based variables .
Storage allocation
Example .
Sample dynamic and statlc SQL ina C program
Sample DB2 REXX application .
Sample COBOL program using DRDA access
Sample COBOL program using DB2 private protocol access
Examples of using stored procedures . .
Calling a stored procedure from a C program . .
Calling a stored procedure from a COBOL program .
Calling a stored procedure from a PL/I program .
C stored procedure: GENERAL . .
C stored procedure: GENERAL WITH NULLS
COBOL stored procedure: GENERAL . .
COBOL stored procedure: GENERAL WITH NULLS
PL/I stored procedure: GENERAL . .
PL/I stored procedure: GENERAL WITH NULLS

Appendix E. Recursive common table expression examples.

Appendix F. REBIND subcommands for lists of plans or packages .

Overview of the procedure for generating lists of REBIND commands .
Sample SELECT statements for generating REBIND commands
Sample JCL for running lists of REBIND commands .

Appendix G. Reserved schema names and reserved words .
Reserved schema names

xvi Application Programming and SQL Guide

. 993

. 995

. 995
. 996
. 998

. 1001

. 1002
. 1003
. 1004
. 1005
. 1006
. 1006
. 1011
. 1012
. 1012
. 1012

. 1015

. 1015
. 1017
. 1018
. 1020
. 1020

. 1021

. 1022
. 1026
. 1028

. 1033

. 1033
. 1033
. 1033
. 1034
. 1045
. 1049
. 1063
. 1071
. 1077
. 1077
. 1081
. 1084
. 1085
. 1087
. 1090
. 1093
. 1095
. 1096

. 1099

. 1105

. 1105
. 1105
. 1108

. 1113

. 1113

Reserved wordso s o113

Appendix H. Characteristics of SQL statements in DB2 UDB for z/0S. 1117

Actions allowed on SQL statements e V4
SQL statements allowed in external functions and stored procedures o N 0211}
SQL statements allowed in SQL procedures .12

Appendix I. Program preparation options for remote packages 1127

Appendix J. DB2-supplied stored procedures1131

WLM environment refresh stored procedure (WLM_REFRESH)133
Environment for WLM_REFRESH .13
Authorization required for WLM_REFRESH. .13
WLM_REFRESH syntax diagram .13
WLM_REFRESH option descriptions .13
Example of WLM_REFRESH invocation .135

WLM_SET_CLIENT_INFO stored procedure. .1136
Environment for WLM_SET_CLIENT_INFO. .136
Authorization for WLM_SET_CLIENT_INFO .1136
WLM_SET_CLIENT_INFO syntax diagram .137
WLM_SET_CLIENT_INFO option descriptions. .137
Example of WLM_SET_CLIENT_INFO . . . O O 1 4
The CICS transaction invocation stored procedure (DSNACICS) e B K
Environment for DSNACICS .1138
Authorization required for DSNACICS .13
DSNACICS syntax diagram .13
DSNACICS option descriptions .13
DSNACICX user exit routine. ... 114
Example of DSNACICS invocation. .1143
DSNACICS output 145
DSNACICS restrictions. .14
DSNACICS debugging . . . e B %)
IMS transactions stored procedure (DSNAIMS) O I 153
Environment for DSNAIMS .14
Authorization required for DSNAIMS .14
DSNAIMS syntax diagram .l46
DSNAIMS option descriptions .l1146
Examples of DSNAIMS invocation . . . e B 0}
Connecting to multiple IMS subsystems w1th DSNAIMS e
IMS transactions stored procedure (DSNAIMS2) .149
Environment for DSNAIMS2 .15
Authorization required for DSNAIMS2 .15
DSNAIMS2 syntax diagram .15
DSNAIMS2 option descriptions .15
Examples of DSNAIMS2 invocation . . e § 5K
Connecting to multiple IMS subsystems w1th DSNAIMS2 I N foX
The DB2 EXPLAIN stored procedure .1154
Environment L L 1164
Authorization required .154
DSNAEXP syntax diagram .15
DSNAEXP option descriptions .15
Example of DSNAEXP invocation .156
DSNAEXP output . . B N 174
Deprecated: Store an XML document from an MQ message queue in DBZ tables (DXXMQINSERT) R § 1574

Environment for DXXMQINSERTo 1157

Authorization required for DXXMQINSERT .157

DXXMQINSERT syntax diagram .15

DXXMQINSERT option descriptions .1158

Example of DXXMQINSERT invocation .1158

DXXMQINSERT output ... 115

Contents XVii

HFHIFHHFHFHFHFHHHFHFHFHFHFHFFHFFHF T

Deprecated: Store an XML document from an MQ message queue in DB2 tables (DXXMQSHRED)
Environment for DXXMQSHRED Lo -
Authorization required for DXXMQSHRED
DXXMQSHRED syntax diagram.

DXXMQSHRED option descriptions
Example of DXXMQSHRED invocation
DXXMQSHRED output.

Deprecated: Store a large XML document from an MQ message queue in DBZ tables (DXXMQINSERTCLOB)

Environment for DXXMQINSERTCLOB . .
Authorization required for DXXMQINSERTCLOB .
DXXMQINSERTCLOB syntax diagram .
DXXMQINSERTCLOB option descriptions
Example of DXXMQINSERTCLOB invocation .
DXXMQINSERTCLOB output

Deprecated: Store a large XML document from an MQ message queue in DBZ tables (DXXMQSHREDCLOB)

Environment for DXXMQSHREDCLOB .
Authorization required for DXXMQSHREDCLOB .
DXXMQSHREDCLOB syntax diagram.
DXXMQSHREDCLOB option descriptions
Example of DXXMQSHREDCLOB invocation
DXXMQSHREDCLOB output.

Deprecated: Store XML documents from an MQ message queue in DB2 tables (DXXMQINSERTALL)

Environment for DXXMQINSERTALL .
Authorization required for DXXMQINSERTALL
DXXMQINSERTALL syntax diagram . .
DXXMQINSERTALL option descriptions .
Example of DXXMQINSERTALL invocation .
DXXMQINSERTALL output .

Deprecated: Store XML documents from an MQ message queue in DBZ tables (DXXMQSHREDALL)

Environment for DXXMQSHREDALL . .
Authorization required for DXXMQSHREDALL
DXXMQSHREDALL syntax diagram . .
DXXMQSHREDALL option descriptions .
Example of DXXMQSHREDALL invocation .
DXXMQSHREDALL output .

Deprecated: Store large XML documents from an MQ message queue in DBZ tables (DXXMQSHREDALLCLOB)

Environment for DXXMQSHREDALLCLOB . .
Authorization required for DXXMQSHREDALLCLOB
DXXMQSHREDALLCLOB syntax diagram . .
DXXMQSHREDALLCLOB option descriptions .
Example of DXXMQSHREDALLCLOB invocation .
DXXMQSHREDALLCLOB output .

Deprecated: Store large XML documents from an MQ message queue in DBZ tables (DXXMQINSERTALLCLOB)

Environment for DXXMQINSERTALLCLOB.
Authorization required for DXXMQINSERTALLCLOB
DXXMQINSERTALLCLOB syntax diagram . .
DXXMQINSERTALLCLOB option descriptions .
Example of DXXMQINSERTALLCLOB invocation .
DXXMQINSERTALLCLOB output . .

Deprecated: Send XML documents to an MQ message queue (DXXMQGEN)
Environment for DXXMQGEN . o
Authorization required for DXXMQGEN .

DXXMQGEN syntax diagram .

DXXMQGEN option descriptions

Example of DXXMQGEN invocation

DXXMQGEN output .

Deprecated: Send XML documents to an MQ message queue (DXXMQRETRIEVE) .
Environment for DXXMQRETRIEVE o
Authorization required for DXXMQRETRIEVE
DXXMQRETRIEVE syntax diagram
DXXMQRETRIEVE option descriptions

xviii Application Programming and SQL Guide

. 1159
. 1160
. 1160
. 1160
. 1160
. 1161
. 1162

1162

. 1162
. 1162
. 1162
. 1163
. 1163
. 1164

1164

. 1164
. 1165
. 1165
. 1165
. 1166
. 1166
. 1166
. 1167
. 1167
. 1167
. 1167
. 1168
. 1169
. 1169
. 1169
. 1169
. 1169
. 1170
. 1170

. 1171
1171

. 1172
. 1172
. 1172
. 1172
. 1173

. 1174
1174

. 1174
. 1174
. 1174
. 1175
. 1175
. 1176
. 1176
. 1177
. 1177
. 1177
. 1177
. 1179
. 1180
. 1180
. 1180
. 1180
. 1180
. 1181

B TR I S T S R SR S RS

Example of DXXMQRETRIEVE invocation
DXXMQRETRIEVE output

Deprecated: Send large XML documents to an MQ message queue (DXXMQGENCLOB) .

Environment for DXXMQGENCLOB . .
Authorization required for DXXMQGENCLOB .
DXXMQGENCLOB syntax diagram .
DXXMQGENCLOB option descriptions
Example of DXXMQGENCLOB invocation .
DXXMQGENCLOB output

Deprecated: Send XML documents to an MQ message queue (DXXMQRETRIEVECLOB).

Environment for DXXMQRETRIEVECLOB . .
Authorization required for DXXMQRETRIEVECLOB .
DXXMQRETRIEVECLOB syntax diagram
DXXMQRETRIEVECLOB option descriptions
Example of DXXMQRETRIEVECLOB invocation .
DXXMQRETRIEVECLOB output .

Appendix K. How to use the DB2 library
Notices e e e

Programming interface information.

Trademarks.

Glossary .

Bibliography .

Index .

. 1182
. 1183
. 1184
. 1184
. 1184
. 1184
. 1184
. 1186
. 1187
. 1187
. 1187
. 1188
. 1188
. 1188
. 1189
. 1191

. 1193

. 1195

. 1196
. 1197

. 1199

. 1233

Contents

. X-1

Xix

XX Application Programming and SQL Guide

About this book

This book discusses how to design and write application programs that access DB2
Universal Database for z/OS (DB2), a highly flexible relational database
management system (DBMS).

This information assumes that your DB2 subsystem is running in Version 8
new-function mode. New functions are available only in new-function mode,
unless explicitly stated otherwise in the product documentation. A few general
exceptions exist for utilities and for optimization. In most cases, new functions are
not supported in compatibility mode unless noted. For utilities and optimization,
new functions are available in compatibility mode unless noted. The new functions
that are available in compatibility mode and enabling-new-function mode are
almost identical, but some new functions are supported to provide easier
migration. Exceptions to these general statements are noted in the information.

Visit the following Web site for information about ordering DB2 books and
obtaining other valuable information about DB2 UDB for z/OS:
http:/ /publib.boulder.ibm.com/infocenter/imzic

— Important
In this version of DB2 UDB for z/OS, the DB2 Utilities Suite is available as an
optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them. See Part 1 of
[DB2 Utility Guide and Reference| for packaging details.

The DB2 Utilities Suite is designed to work with the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not
otherwise license DFSORT or DB2 Sort for general use. If your primary sort
product is not DFSORT or DB2 Sort, consider the following informational
APARs mandatory reading:

» 1114047/1114213: USE OF DFSORT BY DB2 UTILITIES
 1113495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL
ARCHITECTURE

These informational APARs are periodically updated.

Who should read this book

This book is for DB2 application developers who are familiar with Structured
Query Language (SQL) and who know one or more programming languages that
DB2 supports.

Terminology and citations

In this information, DB2 Universal Database” for z/OS® is referred to as "DB2
UDB for z/0OS." In cases where the context makes the meaning clear, DB2 UDB for
z/0S is referred to as "DB2®." When this information refers to titles of books in
this library, a short title is used. (For example, "See DB2 SQL Reference" is a citation
to IBM® DB2 Universal Database for z/OS SQL Reference.)

© Copyright IBM Corp. 1983, 2012 xxi

FH o H H H H*

When referring to a DB2 product other than DB2 UDB for z/OS, this information
uses the product's full name to avoid ambiguity.

The following terms are used as indicated:
DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON
Refers to any of the following products:
* IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
* IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
¢ IBM DB2 Performance Expert for Multiplatforms and Workgroups
 IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS or CICS Transaction Server
for OS/390°.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®
Represents the functions that are provided by the RACF component of the
z/0S Security Server.

How to read the syntax diagrams

xxii

The following rules apply to the syntax diagrams that are used in this book:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »»—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

* Required items appear on the horizontal line (the main path).

v
A

»>—required_item

* Optional items appear below the main path.

v
A

»>—required_item
I—optional_i i.‘em—|

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

|—optional_i tem—l
»>—required_item ><

 If you can choose from two or more items, they appear vertically, in a stack.

Application Programming and SQL Guide

If you must choose one of the items, one item of the stack appears on the main

path.

A\
A

»>—required i tem—Er'equired_cho icel
required_choi ce2—|

If choosing one of the items is optional, the entire stack appears below the main

path.

»>—required_item
i:gptional_choicel:‘
ptional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

efault _choice
»>—required_item |_d _l

i:zpt ional_choice:l
ptional_choice

A\
A

e An arrow returning to the left, above the main line, indicates an item that can be

repeated.

A\
A

»»—required_item——repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

v

»>—required_item repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

* Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products. The major accessibility
features in z/OS products, including DB2 UDB for z/OS, enable users to:

* Use assistive technologies such as screen reader and screen magnifier software
* Operate specific or equivalent features by using only a keyboard
* Customize display attributes such as color, contrast, and font size

About this book xxiii

Assistive technology products, such as screen readers, function with the DB2 UDB
for z/OS user interfaces. Consult the documentation for the assistive technology
products for specific information when you use assistive technology to access these
interfaces.

Online documentation for Version 8 of DB2 UDB for z/OS is available in the
Information management software for z/OS solutions information center, which is
an accessible format when used with assistive technologies such as screen reader
or screen magnifier software. The Information management software for z/OS
solutions information center is available at the following Web site:

http:/ /publib.boulder.ibm.com/infocenter/dzichelp

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 UDB for z/0S
documentation. You can use the following methods to provide comments:

e Send your comments by e-mail to db2zinfo@us.ibm.com and include the name
of the product, the version number of the product, and the number of the book.
If you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

* You can send comments from the Web. Visit the DB2 for z/OS - Technical
Resources Web site at:

http:/ /www.ibm.com/support/docview.wss?&uid=swg27011656

This Web site has a an online reader comment form that you can use to send
comments.

* You can also send comments by using the feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http:/ /publib.boulder.ibm.com/infocenter/db2zhelp.

xxiv Application Programming and SQL Guide

Summary of changes to this book

The principal changes to this book are:

* [Chapter 1, “Retrieving data,” on page 3| explains how to create and use common
table expressions in SELECT, CREATE VIEW, and INSERT statements, and also
describes how to use common table expressions to create recursive SQL.

* [Chapter 2, “Working with tables and modifying data,” on page 19| explains how
to select column values as you insert rows into a table by using the SELECT
from INSERT statement.

* |Chapter 6, “Basics of coding SQL in an application program,” on page 77|
contains information on how to use:

— Host variable arrays, and their indicator arrays, in a multiple-row INSERT
statement (in a C or C++, COBOL, or PL/I program).

— The GET DIAGNOSTICS statement to return diagnostic information about the
last SQL statement that was executed (for example, information about input
data errors during the execution of a multiple-row INSERT statement).

* [Chapter 7, “Using a cursor to retrieve a set of rows,” on page 103| explains how
to use:

— Static and dynamic scrollable cursors.

— A rowset-positioned cursor in a multiple-row FETCH statement (in a C or
C++, COBOL, or PL/I program).

— Positioned updates and deletes with a rowset-positioned cursor.

* |Chapter 9, “Embedding SQL statements in host languages,” on page 143| contains
information on how to declare host variable arrays (for C or C++, COBOL, and
PL/I) for use with multiple-row INSERT and FETCH statements.

* |Chapter 10, “Using constraints to maintain data integrity,” on page 261| describes
informational referential constraints (not enforced by DB2), describes referential
constraints on tables with multi-level security with row-level granularity, and
explains how to maintain referential integrity when using data encryption.

* |Chapter 11, “Using DB2-generated values as keys,” on page 271|is a new chapter
that describes the use of ROWID columns for direct row access, identity columns
as parent keys and foreign keys, and values generated from sequence objects as
keys across multiple tables.

* |Chapter 12, “Using triggers for active data,” on page 279| describes interactions
between triggers and tables that use multi-level security with row-level
granularity.

* |Chapter 21, “Preparing an application program to run,” on page 471| describes
the new SQL processing options:

— CCSID, which specifies the CCSID in which the source program is written.

— NEWFUN, which indicates whether to accept the syntax for DB2 Version 8
new functions.

— For C programs, PADNSTR or NOPADNSTR, which indicates whether or not
output host variables that are NUL-terminated strings are padded with
blanks.

This chapter also describes how the CURRENT PACKAGE PATH special register
is used in identifying the collection for packages at run time.

* |Chapter 24, “Coding dynamic SQL in application programs,” on page 595|
describes how to use a descriptor when you prepare and execute a multiple-row

© Copyright IBM Corp. 1983, 2012 XXV

INSERT statement. This chapter also includes information about how bind
option REOPT(ONCE) affects dynamic SQL statements.

* [Chapter 25, “Using stored procedures for client/server processing,” on page 631
describes how to invoke DSNTPSMP (the SQL Procedure Processor that prepares
SQL procedures for execution) with the SQL CALL statement. This chapter also
describes new SQL procedure statements and describes how to run multiple
instances of the same stored procedure at the same time.

* |Chapter 31, “Programming for the Resource Recovery Services attachment]
facility,” on page 895/ contains information about using implicit connections to
DB2 when applications include SQL statements.

* [Chapter 33, “WebSphere MQ with DB2,” on page 943|is a new chapter that
describes how to use DB2 WebSphere® MQ functions in SQL statements to
combine DB2 database access with WebSphere MQ message handling.

* |Appendix E, “Recursive common table expression examples,” on page 1099 is a
new appendix that includes examples of using common table expressions to
create recursive SQL in a bill of materials application.

XXV1 Application Programming and SQL Guide

Part 1. Using SQL queries

Chapter 1. Retrieving data
Result tables .
Data types . .
Selecting columns: SELECT
Selecting all columns: SELECT * . .
Selecting some columns: SELECT column—name
Selecting derived columns: SELECT expression .
Eliminating duplicate rows: DISTINCT
Naming result columns: AS .
Selecting rows using search conditions: WHERE
Putting the rows in order: ORDER BY .
Specifying the sort key
Referencing derived columns
Summarizing group values: GROUP BY
Subjecting groups to conditions: HAVING .
Merging lists of values: UNION .
Using UNION to eliminate duplicates
Using UNION ALL to keep duplicates
Creating common table expressions: WITH .
Using WITH instead of CREATE VIEW . .
Using common table expressions with CREATE VIEW
Using common table expressions when you use INSERT
Using recursive SQL .
Accessing DB2 data that is not in a table .
Using 15-digit and 31-digit precision for decimal numbers.
Finding information in the DB2 catalog .
Displaying a list of tables you can use
Displaying a list of columns in a table

Chapter 2. Working with tables and modifying data .
Working with tables . .o
Creating your own tables: CREATE TABLE
Identifying defaults. A
Creating work tables .
Creating a new department table .
Creating a new employee table .
Working with temporary tables. .
Working with created temporary tables .
Working with declared temporary tables.
Dropping tables: DROP TABLE. .
Working with views
Defining a view: CREATE VIEW
Changing data through a view .
Dropping views: DROP VIEW .
Modifying DB2 data .
Inserting rows: INSERT
Inserting a single row .
Inserting rows into a table from another table
Other ways to insert data. .
Inserting data into a ROWID column
Inserting data into an identity column .
Selecting values as you insert: SELECT FROM INSERT.
Result table of the INSERT operation . .o
Selecting values when you insert a single row .
Selecting values when you insert data into a view
Selecting values when you insert multiple rows .

© Copyright IBM Corp. 1983, 2012

O O NI NN U W

. 19
.19
.19
.19
. 20
. 20
.21
.21
.22
.23
. 25
. 25
. 25
. 26
.27
.27
.27
. 28
. 29
. 30
. 30
. 30
.31
.32
. 32
. 33
. 33

Result table of the cursor when you insert multiple rows .
What happens if an error occurs

Updating current values: UPDATE

Deleting rows: DELETE
Deleting every row in a table

Chapter 3. Joining data from more than one table
Inner join .

Full outer join

Left outer join

Right outer join . B .
SQL rules for statements contalnmg join operatlons .
Using more than one join in an SQL statement

Using nested table expressions and user-defined table functrons in]orns .

Using correlated references in table specifications in joins .

Chapter 4. Using subqueries .
Conceptual overview . . .
Correlated and uncorrelated subquerles
Subqueries and predicates
The subquery result table. .
Tables in subqueries of UPDATE, DELETE and INSERT statements
How to code a subquery . .
Basic predicate
Quantified predicate : ALL ANY or SOME
Using the ALL predicate . .
Using the ANY or SOME predlcate
IN keyword . o
EXISTS keyword
Using correlated subqueries . .
An example of a correlated subquery
Using correlation names in references .
Using correlated subqueries in an UPDATE statement .
Using correlated subqueries in a DELETE statement .
Using tables with no referential constraints .
Using a single table. .
Using tables with referential constrarnts

Chapter 5. Using SPUFI to execute SQL from your workstation.
Allocating an input data set and using SPUFI . Lo
Changing SPUFI defaults . e
Changing SPUFI defaults - panel 2
Entering SQL statements . .

Using the ISPF editor .

Retrieving Unicode UTF-16 graphrc data

Entering comments .

Setting the SQL terminator Character .

Controlling toleration of warnings
Processing SQL statements .
When SQL statements exceed resource hmlt thresholds.
Browsing the output .

Format of SELECT statement results .

Content of the messages .

2 Application Programming and SQL Guide

. 34
. 35
. 36
.37
. 38

. 39
. 40
.41
.42
.43
. 44
. 45
. 46
. 47

. 49
. 49
. 50
. 50
. 50
. 51
. 51
.51
. 51
. 52
. 52
. 52
. 53
. 53
. 53
. 54
. 55
. 56
. 56
. 56
. 56

. 59
. 59
. 62
. 65
. 66
. 66
. 67
. 67
. 67
. 67
. 68
. 68
. 69
. 70
.71

Chapter 1. Retrieving data

You can retrieve data using the SQL statement SELECT to specify a result table.
This chapter describes how to interactively use SELECT statements to retrieve data
from DB2 tables. It includes the following sections:

* [‘Result tables"l

* |[“Data types” on page 4|

* [“Selecting columns: SELECT” on page 5|

* |“Selecting rows using search conditions: WHERE” on page §

+ [“Putting the rows in order: ORDER BY” on page 9|

* [‘Summarizing eroup values: GROUP BY” on page 11|

+ [“Merging lists of values: UNION” on page 12|

+ [“Creating common table expressions: WITH” on page 13|

* [“Accessing DB2 data that is not in a table” on page 16|

+ |“Using 15-digit and 31-digit precision for decimal numbers” on page 16|

* |“Finding information in the DB2 catalog” on page 17|

For more advanced topics on using SELECT statements, see [Chapter 4, “Using]
subqueries,” on page 49 |and |[Chapter 20, “Planning to access distributed data,” on|

[page 441.|

Examples of SQL statements illustrate the concepts that this chapter discusses.
Consider developing SQL statements similar to these examples and then running
them dynamically using SPUFI or DB2 Query Management Facility (DB2 QME).

Result tables

The data retrieved through SQL is always in the form of a table, which is called a
result table. Like the tables from which you retrieve the data, a result table has rows
and columns. A program fetches this data one row at a time.

Example: SELECT statement: The following SELECT statement retrieves the last
name, first name, and phone number of employees in department D11 from the
sample employee table:
SELECT LASTNAME, FIRSTNME, PHONENO

FROM DSN8810.EMP

WHERE WORKDEPT = 'DI11'
ORDER BY LASTNAME;

The result table looks similar to the following output:

LASTNAME FIRSTNME PHONENO
ADAMSON BRUCE 4510
BROWN DAVID 4501
JOHN REBA 0672
JONES WILLIAM 0942
LUTZ JENNIFER 0672
PTANKA ELIZABETH 3782
SCOUTTEN MARILYN 1682
STERN IRVING 6432
WALKER JAMES 2986
YAMAMOTO KIYOSHI 2890
YOSHIMURA MASATOSHI 2890

© Copyright IBM Corp. 1983, 2012 3

Data types

When you create a DB2 table, you define each column to have a specific data type.
The data type can be a built-in data type or a distinct type. This section discusses
built-in data types. For information about distinct types, see [Chapter 16, “Creating|
[and using distinct types,” on page 367 The data type of a column determines what
you can and cannot do with the column. When you perform operations on
columns, the data must be compatible with the data type of the referenced column.
For example, you cannot insert character data, like a last name, into a column
whose data type is numeric. Similarly, you cannot compare columns containing
incompatible data types.

To better understand the concepts that are presented in this chapter, you must
understand the data types of the columns to which an example refers. As shown in
built-in data types have four general categories: datetime, string, numeric,
and row identifier (ROWID).

built-in
data
types
; ; signed row
datetime string numeric identifier
| ROWID
time | [timestamp date exact approximate
TIME TIMESTAMP DATE |
- floating
o] | Tength point
character| | graphic binary
BLOB —I
single double
fixed varying fixed varying precision| |precision
length length length length REAL DOUBLE

CHAR I_I_I GRAPHIC I_I_I

VARCHAR CLOB VARGRAPHIC DBCLOB

]

binary ;
integer decimal
16 bit 32 bit packed

SMALLINT INTEGER DECIMAL

Figure 1. DB2 data types
For more detailed information about each data type, see Chapter 2 of |[DB2 SQL

[Table 1 on page 5 shows whether operands of any two data types are compatible,
Y (Yes), or incompatible, N (No). Numbers in the table, either as superscript of Y
or N, or as a value in the column, indicates a note at the bottom of the table.

4 Application Programming and SQL Guide

Table 1. Compatibility of data types for assignments and comparisons. Y indicates that the data types are compatible.
N indicates no compatibility. For any number in a column, read the corresponding note at the bottom of the table.

Binary Decimal Floating Character Graphic Binary Time- Row Distinct
Operands integer number point string string string Date Time stamp ID type
Binary Integer Y Y Y N N N N N N N 2
Decimal Y Y Y N N N N N N N 2
Number
Floating Point Y Y Y N N N N N N N 2
Character N N N Y Y4 N? 1 1 1 N 2
String
Graphic String N N N Y*® Y N 1,4 1,4 14 N 2
Binary String N N N N° N Y N N N N 2
Date N N N 1 14 N Y N N N 2
Time N N N 1 1,4 N N Y N N 2
Timestamp N N N 1 14 N N N Y N 2
Row ID N N N N N N N N N Y 2
Distinct Type 2 2 2 2 2 2 2 2 2 2 Y?

Notes:

1.

The compatibility of datetime values is limited to assignment and comparison:

¢ Datetime values can be assigned to string columns and to string variables, as explained in Chapter 2 of

* A valid string representation of a date can be assigned to a date column or compared to a date.

* A valid string representation of a time can be assigned to a time column or compared to a time.

A valid string representation of a timestamp can be assigned to a timestamp column or compared to a
timestamp.

A value with a distinct type is comparable only to a value that is defined with the same distinct type. In general,
DB2 supports assighments between a distinct type value and its source data type. For additional information, see
Chapter 2 of [DB2 SQL Reference}

All character strings, even those with subtype FOR BIT DATA, are not compatible with binary strings.

On assignment and comparison from Graphic to Character, the resulting length in bytes is 3 * (LENGTH(graphic
string)), depending on the CCSIDs.

Character strings with subtype FOR BIT DATA are not compatible with Graphic Data.

Selecting columns: SELECT

You have several options for selecting columns from a database for your result
tables. This section describes how to select columns using a variety of techniques.

Selecting all columns: SELECT *

You do not need to know the column names to select DB2 data. Use an asterisk (*)
in the SELECT clause to indicate that you want to retrieve all columns of each
selected row of the named table.

Example: SELECT *: The following SQL statement selects all columns from the
department table:
SELECT *

FROM DSN8810.DEPT;

The result table looks similar to the following output:

Chapter 1. Retrieving data 5

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A0O SPIFFY COMPUTER SERVICES DIV. 000010 AOGO mmmmeee-

BO1 PLANNING 000020 [R
co1 INFORMATION CENTER 000030 Y —
D01 DEVELOPMENT CENTER memme- PO e
D11 MANUFACTURING CENTER 000060 01—
D21 ADMINSTRATION SYSTEMS 000070 010 S —
E01 SUPPORT SERVICES 000050 Y ——
E11 OPERATIONS 000090 20) S ——
E21 SOFTWARE SUPPORT 000100 210 S —
F22 BRANCH OFFICE F2 —emee- 353
622 BRANCH OFFICE G2 —eme- 353 D
H22 BRANCH OFFICE H2 ~ —emee- EOl mmmemme-
122 BRANCH OFFICE 12 —eme- EO1 cmmmeee-
J22 BRANCH OFFICE J2 meeee- 2153 D —

Because the example does not specify a WHERE clause, the statement retrieves
data from all rows.

The dashes for MGRNO and LOCATION in the result table indicate null values.

SELECT * is recommended mostly for use with dynamic SQL and view definitions.
You can use SELECT * in static SQL, but this is not recommended; if you add a
column to the table to which SELECT * refers, the program might reference
columns for which you have not defined receiving host variables. For more
information about host variables, see [“Accessing data using host variables, variable]
[arrays, and structures” on page 79

If you list the column names in a static SELECT statement instead of using an
asterisk, you can avoid the problem created by using SELECT *. You can also see
the relationship between the receiving host variables and the columns in the result
table.

Selecting some columns: SELECT column-name

Select the column or columns you want to retrieve by naming each column. All
columns appear in the order you specify, not in their order in the table.

Example: SELECT column-name: The following SQL statement selects only the
MGRNO and DEPTNO columns from the department table:

SELECT MGRNO, DEPTNO
FROM DSN8810.DEPT;

The result table looks similar to the following output:
MGRNO DEPTNO

000010 A0O
000020 BO1
000030 co1
------ DO1
000050 EO1
000060 D11
000070 D21
000090 E11
000100 E21
------ F22
------ G22
—————— H22
------ 122
—————— J22

6 Application Programming and SQL Guide

With a single SELECT statement, you can select data from one column or as many
as 750 columns.

Selecting derived columns: SELECT expression

You can select columns derived from a constant, an expression, or a function.

Example: SELECT with an expression: This SQL statement generates a result table
in which the second column is a derived column that is generated by adding the
values of the SALARY, BONUS, and COMM columns.

SELECT EMPNO, (SALARY + BONUS + COMM)
FROM DSN8810.EMP;

Derived columns in a result table, such as (SALARY + BONUS + COMM), do not
have names. You can use the AS clause to give a name to an unnamed column of

the result table. For information about using the AS clause, see

To order the rows in a result table by the values in a derived column, specify a
name for the column by using the AS clause, and specify that name in the ORDER
BY clause. For information about using the ORDER BY clause, see
[rows in order: ORDER BY” on page 9|

Eliminating duplicate rows: DISTINCT

The DISTINCT keyword removes duplicate rows from your result table, so that
each row contains unique data.

Example: SELECT DISTINCT: The following SELECT statement lists unique
department numbers for administrating departments:

SELECT DISTINCT ADMRDEPT
FROM DSN8810.DEPT;

The result table looks similar to the following output:
ADMRDEPT

Naming result columns: AS

With the AS clause, you can name result columns in a SELECT statement. This is
particularly useful for a column that is derived from an expression or a function.

For syntax and more information about the AS clause, see Chapter 4 of |[DB2 SQL

The following examples show different ways to use the AS clause.

Example: SELECT with AS CLAUSE: The following example of the SELECT
statement gives the expression SALARY+BONUS+COMM the name TOTAL_SAL.

SELECT SALARY+BONUS+COMM AS TOTAL_SAL
FROM DSN8810.EMP
ORDER BY TOTAL_SAL;

Example: CREATE VIEW with AS clause: You can specify result column names in
the select-clause of a CREATE VIEW statement. You do not need to supply the

Chapter 1. Retrieving data 7

column list of CREATE VIEW, because the AS keyword names the derived column.
The columns in the view EMP_SAL are EMPNO and TOTAL_SAL.
CREATE VIEW EMP_SAL AS

SELECT EMPNO, SALARY+BONUS+COMM AS TOTAL_SAL
FROM DSN8810.EMP;

For more information about using the CREATE VIEW statement, see
[view: CREATE VIEW” on page 25|

Example: UNION ALL with AS clause: You can use the AS clause to give the same
name to corresponding columns of tables in a union. The third result column from
the union of the two tables has the name TOTAL_VALUE, even though it contains
data derived from columns with different names:
SELECT 'On hand' AS STATUS, PARTNO, QOH = COST AS TOTAL_VALUE

FROM PART_ON_HAND
UNION ALL
SELECT 'Ordered' AS STATUS, PARTNO, QORDER * COST AS TOTAL_VALUE

FROM ORDER_PART
ORDER BY PARTNO, TOTAL_VALUE;

The column STATUS and the derived column TOTAL_VALUE have the same name
in the first and second result tables, and are combined in the union of the two
result tables, which is similar to the following partial output:

STATUS PARTNO TOTAL_VALUE

On hand 00557 345.60
Ordered 00557 150.50

For information about unions, see [“Merging lists of values: UNION” on page 12

Example: GROUP BY derived column: You can use the AS clause in a FROM clause
to assign a name to a derived column that you want to refer to in a GROUP BY
clause. This SQL statement names HIREYEAR in the nested table expression,
which lets you use the name of that result column in the GROUP BY clause:
SELECT HIREYEAR, AVG(SALARY)

FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, SALARY

FROM DSN8810.EMP) AS NEWEMP
GROUP BY HIREYEAR;

You cannot use GROUP BY with a name that is defined with an AS clause for the
derived column YEAR(HIREDATE) in the outer SELECT, because that name does
not exist when the GROUP BY runs. However, you can use GROUP BY with a
name that is defined with an AS clause in the nested table expression, because the
nested table expression runs before the GROUP BY that references the name. For
more information about using the GROUP BY clause, see [“Summarizing group|
[values: GROUP BY” on page 11/

Selecting rows using search conditions: WHERE

Use a WHERE clause to select the rows that meet certain conditions. A WHERE
clause specifies a search condition. A search condition consists of one or more
predicates. A predicate specifies a test you want DB2 to apply to each table row.

DB2 evaluates a predicate for each row as true, false, or unknown. Results are
unknown only if an operand is null.

8 Application Programming and SQL Guide

If a search condition contains a column of a distinct type, the value to which that
column is compared must be of the same distinct type, or you must cast the value

to the distinct type. See [Chapter 16, “Creating and using distinct types,” on page|

for more information about distinct types.

lists the type of comparison, the comparison operators, and an example of
how each type of comparison that you can use in a predicate in a WHERE clause.

Table 2. Comparison operators used in conditions

Type of comparison Comparison operator Example

Equal to = DEPTNO = 'X01'

Not equal to <> DEPTNO <> "X01"
Less than < AVG(SALARY) < 30000
Less than or equal to <= AGE <= 25

Not less than >= AGE >= 21

Greater than > SALARY > 2000

Greater than or equal to >=

SALARY >= 5000

Not greater than <=

SALARY <= 5000

Equal to null IS NULL

PHONENO IS NULL

Not equal to or one IS DISTINCT FROM
value is equal to null

PHONENO IS DISTINCT FROM
:PHONEHV

Similar to another value LIKE

NAME LIKE "%SMITH%" or STATUS
LIKE 'N_’

At least one of two OR
conditions

HIREDATE < "1965-01-01" OR SALARY
< 16000

Both of two conditions AND

HIREDATE < "1965-01-01" AND
SALARY < 16000

Between two values BETWEEN

SALARY BETWEEN 20000 AND 40000

Equals a value in a set IN (X, Y, Z)

DEPTNO IN ('B01’, 'C01’, 'D01")

Note: SALARY BETWEEN 20000 AND 40000 is equivalent to SALARY >= 20000 AND
SALARY <= 40000. For more information about predicates, see Chapter 2 of [DB2 SQL

You can also search for rows that do not satisfy one of the preceding conditions by
using the NOT keyword before the specified condition.

You can search for rows that do not satisfy the IS DISTINCT FROM predicate by

using either of the following predicates:
* value IS NOT DISTINCT FROM value
* NOT(value IS DISTINCT FROM wvalue)

Both of these forms of the predicate create an expression where one value is equal
to another value or both values are equal to null.

Putting the rows in order: ORDER BY

To retrieve rows in a specific order, use the ORDER BY clause. Using ORDER BY is
the only way to guarantee that your rows are ordered as you want them. The
following sections show you how to use the ORDER BY clause.

Chapter 1. Retrieving data 9

Specifying the sort key
The order of the selected rows depends on the sort keys that you identify in the
ORDER BY clause. A sort key can be a column name, an integer that represents the
number of a column in the result table, or an expression. DB2 orders the rows by
the first sort key, followed by the second sort key, and so on.

You can list the rows in ascending or descending order. Null values appear last in
an ascending sort and first in a descending sort.

DB2 sorts strings in the collating sequence associated with the encoding scheme of
the table. DB2 sorts numbers algebraically and sorts datetime values
chronologically.

Example: ORDER BY clause with a column name as the sort key: Retrieve the
employee numbers, last names, and hire dates of employees in department A00 in
ascending order of hire dates:
SELECT EMPNO, LASTNAME, HIREDATE

FROM DSN8810.EMP

WHERE WORKDEPT = 'A0O'
ORDER BY HIREDATE ASC;

The result table looks similar to the following output:

EMPNO LASTNAME HIREDATE

000110 LUCCHESI 1958-05-16
000120 O'CONNELL 1963-12-05
000010 HAAS 1965-01-01
200010 HEMMINGER 1965-01-01
200120 ORLANDO 1972-05-05

Example: ORDER BY clause with an expression as the sort key: The following
subselect retrieves the employee numbers, salaries, commissions, and total
compensation (salary plus commission) for employees with a total compensation
greater than 40000. Order the results by total compensation:
SELECT EMPNO, SALARY, COMM, SALARY+COMM AS "TOTAL COMP"

FROM DSN8810.EMP

WHERE SALARY+COMM > 40000
ORDER BY SALARY+COMM;

The intermediate result table looks similar to the following output:
EMPNO SALARY COMM TOTAL COMP

000030 38250.00 3060.00 41310.00
000050 40175.00 3214.00 43389.00
000020 41250.00 3300.00 44550.00
000110 46500.00 3720.00 50220.00
200010 46500.00 4220.00 50720.00
000010 52750.00 4220.00 56970.00

Referencing derived columns

If you use the AS clause to name an unnamed column in a SELECT statement, you
can use that name in the ORDER BY clause.

Example: ORDER BY clause using a derived column name: The following SQL
statement orders the selected information by total salary:
SELECT EMPNO, (SALARY + BONUS + COMM) AS TOTAL_SAL

FROM DSN8810.EMP
ORDER BY TOTAL_SAL;

10 Application Programming and SQL Guide

HHH H H

Summarizing group values: GROUP BY

Use GROUP BY to group rows by the values of one or more columns or by the
results of an expression. You can then apply aggregate functions to each group.

Except for the columns that are named in the GROUP BY clause, the SELECT
statement must specify any other selected columns as an operand of one of the
aggregate functions.

Example: GROUP BY clause using one column: The following SQL statement lists,
for each department, the lowest and highest education level within that
department:

SELECT WORKDEPT, MIN(EDLEVEL), MAX(EDLEVEL)

FROM DSN8810.EMP
GROUP BY WORKDEPT;

If a column that you specify in the GROUP BY clause contains null values, DB2
considers those null values to be equal. Thus, all nulls form a single group.

When it is used, the GROUP BY clause follows the FROM clause and any WHERE
clause, and precedes the ORDER BY clause.

You can group the rows by the values of more than one column.

Example: GROUP BY clause using more than one column: The following statement
finds the average salary for men and women in departments A00 and C01:
SELECT WORKDEPT, SEX, AVG(SALARY) AS AVG_SALARY

FROM DSN8810.EMP

WHERE WORKDEPT IN ('A60', 'CO1')
GROUP BY WORKDEPT, SEX;

The result table looks similar to the following output:
WORKDEPT SEX AVG_SALARY

F 49625.00000000
A0O M 35000.00000000
F 29722 .50000000

DB2 groups the rows first by department number and then (within each
department) by sex before it derives the average SALARY value for each group.

You can also group the rows by the results of an expression

Example: GROUP BY clause using a expression: The following statement groups
departments by their leading characters, and lists the lowest and highest education
level for each group:

SELECT SUBSTR(WORKDEPT,1,1), MIN(EDLEVEL), MAX(EDLEVEL)

FROM DSN8810.EMP
GROUP BY SUBSTR(WORKDEPT,1,1);

Subjecting groups to conditions: HAVING

Use HAVING to specify a search condition that each retrieved group must satisfy.
The HAVING clause acts like a WHERE clause for groups, and contains the same
kind of search conditions you specify in a WHERE clause. The search condition in
the HAVING clause tests properties of each group rather than properties of
individual rows in the group.

Chapter 1. Retrieving data 11

RS

Example: HAVING clause: The following SQL statement includes a HAVING clause
that specifies a search condition for groups of work departments in the employee
table:

SELECT WORKDEPT, AVG(SALARY) AS AVG_SALARY
FROM DSN8810.EMP
GROUP BY WORKDEPT
HAVING COUNT(*) > 1
ORDER BY WORKDEPT;

The result table looks similar to the following output:
WORKDEPT ~ AVG_SALARY

A0O 40850.00000000
co1 29722.50000000
D11 25147.27272727
D21 25668.57142857
E11 21020.00000000
E21 24086.66666666

Compare the preceding example with the second example shown in
[zroup values: GROUP BY” on page 11| The clause, HAVING COUNT(*) > 1, ensures

that only departments with more than one member are displayed. In this case,
departments B01 and E01 do not display because the HAVING clause tests a
property of the group.

Example: HAVING clause used with a GROUP BY clause: Use the HAVING clause
to retrieve the average salary and minimum education level of women in each
department for which all female employees have an education level greater than or
equal to 16. Assuming you only want results from departments A00 and D11, the
following SQL statement tests the group property, MIN(EDLEVEL):
SELECT WORKDEPT, AVG(SALARY) AS AVG_SALARY,

MIN(EDLEVEL) AS MIN_EDLEVEL

FROM DSN8810.EMP

WHERE SEX = 'F' AND WORKDEPT IN ('A@O', 'DI11')

GROUP BY WORKDEPT

HAVING MIN(EDLEVEL) >= 16;

The result table looks similar to the following output:

WORKDEPT AVG_SALARY MIN_EDLEVEL
A0O 49625.00000000 18
D11 25817.50000000 17

When you specify both GROUP BY and HAVING, the HAVING clause must follow
the GROUP BY clause. A function in a HAVING clause can include DISTINCT if
you have not used DISTINCT anywhere else in the same SELECT statement. You
can also connect multiple predicates in a HAVING clause with AND and OR, and
you can use NOT for any predicate of a search condition.

Merging lists of values: UNION

Using the UNION keyword, you can combine two or more SELECT statements to
form a single result table. When DB2 encounters the UNION keyword, it processes
each SELECT statement to form an interim result table, and then combines the
interim result table of each statement. If you use UNION to combine two columns
with the same name, the result table inherits that name. If the two columns do not
have the same name, and you do not use labels, the column in the result set is

12 Application Programming and SQL Guide

unnamed. When you use the UNION statement, the SQLNAME field of the
SQLDA contains the unqualified name or label of the column, or a string of length
zero if the name or label does not exist.

Using UNION to eliminate duplicates

You can use UNION to eliminate duplicates when merging lists of values obtained
from several tables.

Example: UNION clause: You can obtain a combined list of employee numbers that
includes both of the following:

* People in department D11

* People whose assignments include projects MA2112, MA2113, and AD3111.

The following SQL statement gives a combined result table containing employee
numbers in ascending order with no duplicates listed:

SELECT EMPNO

FROM DSN8810.EMP

WHERE WORKDEPT = 'DI11'
UNION
SELECT EMPNO

FROM DSN8810.EMPPROJACT

WHERE PROJNO = 'MA2112' OR
PROJNO = 'MA2113' OR
PROJNO = 'AD3111'

ORDER BY EMPNO;

If you have an ORDER BY clause, it must appear after the last SELECT statement
that is part of the union. In this example, the first column of the final result table
determines the final order of the rows.

Using UNION ALL to keep duplicates

If you want to keep duplicates in the final result table of a UNION, specify the
optional keyword ALL after the UNION keyword.

Example: UNION ALL clause: The following SQL statement gives a combined
result table containing employee numbers in ascending order, and includes
duplicate numbers:

SELECT EMPNO

FROM DSN8810.EMP

WHERE WORKDEPT = 'DI11'
UNION ALL
SELECT EMPNO

FROM DSN8810.EMPPROJACT

WHERE PROJNO = 'MA2112' OR
PROJNO = 'MA2113' OR
PROJNO = 'AD3111'

ORDER BY EMPNO;

| Creating common table expressions: WITH

[A common table expression is like a temporary view that is defined and used for the
[duration of an SQL statement. You can define a common table expression for the
| SELECT, INSERT, and CREATE VIEW statements.

I Each common table expression must have a unique name and be defined only

I once. However, you can reference a common table expression many times in the
| same SQL statement. Unlike regular views or nested table expressions, which

Chapter 1. Retrieving data 13

derive their result tables for each reference, all references to common table
expressions in a given statement share the same result table.

A common table expression can be used in the following situations:

* When you want to avoid creating a view (when general use of the view is not
required and positioned updates or deletes are not used)

¢ When the desired result table is based on host variables
* When the same result table needs to be shared in a fullselect

* When the results need to be derived using recursion

Using WITH instead of CREATE VIEW

Using the WITH clause to create a common table expression saves you the
overhead of needing to create and drop a regular view that you only need to use
once. Also, during statement preparation, DB2 does not need to access the catalog
for the view, which saves you additional overhead.

You can use a common table expression in a SELECT statement by using the WITH
clause at the beginning of the statement.

Example: WITH clause in a SELECT statement: The following statement finds the
department with the highest total pay. The query involves two levels of
aggregation. First, you need to determine the total pay for each department by
using the SUM function and order the results by using the GROUP BY clause. You
then need to find the department with maximum total pay based on the total pay
for each department.
WITH DTOTAL (deptno, totalpay) AS
(SELECT deptno, sum(salary+bonus)
FROM DSN8810.EMP
GROUP BY deptno)
SELECT deptno
FROM DTOTAL
WHERE totalpay = (SELECT max(totalpay)
FROM DTOTAL);

The result table for the common table expression, DTOTAL, contains the
department number and total pay for each department in the employee table. The
fullselect in the previous example uses the result table for DTOTAL to find the
department with the highest total pay. The result table for the entire statement
looks similar to the following results:

DEPTNO

Using common table expressions with CREATE VIEW

You can use common table expressions before a fullselect in a CREATE VIEW
statement. The common table expression must be placed immediately inside of the
statement. This is useful if you need to use the results of a common table
expression in more than one query.

Example: Using a WITH clause in a CREATE VIEW statement: The following
statement finds the departments that have a greater than average total pay and
saves the results as the view RICH_DEPT:

CREATE VIEW RICH_DEPT (deptno) AS

WITH DTOTAL (deptno, totalpay) AS
(SELECT deptno, sum(salary+bonus)

14 Application Programming and SQL Guide

FROM DSN8810.EMP
GROUP BY deptno)
SELECT deptno
FROM DTOTAL
WHERE totalpay > (SELECT AVG(totalpay)
FROM DTOTAL);

The fullselect in the previous example uses the result table for DTOTAL to find the
departments that have a greater than average total pay. The result table is saved as
the RICH_DEPT view and looks similar to the following results:

DEPTNO

Using common table expressions when you use INSERT

You can use common table expressions before a fullselect in an INSERT statement.
The common table expression must be placed immediately inside of the statement.

Example: Using a WITH clause in an INSERT statement: The following example
illustrates the use of a common table expression in an INSERT statement.

INSERT INTO vital_mgr (mgrno)
WITH VITALDEPT (deptno, se _count) AS
(SELECT deptno, count(x)
FROM DSN8810.EMP
WHERE job = 'senior engineer'
GROUP BY deptno)
SELECT d.manager
FROM DSN8810.DEPT d, VITALDEPT s
WHERE d.deptno = s.deptno
AND s.se_count > (SELECT AVG(se_count)
FROM VITALDEPT);

The fullselect in the previous example uses the result table for VITALDEPT to find
the manager's number for departments that have a greater than average number of
senior engineers. The manager's number is then inserted into the vital_mgr table.

Using recursive SQL

You can use common table expressions to create recursive SQL. If a fullselect of a
common table expression contains a reference to itself in a FROM clause, the
common table expression is a recursive common table expression. Queries that use
recursion are useful in applications like bill of materials applications, network
planning applications, and reservation systems.

Recursive common table expressions must follow these rules:

* The first fullselect of the first union (the initialization fullselect) must not include
a reference to the common table expression

* Each fullselect that is part of the recursion cycle must:
— Start with SELECT or SELECT ALL. SELECT DISTINCT is not allowed

— Include only one reference to the common table expression that is part of the
recursion cycle in it's FROM clause

— Not include aggregate functions, a GROUP BY clause, or a HAVING clause

* The column names must be specified following the table name of the common
table expression

Chapter 1. Retrieving data 15

* The data types, lengths, and CCSIDs of the column names from the common
table expression that are referenced in the iterative fullselect must match

* The UNION statements must be UNION ALL
* Outer joins must not be part of any recursion cycle
* Subquery must not be part on any recursion cycle

It is possible to introduce an infinite loop when developing a recursive common
table expression. A recursive common table expression is expected to include a
predicate that will prevent an infinite loop. A warning is issued if one of the
following is not found in the iterative fullselect of a recursive common table
expression:

* An integer column that increments by a constant

* A predicate in the WHERE clause in the form of counter_column < constant or
counter _column < :host variable

See [Appendix E, “Recursive common table expression examples,” on page 1099| for
examples of bill of materials applications that use recursive common table
expressions.

Accessing DB2 data that is not in a table

You can access DB2 data that is not in a table by returning the value of an SQL
expression in a host variable. The expression does not include a column of a table.
The three ways to return a value in a host variable are as follows:

* Set the contents of a host variable to the value of an expression by using the SET
host-variable assignment statement.
EXEC SQL SET :hvrandval = RAND(:hvrand);

* Use the VALUES INTO statement to return the value of an expression in a host
variable.

EXEC SQL VALUES RAND(:hvrand)
INTO :hvrandval;
* Select the expression from the DB2-provided EBCDIC table, named
SYSIBM.SYSDUMMY1, which consists of one row.
EXEC SQL SELECT RAND(:hvrand)

INTO :hvrandval
FROM SYSIBM.SYSDUMMY1;

Using 15-digit and 31-digit precision for decimal numbers

DB2 allows two sets of rules for determining the precision and scale of the result
of an operation with decimal numbers.

¢ DEC15 rules allow a maximum precision of 15 digits in the result of an
operation. DEC15 rules are in effect when both operands have a precision of 15
or less, or unless the DEC31 rules apply.

¢ DEC31 rules allow a maximum precision of 31 digits in the result. DEC31 rules
are in effect if any of the following conditions is true:

— Either operand of the operation has a precision greater than 15 digits.

— The operation is in a dynamic SQL statement, and any of the following
conditions is true:
- The current value of special register CURRENT PRECISION is DEC31 or
D31.s. s is a number between one and nine and represents the minimum
scale to be used for division operations.

16 Application Programming and SQL Guide

- The installation option for DECIMAL ARITHMETIC on panel DSNTIP4 is
DEC31, D31.s, or 31; the installation option for USE FOR DYNAMICRULES
on panel DSNTIP4 is YES; and the value of CURRENT PRECISION has not
been set by the application.

- The SQL statement has bind, define, or invoke behavior; the statement is in
an application precompiled with option DEC(31); the installation option for
USE FOR DYNAMICRULES on panel DSNTIP4 is NO; and the value of
CURRENT PRECISION has not been set by the application. See |”Usin§|
DYNAMICRULES to specify behavior of dynamic SQL statements” on page]
M for an explanation of bind, define, and invoke behavior.

— The operation is in an embedded (static) SQL statement that you precompiled
with the DEC(31), DEC31, or D31.s option, or with the default for that option
when the install option DECIMAL ARITHMETIC is DEC31 or 31. s is a
number between one and nine and represents the minimum scale to be used
for division operations. See [“Step 1: Process SQL statements” on page 473 for
information about precompiling and for a list of all precompiler options.

Recommendation: Choose DEC31 or D31.s to reduce the chance of overflow, or
when dealing with a precision greater than 15 digits. s is a number between one
and nine and represents the minimum scale to be used for division operations.

Avoiding decimal arithmetic errors: For static SQL statements, the simplest way to
avoid a division error is to override DEC31 rules by specifying the precompiler
option DEC(15). In some cases you can avoid a division error by specifying D31.s.
This specification reduces the probability of errors for statements that are
embedded in the program. s is a number between one and nine and represents the
minimum scale to be used for division operations.

If the dynamic SQL statements have bind, define, or invoke behavior and the value
of the installation option for USE FOR DYNAMICRULES on panel DSNTIP4 is
NO, you can use the precompiler option DEC(15), DEC15, or D15.s to override
DEC31 rules.

For a dynamic statement, or for a single static statement, use the scalar function
DECIMAL to specify values of the precision and scale for a result that causes no
errors.

Before you execute a dynamic statement, set the value of special register
CURRENT PRECISION to DEC15 or D15.s.

Even if you use DEC31 rules, multiplication operations can sometimes cause
overflow because the precision of the product is greater than 31. To avoid overflow
from multiplication of large numbers, use the MULTIPLY_ALT built-in function
instead of the multiplication operator.

Finding information in the DB2 catalog

The following examples show you how to access the DB2 system catalog tables to
list the following objects:

* The tables that you can access

* The column names of a table

The contents of the DB2 system catalog tables can be a useful reference tool when
you begin to develop an SQL statement or an application program.

Chapter 1. Retrieving data 17

Displaying a list of tables you can use

The catalog table, SYSIBM.SYSTABAUTH, lists table privileges granted to
authorization IDs. To display the tables that you have authority to access (by
privileges granted either to your authorization ID or to PUBLIC), you can execute
an SQL statement similar to the one shown in the following example. To do this,
you must have the SELECT privilege on SYSIBM.SYSTABAUTH.

SELECT DISTINCT TCREATOR, TTNAME

FROM SYSIBM.SYSTABAUTH
WHERE GRANTEE IN (USER, 'PUBLIC', 'PUBLIC*') AND GRANTEETYPE = ' ';

In this query, the predicate GRANTEETYPE = ' ' selects authorization IDs.

If your DB2 subsystem uses an exit routine for access control authorization, you
cannot rely on catalog queries to tell you the tables you can access. When such an
exit routine is installed, both RACF and DB2 control table access.

Displaying a list of columns in a table

Another catalog table, SYSIBM.SYSCOLUMNS, describes every column of every
table. Suppose you run the previous SQL statements to display a list of tables you
can access and you now want to display information about table DSN8810.DEPT.
To execute the following example, you must have the SELECT privilege on
SYSIBM.SYSCOLUMNS.
SELECT NAME, COLTYPE, SCALE, LENGTH

FROM SYSIBM.SYSCOLUMNS

WHERE TBNAME = 'DEPT'
AND TBCREATOR = 'DSN8810';

If you display column information about a table that includes LOB or ROWID
columns, the LENGTH field for those columns contains the number of bytes those
column occupy in the base table, rather than the length of the LOB or ROWID
data. To determine the maximum length of data for a LOB or ROWID column,
include the LENGTH2 column in your query, as in the following example:
SELECT NAME, COLTYPE, LENGTH, LENGTH2

FROM SYSIBM.SYSCOLUMNS

WHERE TBNAME = 'EMP_PHOTO_ RESUME'
AND TBCREATOR = 'DSN8810';

18 Application Programming and SQL Guide

Chapter 2. Working with tables and modifying data

This chapter discusses these topics:

+ [Creating your own tables: CREATE TABLE|

* |"Working with temporary tables” on page 21
* [“Dropping tables: DROP TABLE” on page 25
* |["“Defining a view: CREATE VIEW” on page 25|

+ [“Changing data through a view” on page 26|

* |["Dropping views: DROP VIEW” on page 27|

+ [“Inserting rows: INSERT” on page 27|

+ |“Selecting values as you insert: SELECT FROM INSERT” on page 31|
+ [“Updating current values: UPDATE” on page 36|

* [“Deleting rows: DELETE” on page 37|

See|DB2 SQL Reference| for more information about working with tables and data.

Working with tables

This section discusses how to work with tables. As you work with tables, you
might need to create new tables, copy existing tables, add columns, add or drop
referential and check constraints, drop the tables you are working with, or make
any number of changes.

Creating your own tables: CREATE TABLE

Use the CREATE TABLE statement to create a table. The following SQL statement
creates a table named PRODUCT:

CREATE TABLE PRODUCT

(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) DEFAULT,
MFGCOST DECIMAL(8,2),

MFGDEPT CHAR(3),

MARKUP SMALLINT,

SALESDEPT CHAR(3),

CURDATE DATE DEFAULT) ;

The preceding CREATE statement has the following elements:
* CREATE TABLE, which names the table PRODUCT.

* A list of the columns that make up the table. For each column, specify the
following information:

— The column's name (for example, SERIAL).

— The data type and length attribute (for example, CHAR(8)). For more
information about data types, see [‘Data types” on page 4|

— Optionally, a default value. See [“Identifying defaults.”]

- Optionally, a referential constraint or check constraint. See [“Using referentiall
fconstraints” on page 263|and [“Using check constraints” on page 261

You must separate each column description from the next with a comma, and
enclose the entire list of column descriptions in parentheses.

Identifying defaults
If you want to constrain the input or identify the default of a column, you can use
the following values:

© Copyright IBM Corp. 1983, 2012 19

e NOT NULL, when the column cannot contain null values.

* UNIQUE, when the value for each row must be unique, and the column cannot
contain null values.

* DEFAULT, when the column has one of the following DB2-assigned defaults:
— For numeric columns, zero is the default value.
— For fixed-length strings, blank is the default value.

— For variable-length strings, including LOB strings, the empty string (string of
zero-length) is the default value.

— For datetime columns, the current value of the associated special register is
the default value.

e DEFAULT value, when you want to identify one of the following values as the

default value:

— A constant

- NULL

— USER, which specifies the value of the USER special register at the time that
an INSERT statement assigns a default value to the column in the row that is
being inserted

— CURRENT SQLID, which specifies the value of the CURRENT SQLID special
register at the time that an INSERT statement assigns a default value to the
column in the row that is being inserted

— The name of a cast function that casts a default value (of a built-in data type)
to the distinct type of a column

Creating work tables

Before testing SQL statements that insert, update, and delete rows, you should
create work tables (duplicates of the DSN8810.EMP and DSN8810.DEPT tables), so
that the original sample tables remain intact. This section shows how to create two
work tables and how to fill a work table with the contents of another table.

Each example shown in this chapter assumes that you logged on using your own
authorization ID. The authorization ID qualifies the name of each object you create.
For example, if your authorization ID is SMITH, and you create table YDEPT, the
name of the table is SMITH.YDEPT. If you want to access table DSN8810.DEPT,
you must refer to it by its complete name. If you want to access your own table
YDEPT, you need only to refer to it as YDEPT.

Creating a new department table
Use the following statements to create a new department table called YDEPT,
modeled after the existing table, DSN8810.DEPT, and an index for YDEPT:

CREATE TABLE YDEPT
LIKE DSN8810.DEPT;

CREATE UNIQUE INDEX YDEPTX
ON YDEPT (DEPTNO)

If you want DEPTNO to be a primary key, as in the sample table, explicitly define
the key. Use an ALTER TABLE statement, as in the following example:

ALTER TABLE YDEPT
PRIMARY KEY(DEPTNO) ;

You can use an INSERT statement to copy the rows of the result table of a
fullselect from one table to another. The following statement copies all of the rows
from DSN8810.DEPT to your own YDEPT work table.

INSERT INTO YDEPT

SELECT =
FROM DSN8810.DEPT;

20 Application Programming and SQL Guide

For information about using the INSERT statement, see [“Inserting rows: INSERT"]

Creating a new employee table
You can use the following statements to create a new employee table called YEMP.
CREATE TABLE YEMP

(EMPNO CHAR(6) PRIMARY KEY NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) REFERENCES YDEPT
ON DELETE SET NULL,
PHONENO CHAR(4) UNIQUE NOT NULL,
HIREDATE DATE ,
JOB CHAR(8)
EDLEVEL SMALLINT
SEX CHAR(1)

BIRTHDATE DATE
SALARY DECIMAL(9, 2)
BONUS DECIMAL(9, 2)
COMM DECIMAL(9, 2)

~—ue v v v o w u

B

This statement also creates a referential constraint between the foreign key in
YEMP (WORKDEPT) and the primary key in YDEPT (DEPTNO). It also restricts all
phone numbers to unique numbers.

If you want to change a table definition after you create it, use the statement
ALTER TABLE. If you want to change a table name after you create it, use the
statement RENAME TABLE.

You can change a table definition by using the ALTER TABLE statement only in
certain ways. For example, you can add and drop constraints on columns in a
table. You can also change the data type of a column within character data types,
within numeric data types, and within graphic data types. You can add a column
to a table. However, you cannot drop a column from a table.

For more information about changing a table definition by using ALTER TABLE,
see Part 2 (Volume 1) of [DB2 Administration Guide} For other details about the
ALTER TABLE and RENAME TABLE statements, see Chapter 5 of |DB2 SQL

Working with temporary tables

When you need a table only for the duration of an application process, you can
create a temporary table. There are two kinds of temporary tables:

* Created temporary tables, which you define using a CREATE GLOBAL
TEMPORARY TABLE statement

* Declared temporary tables, which you define using a DECLARE GLOBAL
TEMPORARY TABLE statement

SQL statements that use temporary tables can run faster because of the following

reasons:

* DB2 does no logging (for created temporary tables) or limited logging (for
declared temporary tables).

* DB2 does no locking (for created temporary tables) or limited locking (for
declared temporary tables).

Chapter 2. Working with tables and modifying data 21

Temporary tables are especially useful when you need to sort or query
intermediate result tables that contain a large number of rows, but you want to
store only a small subset of those rows permanently.

Temporary tables can also return result sets from stored procedures. For more
information, see |“Writing a stored procedure to return result sets to a DRDA|
[client” on page 652 The following sections provide more details on created
temporary tables and declared temporary tables.

Working with created temporary tables

You create the definition of a created temporary table using the SQL statement
CREATE GLOBAL TEMPORARY TABLE.

Example: The following statement creates the definition of a table called

TEMPPROD:

CREATE GLOBAL TEMPORARY TABLE TEMPPROD
(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOST DECIMAL(8,2),
MFGDEPT CHAR(3),
MARKUP SMALLINT,
SALESDEPT CHAR(3),
CURDATE DATE NOT NULL);

Example: You can also create this same definition by copying the definition of a
base table using the LIKE clause:

CREATE GLOBAL TEMPORARY TABLE TEMPPROD LIKE PROD;

The SQL statements in the previous examples create identical definitions, even
though table PROD contains two columns, DESCRIPTION and CURDATE, that are
defined as NOT NULL WITH DEFAULT. Unlike the PROD sample table, the
DESCRIPTION and CURDATE columns in the TEMPPROD table are defined as
NOT NULL and do not have defaults, because created temporary tables do not
support non-null default values.

After you run one of the two CREATE statements, the definition of TEMPPROD
exists, but no instances of the table exist. To drop the definition of TEMPPROD,
you must run the following statement:

DROP TABLE TEMPPROD;

To create an instance of TEMPPROD, you must use TEMPPROD in an application.
DB2 creates an instance of the table when TEMPPROD is specified in one of the
following SQL statements:

* OPEN

* SELECT

» INSERT

* DELETE

An instance of a created temporary table exists at the current server until one of
the following actions occurs:

* The application process ends.

¢ The remote server connection through which the instance was created
terminates.

* The unit of work in which the instance was created completes.

When you run a ROLLBACK statement, DB2 deletes the instance of the created
temporary table. When you run a COMMIT statement, DB2 deletes the instance

22 Application Programming and SQL Guide

of the created temporary table unless a cursor for accessing the created
temporary table is defined WITH HOLD and is open.

Example: Suppose that you create a definition of TEMPPROD and then run an
application that contains the following statements:
EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM TEMPPROD;

EXEC SQL INSERT INTO TEMPPROD SELECT % FROM PROD;
EXEC SQL OPEN C1;

EXEC SQL COMMIT;

EXEC SQL CLOSE C1;

When you run the INSERT statement, DB2 creates an instance of TEMPPROD and
populates that instance with rows from table PROD. When the COMMIT statement
is run, DB2 deletes all rows from TEMPPROD. However, assume that you change
the declaration of cursor C1 to the following declaration:

EXEC SQL DECLARE C1 CURSOR WITH HOLD
FOR SELECT = FROM TEMPPROD;

In this case, DB2 does not delete the contents of TEMPPROD until the application
ends because C1, a cursor defined WITH HOLD, is open when the COMMIT
statement is run. In either case, DB2 drops the instance of TEMPPROD when the
application ends.

Working with declared temporary tables

You create an instance of a declared temporary table using the SQL statement
DECLARE GLOBAL TEMPORARY TABLE. That instance is known only to the
application process in which the table is declared, so you can declare temporary
tables with the same name in different applications. The qualifier for a declared
temporary table is SESSION.

Before you can define declared temporary tables, you must create a special
database and table spaces for them. You do that by running the CREATE
DATABASE statement with the AS TEMP clause, and then creating segmented
table spaces in that database. A DB2 subsystem can have only one database for
declared temporary tables, but that database can contain more than one table
space. There must be at least one table space with a 8-KB page size in the TEMP
database to declare a temporary table.

Example: The following statements create a database and table space for declared
temporary tables:

CREATE DATABASE DTTDB AS TEMP;
CREATE TABLESPACE DTTTS IN DTTDB
SEGSIZE 4;

You can define a declared temporary table in any of the following ways:
* Specify all the columns in the table.

Unlike columns of created temporary tables, columns of declared temporary
tables can include the WITH DEFAULT clause.

* Use a LIKE clause to copy the definition of a base table, created temporary table,
or view.

If the base table or created temporary table that you copy has identity columns,
you can specify that the corresponding columns in the declared temporary table
are also identity columns. Do that by specifying the INCLUDING IDENTITY
COLUMN ATTRIBUTES clause when you define the declared temporary table.

Chapter 2. Working with tables and modifying data 23

* Use a fullselect to choose specific columns from a base table, created temporary
table, or view.

If the base table, created temporary table, or view from which you select
columns has identity columns, you can specify that the corresponding columns
in the declared temporary table are also identity columns. Do that by specifying
the INCLUDING IDENTITY COLUMN ATTRIBUTES clause when you define
the declared temporary table.

If you want the declared temporary table columns to inherit the defaults for
columns of the table or view that is named in the fullselect, specify the
INCLUDING COLUMN DEFAULTS clause. If you want the declared temporary
table columns to have default values that correspond to their data types, specify
the USING TYPE DEFAULTS clause.

Example: The following statement defines a declared temporary table called
TEMPPROD by explicitly specifying the columns.

DECLARE GLOBAL TEMPORARY TABLE TEMPPROD
(SERIAL CHAR(8) NOT NULL WITH DEFAULT '99999999',
DESCRIPTION VARCHAR(60) NOT NULL,
PRODCOUNT INTEGER GENERATED ALWAYS AS IDENTITY,

MFGCOST DECIMAL(8,2),

MFGDEPT CHAR(3),

MARKUP SMALLINT,

SALESDEPT CHAR(3),

CURDATE DATE NOT NULL);

Example: The following statement defines a declared temporary table called
TEMPPROD by copying the definition of a base table. The base table has an
identity column that the declared temporary table also uses as an identity column.

DECLARE GLOBAL TEMPORARY TABLE TEMPPROD LIKE BASEPROD
INCLUDING IDENTITY COLUMN ATTRIBUTES;

Example: The following statement defines a declared temporary table called
TEMPPROD by selecting columns from a view. The view has an identity column
that the declared temporary table also uses as an identity column. The declared
temporary table inherits its default column values from the default column values
of a base table underlying the view.
DECLARE GLOBAL TEMPORARY TABLE TEMPPROD

AS (SELECT * FROM PRODVIEW)

DEFINITION ONLY

INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS;

After you run a DECLARE GLOBAL TEMPORARY TABLE statement, the
definition of the declared temporary table exists as long as the application process
runs. If you need to delete the definition before the application process completes,
you can do that with the DROP TABLE statement. For example, to drop the
definition of TEMPPROD, run the following statement:

DROP TABLE SESSION.TEMPPROD;

DB2 creates an empty instance of a declared temporary table when it runs the
DECLARE GLOBAL TEMPORARY TABLE statement. You can populate the
declared temporary table using INSERT statements, modify the table using
searched or positioned UPDATE or DELETE statements, and query the table using
SELECT statements. You can also create indexes on the declared temporary table.

The ON COMMIT clause that you specify in the DECLARE GLOBAL
TEMPORARY TABLE statement determines whether DB2 keeps or deletes all the

24 Application Programming and SQL Guide

rows from the table when you run a COMMIT statement in an application with a
declared temporary table. ON COMMIT DELETE ROWS, which is the default,
causes all rows to be deleted from the table at a commit point, unless there is a
held cursor open on the table at the commit point. ON COMMIT PRESERVE
ROWS causes the rows to remain past the commit point.

Example: Suppose that you run the following statement in an application program:

EXEC SQL DECLARE GLOBAL TEMPORARY TABLE TEMPPROD
AS (SELECT * FROM BASEPROD)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS
ON COMMIT PRESERVE ROWS;
EXEC SQL INSERT INTO SESSION.TEMPPROD SELECT * FROM BASEPROD;

EXEC SQL COMMIT;

When DB2 runs the preceding DECLARE GLOBAL TEMPORARY TABLE
statement, DB2 creates an empty instance of TEMPPROD. The INSERT statement
populates that instance with rows from table BASEPROD. The qualifier, SESSION,
must be specified in any statement that references TEMPPROD. When DB2
executes the COMMIT statement, DB2 keeps all rows in TEMPPROD because
TEMPPROD is defined with ON COMMIT PRESERVE ROWS. When the program
ends, DB2 drops TEMPPROD.

Dropping tables: DROP TABLE
The following SQL statement drops the YEMP table:
DROP TABLE YEMP;

Use the DROP TABLE statement with care: Dropping a table is NOT equivalent to
deleting all its rows. When you drop a table, you lose more than its data and its
definition. You lose all synonyms, views, indexes, and referential and check
constraints associated with that table. You also lose all authorities granted on the
table.

For more information about the DROP statement, see Chapter 5 of [DB2 SQL

Working with views

This section discusses how to use CREATE VIEW and DROP VIEW to control your
views of existing tables. Although you cannot modify an existing view, you can
drop it and create a new one if your base tables change in a way that affects the
view. Dropping and creating views does not affect the base tables or their data.

Defining a view: CREATE VIEW

A view does not contain data; it is a stored definition of a set of rows and columns.
A view can present any or all of the data in one or more tables and, in most cases,
is interchangeable with a table. Using views can simplify writing SQL statements.

Use the CREATE VIEW statement to define a view and give the view a name, just

as you do for a table. The view created with the following statement shows each
department manager's name with the department data in the DSN8810.DEPT table.

Chapter 2. Working with tables and modifying data 25

CREATE VIEW VDEPTM AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DSN8810.DEPT, DSN8810.EMP
WHERE DSN8810.EMP.EMPNO = DSN8810.DEPT.MGRNO;

When a program accesses the data defined by a view, DB2 uses the view definition
to return a set of rows the program can access with SQL statements. To see the
departments administered by department D01 and the managers of those
departments, run the following statement, which returns information from the
VDEPTIM view:

SELECT DEPTNO, LASTNAME

FROM VDEPTM
WHERE ADMRDEPT = 'DO1';

When you create a view, you can reference the USER and CURRENT SQLID
special registers in the CREATE VIEW statement. When referencing the view, DB2
uses the value of the USER or CURRENT SQLID that belongs to the user of the
SQL statement (SELECT, UPDATE, INSERT, or DELETE) rather than the creator of
the view. In other words, a reference to a special register in a view definition refers
to its run-time value.

A column in a view might be based on a column in a base table that is an identity

column. The column in the view is also an identity column, except under any of the

following circumstances:

¢ The column appears more than once in the view.

* The view is based on a join of two or more tables.

* The view is based on the union of two or more tables.

* Any column in the view is derived from an expression that refers to an identity
column.

You can use views to limit access to certain kinds of data, such as salary
information. You can also use views for the following actions:

* Make a subset of a table's data available to an application. For example, a view
based on the employee table might contain rows only for a particular
department.

* Combine columns from two or more tables and make the combined data
available to an application. By using a SELECT statement that matches values in
one table with those in another table, you can create a view that presents data
from both tables. However, you can only select data from this type of view. You
cannot update, delete, or insert data using a view that joins two or more
tables.

* Combine rows from two or more tables and make the combined data available
to an application. By using two or more subselects that are connected by
UNION or UNION ALL operators, you can create a view that presents data
from several tables. However, you can only select data from this type of view.
You cannot update, delete, or insert data using a view that contains UNION
operations.

* Present computed data, and make the resulting data available to an application.
You can compute such data using any function or operation that you can use in
a SELECT statement.

Changing data through a view

Some views are read-only; other views are subject to update or insert restrictions.
(See Chapter 5 of [DB2 SQL Reference for more information about read-only views.)
If a view does not have update restrictions, some additional considerations include:

26 Application Programming and SQL Guide

* You must have the appropriate authorization to insert, update, or delete rows

using the view.

* When you use a view to insert a row into a table, the view definition must
specify all the columns in the base table that do not have a default value. The
row being inserted must contain a value for each of those columns.

* Views that you can use to update data are subject to the same referential
constraints and check constraints as the tables you used to define the views.

* You can use the WITH CHECK option of the CREATE VIEW statement to
specify the constraint that every row that is inserted or updated through the
view must conform to the definition of the view. You can select every row that is
inserted or updated through a view that specifies WITH CHECK.

Dropping views: DROP VIEW

When you drop a view, you also drop all views that are defined on the following
view. This SQL statement drops the VDEPTM view:

DROP VIEW VDEPTM;

Modifying DB2 data

This section discusses how to add or modify data in an existing table using the
statements INSERT, UPDATE, and DELETE:

* [“Inserting rows: INSERT"]

* |“Selecting values as you insert: SELECT FROM INSERT” on page 31|

+ ["“Updating current values: UPDATE” on page 36|

* [“Deleting rows: DELETE” on page 37]

Inserting rows: INSERT

Use an INSERT statement to add new rows to a table or view. Using an INSERT
statement, you can do the following actions:

* Specify the column values to insert a single row. You can specify constants, host
variables, expressions, DEFAULT, or NULL by using the VALUES clause.

[“Inserting a single row” on page 28| explains how to use the VALUES clause of

the INSERT statement to add a single row of column values to a table.

* In an application
rows into a table.

program, specify arrays of column values to insert multiple

“Inserting multiple rows of data from host variable arrays” on|

explains how to use host variable arrays in the VALUES clause of the
INSERT FOR n ROWS statement to add multiple rows of column values to a

table.

* Include a SELECT statement in the INSERT statement to tell DB2 that another
table or view contains the data for the new row or rows. [“Inserting rows into a|

[table from another table” on page 29| explains how to use the SELECT statement

within an INSERT statement to add multiple rows to a table.

In each case, for every row you insert, you must provide a value for any column
that does not have a default value. For a column that meets one of the following
conditions, you can specify DEFAULT to tell DB2 to insert the default value for

that column:
e Is nullable.

* Is defined with a default value.
¢ Has data type ROWID. ROWID columns always have default values.
* Is an identity column. Identity columns always have default values.

Chapter 2. Working with tables and modifying data 27

The values that you can insert into a ROWID column or an identity column

depend on whether the column is defined with GENERATED ALWAYS or

GENERATED BY DEFAULT. See [“Inserting data into a ROWID column” on page]
and |[“Inserting data into an identity column” on page 30| for more information.

Inserting a single row

You can use the VALUES clause of the INSERT statement to insert a single row of
column values into a table. You can either name all of the columns for which you
are providing values, or you can omit the list of column names. If you omit the
column name list, you must specify values for all of the columns.

Recommendation: For static INSERT statements, name all of the columns for
which you are providing values for because of the following reasons:

* Your INSERT statement is independent of the table format. (For example, you do
not need to change the statement when a column is added to the table.)

* You can verify that you are giving the values in order.
* Your source statements are more self-descriptive.

If you do not name the columns in a static INSERT statement, and a column is
added to the table, an error can occur if the INSERT statement is rebound. An
error will occur after any rebind of the INSERT statement unless you change the
INSERT statement to include a value for the new column. This is true even if the
new column has a default value.

When you list the column names, you must specify their corresponding values in
the same order as in the list of column names.

Example: The following statement inserts information about a new department
into the YDEPT table.

INSERT INTO YDEPT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION)
VALUES ('E31', 'DOCUMENTATION', '000010', 'EO1', ' ');

After inserting a new department row into your YDEPT table, you can use a
SELECT statement to see what you have loaded into the table. The following SQL
statement shows you all the new department rows that you have inserted:
SELECT =

FROM YDEPT

WHERE DEPTNO LIKE 'E%'
ORDER BY DEPTNO;

The result table looks similar to the following output:

DEPTNO DEPTNAME MGRNO ~ ADMRDEPT LOCATION

EO1 SUPPORT SERVICES 000050 AOO -----------
E11 OPERATIONS 000090 EO1 ----m------
E21 SOFTWARE SUPPORT 000100 EO1 ---mmm-----
E31 DOCUMENTATION 000010 EO1 —m-mmme----

Example: The following statement inserts information about a new employee into
the YEMP table. Because YEMP has a foreign key, WORKDEPT, referencing the
primary key, DEPTNO, in YDEPT, the value inserted for WORKDEPT (E31) must
be a value of DEPTNO in YDEPT or null.

INSERT INTO YEMP

VALUES ('000400', 'RUTHERFORD', 'B', 'HAYES', 'E31', '5678', '1983-01-01',
'MANAGER', 16, 'M', '1943-07-10', 24000, 500, 1900);

28 Application Programming and SQL Guide

Example: The following statement also inserts a row into the YEMP table. Because
the unspecified columns allow nulls, DB2 inserts null values into the columns that
you do not specify. Because YEMP has a foreign key, WORKDEPT, referencing the
primary key, DEPTNO, in YDEPT, the value inserted for WORKDEPT (D11) must
be a value of DEPTNO in YDEPT or null.

INSERT INTO YEMP

(EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, JOB)
VALUES ('000410', 'MILLARD', 'K', 'FILLMORE', 'D11', '4888', 'MANAGER');

Inserting rows into a table from another table
You can copy data from one table into another table. Use a fullselect within an
INSERT statement to select rows from one table to insert into another table.

Example: The following SQL statement creates a table named TELE:

CREATE TABLE TELE
(NAME2 VARCHAR(15) NOT NULL,
NAME1 VARCHAR(12) NOT NULL,
PHONE CHAR(4));

The following statement copies data from DSN8810.EMP into the newly created
table:
INSERT INTO TELE

SELECT LASTNAME, FIRSTNME, PHONENO

FROM DSN8810.EMP
WHERE WORKDEPT = 'D21';

The two previous statements create and fill a table, TELE, that looks similar to the
following table:

NAME2 NAME1 PHONE
PULASKI EVA 7831
JEFFERSON JAMES 2094
MARINO SALVATORE 3780
SMITH DANIEL 0961
JOHNSON SYBIL 8953
PEREZ MARIA 9001
MONTEVERDE ROBERT 3780

The CREATE TABLE statement example creates a table which, at first, is empty.
The table has columns for last names, first names, and phone numbers, but does
not have any rows.

The INSERT statement fills the newly created table with data selected from the
DSN8810.EMP table: the names and phone numbers of employees in department
D21.

Example: The following CREATE statement creates a table that contains an
employee's department name as well as phone number. The fullselect within the
INSERT statement fills the DLIST table with data from rows selected from two
existing tables, DSN8810.DEPT and DSN8810.EMP.

CREATE TABLE DLIST
(DEPT CHAR(3) NOT NULL,
DNAME VARCHAR(36) ,
LNAME VARCHAR(15) NOT NULL,
FNAME VARCHAR(12) NOT NULL,
INIT CHAR ,
PHONE CHAR(4))3

Chapter 2. Working with tables and modifying data 29

INSERT INTO DLIST
SELECT DEPTNO, DEPTNAME, LASTNAME, FIRSTNME, MIDINIT, PHONENO
FROM DSN8810.DEPT, DSN8810.EMP
WHERE DEPTNO = WORKDEPT;

Other ways to insert data
Besides using stand-alone INSERT statements, you can use the following two ways
to insert data into a table:

* You can write an application program to prompt for and enter large amounts of
data into a table. For details, see [Part 2, “Coding SQL in your host application|
[program,” on page 73/

* You can also use the DB2 LOAD utility to enter data from other sources. See
Part 2 of [DB2 Utility Guide and Reference for more information about the LOAD
utility.

Inserting data into a ROWID column

A ROWID column is a column that is defined with a ROWID data type. You must
have a column with a ROWID data type in a table that contains a LOB column.
The ROWID column is stored in the base table and is used to look up the actual
LOB data in the LOB table space. In addition, a ROWID column enables you to
write queries that navigate directly to a row in a table. For information about using
ROWID columns for direct-row access, see [“Using ROWID columns as keys” on|
_ae 271,

Before you insert data into a ROWID column, you must know how the ROWID
column is defined. ROWID columns can be defined as GENERATED ALWAYS or
GENERATED BY DEFAULT. GENERATED ALWAYS means that DB2 generates a
value for the column, and you cannot insert data into that column. If the column is
defined as GENERATED BY DEFAULT, you can insert a value, and DB2 provides a
default value if you do not supply one.

Example: Suppose that tables T1 and T2 have two columns: an integer column and
a ROWID column. For the following statement to run successfully, ROWIDCOL2
must be defined as GENERATED BY DEFAULT.

INSERT INTO T2 (INTCOL2,ROWIDCOL2)
SELECT = FROM T1;

If ROWIDCOL2 is defined as GENERATED ALWAYS, you cannot insert the
ROWID column data from T1 into T2, but you can insert the integer column data.
To insert only the integer data, use one of the following methods:
* Specify only the integer column in your INSERT statement, as in the following
statement:
INSERT INTO T2 (INTCOL2)
SELECT INTCOL1 FROM T1;
* Specify the OVERRIDING USER VALUE clause in your INSERT statement to tell
DB2 to ignore any values that you supply for system-generated columns, as in
the following statement:

INSERT INTO T2 (INTCOL2,ROWIDCOL2) OVERRIDING USER VALUE
SELECT * FROM T1;

Inserting data into an identity column

An identity column is a numeric column, defined in a CREATE TABLE or ALTER
TABLE statement, that has ascending or descending values. For an identity column
to be as useful as possible, its values should also be unique. The column has a
SMALLINT, INTEGER, or DECIMAL(p,0) data type and is defined with the AS
IDENTITY clause. The AS IDENTITY clause specifies that the column is an identity

30 Application Programming and SQL Guide

column. For information about using identity columns to uniquely identify rows,
see [“Using identity columns as keys” on page 272|

Before you insert data into an identity column, you must know how the column is
defined. Identity columns are defined with the GENERATED ALWAYS or
GENERATED BY DEFAULT clause. GENERATED ALWAYS means that DB2
generates a value for the column, and you cannot insert data into that column. If
the column is defined as GENERATED BY DEFAULT, you can insert a value, and
DB2 provides a default value if you do not supply one.

Example: Suppose that tables T1 and T2 have two columns: a character column
and an integer column that is defined as an identity column. For the following
statement to run successfully, IDENTCOL2 must be defined as GENERATED BY
DEFAULT.

INSERT INTO T2 (CHARCOL2,IDENTCOL2)
SELECT * FROM T1;

If IDENTCOL2 is defined as GENERATED ALWAYS, you cannot insert the identity
column data from T1 into T2, but you can insert the character column data. To
insert only the character data, use one of the following methods:

* Specify only the character column in your INSERT statement, as in the following
statement:

INSERT INTO T2 (CHARCOL2)
SELECT CHARCOL1 FROM T1;
* Specify the OVERRIDING USER VALUE clause in your INSERT statement to tell
DB2 to ignore any values that you supply for system-generated columns, as in
the following statement:

INSERT INTO T2 (CHARCOL2,IDENTCOL2) OVERRIDING USER VALUE
SELECT * FROM T1;

Selecting values as you insert: SELECT FROM INSERT

You can select values from rows that are being inserted by specifying the INSERT

statement in the FROM clause of the SELECT statement. When you insert one or

more new rows into a table, you can retrieve:

* The value of an automatically generated column such as a ROWID or identity
column

* Any default values for columns

 All values for an inserted row, without specifying individual column names

 All values that are inserted by a multiple-row INSERT operation

* Values that are changed by a BEFORE INSERT trigger

Example: In addition to examples that use the DB2 sample tables, the examples in
this section use an EMPSAMP table that has the following definition:

CREATE TABLE EMPSAMP
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(10,2),
DEPTNO SMALLINT,
LEVEL CHAR(30),
HIRETYPE VARCHAR(30) NOT NULL WITH DEFAULT 'New Hire',
HIREDATE DATE NOT NULL WITH DEFAULT);

Assume that you need to insert a row for a new employee into the EMPSAMP

table. To find out the values for the generated EMPNO, HIRETYPE, and
HIREDATE columns, use the following SELECT FROM INSERT statement:

Chapter 2. Working with tables and modifying data 31

SELECT EMPNO, HIRETYPE, HIREDATE
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, DEPTNO, LEVEL)
VALUES('Mary Smith', 35000.00, 11, 'Associate'));

The SELECT statement returns the DB2-generated identity value for the EMPNO
column, the default value 'New Hire' for the HIRETYPE column, and the value of
the CURRENT DATE special register for the HIREDATE column.

Recommendation: Use the SELECT FROM INSERT statement to insert a row into a
parent table and retrieve the value of a primary key that was generated by DB2 (a
ROWID or identity column). In another INSERT statement, specify this generated
value as a value for a foreign key in a dependent table. For an example of this
method, see [“Parent keys and foreign keys” on page 274

Result table of the INSERT operation

The rows that are inserted into the target table produce a result table whose
columns can be referenced in the SELECT list of the query. The columns of the
result table are affected by the columns, constraints, and triggers that are defined
for the target table:

* The result table includes DB2-generated values for identity columns, ROWID
columns, or columns that are based on expressions.

* Before DB2 generates the result table, it enforces any constraints that affect the
insert operation (that is, check constraints, unique index constraints, and
referential integrity constraints).

* The result table includes any changes that result from a BEFORE trigger that is
activated by the insert operation. An AFTER trigger does not affect the values in
the result table. For information about triggers, see [Chapter 12, “Using triggers|
[for active data,” on page 279.|

Example: Suppose a BEFORE INSERT trigger is created on table EMPSAMP to
give all new employees at the Associate level a $5000 increase in salary. The trigger
has the following definition:
CREATE TRIGGER NEW_ASSOC
NO CASCADE BEFORE INSERT ON EMPSAMP
REFERENCING NEW AS NEWSALARY
FOR EACH ROW MODE DB2SQL
WHEN LEVEL = 'Associate'
BEGIN ATOMIC
SET NEWSALARY.SALARY = NEWSALARY.SALARY + 5000.00;
END;

The INSERT statement in the FROM clause of the following SELECT statement
inserts a new employee into the EMPSAMP table:
SELECT NAME, SALARY

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, LEVEL)
VALUES('Mary Smith', 35000.00, 'Associate'));

The SELECT statement returns a salary of 40000.00 for Mary Smith instead of the
initial salary of 35000.00 that was explicitly specified in the INSERT statement.

Selecting values when you insert a single row

When you insert a new row into a table, you can retrieve any column in the result
table of the SELECT FROM INSERT statement. When you embed this statement in
an application, you retrieve the row into host variables by using the SELECT ...
INTO form of the statement. For information about using host variables and
SELECT ... INTO, see [“Using host variables ” on page 80.

32 Application Programming and SQL Guide

Example: You can retrieve all the values for a row that is inserted into a structure:

EXEC SQL SELECT * INTO :empstruct
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, DEPTNO, LEVEL)
VALUES('Mary Smith', 35000.00, 11, 'Associate'));

For this example, :empstruct is a host variable structure that is declared with
variables for each of the columns in the EMPSAMP table.

Selecting values when you insert data into a view

If the INSERT statement references a view that is defined with a search condition,
that view must be defined with the WITH CASCADED CHECK OPTION. When
you insert data into the view, the result table of the SELECT FROM INSERT
statement includes only rows that satisfy the view definition.

Example: Because view V1 is defined with the WITH CASCADED CHECK
OPTION, you can reference V1 in the INSERT statement:
CREATE VIEW V1 AS

SELECT C1, I1 FROM T1 WHERE I1 > 10
WITH CASCADED CHECK OPTON;

SELECT C1 FROM
FINAL TABLE (INSERT INTO V1 (I1) VALUES(12));

The value 12 satisfies the search condition of the view definition, and the result
table consists of the value for C1 in the inserted row.

If you use a value that does not satisfy the search condition of the view definition,
the insert operation fails, and DB2 returns an error.

Selecting values when you insert multiple rows

In an application program, to retrieve values from the insertion of multiple rows,
declare a cursor so that the INSERT statement is in the FROM clause of the
SELECT statement of the cursor. For information about using cursors, see
[Chapter 7, “Using a cursor to retrieve a set of rows,” on page 103

Example: Inserting rows with ROWID values: To see the values of the ROWID
columns that are inserted into the employee photo and resume table, you can
declare the following cursor:
EXEC SQL DECLARE CS1 CURSOR FOR

SELECT EMP_ROWID

FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)
SELECT EMPNO FROM DSN8810.EMP);

Example: Using the FETCH FIRST clause: To see only the first five rows that are
inserted into the employee photo and resume table, use the FETCH FIRST clause:
EXEC SQL DECLARE CS2 CURSOR FOR
SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)
SELECT EMPNO FROM DSN8810.EMP)
FETCH FIRST 5 ROWS ONLY;

Example: Using the INPUT SEQUENCE clause: To retrieve rows in the order in
which they are inserted, use the INPUT SEQUENCE clause:

Chapter 2. Working with tables and modifying data 33

EXEC SQL DECLARE CS3 CURSOR FOR
SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO RESUME (EMPNO)
VALUES (:hva_empno)
FOR 5 ROWS)
ORDER BY INPUT SEQUENCE;

The INPUT SEQUENCE clause can be specified only if an INSERT statement is in
the FROM clause of the SELECT statement. In this example, the rows are inserted
from an array of employee numbers. For information about the multiple-row

INSERT statement, see [“Inserting multiple rows of data from host variable arrays”|

Example: Inserting rows with multiple encoding CCSIDs: Suppose that you want
to populate an ASCII table with values from an EBCDIC table and then see
selected values from the ASCII table. You can use the following cursor to select the
EBCDIC columns, populate the ASCII table, and then retrieve the ASCII values:

EXEC SQL DECLARE CS4 CURSOR FOR
SELECT C1, C2
FROM FINAL TABLE (INSERT INTO ASCII TABLE
SELECT * FROM EBCDIC_TABLE);

Result table of the cursor when you insert multiple rows

In an application program, when you insert multiple rows into a table, you declare
a cursor so that the INSERT statement is in the FROM clause of the SELECT
statement of the cursor. The result table of the cursor is determined during OPEN
cursor processing. The result table may or may not be affected by other processes
in your application.

Effect on cursor sensitivity: When you declare a scrollable cursor, the cursor
must be declared with the INSENSITIVE keyword if an INSERT statement is in the
FROM clause of the cursor specification. The result table is generated during
OPEN cursor processing and does not reflect any future changes. You cannot
declare the cursor with the SENSITIVE DYNAMIC or SENSITIVE STATIC
keiwords. For information about cursor sensitivity, see [“Using a scrollable cursor”]

Effect of searched updates and deletes: When you declare a non-scrollable
cursor, any searched updates or deletes do not affect the result table of the cursor.
The rows of the result table are determined during OPEN cursor processing.

Example: Assume that your application declares a cursor, opens the cursor,
performs a fetch, updates the table, and then fetches additional rows:

EXEC SQL DECLARE CS1 CURSOR FOR
SELECT SALARY
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, LEVEL)
SELECT NAME, INCOME, BAND FROM OLD EMPLOYEE);
EXEC SQL OPEN CS1;
EXEC SQL FETCH CS1 INTO :hv_salary;
/* print fetch result */

EXEC SQL UPDATE EMPSAMP SET SALARY = SALARY + 500;
while (SQLCODE == 0) {

EXEC SQL FETCH CS1 INTO :hv_salary;

/* print fetch result */

34 Application Programming and SQL Guide

The fetches that occur after the update processing return the rows that were
generated during OPEN cursor processing. However, if you use a simple SELECT
(with no INSERT statement in the FROM clause), the fetches might return the
updated values, depending on the access path that DB2 uses.

Effect of WITH HOLD: When you declare a cursor with the WITH HOLD
option, and open the cursor, all of the rows are inserted into the target table. The
WITH HOLD option has no effect on the SELECT FROM INSERT statement of the
cursor definition. After your application performs a commit, you can continue to
retrieve all of the inserted rows. For information about held cursors, see
fnon-held cursors” on page 122

Example: Assume that the employee table in the DB2 sample application has five
rows. Your application declares a WITH HOLD cursor, opens the cursor, fetches
two rows, performs a commit, and then fetches the third row successfully:

EXEC SQL DECLARE CS2 CURSOR WITH HOLD FOR

SELECT EMP_ROWID

FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8810.EMP);

EXEC SQL OPEN CS2; /* Inserts 5 rows =/
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 1st row */
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 2nd row */
EXEC SQL COMMIT; /* Commits 5 rows =/
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 3rd row =*/

Effect of SAVEPOINT and ROLLBACK: When you set a savepoint prior to
opening the cursor and then roll back to that savepoint, all of the insertions are
undone. For information about savepoints and ROLLBACK processing, see |”Usin§|
lsavepoints to undo selected changes within a unit of work” on page 439 .|

Example: Assume that your application declares a cursor, sets a savepoint, opens
the cursor, sets another savepoint, rolls back to the second savepoint, and then rolls
back to the first savepoint:
EXEC SQL DECLARE CS3 CURSOR FOR

SELECT EMP_ROWID

FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO RESUME (EMPNO)
SELECT EMPNO FROM DSN8810.EMP);

EXEC SQL SAVEPOINT A ON ROLLBACK RETAIN CURSORS; /* Sets 1st savepoint */
EXEC SQL OPEN CS3;
EXEC SQL SAVEPOINT B ON ROLLBACK RETAIN CURSORS; /* Sets 2nd savepoint */

EXEC SQL ROLLBACK TO SAVEPOINT B; /+ Rows still in DSN8810.EMP_PHOTO RESUME

*
S~

EXEC SQL ROLLBACK TO SAVEPOINT Aj; /* A11 inserted rows are undone */

What happens if an error occurs

In an application program, when you insert one or more rows into a table by using
the SELECT FROM INSERT statement, the result table of the insert operation may
or may not be affected depending on where the error occurred in the application
processing.

During SELECT INTO processing: If the insert processing or the select
processing fails during a SELECT INTO statement, no rows are inserted into the
target table, and no rows are returned from the result table of the insert operation.

Example: Assume that the employee table of the DB2 sample application has one
row, and that the SALARY column has a value of 9 999 000.00.

Chapter 2. Working with tables and modifying data 35

EXEC SQL SELECT EMPNO INTO :hv_empno
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY)
SELECT FIRSTNAME || MIDINIT || LASTNAME,
SALARY + 10000.00
FROM DSN8810.EMP)

The addition of 10000.00 causes a decimal overflow to occur, and no rows are
inserted into the EMPSAMP table.

During OPEN cursor processing: If the insertion of any row fails during the
OPEN cursor processing, all previously successful insertions are undone. The result
table of the INSERT is empty.

During FETCH processing: If the FETCH statement fails while retrieving rows
from the result table of the insert operation, a negative SQLCODE is returned to
the application, but the result table still contains the original number of rows that
was determined during the OPEN cursor processing. At this point, you can undo
all of the inserts.

Example: Assume that the result table contains 100 rows and the 90th row that is
being fetched from the cursor returns a negative SQLCODE:

EXEC SQL DECLARE CS1 CURSOR FOR

SELECT EMPNO

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY)

SELECT FIRSTNAME || MIDINIT || LASTNAME, SALARY + 10000.00
FROM DSN8810.EMP);

EXEC SQL OPEN CS1; /* Inserts 100 rows */
while (SQLCODE == Q)

EXEC SQL FETCH CS1 INTO :hv_empno;

if (SQLCODE == -904) /* If SQLCODE is -904, undo all inserts */
EXEC SQL ROLLBACK;
else /* Else, commit inserts =*/

EXEC SQL COMMIT;

Updating current values: UPDATE

To change the data in a table, use the UPDATE statement. You can also use the
UPDATE statement to remove a value from a row's column (without removing the
row) by changing the column's value to null.

Example: Suppose an employee relocates. To update several items of the
employee's data in the YEMP work table to reflect the move, you can execute:
UPDATE YEMP

SET JOB = 'MANAGER ',

PHONENO ='5678"
WHERE EMPNO = '000400';

You cannot update rows in a created temporary table, but you can update rows in
a declared temporary table.

The SET clause names the columns that you want to update and provides the
values you want to assign to those columns. You can replace a column value in the
SET clause with any of the following items:

¢ A null value

The column to which you assign the null value must not be defined as NOT
NULL.

* An expression

An expression can be any of the following items:

36 Application Programming and SQL Guide

— A column

— A constant

— A fullselect that returns a scalar
— A host variable

— A special register

In addition, you can replace one or more column values in the SET clause with the
column values in a row that is returned by a fullselect.

Next, identify the rows to update:
* To update a single row, use a WHERE clause that locates one, and only one, row

* To update several rows, use a WHERE clause that locates only the rows you
want to update.

If you omit the WHERE clause, DB2 updates every row in the table or view with
the values you supply.

If DB2 finds an error while executing your UPDATE statement (for example, an
update value that is too large for the column), it stops updating and returns an
error. No rows in the table change. Rows already changed, if any, are restored to
their previous values. If the UPDATE statement is successful, SQLERRD(3) is set to
the number of rows that are updated.

Example: The following statement supplies a missing middle initial and changes
the job for employee 000200.
UPDATE YEMP

SET MIDINIT
WHERE EMPNO

'"H', JOB = 'FIELDREP'
'000200";

The following statement gives everyone in department D11 a raise of 400.00. The
statement can update several rows.
UPDATE YEMP

SET SALARY = SALARY + 400.00
WHERE WORKDEPT = 'D11';

The following statement sets the salary and bonus for employee 000190 to the
average salary and minimum bonus for all employees.
UPDATE YEMP

SET (SALARY, BONUS) =

(SELECT AVG(SALARY), MIN(BONUS)

FROM EMP)
WHERE EMPNO = '000190';

Deleting rows: DELETE

You can use the DELETE statement to remove entire rows from a table. The
DELETE statement removes zero or more rows of a table, depending on how many
rows satisfy the search condition you specify in the WHERE clause. If you omit a
WHERE clause from a DELETE statement, DB2 removes all the rows from the
table or view you have named. The DELETE statement does not remove specific
columns from the row.

You can use DELETE to remove all rows from a created temporary table or

declared temporary table. However, you can use DELETE with a WHERE clause to
remove only selected rows from a declared temporary table.

Chapter 2. Working with tables and modifying data 37

This DELETE statement deletes each row in the YEMP table that has an employee
number 000060.

DELETE FROM YEMP
WHERE EMPNO = '000060';

When this statement executes, DB2 deletes any row from the YEMP table that
meets the search condition.

If DB2 finds an error while executing your DELETE statement, it stops deleting
data and returns error codes in the SQLCODE and SQLSTATE host variables or
related fields in the SQLCA. The data in the table does not change.

If the DELETE is successful, SQLERRD(3) in the SQLCA contains the number of
deleted rows. This number includes only the number of deleted rows in the table
that is specified in the DELETE statement. Rows that are deleted (in other tables)
according to the CASCADE rule are not included in SQLERRD(3).

Deleting every row in a table

The DELETE statement is a powerful statement that deletes all rows of a table
unless you specify a WHERE clause to limit it. (With segmented table spaces,

deleting all rows of a table is very fast.) For example, the following statement

deletes every row in the YDEPT table:

DELETE FROM YDEPT;

If the statement executes, the table continues to exist (that is, you can insert rows
into it), but it is empty. All existing views and authorizations on the table remain
intact when using DELETE. By comparison, using DROP TABLE drops all views
and authorizations, which can invalidate plans and packages. For information
about the DROP statement, see [“Dropping tables: DROP TABLE” on page 25

38 Application Programming and SQL Guide

Chapter 3. Joining data from more than one table

Sometimes the information that you want to see is not in a single table. To form a
row of the result table, you might want to retrieve some column values from one
table and some column values from another table. You can use a SELECT
statement to retrieve and join column values from two or more tables into a single
row.

DB2 supports the following types of joins: inner join, left outer join, right outer
join, and full outer join. You can specify joins in the FROM clause of a query.

The examples in this section use the following two tables to show various types of

joins:

The PARTS table The PRODUCTS table
PART PROD# SUPPLIER PROD# PRODUCT PRICE
WIRE 10 ACWF 505 SCREWDRIVER 3.70
0IL 160 WESTERN_CHEM 30 RELAY 7.55
MAGNETS 10 BATEMAN 205 SAW 18.90
PLASTIC 30 PLASTIK_CORP 10 GENERATOR 45.75
BLADES 205 ACE_STEEL

illustrates how these two tables can be combined using the three outer
join functions.

PARTS PRODUCTS
PART PROD# PROD# PRICE Unmatched
WIRE 10 505 370 4 row
MAGNETS 10 || Matches |20 4575
BLADES 205 | 205 18.90
Unmatched | PLASTIC 30 | »30 755
ow——— » OIL 160

—

LEFT OUTER JOIN FULL OUTER JOIN RIGHT OUTER JOIN

PART PROD# PRICE| | PART PROD# PRICE| | PART PROD# PRICE

WIRE 10 4575 | |WIRE 10 4575 WIRE 10 4575

MAGNETS 10 4575 | |MAGNETS 10 4575 MAGNETS 10 4575

BLADES 205 18.90 | BLADES 205 18.90 BLADES 205 18.90

PLASTIC 30 7.55 PLASTIC 30 7.55 PLASTIC 30 7.55

oIL 160 (null) OolL 160 (null) (null) 505 3.70
(null) 505 3.70

Figure 2. Three outer joins from the PARTS and PRODUCTS tables

The result table contains data joined from all of the tables, for rows that satisfy the
search conditions.

© Copyright IBM Corp. 1983, 2012 39

The result columns of a join have names if the outermost SELECT list refers to
base columns. But, if you use a function (such as COALESCE or VALUE) to build
a column of the result, that column does not have a name unless you use the AS
clause in the SELECT list.

Inner join

To request an inner join, execute a SELECT statement in which you specify the
tables that you want to join in the FROM clause, and specify a WHERE clause or
an ON clause to indicate the join condition. The join condition can be any simple
or compound search condition that does not contain a subquery reference. See
Chapter 4 of [DB2 SQL Reference| for the complete syntax of a join condition.

In the simplest type of inner join, the join condition is columnl=column2.

Example: You can join the PARTS and PRODUCTS tables on the PROD# column to
get a table of parts with their suppliers and the products that use the parts.

To do this, you can use either one of the following SELECT statements:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS, PRODUCTS
WHERE PARTS.PROD# = PRODUCTS.PROD#;

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks like the following output:

PART SUPPLIER PROD# PRODUCT
WIRE ACWF 10 GENERATOR
MAGNETS ~ BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

Notice three things about this example:

* A part in the parts table (OIL) has product (#160), which is not in the products
table. A product (SCREWDRIVER, #505) has no parts listed in the parts table.
Neither OIL nor SCREWDRIVER appears in the result of the join.

An outer join, however, includes rows where the values in the joined columns do
not match.

* You can explicitly specify that this join is an inner join (not an outer join). Use
INNER JOIN in the FROM clause instead of the comma, and use ON to specify
the join condition (rather than WHERE) when you explicitly join tables in the
FROM clause.

* If you do not specify a WHERE clause in the first form of the query, the result
table contains all possible combinations of rows for the tables identified in the
FROM clause. You can obtain the same result by specifying a join condition that
is always true in the second form of the query, as in the following statement:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON 1=1;

In either case, the number of rows in the result table is the product of the
number of rows in each table.

40 Application Programming and SQL Guide

You can specify more complicated join conditions to obtain different sets of results.
For example, to eliminate the suppliers that begin with the letter A from the table
of parts, suppliers, product numbers and products, write a query like the following
query:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#
AND SUPPLIER NOT LIKE 'A%';

The result of the query is all rows that do not have a supplier that begins with A.
The result table looks like the following output:

PART SUPPLIER PROD# PRODUCT
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

Example of joining a table to itself by using an inner join: In the following
example, A indicates the first instance of table DSN8810.PROJ and B indicates the
second instance of this table. The join condition is such that the value in column
PROJNO in table DSN8810.PROJ A must be equal to a value in column MAJPROJ
in table DSN8810.PROJ B.

The following SQL statement joins table DSN8810.PROJ to itself and returns the
number and name of each major project followed by the number and name of the
project that is part of it:

SELECT A.PROJNO, A.PROJNAME, B.PROJNO, B.PROJNAME

FROM DSN8810.PROJ A, DSN8810.PROJ B
WHERE A.PROJNO = B.MAJPROJ;

The result table looks similar to the following output:

PROJNO PROJNAME PROJNO PROJNAME

AD3100 ADMIN SERVICES AD3110 GENERAL AD SYSTEMS
AD3110 GENERAL AD SYSTEMS AD3111 PAYROLL PROGRAMMING
AD3110 GENERAL AD SYSTEMS AD3112 PERSONNEL PROGRAMMG
0P2010 SYSTEMS SUPPORT 0P2013 DB/DC SUPPORT

In this example, the comma in the FROM clause implicitly specifies an inner join,
and it acts the same as if the INNER JOIN keywords had been used. When you
use the comma for an inner join, you must specify the join condition on the
WHERE clause. When you use the INNER JOIN keywords, you must specify the
join condition on the ON clause.

Full outer join

The clause FULL OUTER JOIN includes unmatched rows from both tables. If any
column of the result table does not have a value, that column has the null value in
the result table.

The join condition for a full outer join must be a simple search condition that
compares two columns or an invocation of a cast function that has a column name

as its argument.

Example: The following query performs a full outer join of the PARTS and
PRODUCTS tables:

Chapter 3. Joining data from more than one table 41

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result table from the query looks similar to the following output:

PART SUPPLIER PROD# PRODUCT
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

0IL WESTERN_CHEM 160 -----------
——————————————————— --- SCREWDRIVER

Example of Using COALESCE or VALUE: COALESCE is the keyword specified by
the SQL standard as a synonym for the VALUE function. This function, by either
name, can be particularly useful in full outer join operations, because it returns the
first non-null value from the pair of join columns.

The product number in the result of the example for [“Full outer join” on page 41|is
null for SCREWDRIVER, even though the PRODUCTS table contains a product
number for SCREWDRIVER. If you select PRODUCTS.PROD# instead, PROD# is
null for OIL. If you select both PRODUCTS.PROD# and PARTS.PROD#, the result
contains two columns, both of which contain some null values. You can merge data
from both columns into a single column, eliminating the null values, by using the
COALESCE function.

With the same PARTS and PRODUCTS tables, the following example merges the
non-null data from the PROD# columns:
SELECT PART, SUPPLIER,

COALESCE (PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks similar to the following output:

PART SUPPLIER PRODNUM PRODUCT
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

0IL WESTERN_CHEM 160 -----------
——————————————————— 505 SCREWDRIVER

The AS clause (AS PRODNUM) provides a name for the result of the COALESCE

function.

Left outer join

The clause LEFT OUTER JOIN includes rows from the table that is specified before
LEFT OUTER JOIN that have no matching values in the table that is specified after

LEFT OUTER JOIN.

As in an inner join, the join condition can be any simple or compound search
condition that does not contain a subquery reference.

Example: To include rows from the PARTS table that have no matching values in
the PRODUCTS table, and to include prices that exceed $10.00 , run the following

query:

42 Application Programming and SQL Guide

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT, PRICE
FROM PARTS LEFT OUTER JOIN PRODUCTS
ON PARTS.PROD#=PRODUCTS.PROD#
AND PRODUCTS.PRICE>10.00;

The result table looks similar to the following output:

PART SUPPLIER PROD# PRODUCT PRICE
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
PLASTIC PLASTIK_CORP 30 ~ ===-mmmmmmm mmmemee
BLADES ACE_STEEL 205 SAW 18.90
0IL WESTERN_CHEM 160 --=----mmmm mmmmmeo

A row from the PRODUCTS table is in the result table only if its product number
matches the product number of a row in the PARTS table and the price is greater
than $10.00 for that row. Rows in which the PRICE value does not exceed $10.00

are included in the result of the join, but the PRICE value is set to null.

In this result table, the row for PROD# 30 has null values on the right two columns
because the price of PROD# 30 is less than $10.00. PROD# 160 has null values on
the right two columns because PROD# 160 does not match another product
number.

Right outer join

The clause RIGHT OUTER JOIN includes rows from the table that is specified after
RIGHT OUTER JOIN that have no matching values in the table that is specified
before RIGHT OUTER JOIN.

As in an inner join, the join condition can be any simple or compound search
condition that does not contain a subquery reference.

Example: To include rows from the PRODUCTS table that have no corresponding
rows in the PARTS table, execute this query:
SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT, PRICE

FROM PARTS RIGHT OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#
AND PRODUCTS.PRICE>10.00;

The result table looks similar to the following output:

PART SUPPLIER PROD# PRODUCT PRICE
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
BLADES ACE_STEEL 205 SAW 18.90
---------------------- 30 RELAY 7.55
---------------------- 505 SCREWDRIVER 3.70

A row from the PARTS table is in the result table only if its product number
matches the product number of a row in the PRODUCTS table and the price is
greater than 10.00 for that row.

Because the PRODUCTS table can have rows with nonmatching product numbers
in the result table, and the PRICE column is in the PRODUCTS table, rows in
which PRICE is less than or equal to 10.00 are included in the result. The PARTS
columns contain null values for these rows in the result table.

Chapter 3. Joining data from more than one table 43

SQL rules for statements containing join operations

SQL rules dictate that the result of a SELECT statement look as if the clauses had
been evaluated in this order:

« FROM

« WHERE

* GROUP BY
* HAVING
e SELECT

A join operation is part of a FROM clause; therefore, for the purpose of predicting
which rows will be returned from a SELECT statement containing a join operation,
assume that the join operation is performed first.

Example: Suppose that you want to obtain a list of part names, supplier names,
product numbers, and product names from the PARTS and PRODUCTS tables. You
want to include rows from either table where the PROD# value does not match a
PROD# value in the other table, which means that you need to do a full outer join.
You also want to exclude rows for product number 10. Consider the following

SELECT statement:
SELECT PART, SUPPLIER,

VALUE (PARTS.PROD#,PRODUCTS . PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#

WHERE PARTS.PROD# <> '10' AND PRODUCTS.PROD# <> '10';

The following result is not what you wanted:

PART SUPPLIER
PLASTIC PLASTIK_CORP
BLADES ACE_STEEL

PRODNUM PRODUCT
30 RELAY
205 SAW

DB2 performs the join operation first. The result of the join operation includes
rows from one table that do not have corresponding rows from the other table.
However, the WHERE clause then excludes the rows from both tables that have
null values for the PROD# column.

The following statement is a correct SELECT statement to produce the list:

SELECT PART, SUPPLIER,

VALUE(X.PROD#, Y.PROD#) AS PRODNUM, PRODUCT

FROM

(SELECT PART, SUPPLIER, PROD# FROM PARTS WHERE PROD# <> '10') X

FULL OUTER JOIN

(SELECT PROD#, PRODUCT FROM PRODUCTS WHERE PROD# <> '10') Y

ON X.PROD# = Y.PROD#;

For this statement, DB2 applies the WHERE clause to each table separately. DB2
then performs the full outer join operation, which includes rows in one table that
do not have a corresponding row in the other table. The final result includes rows
with the null value for the PROD# column and looks similar to the following

output:

PART SUPPLIER

0IL WESTERN_CHEM
BLADES ACE_STEEL
PLASTIC PLASTIK CORP

44 Application Programming and SQL Guide

PRODNUM PRODUCT

160 mmemeeeeee-
205 SAW

30 RELAY

505 SCREWDRIVER

Using more than one join in an SQL statement

Using more than one join: You can join more than two tables. Suppose you want a
result table that shows employees who have projects that they are responsible for,
their projects, and their department names. You need to join three tables to get all

the information. You can use the following SELECT statement:

SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO
FROM DSN8810.EMP, DSN8810.PROJ, DSN8810.DEPT

The result table looks similar to the following output:

EMPNO

000010
000010
000020
000030
000030
000050
000050
000060
000070
000090
000100
000150
000160
000220
000230
000250
000270
000320
000330
000340

DB2 determines the intermediate and final results of the previous query by

WHERE EMPNO
AND WORKDEPT

LASTNAME

THOMPSON
KWAN

KWAN
GEYER
GEYER
STERN
PULASKI
HENDERSON
SPENSER
ADAMSON
PIANKA
LuTZ
JEFFERSON
SMITH
PEREZ
MEHTA

LEE
GOUNOT

RESPEMP
DSN8810.DEPT.DEPTNO;

DEPTNAME

SPIFFY COMPUTER SERVICE DIV
SPIFFY COMPUTER SERVICE DIV
PLANNING

INFORMATION CENTER
INFORMATION CENTER

SUPPORT SERVICES

SUPPORT SERVICES
MANUFACTURING SYSTEMS
ADMINISTRATION SYSTEMS
OPERATIONS

SOFTWARE SUPPORT
MANUFACTURING SYSTEMS
MANUFACTURING SYSTEMS
MANUFACTURING SYSTEMS
ADMINISTRATION SYSTEMS
ADMINISTRATION SYSTEMS
ADMINISTRATION SYSTEMS
SOFTWARE SUPPORT

SOFTWARE SUPPORT

SOFTWARE SUPPORT

performing the following logical steps:

1. Join the employee and project tables on the employee number, dropping the
rows with no matching employee number in the project table.

2. Join the intermediate result table with the department table on matching
department numbers.

3. Process the select list in the final result table, leaving only four columns.

PROJNO

AD3100
MA2100
PL2100
IF1000
IF2000
0P1000
0P2000
MA2110
AD3110
0P1010
0P2010
MA2112
MA2113
MA2111
AD3111
AD3112
AD3113
0P2011
0P2012
0P2013

Using more than one join type: You can use more than one join type in the FROM

clause. Suppose that you want a result table that shows employees whose last

name begins with 'S' or a letter after 'S', their department names, and the projects
that they are responsible for, if any. You can use the following SELECT statement:

SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO
FROM DSN8810.EMP INNER JOIN DSN8810.DEPT

ON WORKDEPT = DSN8810.DEPT.DEPTNO

LEFT OUTER JOIN DSN8810.PROJ

ON EMPNO = RESPEMP
WHERE LASTNAME > 'S';

The result table looks like similar to the following output:

EMPNO

000020
000060
000100
000170

LASTNAME

THOMPSON
STERN
SPENSER
YOSHIMURA

DEPTNAME PROJNO
PLANNING PL2100
MANUFACTURING SYSTEMS MA2110
SOFTWARE SUPPORT 0P2010

MANUFACTURING SYSTEMS ---

Chapter 3. Joining data from more than one table

45

000180 SCOUTTEN MANUFACTURING SYSTEMS ------

000190 WALKER MANUFACTURING SYSTEMS ~ ------
000250 SMITH ADMINISTRATION SYSTEMS AD3112
000280 SCHNEIDER OPERATIONS —mmee
000300 SMITH OPERATIONS ===
000310 SETRIGHT OPERATIONS ===
200170 YAMAMOTO MANUFACTURING SYSTEMS ~ ------
200280 SCHWARTZ OPERATIONS ===
200310 SPRINGER OPERATIONS —mmemo
200330 WONG SOFTWARE SUPPORT ------

DB2 determines the intermediate and final results of the previous query by

performing the following logical steps:

1. Join the employee and department tables on matching department numbers,
dropping the rows where the last name begins with a letter before 'S'.

2. Join the intermediate result table with the project table on the employee
number, keeping the rows with no matching employee number in the project
table.

3. Process the select list in the final result table, leaving only four columns.

Using nested table expressions and user-defined table functions in

joins

An operand of a join can be more complex than the name of a single table. You
can use:

* A nested table expression, which is a fullselect enclosed in parentheses and
followed by a correlation name

e A user-defined table function, which is a user-defined function that returns a
table

Example of using a nested table expression as the right operand of a join: The
following query contains a fullselect as the right operand of a left outer join with
the PROJECTS table. The correlation name is TEMP.

SELECT PROJECT, COALESCE(PROJECTS.PROD#, PRODNUM) AS PRODNUM,
PRODUCT, PART, UNITS
FROM PROJECTS LEFT JOIN
(SELECT PART,
COALESCE (PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS . PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP
ON PROJECTS.PROD# = PRODNUM;

The following statement is the nested table expression:

(SELECT PART,
COALESCE (PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS . PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP

Example of using correlated references: In the following example, the correlation
name that is used for the nested table expression is CHEAP_PARTS. The correlated
references are CHEAP_ PARTS.PROD# and CHEAP_PARTS.PRODUCT.
SELECT CHEAP_PARTS.PROD#, CHEAP_PARTS.PRODUCT

FROM (SELECT PROD#, PRODUCT

FROM PRODUCTS
WHERE PRICE < 10) AS CHEAP_PARTS;

The result table looks similar to the following output:

46 Application Programming and SQL Guide

PROD# PRODUCT

505 SCREWDRIVER
30 RELAY

The correlated references are valid because they do not occur in the table
expression where CHEAP_PARTS is defined. The correlated references are from a
table specification at a higher level in the hierarchy of subqueries.

Example of using a nested table expression as the left operand of a join: The
following query contains a fullselect as the left operand of a left outer join with the
PRODUCTS table. The correlation name is PARTX.

SELECT PART, SUPPLIER, PRODNUM, PRODUCT
FROM (SELECT PART, PROD# AS PRODNUM, SUPPLIER
FROM PARTS
WHERE PROD# < '200') AS PARTX
LEFT OUTER JOIN PRODUCTS
ON PRODNUM = PROD#;

The result table looks similar to the following output:

PART SUPPLIER PRODNUM PRODUCT

WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
0IL WESTERN_CHEM 160 memmeeeee-

Because PROD# is a character field, DB2 does a character comparison to determine
the set of rows in the result. Therefore, because ‘30" is greater than 200", the row in
which PROD# is equal to "30” does not appear in the result.

Example: Using a table function as an operand of a join: You can join the results
of a user-defined table function with a table, just as you can join two tables. For
example, suppose CVTPRICE is a table function that converts the prices in the
PRODUCTS table to the currency you specify and returns the PRODUCTS table
with the prices in those units. You can obtain a table of parts, suppliers, and
product prices with the prices in your choice of currency by executing a query
similar to the following query:

SELECT PART, SUPPLIER, PARTS.PROD#, Z.PRODUCT, Z.PRICE

FROM PARTS, TABLE(CVTPRICE(:CURRENCY)) AS Z
WHERE PARTS.PROD# = Z.PROD#;

Using correlated references in table specifications in joins

You can include correlated references in nested table expressions or as arguments
to table functions. The basic rule that applies for both of these cases is that the
correlated reference must be from a table specification at a higher level in the
hierarchy of subqueries. You can also use a correlated reference and the table
specification to which it refers in the same FROM clause if the table specification
appears to the left of the correlated reference and the correlated reference is in one
of the following clauses:

* A nested table expression preceded by the keyword TABLE

e The argument of a table function

For more information about correlated references, see [“Using correlation names in|
[references” on page 54

Chapter 3. Joining data from more than one table 47

A table function or a table expression that contains correlated references to other
tables in the same FROM clause cannot participate in a full outer join or a right
outer join. The following examples illustrate valid uses of correlated references in
table specifications.

Example: In this example, the correlated reference T.C2 is valid because the table
specification, to which it refers, T, is to its left.
SELECT T.C1, Z.C5

FROM T, TABLE(TF3(T.C2)) AS Z
WHERE T.C3 = Z.C4;

If you specify the join in the opposite order, with T following TABLE(TF3(T.C2),
then T.C2 is invalid.

Example: In this example, the correlated reference D.DEPTNO is valid because the
nested table expression within which it appears is preceded by TABLE and the
table specification D appears to the left of the nested table expression in the FROM
clause.
SELECT D.DEPTNO, D.DEPTNAME,
EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPT D,
TABLE(SELECT AVG(E.SALARY) AS AVGSAL,
COUNT(*) AS EMPCOUNT
FROM EMP E
WHERE E.WORKDEPT=D.DEPTNO) AS EMPINFO;

If you remove the keyword TABLE, D.DEPTNO is invalid.

48 Application Programming and SQL Guide

Chapter 4. Using subqueries

When you need to narrow your search condition based on information in an
interim table, you can use a subquery. For example, you might want to find all
employee numbers in one table that also exist for a given project in a second table.

This chapter presents the following sections:

+ [“Conceptual overview”]

* |["How to code a subquery” on page 51|

* |“Using correlated subqueries” on page 53|

Conceptual overview

Suppose that you want a list of the employee numbers, names, and commissions of
all employees working on a particular project, whose project number is MA2111.
The first part of the SELECT statement is easy to write:

SELECT EMPNO, LASTNAME, COMM

FROM DSN8810.EMP
WHERE EMPNO

But you cannot proceed because the DSN8810.EMP table does not include project
number data. You do not know which employees are working on project MA2111
without issuing another SELECT statement against the DSN8810.EMPPROJACT
table.

You can use a subquery to solve this problem. A subquery is a subselect or a
fullselect in a WHERE clause. The SELECT statement surrounding the subquery is
called the outer SELECT.
SELECT EMPNO, LASTNAME, COMM
FROM DSN8810.EMP
WHERE EMPNO IN
(SELECT EMPNO
FROM DSN8810.EMPPROJACT
WHERE PROJNO = 'MA2111');

To better understand the results of this SQL statement, imagine that DB2 goes
through the following process:

1. DB2 evaluates the subquery to obtain a list of EMPNO values:

(SELECT EMPNO
FROM DSN8810.EMPPROJACT
WHERE PROJNO = 'MA2111');

The result is in an interim result table, similar to the one shown in the following
output:

from EMPNO

2. The interim result table then serves as a list in the search condition of the outer
SELECT. Effectively, DB2 executes this statement:

© Copyright IBM Corp. 1983, 2012 49

SELECT EMPNO, LASTNAME, COMM
FROM DSN8810.EMP
WHERE EMPNO IN
('000200', '000220');

As a consequence, the result table looks similar to the following output:
EMPNO LASTNAME COMM

000200 BROWN 2217
000220 LUTZ 2387

Correlated and uncorrelated subqueries

Subqueries supply information that is needed to qualify a row (in a WHERE
clause) or a group of rows (in a HAVING clause). The subquery produces a result
table that is used to qualify the row or group of selected rows. The subquery
executes only once, if the subquery is the same for every row or group.

This kind of subquery is uncorrelated. In the previous query, for example, the
content of the subquery is the same for every row of the table DSN8810.EMP.

Subqueries that vary in content from row to row or group to group are correlated
subqueries. For information about correlated subqueries, see [“Using correlated|
[subqueries” on page 53| All of the following information that precedes the section
about correlated subqueries applies to both correlated and uncorrelated subqueries.

Subqueries and predicates

A subquery is always part of a predicate. The predicate is of the form:
operand operator (subquery)

The predicate can be part of a WHERE or HAVING clause. A WHERE or HAVING
clause can include predicates that contain subqueries. A predicate containing a
subquery, like any other search predicate, can be enclosed in parentheses, can be
preceded by the keyword NOT, and can be linked to other predicates through the
keywords AND and OR. For example, the WHERE clause of a query can look
something like the following clause:

WHERE X IN (subgueryl) AND (Y > SOME (subquery2) OR Z IS NULL)

Subqueries can also appear in the predicates of other subqueries. Such subqueries
are nested subqueries at some level of nesting. For example, a subquery within a
subquery within an outer SELECT has a nesting level of 2. DB2 allows nesting
down to a level of 15, but few queries require a nesting level greater than 1.

The relationship of a subquery to its outer SELECT is the same as the relationship
of a nested subquery to a subquery, and the same rules apply, except where
otherwise noted.

The subquery result table

A subquery must produce a result table that has the same number of columns as
the number of columns on the left side of the comparison operator. For example,
both of the following SELECT statements are acceptable:
SELECT EMPNO, LASTNAME

FROM DSN8810.EMP

WHERE SALARY =

(SELECT AVG(SALARY)

FROM DSN8810.EMP);

50 Application Programming and SQL Guide

SELECT EMPNO, LASTNAME
FROM DSN8810.EMP
WHERE (SALARY, BONUS) IN
(SELECT AVG(SALARY), AVG(BONUS)
FROM DSN8810.EMP);

Except for a subquery of a basic predicate, the result table can contain more than
one row. For more information, see [“Basic predicate .”|

Tables in subqueries of UPDATE, DELETE, and INSERT
statements

The following rules apply to a table that is used in a subquery for an UPDATE,
DELETE, or INSERT statement:

* When you use a subquery in an INSERT statement, the subquery can use the
same table as the INSERT statement.

* When you use a subquery in a searched UPDATE or DELETE statement (an
UPDATE or DELETE that does not use a cursor), the subquery can use the same
table as the UPDATE or DELETE statement.

* When you use a subquery in a positioned UPDATE or DELETE statement (an
UPDATE or DELETE that uses a cursor), the subquery cannot use the same table
as the UPDATE or DELETE statement.

How to code a subquery

You can specify a subquery in either a WHERE or HAVING clause by using:
* A basic predicate

* A quantified predicate: ALL, ANY, or SOME

e The IN keyword

e The EXISTS keyword

Basic predicate

You can use a subquery immediately after any of the comparison operators. If you
do, the subquery can return at most one value. DB2 compares that value with the
value to the left of the comparison operator.

Example: The following SQL statement returns the employee numbers, names, and
salaries for employees whose education level is higher than the average
company-wide education level.
SELECT EMPNO, LASTNAME, SALARY

FROM DSN8810.EMP

WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP);

Quantified predicate : ALL, ANY, or SOME

You can use a subquery after a comparison operator, followed by the keyword

ALL, ANY, or SOME. The number of columns and rows that the subquery can

return for a quantified predicate depends on the type of quantified predicate:

e For = SOME, = ANY, or <> ALL, the subquery can return one or many rows and
one or many columns. The number of columns in the result table must match
the number of columns on the left side of the operator.

* For all other quantified predicates, the subquery can return one or many rows,
but no more than one column.

Chapter 4. Using subqueries 51

If a subquery that returns one or more null values gives you unexpected results,
see the description of quantified predicates in Chapter 2 of [DB2 SQL Referencel

Using the ALL predicate

Use ALL to indicate that the operands on the left side of the comparison must
compare in the same way with all of the values that the subquery returns. For
example, suppose you use the greater-than comparison operator with ALL:

WHERE column > ALL (subquery)

To satisfy this WHERE clause, the column value must be greater than all of the
values that the subquery returns. A subquery that returns an empty result table
satisfies the predicate.

Now suppose that you use the <> operator with ALL in a WHERE clause like this:
WHERE (columnl, columnl, ... columnn) <> ALL (subquery)

To satisfy this WHERE clause, each column value must be unequal to all of the
values in the corresponding column of the result table that the subquery returns. A
subquery that returns an empty result table satisfies the predicate.

Using the ANY or SOME predicate

Use ANY or SOME to indicate that the values on the left side of the operator must
compare in the indicated way to at least one of the values that the subquery
returns. For example, suppose you use the greater-than comparison operator with
ANY:

WHERE expression > ANY (subquery)

To satisfy this WHERE clause, the value in the expression must be greater than at
least one of the values (that is, greater than the lowest value) that the subquery
returns. A subquery that returns an empty result table does not satisty the
predicate.

Now suppose that you use the = operator with SOME in a WHERE clause like
this:
WHERE (columnl, columnl, ... columnn) = SOME (subquery)

To satisfy this WHERE clause, each column value must be equal to at least one of
the values in the corresponding column of the result table that the subquery
returns. A subquery that returns an empty result table does not satisfy the
predicate.

IN keyword

You can use IN to say that the value or values on the left side of the IN operator
must be among the values that are returned by the subquery. Using IN is
equivalent to using = ANY or = SOME.

Example: The following query returns the names of department managers:

SELECT EMPNO, LASTNAME
FROM DSN8810.EMP
WHERE EMPNO IN
(SELECT DISTINCT MGRNO
FROM DSN8810.DEPT)

52 Application Programming and SQL Guide

EXISTS keyword

In the subqueries presented thus far, DB2 evaluates the subquery and uses the
result as part of the WHERE clause of the outer SELECT. In contrast, when you
use the keyword EXISTS, DB2 simply checks whether the subquery returns one or
more rows. Returning one or more rows satisfies the condition; returning no rows
does not satisfy the condition.

Example: The search condition in the following query is satisfied if any project that
is represented in the project table has an estimated start date that is later than 1
January 2005:
SELECT EMPNO,LASTNAME
FROM DSN8810.EMP
WHERE EXISTS
(SELECT =
FROM DSN8810.PROJ
WHERE PRSTDATE > '2005-01-01');

The result of the subquery is always the same for every row that is examined for
the outer SELECT. Therefore, either every row appears in the result of the outer
SELECT or none appears. A correlated subquery is more powerful than the
uncorrelated subquery that is used in this example because the result of a
correlated subquery is evaluated for each row of the outer SELECT.

As shown in the example, you do not need to specify column names in the
subquery of an EXISTS clause. Instead, you can code SELECT *. You can also use
the EXISTS keyword with the NOT keyword in order to select rows when the data
or condition you specify does not exist; that is, you can code the following clause:

WHERE NOT EXISTS (SELECT ...);

Using correlated subqueries

In an uncorrelated subquery, DB2 executes the subquery once, substitutes the result
of the subquery in the right side of the search condition, and evaluates the outer
SELECT based on the value of the search condition. You can also write a subquery
that DB2 re-evaluates when it examines a new row (in a WHERE clause) or group
of rows (in a HAVING clause) as it executes the outer SELECT. This is called a
correlated subquery.

User-defined functions in correlated subqueries: Use care when you invoke a
user-defined function in a correlated subquery, and that user-defined function uses
a scratchpad. DB2 does not refresh the scratchpad between invocations of the
subquery. This can cause undesirable results because the scratchpad keeps values
across the invocations of the subquery.

An example of a correlated subquery

Suppose that you want a list of all the employees whose education levels are
higher than the average education levels in their respective departments. To get
this information, DB2 must search the DSN8810.EMP table. For each employee in
the table, DB2 needs to compare the employee's education level to the average
education level for that employee's department.

For this example, you need to use a correlated subquery, which differs from an
uncorrelated subquery. An uncorrelated subquery compares the employee’s

Chapter 4. Using subqueries 53

education level to the average of the entire company, which requires looking at the
entire table. A correlated subquery evaluates only the department that corresponds
to the particular employee.

In the subquery, you tell DB2 to compute the average education level for the
department number in the current row. A query that does this follows:
SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL
FROM DSN8810.EMP X
WHERE EDLEVEL >
(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP
WHERE WORKDEPT = X.WORKDEPT);

A correlated subquery looks like an uncorrelated one, except for the presence of
one or more correlated references. In the example, the single correlated reference is
the occurrence of X.WORKDEPT in the WHERE clause of the subselect. In this
clause, the qualifier X is the correlation name that is defined in the FROM clause of
the outer SELECT statement. X designates rows of the first instance of
DSN8810.EMP. At any time during the execution of the query, X designates the
row of DSN8810.EMP to which the WHERE clause is being applied.

Consider what happens when the subquery executes for a given row of
DSN8810.EMP. Before it executes, X WORKDEPT receives the value of the
WORKDEPT column for that row. Suppose, for example, that the row is for
Christine Haas. Her work department is A00, which is the value of WORKDEPT
for that row. Therefore, the following is the subquery that is executed for that row:
(SELECT AVG(EDLEVEL)

FROM DSN8810.EMP
WHERE WORKDEPT = 'A00');

The subquery produces the average education level of Christine's department. The
outer SELECT then compares this average to Christine's own education level. For
some other row for which WORKDEPT has a different value, that value appears in
the subquery in place of A00. For example, in the row for Michael L Thompson,
this value is BO1, and the subquery for his row delivers the average education level
for department BO1.

The result table produced by the query is similar to the following output:
EMPNO LASTNAME WORKDEPT ~ EDLEVEL

000010 HASS A0O 18
000030 KWAN col 20
000070 PULASKI D21 16
000090 HENDERSON E11 16

Using correlation names in references

A correlated reference can appear in a subquery, in a nested table expression, or as
an argument of a user-defined table function. For information about correlated
references in nested table expressions and table functions, see [Using nested table|
fexpressions and user-defined table functions in joins” on page 46]In a subquery,
the reference should be of the form X.C, where X is a correlation name and C is
the name of a column in the table that X represents.

Any number of correlated references can appear in a subquery, with no restrictions
on variety. For example, you can use one correlated reference in the outer SELECT,
and another in a nested subquery.

54 Application Programming and SQL Guide

When you use a correlated reference in a subquery, the correlation name can be
defined in the outer SELECT or in any of the subqueries that contain the reference.
Suppose, for example, that a query contains subqueries A, B, and C, and that A
contains B and B contains C. The subquery C can use a correlation reference that is
defined in B, A, or the outer SELECT.

You can define a correlation name for each table name in a FROM clause. Specify
the correlation name after its table name. Leave one or more blanks between a
table name and its correlation name. You can include the word AS between the
table name and the correlation name to increase the readability of the SQL
statement.

The following example demonstrates the use of a correlated reference in the search
condition of a subquery:

SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL
FROM DSN8810.EMP AS X
WHERE EDLEVEL >
(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP
WHERE WORKDEPT = X.WORKDEPT);

The following example demonstrates the use of a correlated reference in the select
list of a subquery:
UPDATE BP1TBL T1
SET (KEY1, CHAR1, VCHARIL) =
(SELECT VALUE(T2.KEY1,T1.KEY1), VALUE(T2.CHAR1,T1.CHARI),
VALUE (T2.VCHARL,T1.VCHARL)
FROM BP2TBL T2
WHERE (T2.KEY1 = T1.KEY1))
WHERE KEY1 IN
(SELECT KEY1
FROM BP2TBL T3
WHERE KEY2 > 0);

Using correlated subqueries in an UPDATE statement

When you use a correlated subquery in an UPDATE statement, the correlation
name refers to the rows you are updating. For example, when all activities of a
project must complete before September 2004, your department considers that
project to be a priority project. You can use the following SQL statement to
evaluate the projects in the DSN8810.PROJ table, and write a 1 (a flag to indicate
PRIORITY) in the PRIORITY column (a column you have added to DSN8810.PRO]J
for this purpose) for each priority project:
UPDATE DSN8810.PROJ X
SET PRIORITY =1
WHERE DATE('2004-09-01') >

(SELECT MAX(ACENDATE)

FROM DSN8810.PROJACT
WHERE PROJNO = X.PROJNO);

As DB2 examines each row in the DSN8810.PRQJ table, it determines the
maximum activity end date (the ACENDATE column) for all activities of the
project (from the DSN8810.PROJACT table). If the end date of each activity
associated with the project is before September 2004, the current row in the
DSN8810.PROJ table qualifies and DB2 updates it.

Chapter 4. Using subqueries 55

Using correlated subqueries in a DELETE statement

When you use a correlated subquery in a DELETE statement, the correlation name
represents the row you delete. DB2 evaluates the correlated subquery once for each
row in the table that is named in the DELETE statement to decide whether or not
to delete the row.

Using tables with no referential constraints
Suppose that a department considers a project to be complete when the combined
amount of time currently spent on it is half a person's time or less. The department
then deletes the rows for that project from the DSN8810.PROJ table. In the
examples in this section, PROJ and PROJACT are independent tables; that is, they
are separate tables with no referential constraints defined on them.
DELETE FROM DSN8810.PROJ X

WHERE .5 >

(SELECT SUM(ACSTAFF)

FROM DSN8810.PROJACT
WHERE PROJNO = X.PROJNO) ;

To process this statement, DB2 determines for each project (represented by a row in
the DSN8810.PROJ table) whether or not the combined staffing for that project is
less than 0.5. If it is, DB2 deletes that row from the DSN8810.PRQO] table.

To continue this example, suppose DB2 deletes a row in the DSN8810.PRO]J table.
You must also delete rows related to the deleted project in the DSN8810.PROJACT
table. To do this, use:
DELETE FROM DSN8810.PROJACT X
WHERE NOT EXISTS
(SELECT =
FROM DSN8810.PROJ
WHERE PROJNO = X.PROJNO) ;

DB2 determines, for each row in the DSN8810.PROJACT table, whether a row with
the same project number exists in the DSN8810.PROJ table. If not, DB2 deletes the
row in DSN8810.PROJACT.

Using a single table

A subquery of a searched DELETE statement (a DELETE statement that does not
use a cursor) can reference the same table from which rows are deleted. In the
following statement, which deletes the employee with the highest salary from each
department, the employee table appears in the outer DELETE and in the subselect:
DELETE FROM YEMP X

WHERE SALARY = (SELECT MAX(SALARY) FROM YEMP Y
WHERE X.WORKDEPT =Y.WORKDEPT);

This example uses a copy of the employee table for the subquery.

The following statement, without a correlated subquery, yields equivalent results:

DELETE FROM YEMP
WHERE (SALARY, WORKDEPT) IN (SELECT MAX(SALARY), WORKDEPT
FROM YEMP
GROUP BY WORKDEPT);

Using tables with referential constraints

DB?2 restricts delete operations for dependent tables that are involved in referential
constraints. If a DELETE statement has a subquery that references a table that is
involved in the deletion, the last delete rule in the path to that table must be
RESTRICT or NO ACTION if the result of the subquery is not materialized before

56 Application Programming and SQL Guide

the deletion occurs. However, if the result of the subquery is materialized before
the deletion, the delete rule can also be CASCADE or SET NULL.

Example: Without referential constraints, the following statement deletes
departments from the department table whose managers are not listed correctly in
the employee table:
DELETE FROM DSN8810.DEPT THIS
WHERE NOT DEPTNO =
(SELECT WORKDEPT
FROM DSN8810.EMP
WHERE EMPNO = THIS.MGRNO);

With the referential constraints that are defined for the sample tables, this
statement causes an error because the result table for the subquery is not
materialized before the deletion occurs. The deletion involves the table that is
referred to in the subquery (DSN8810.EMP is a dependent table of DSN8810.DEPT)
and the last delete rule in the path to EMP is SET NULL, not RESTRICT or NO
ACTION. If the statement could execute, its results would depend on the order in
which DB2 accesses the rows. Therefore, DB2 prohibits the deletion. See
[“Materialization” on page 836| for more information about materialization.

Chapter 4. Using subqueries 57

58 Application Programming and SQL Guide

Chapter 5. Using SPUFI to execute SQL from your workstation

This chapter explains how to enter and execute SQL statements at a TSO
workstation by using the SPUFI (SQL processor using file input) facility. This
chapter contains the following sections:

+ |“Allocating an input data set and using SPUFI”]
+ |“Changing SPUFI defaults” on page 62|
[“Entering SQL statements ” on page 66|

* [“Processing SQL statements ” on page 68|

[“When SQL statements exceed resource limit thresholds” on page 68|

* [“Browsing the output ” on page 69|

You can execute most of the interactive SQL examples shown in [Part 1, “Using SQIJ
[queries,” on page 1| by following the instructions provided in this chapter and
using the sample tables shown in [Appendix A, “DB2 sample tables,” on page 995
The instructions assume that ISPF is available to you.

You can use the TSO PROFILE command to control whether message IDs are
displayed. To view message IDs, type TSO PROFILE MSGID on the ISPF command
line. To suppress message 1Ds, type TSO PROFILE NOMSGID.

Allocating an input data set and using SPUFI

Before you use SPUFI, you should allocate an input data set, if one does not
already exist. This data set will contain one or more SQL statements that you want
to execute. For information on ISPF and allocating data sets, see z/OS ISPF User’s
Guide Volumes 1 and 2.

To use SPUFI, select SPUFI from the DB2I Primary Option Menu as shown in
[Figure 152 on page 520|

The SPUFI panel then displays as shown in [Figure 3 on page 60|

From then on, when the SPUFI panel displays, the data entry fields on the panel
contain the values that you previously entered. You can specify data set names and
processing options each time the SPUFI panel displays, as needed. Values that you
do not change remain in effect.

© Copyright IBM Corp. 1983, 2012 59

s
DSNESPO1 SPUFI SSID: DSN
===>
Enter the input data set name: (Can be sequential or partitioned)

1 DATA SET NAME..... ===> EXAMPLES (XMP1)
2 VOLUME SERIAL..... == (Enter if not cataloged)

nn 1
v

3 DATA SET PASSWORD. > (Enter if password protected)
Enter the output data set name: (Must be a sequential data set)
4 DATA SET NAME..... ===> RESULT

Specify processing options:
5 CHANGE DEFAULTS...
6 EDIT INPUT........
7 BEdNMEco000000000
8 AUTOCOMMIT........
9 BROWSE OUTPUT.....

l
!
|
\

L1 I | S N |
Y
<~ =<=<=<=<

(Y/N - Display SPUFI defaults panel?)
(Y/N - Enter SQL statements?)

(Y/N - Execute SQL statements?)

(Y/N - Commit after successful run?)
(Y/N - Browse output data set?)

\

\

\

For remote SQL processing:
10 CONNECT LOCATION ===>

PRESS: ENTER to process END to exit HELP for more information

Figure 3. The SPUFI panel filled in

Fill out the SPUFI panel. You can access descriptions for each of the fields in the
panel in the DB2I help system. See [“DB2I help” on page 519 for more information
about the DB2I help system. The following descriptions explain the information
that you need to provide on the SPUFI panel.

1,2,3 INPUT DATA SET NAME
Identify the input data set in fields 1 through 3. This data set contains one
or more SQL statements that you want to execute. Allocate this data set
before you use SPUF], if one does not already exist. Consider the following
rules:

* The name of the data set must conform to standard TSO naming
conventions.

* The data set can be empty before you begin the session. You can then
add the SQL statements by editing the data set from SPUFL

* The data set can be either sequential or partitioned, but it must have the
following DCB characteristics:

— A record format (RECFM) of either F or FB.

— A logical record length (LRECL) of either 79 or 80. Use 80 for any
data set that the EXPORT command of DB2 QMF did not create.

* Data in the data set can begin in column 1. It can extend to column 71 if
the logical record length is 79, and to column 72 if the logical record
length is 80. SPUFI assumes that the last 8 bytes of each record are for
sequence numbers.

If you use this panel a second time, the name of the data set you
previously used displays in the field DATA SET NAME. To create a new
member of an existing partitioned data set, change only the member name.

4 OUTPUT DATA SET NAME
Enter the name of a data set to receive the output of the SQL statement.
You do not need to allocate the data set before you do this.

If the data set exists, the new output replaces its content. If the data set
does not exist, DB2 allocates a data set on the device type specified on the
CURRENT SPUFI DEFAULTS panel and then catalogs the new data set.
The device must be a direct-access storage device, and you must be
authorized to allocate space on that device.

60 Application Programming and SQL Guide

Attributes required for the output data set are:

* Organization: sequential

* Record format: F, FB, FBA, V, VB, or VBA

* Record length: 80 to 32768 bytes, not less than the input data set

[Figure 3 on page 60| shows the simplest choice, entering RESULT. SPUFI
allocates a data set named userid. RESULT and sends all output to that data
set. If a data set named userid RESULT already exists, SPUFI sends DB2
output to it, replacing all existing data.

5 CHANGE DEFAULTS
Allows you to change control values and characteristics of the output data
set and format of your SPUFI session. If you specify Y(YES) you can look
at the SPUFI defaults panel. See [‘Changing SPUFI defaults” on page 62| for
more information about the values you can specify and how they affect
SPUFI processing and output characteristics. You do not need to change
the SPUFI defaults for this example.

6 EDIT INPUT
To edit the input data set, leave Y(YES) on line 6. You can use the ISPF
editor to create a new member of the input data set and enter SQL
statements in it. (To process a data set that already contains a set of SQL
statements you want to execute immediately, enter N (NO). Specifying N
bypasses the step described in [“Entering SQL statements ” on page 66.)

7 EXECUTE

To execute SQL statements contained in the input data set, leave Y(YES) on
line 7.

SPUFI handles the SQL statements that can be dynamically prepared. For a
list of those SQL statements, see [Appendix H, “Characteristics of SQL|
lstatements in DB2 UDB for z/0S,” on page 1117

8 AUTOCOMMIT
To make changes to the DB2 data permanent, leave Y(YES) on line 8.
Specifying Y makes SPUFI issue COMMIT if all statements execute
successfully. If all statements do not execute successfully, SPUFI issues a
ROLLBACK statement, which deletes changes already made to the file
(back to the last commit point). For information about the COMMIT and
ROLLBACK functions, see [“Unit of work in TSO batch and online” on|

or Chapter 5 of [DB2 SQL Reference}

If you specify N, DB2 displays the SPUFI COMMIT OR ROLLBACK panel
after it executes the SQL in your input data set. That panel prompts you to
COMMIT, ROLLBACK, or DEFER any updates made by the SQL. If you
enter DEFER, you neither commit nor roll back your changes.

9 BROWSE OUTPUT
To look at the results of your query, leave Y(YES) on line 9. SPUFI saves
the results in the output data set. You can look at them at any time, until

you delete or write over the data set. For more information, see
ISELECT statement results ” on page 70.]

10 CONNECT LOCATION
Specify the name of the database server, if applicable, to which you want

to submit SQL statements. SPUFI then issues a type 2 CONNECT
statement to this server.

Chapter 5. Using SPUFI to execute SQL from your workstation 61

H H H H*

SPUFI is a locally bound package. SQL statements in the input data set can
process only if the CONNECT statement is successful. If the connect
request fails, the output data set contains the resulting SQL return codes
and error messages.

Important: Ensure that the TSO terminal CCSID matches the DB2 CCSID. If these
CCSIDs do not match, data corruption can occur. If SPUFI issues the warning
message DSNE345], terminate your SPUFI session and notify the system
administrator.

Changing SPUFI defaults

When you finish with the SPUFI panel, press the ENTER key. If you specified YES
on line 5 of the SPUFI panel, the next panel you see is the SPUFI Defaults panel.
SPUFI provides default values the first time you use SPUF], for all options except
the DB2 subsystem name. Any changes that you make to these values remain in
effect until you change the values again. shows the initial default values.

/bSNESPGZ CURRENT SPUFI DEFAULTS SSID: DSN h
===>
Enter the following to control your SPUFI session:
1 SQL TERMINATOR ===> (SQL Statement Terminator)
2 ISOLATION LEVEL ===> RR (RR=Repeatable Read, CS=Cursor Stability)
3 MAX SELECT LINES ===> 250 (Maximum lines to be returned from a SELECT)
4 ALLOW SQL WARNINGS===> NO (Continue fetching after SQL warning)
5 CHANGE PLAN NAMES ===> NO (Change the plan names used by SPUFI)
Qutput data set characteristics:
6 RECORD LENGTH ... ===> 4092 (LRECL= logical record Tength)
7 BLOCKSIZE ===> 4096 (Size of one block)
8 RECORD FORMAT.... ===> \B (RECFM= F, FB, FBA, V, VB, or VB)
9 DEVICE TYPE...... ===> SYSDA (Must be a DASD unit name)
Qutput format characteristics:
10 MAX NUMERIC FIELD ===> 33 (Maximum width for numeric field)
11 MAX CHAR FIELD .. ===> 80 (Maximum width for character field)
12 COLUMN HEADING .. ===> NAMES (NAMES, LABELS, ANY, or BOTH)
\FRESS: ENTER to process END to exit HELP for more information)

Figure 4. The SPUFI defaults panel

If you want to change the current default values, specify new values in the fields
of the panel. All fields must contain a value. The DB2I help system contains
detailed descriptions of each of the fields of the CURRENT SPUFI DEFAULTS
panel.The following descriptions explain the information you need to provide on
the CURRENT SPUFI DEFAULTS panel.

1 SQL TERMINATOR
Allows you to specify the character that you use to end each SQL
statement. You can specify any character except the characters listed in

A semicolon (;) is the default SQL terminator.

Table 3. Invalid special characters for the SQL terminator

Hexadecimal
Name Character representation
blank X'40'
comma , X'5E'

62 Application Programming and SQL Guide

TR HHEEEEE K

H o H H H H H H*

Table 3. Invalid special characters for the SQL terminator (continued)

Hexadecimal
Name Character representation
double quote ! X'7F'
left parenthesis (X'4D'
right parenthesis) X'5D'
single quote ' X'7D'
underscore X'6D'

Use a character other than a semicolon if you plan to execute a statement
that contains embedded semicolons. For example, suppose you choose the
character # as the statement terminator. Then a CREATE TRIGGER
statement with embedded semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like
the following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)
LANGUAGE SQL
BEGIN
DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;
END #

Be careful to choose a character for the SQL terminator that is not used
within the statement.

You can also set or change the SQL terminator within a SPUFI input data
set by using the --#SET TERMINATOR statement. See
Istatements ” on page 66| for details.

2 ISOLATION LEVEL

Allows you to specify the isolation level for your SQL statements. See
[[ISOLATION option” on page 412| for more information.

3 MAX SELECT LINES
The maximum number of output lines that a SELECT statement can return.
To limit the number of rows retrieved, enter another maximum number
greater than 1.

4 ALLOW SQL WARNINGS
Enter NO (the default) or YES to indicate whether SPUFI will continue to
process an SQL statement after receiving SQL warnings:

NO If a warning occurs when SPUFI executes an OPEN or FETCH for
a SELECT statement, SPUFI stops processing the SELECT
statement. If SQLCODE +802 occurs when SPUFI executes a
FETCH for a SELECT statement, SPUFI continues to process the
SELECT statement.

Chapter 5. Using SPUFI to execute SQL from your workstation 63

FH o H H H H HH H H H*

YES If a warning occurs when SPUFI executes an OPEN or FETCH for
a SELECT statement, SPUFI continues to process the SELECT
statement.

5 CHANGE PLAN NAMES
If you enter YES in this field, you can change plan names on a subsequent
SPUFI defaults panel, DSNESP07. Enter YES in this field only if you are
certain that you want to change the plan names that are used by SPUFL
Consult with your DB2 system administrator if you are uncertain whether
you want to change the plan names. Using an invalid or incorrect plan
name might cause SPUFI to experience operational errors or it might cause
data contamination.

6 RECORD LENGTH
The record length must be at least 80 bytes. The maximum record length
depends on the device type you use. The default value allows a 4092-byte
record.

Each record can hold a single line of output. If a line is longer than a
record, the output is truncated, and SPUFI discards fields that extend
beyond the record length.

7 BLOCKSIZE
Follow the normal rules for selecting the block size. For record format F,
the block size is equal to the record length. For FB and FBA, choose a
block size that is an even multiple of LRECL. For VB and VBA only, the
block size must be 4 bytes larger than the block size for FB or FBA.

8 RECORD FORMAT
Specify F, FB, FBA, V, VB, or VBA. FBA and VBA formats insert a printer
control character after the number of lines specified in the LINES/PAGE
OF LISTING field on the DB2I Defaults panel. The record format default is
VB (variable-length blocked).

9 DEVICE TYPE
Allows you to specify a standard z/OS name for direct-access storage
device types. The default is SYSDA. SYSDA specifies that z/OS is to select
an appropriate direct access storage device.

10 MAX NUMERIC FIELD
The maximum width of a numeric value column in your output. Choose a
value greater than 0. The default is 33. For more information, see
[of SELECT statement results ” on page 70

11 MAX CHAR FIELD
The maximum width of a character value column in your output.
DATETIME and GRAPHIC data strings are externally represented as
characters, and SPUFI includes their defaults with the default values for
character fields. Choose a value greater than 0. The IBM-supplied default is
80. For more information, see [“Format of SELECT statement results ” on|
page 70,

12 COLUMN HEADING
You can specify NAMES, LABELS, ANY, or BOTH for column headings.
* NAMES (default) uses column names only.
* LABELS uses column labels. Leave the title blank if no label exists.
¢ ANY uses existing column labels or column names.
* BOTH creates two title lines, one with names and one with labels.

Column names are the column identifiers that you can use in SQL
statements. If an SQL statement has an AS clause for a column, SPUFI

64 Application Programming and SQL Guide

HHtEHHHHFHHFHHFF S FFFEFFFFFEFEFE OF HF H

H o o H H H H H O H H H H H H H

displays the contents of the AS clause in the heading, rather than the
column name. You define column labels with LABEL statements.

When you have entered your SPUFI options, press the ENTER key to continue.
SPUFI then processes the next processing option for which you specified YES. If all
other processing options are NO, SPUFI displays the SPUFI panel.

If you press the END key, you return to the SPUFI panel, but you lose all the
changes you made on the SPUFI Defaults panel. If you press ENTER, SPUFI saves
your changes.

Changing SPUFI defaults - panel 2

If you specify YES on line 5 of the SPUFI Defaults panel, the next panel that you
see is the second SPUFI Defaults panel shows the initial default values.

Vs
DSNESPO7 CURRENT SPUFI DEFAULTS - PANEL 2 SSID: DSN
===>
DO NOT CHANGE THE FIELDS BELOW UNLESS DIRECTED BY THE DB2 SYSTEM ADMINISTRATOR
Change plans to be used by your SPUFI session:
1 CS ISOLATION PLAN ===> DSNESPC (Name of plan for CS isolation level)

2 RR ISOLATION PLAN ===> DSNESPC (Name of plan for RR isolation level)

Indicate warning message status:
3 BLANK CCSID WARNING ===> YES (Show warning if terminal CCSID is blank)

\PRESS: ENTER to process END to exit HELP for more information

Figure 5. CURRENT SPUFI DEFAULTS - PANEL 2

Specify values for the following options on the CURRENT SPUFI DEFAULTS -
PANEL 2 panel. All fields must contain a value. Using an invalid or incorrect plan
name might cause SPUFI to experience operational errors or it might cause data
contamination.

1 CS ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of cursor stability (CS). By default, this name is DSNESPCS.

2 RR ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of repeatable read (RR). By default, this name is DSNESPRR.

3 BLANK CCSID ALERT
Indicate whether to receive message DSNE345] when the terminal CCSID
setting is blank. A blank terminal CCSID setting occurs when the terminal

code page and character set cannot be queried or if they are not supported
by ISPE.

Chapter 5. Using SPUFI to execute SQL from your workstation 65

I+

Recommendation: To avoid possible data contamination use the default
setting of YES, unless you are specifically directed by your DB2 system
administrator to use NO.

Entering SQL statements

Next, SPUFI lets you edit the input data set. Initially, editing consists of entering
an SQL statement into the input data set. You can also edit an input data set that
contains SQL statements and you can change, delete, or insert SQL statements.

Using the ISPF editor
The ISPF Editor shows you an empty EDIT panel.

On the panel, use the ISPF EDIT program to enter SQL statements that you want
to execute, as shown in

Move the cursor to the first input line and enter the first part of an SQL statement.
You can enter the rest of the SQL statement on subsequent lines, as shown in
Indenting your lines and entering your statements on several lines make
your statements easier to read, without changing how your statements process.

You can put more than one SQL statement in the input data set. You can put an
SQL statement on one line of the input data set or on more than one line. DB2
executes the statements in the order you placed them in the data set. Do not put
more than one SQL statement on a single line. The first one executes, but DB2
ignores the other SQL statements on the same line.

In your SPUFI input data set, end each SQL statement with the statement
terminator that you specified in the CURRENT SPUFI DEFAULTS panel.

When you have entered your SQL statements, press the END PF key to save the
file and to execute the SQL statements.

EDIT -----e-- userid.EXAMPLES (XMP1) ---===--mmmmmmmmmmeem COLUMNS 001 072
COMMAND INPUT ===> SAVE SCROLL ===> PAGE

TOP OF DATA
000100 SELECT LASTNAME, FIRSTNME, PHONENO
000200 FROM DSN8810.EMP

000300 WHERE WORKDEPT= 'D11

000400 ORDER BY LASTNAME;

BOTTOM OF DATA

Figure 6. The edit panel: After entering an SQL statement

Pressing the END PF key saves the data set. You can save the data set and continue
editing it by entering the SAVE command. Saving the data set after every 10
minutes or so of editing is recommended.

shows what the panel looks like if you enter the sample SQL statement,
followed by a SAVE command.

You can bypass the editing step by resetting the EDIT INPUT processing option:
EDIT INPUT ... ===> NO

66 Application Programming and SQL Guide

H H H HF

* W o H

HoH H OFH H H H H O FH HF H

HHHH OH H*

Retrieving Unicode UTF-16 graphic data

7SPUFI can be used to retrieve Unicode UTF-16 graphic data. However, SPUFI
might not be able to display some characters, if those characters have no mapping
in the target SBCS EBCDIC CCSID.

Entering comments

You can put comments about SQL statements either on separate lines or on the
same line. In either case, use two hyphens (--) to begin a comment. Specify any
text other than #SET TERMINATOR or #SET TOLWARN after the comment. DB2
ignores everything to the right of the two hyphens.

Setting the SQL terminator character

Use the text —#SET TERMINATOR character in a SPUFI input data set as an
instruction to SPUFI to interpret character as a statement terminator. A semicolon (;)
is the default SQL terminator. You can specify any single-byte character except one
of the characters that are listed in . The terminator that you specify overrides a
terminator that you specified in option 1 of the CURRENT SPUFI DEFAULTS
panel or in a previous --#SET TERMINATOR statement.

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons. For example, suppose you choose the character #
as the statement terminator. Then a CREATE TRIGGER statement with embedded
semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

Be careful to choose a character for the SQL terminator that is not used within the
statement.

Controlling toleration of warnings

When you use SPUFI, you can control the toleration of warnings with the cont